Category Archives: copyright

Study says quantum computing will radically alter the application of copyright law

I was expecting more speculation about the possibilities that quantum computing might afford with regard to copyright law. According to the press release, this study is primarily focused on the impact that greater computing speed and power will have on copyright and, presumably, other forms of intellectual property. From a March 4, 2024 University of Exeter press release (also on EurekAlert),

Quantum computing will radically transform the application of the law – challenging long-held notions of copyright, a new study says.

Faster computing will bring exponentially greater possibilities in the tracking and tracing of the legal owners of art, music, culture and books.  

This is likely to mean more copyright infringements, but also make it easier for lawyers to clamp down on lawbreaking. However, faster computers will also be able to potentially break and get around certain older enforcement technologies.

The research says quantum computing could lead to an “exponentially” greater number of re-uses of copyright works without permission, and tracking of anyone breaking the law is likely to be possible in many circumstances.

Dr James Griffin, from the University of Exeter [UK] Law School, who led the study, said: “Quantum computers will have sufficient computing power to be able to make judgement calls [emphasis mine] as to whether or not re-uses are likely to be copyright infringements, skirting the boundaries of the law in a way that has yet to be fully tested in practice.

“Copyright infringements could become more commonplace due to the use of quantum computers, but the enforcement of such laws could also increase. This will potentially favour certain forms of content over others.”

Content with embedded quantum watermarks will be more likely to be protected than earlier forms of content without such watermarks. The exponential speed of quantum computing brings will make it easier to be able to produce more copies of existing copyright works.

Existing artworks will be altered on a large scale for use in AI-generated artistic works. Enhanced computing power will see the reuse of elements of films such as scenes, characters, music and scripts.

Dr Griffin said: “The nature of quantum computing also means that there could be more enforcement of copyright law. we can expect that there will be more use of technological protection measures, as well as copyright management information devices such as watermarks, and more use of filtering mechanisms to be able to detect, prevent and contain copyright infringements.

Copyright management information techniques are better suited to quantum computers because they allow for more finely grained analysis of potential infringements, and because they require greater computing power to be able to be applied both broadly to computer software and the actions of the users of such software.

Dr Griffin said: “A quantum paradox [emphasis mine] is thus developing, in that there are likely to be more infringements possible, whilst technical devices will simultaneously develop in an attempt to prevent any alleged possible or potential copyright infringements. Content will increasingly be made in a manner difficult to break, with enhanced encryption.

“Meanwhile, due to the expense of large-scale quantum computing, we can expect more content to be streamed and less owned; content will be kept remotely in order to enhance the notion that utilising such data in breach of contractual terms would be akin to breaking into someone’s physical house or committing a similar fraudulent activity.

Quantum computers allow enable creators to make a large number of small-scale works. This could pose challenges regarding the tests of copyright originality. For example story written for a quantum computer game could be constantly changing and evolving according to the actions of the player, and not just simply according to predefined paths but utilising complex AI algorithms. [emphasis mine]

Some interesting issues are raised in this press release. (1) Can any computer, quantum or otherwise, make a judgment call? (2) The ‘quantum paradox’ seems like a perfectly predictable outcome. After all, regular computers facilitated all kinds of new opportunities for infringement and prevention. What makes this a ‘quantum paradox’? (3) The evolving computer game seems more like an AI issue. What makes this a quantum computing problem? The answers to these questions may be in the study but that presents a problem.

Ordinarily, I’d offer a link to the study but it’s not accessible until 2025. Here’s a citation,

Quantum Computing and Copyright Law: A Wave of Change or a Mere Irrelevant Particle? by James G. H. Griffin. Intellectual Property Quarterly 2024 Issue 1, pp. 22 – 39. Published February 21, 2024. Under embargo until 21 February 2025 [emphasis mine] in compliance with publisher policy

There is an online record for the study on this Open Research Exeter (ORE) webpage where you can request a copy of the paper.

Canadian copyright quietly extended

As of December 30, 2022, Canadian copyright (one of the three elements of intellectual property; the other two: patents and trademarks) will be extended for another 20 years.

Mike Masnick in his November 29, 2022 posting on Techdirt explains why this is contrary to the intentions for establishing copyright in the first place, Note: Links have been removed,

… it cannot make sense to extend copyright terms retroactively. The entire point of copyright law is to provide a limited monopoly on making copies of the work as an incentive to get the work produced. Assuming the work was produced, that says that the bargain that was struck was clearly enough of an incentive for the creator. They were told they’d receive that period of exclusivity and thus they created the work.

Going back and retroactively extending copyright then serves no purpose. Creators need no incentive for works already created. The only thing it does is steal from the public. That’s because the “deal” setup by governments creating copyright terms is between the public (who is temporarily stripped of their right to share knowledge freely) and the creator. But if we extend copyright term retroactively, the public then has their end of the bargain (“you will be free to share these works freely after such-and-such a date”) changed, with no recourse or compensation.

Canada has quietly done it: extending copyrights on literary, dramatic or musical works and engravings from life of the author plus 50 years year to life of the author plus 70 years. [emphasis mine]

Masnick pointed to a November 23, 2022 posting by Andrea on the Internet Archive Canada blog for how this will affect the Canadian public,

… we now know that this date has been fixed as December 30, 2022, meaning that no new works will enter the Canadian public domain for the next 20 years.

A whole generation of creative works will remain under copyright. This might seem like a win for the estates of popular, internationally known authors, but what about more obscure Canadian works and creators? With circulation over time often being the indicator of ‘value’, many 20th century works are being deselected from physical library collections. …

Edward A. McCourt (1907-1972) is an example of just one of these Canadian creators. Raised in Alberta and a graduate of the University of Alberta, Edward went on to be a Rhodes Scholar in 1932. In 1980, Winnifred Bogaards wrote that:

“[H]e recorded over a period of thirty years his particular vision of the prairies, the region of Canada which had irrevocably shaped his own life. In that time he published five novels and forty-three short stories set (with some exceptions among the earliest stories) in Western Canada, three juvenile works based on the Riel Rebellion, a travel book on Saskatchewan, several radio plays adapted from his western stories, The Canadian West in Fiction (the first critical study of the literature of the prairies), and a biography of the 19th century English soldier and adventurer, Sir William F. Butler… “

In Bogaards’ analysis of his work, “Edward McCourt: A Reassessment” published in the journal Studies in Canadian Literature, she notes that while McCourt has suffered in obscurity, he is often cited along with his contemporaries Hugh MacLennan, Robertson Davies and Irving Layton; Canadian literary stars. Incidentally, we will also wait an additional 20 years for their works to enter the public domain. The work of Rebecca Giblin, Jacob Flynn, and Francois Petitjean, looking at ‘What Happens When Books Enter the Public Domain?’ is relevant here. Their study shows concretely and empirically that extending copyright has no benefit to the public at all, and only benefits a very few wealthy, well known estates and companies. This term extension will not encourage the publishers of McCourt’s works to invest in making his writing available to a new generation of readers.

This 20 year extension can trace its roots to the trade agreement between the US, Mexico, and Canada (USMCA) that replaced the previous North American Free Trade Agreement (NAFTA), as of July 1, 2020. This is made clear in Michael Geist’s May 2, 2022 Law Bytes podcast where he discusses with Lucie Guibault the (then proposed) Canadian extension in the context of international standards,

Lucie Guibault is an internationally renowned expert on international copyright law, a Professor of Law and Associate Dean at Schulich School of Law at Dalhousie University, and the Associate Director of the school’s Law and Technology Institute.

It’s always good to get some context and in that spirit, here’s more from Michael Geist’s May 2, 2022 Law Bytes podcast,

… Despite recommendations from its own copyright review, students, teachers, librarians, and copyright experts to include a registration requirement [emphasis mine] for the additional 20 years of protection, the government chose to extend term without including protection to mitigate against the harms.

Geist’s podcast discussion with Guibault, where she explains what a ‘registration requirement’ is and how it would work plus more, runs for almost 27 mins. (May 2, 2022 Law Bytes podcast). One final comment, visual artists and musicians are also affected by copyright rules.

Should AI algorithms get patents for their inventions and is anyone talking about copyright for texts written by AI algorithms?

A couple of Australian academics have written a comment for the journal Nature, which bears the intriguing subtitle: “The patent system assumes that inventors are human. Inventions devised by machines require their own intellectual property law and an international treaty.” (For the curious, I’ve linked to a few of my previous posts touching on intellectual property [IP], specifically the patent’s fraternal twin, copyright at the end of this piece.)

Before linking to the comment, here’s the May 27, 2022 University of New South Wales (UNCSW) press release (also on EurekAlert but published May 30, 2022) which provides an overview of their thinking on the subject, Note: Links have been removed,

It’s not surprising these days to see new inventions that either incorporate or have benefitted from artificial intelligence (AI) in some way, but what about inventions dreamt up by AI – do we award a patent to a machine?

This is the quandary facing lawmakers around the world with a live test case in the works that its supporters say is the first true example of an AI system named as the sole inventor.

In commentary published in the journal Nature, two leading academics from UNSW Sydney examine the implications of patents being awarded to an AI entity.

Intellectual Property (IP) law specialist Associate Professor Alexandra George and AI expert, Laureate Fellow and Scientia Professor Toby Walsh argue that patent law as it stands is inadequate to deal with such cases and requires legislators to amend laws around IP and patents – laws that have been operating under the same assumptions for hundreds of years.

The case in question revolves around a machine called DABUS (Device for the Autonomous Bootstrapping of Unified Sentience) created by Dr Stephen Thaler, who is president and chief executive of US-based AI firm Imagination Engines. Dr Thaler has named DABUS as the inventor of two products – a food container with a fractal surface that helps with insulation and stacking, and a flashing light for attracting attention in emergencies.

For a short time in Australia, DABUS looked like it might be recognised as the inventor because, in late July 2021, a trial judge accepted Dr Thaler’s appeal against IP Australia’s rejection of the patent application five months earlier. But after the Commissioner of Patents appealed the decision to the Full Court of the Federal Court of Australia, the five-judge panel upheld the appeal, agreeing with the Commissioner that an AI system couldn’t be named the inventor.

A/Prof. George says the attempt to have DABUS awarded a patent for the two inventions instantly creates challenges for existing laws which has only ever considered humans or entities comprised of humans as inventors and patent-holders.

“Even if we do accept that an AI system is the true inventor, the first big problem is ownership. How do you work out who the owner is? An owner needs to be a legal person, and an AI is not recognised as a legal person,” she says.

Ownership is crucial to IP law. Without it there would be little incentive for others to invest in the new inventions to make them a reality.

“Another problem with ownership when it comes to AI-conceived inventions, is even if you could transfer ownership from the AI inventor to a person: is it the original software writer of the AI? Is it a person who has bought the AI and trained it for their own purposes? Or is it the people whose copyrighted material has been fed into the AI to give it all that information?” asks A/Prof. George.

For obvious reasons

Prof. Walsh says what makes AI systems so different to humans is their capacity to learn and store so much more information than an expert ever could. One of the requirements of inventions and patents is that the product or idea is novel, not obvious and is useful.

“There are certain assumptions built into the law that an invention should not be obvious to a knowledgeable person in the field,” Prof. Walsh says.

“Well, what might be obvious to an AI won’t be obvious to a human because AI might have ingested all the human knowledge on this topic, way more than a human could, so the nature of what is obvious changes.”

Prof. Walsh says this isn’t the first time that AI has been instrumental in coming up with new inventions. In the area of drug development, a new antibiotic was created in 2019 – Halicin – that used deep learning to find a chemical compound that was effective against drug-resistant strains of bacteria.

“Halicin was originally meant to treat diabetes, but its effectiveness as an antibiotic was only discovered by AI that was directed to examine a vast catalogue of drugs that could be repurposed as antibiotics. So there’s a mixture of human and machine coming into this discovery.”

Prof. Walsh says in the case of DABUS, it’s not entirely clear whether the system is truly responsible for the inventions.

“There’s lots of involvement of Dr Thaler in these inventions, first in setting up the problem, then guiding the search for the solution to the problem, and then interpreting the result,” Prof. Walsh says.

“But it’s certainly the case that without the system, you wouldn’t have come up with the inventions.”

Change the laws

Either way, both authors argue that governing bodies around the world will need to modernise the legal structures that determine whether or not AI systems can be awarded IP protection. They recommend the introduction of a new ‘sui generis’ form of IP law – which they’ve dubbed ‘AI-IP’ – that would be specifically tailored to the circumstances of AI-generated inventiveness. This, they argue, would be more effective than trying to retrofit and shoehorn AI-inventiveness into existing patent laws.

Looking forward, after examining the legal questions around AI and patent law, the authors are currently working on answering the technical question of how AI is going to be inventing in the future.

Dr Thaler has sought ‘special leave to appeal’ the case concerning DABUS to the High Court of Australia. It remains to be seen whether the High Court will agree to hear it. Meanwhile, the case continues to be fought in multiple other jurisdictions around the world.

Here’s a link to and a citation for the paper,

Artificial intelligence is breaking patent law by Alexandra George & Toby Walsh. Nature (Nature) COMMENT ISSN 1476-4687 (online) 24 May 2022 ISSN 0028-0836 (print) Vol 605 26 May 2022 pp. 616-18 DOI: 10.1038/d41586-022-01391-x

This paper appears to be open access.

The Journey

DABIUS has gotten a patent in one jurisdiction, from an August 8, 2021 article on brandedequity.com,

The patent application listing DABUS as the inventor was filed in patent offices around the world, including the US, Europe, Australia, and South Afica. But only South Africa granted the patent (Australia followed suit a few days later after a court judgment gave the go-ahard [and rejected it several months later]).

Natural person?

This September 27, 2021 article by Miguel Bibe for Inventa covers some of the same ground adding some some discussion of the ‘natural person’ problem,

The patent is for “a food container based on fractal geometry”, and was accepted by the CIPC [Companies and Intellectual Property Commission] on June 24, 2021. The notice of issuance was published in the July 2021 “Patent Journal”.  

South Africa does not have a substantive patent examination system and, instead, requires applicants to merely complete a filing for their inventions. This means that South Africa patent laws do not provide a definition for “inventor” and the office only proceeds with a formal examination in order to confirm if the paperwork was filled correctly.

… according to a press release issued by the University of Surrey: “While patent law in many jurisdictions is very specific in how it defines an inventor, the DABUS team is arguing that the status quo is not fit for purpose in the Fourth Industrial Revolution.”

On the other hand, this may not be considered as a victory for the DABUS team since several doubts and questions remain as to who should be considered the inventor of the patent. Current IP laws in many jurisdictions follow the traditional term of “inventor” as being a “natural person”, and there is no legal precedent in the world for inventions created by a machine.

August 2022 update

Mike Masnick in an August 15, 2022 posting on Techdirt provides the latest information on Stephen Thaler’s efforts to have patents and copyrights awarded to his AI entity, DABUS,

Stephen Thaler is a man on a mission. It’s not a very good mission, but it’s a mission. He created something called DABUS (Device for the Autonomous Bootstrapping of Unified Sentience) and claims that it’s creating things, for which he has tried to file for patents and copyrights around the globe, with his mission being to have DABUS named as the inventor or author. This is dumb for many reasons. The purpose of copyright and patents are to incentivize the creation of these things, by providing to the inventor or author a limited time monopoly, allowing them to, in theory, use that monopoly to make some money, thereby making the entire inventing/authoring process worthwhile. An AI doesn’t need such an incentive. And this is why patents and copyright only are given to persons and not animals or AI.

… Thaler’s somewhat quixotic quest continues to fail. The EU Patent Office rejected his application. The Australian patent office similarly rejected his request. In that case, a court sided with Thaler after he sued the Australian patent office, and said that his AI could be named as an inventor, but thankfully an appeals court set aside that ruling a few months ago. In the US, Thaler/DABUS keeps on losing as well. Last fall, he lost in court as he tried to overturn the USPTO ruling, and then earlier this year, the US Copyright Office also rejected his copyright attempt (something it has done a few times before). In June, he sued the Copyright Office over this, which seems like a long shot.

And now, he’s also lost his appeal of the ruling in the patent case. CAFC, the Court of Appeals for the Federal Circuit — the appeals court that handles all patent appeals — has rejected Thaler’s request just like basically every other patent and copyright office, and nearly all courts.

If you have the time, the August 15, 2022 posting is an interesting read.

Consciousness and ethical AI

Just to make things more fraught, an engineer at Google has claimed that one of their AI chatbots has consciousness. From a June 16, 2022 article (in Canada’s National Post [previewed on epaper]) by Patrick McGee,

Google has ignited a social media firestorm on the the nature of consciousness after placing an engineer on paid leave with his belief that the tech group’s chatbot has become “sentient.”

Blake Lemoine, a senior software engineer in Google’s Responsible AI unit, did not receive much attention when he wrote a Medium post saying he “may be fired soon for doing AI ethics work.”

But a Saturday [June 11, 2022] profile in the Washington Post characterized Lemoine as “the Google engineer who thinks “the company’s AI has come to life.”

This is not the first time that Google has run into a problem with ethics and AI. Famously, Timnit Gebru who co-led (with Margaret Mitchell) Google’s ethics and AI unit departed in 2020. Gebru said (and maintains to this day) she was fired. They said she was ?, they never did make a final statement although after an investigation Gebru did receive an apology. You *can* read more about Gebru and the issues she brought to light in her Wikipedia entry. Coincidentally (or not), Margaret Mitchell was terminated/fired in February 2021 from Google after criticizing the company for Gebru’s ‘firing’. See a February 19, 2021 article by Megan Rose Dickey for TechCrunch for details about what the company has admitted is a firing or Margaret Mitchell’s termination from the company.

Getting back intellectual property and AI.

What about copyright?

There are no mentions of copyright in the earliest material I have here about the ‘creative’ arts and artificial intelligence is this, “Writing and AI or is a robot writing this blog?” posted July 16, 2014. More recently, there’s “Beer and wine reviews, the American Chemical Society’s (ACS) AI editors, and the Turing Test” posted May 20, 2022. The type of writing featured is not literary or typically considered creative writing.

On the more creative front, there’s “True love with AI (artificial intelligence): The Nature of Things explores emotional and creative AI (long read)” posted on December 3, 2021. The literary/creative portion of the post can be found under the ‘AI and creativity’ subhead approximately 30% of the way down and where I mention Douglas Coupland. Again, there’s no mention of copyright.

It’s with the visual arts that copyright gets mentioned. The first one I can find here is “Robot artists—should they get copyright protection” posted on July 10, 2017.

Fun fact: Andres Guadamuz who was mentioned in my posting took to his own blog where he gave my blog a shout out while implying that I wasn’t thoughtful. The gist of his August 8, 2017 posting was that he was misunderstood by many people, which led to the title for his post, “Should academics try to engage the public?” Thankfully, he soldiers on trying to educate us with his TechnoLama blog.

Lastly, there’s this August 16, 2019 posting “AI (artificial intelligence) artist got a show at a New York City art gallery” where you can scroll down to the ‘What about intellectual property?’ subhead about 80% of the way.

You look like a thing …

i am recommending a book for anyone who’d like to learn a little more about how artificial intelligence (AI) works, “You look like a thing and I love you; How Artificial Intelligence Works and Why It’s Making the World a Weirder Place” by Janelle Shane (2019).

It does not require an understanding of programming/coding/algorithms/etc.; Shane makes the subject as accessible as possible and gives you insight into why the term ‘artificial stupidity’ is more applicable than you might think. You can find Shane’s website here and you can find her 10 minute TED talk here.

*’can’ added to sentence on May 12, 2023.

AI (artificial intelligence) artist got a show at a New York City art gallery

AI artists first hit my radar in August 2018 when Christie’s Auction House advertised an art auction of a ‘painting’ by an algorithm (artificial intelligence). There’s more in my August 31, 2018 posting but, briefly, a French art collective, Obvious, submitted a painting, “Portrait of Edmond de Belamy,” that was created by an artificial intelligence agent to be sold for an estimated to $7000 – $10,000. They weren’t even close. According to Ian Bogost’s March 6, 2019 article for The Atlantic, the painting sold for $432,500 In October 2018.

It has also, Bogost notes in his article, occasioned an art show (Note: Links have been removed),

… part of “Faceless Portraits Transcending Time,” an exhibition of prints recently shown [Februay 13 – March 5, 2019] at the HG Contemporary gallery in Chelsea, the epicenter of New York’s contemporary-art world. All of them were created by a computer.

The catalog calls the show a “collaboration between an artificial intelligence named AICAN and its creator, Dr. Ahmed Elgammal,” a move meant to spotlight, and anthropomorphize, the machine-learning algorithm that did most of the work. According to HG Contemporary, it’s the first solo gallery exhibit devoted to an AI artist.

If they hadn’t found each other in the New York art scene, the players involved could have met on a Spike Jonze film set: a computer scientist commanding five-figure print sales from software that generates inkjet-printed images; a former hotel-chain financial analyst turned Chelsea techno-gallerist with apparent ties to fine-arts nobility; a venture capitalist with two doctoral degrees in biomedical informatics; and an art consultant who put the whole thing together, A-Team–style, after a chance encounter at a blockchain conference. Together, they hope to reinvent visual art, or at least to cash in on machine-learning hype along the way.

The show in New York City, “Faceless Portraits …,” exhibited work by an artificially intelligent artist-agent (I’m creating a new term to suit my purposes) that’s different than the one used by Obvious to create “Portrait of Edmond de Belamy,” As noted earlier, it sold for a lot of money (Note: Links have been removed),

Bystanders in and out of the art world were shocked. The print had never been shown in galleries or exhibitions before coming to market at auction, a channel usually reserved for established work. The winning bid was made anonymously by telephone, raising some eyebrows; art auctions can invite price manipulation. It was created by a computer program that generates new images based on patterns in a body of existing work, whose features the AI “learns.” What’s more, the artists who trained and generated the work, the French collective Obvious, hadn’t even written the algorithm or the training set. They just downloaded them, made some tweaks, and sent the results to market.

“We are the people who decided to do this,” the Obvious member Pierre Fautrel said in response to the criticism, “who decided to print it on canvas, sign it as a mathematical formula, put it in a gold frame.” A century after Marcel Duchamp made a urinal into art [emphasis mine] by putting it in a gallery, not much has changed, with or without computers. As Andy Warhol famously said, “Art is what you can get away with.”

A bit of a segue here, there is a controversy as to whether or not that ‘urinal art’, also known as, The Fountain, should be attributed to Duchamp as noted in my January 23, 2019 posting titled ‘Baroness Elsa von Freytag-Loringhoven, Marcel Duchamp, and the Fountain’.

Getting back to the main action, Bogost goes on to describe the technologies underlying the two different AI artist-agents (Note: Links have been removed),

… Using a computer is hardly enough anymore; today’s machines offer all kinds of ways to generate images that can be output, framed, displayed, and sold—from digital photography to artificial intelligence. Recently, the fashionable choice has become generative adversarial networks, or GANs, the technology that created Portrait of Edmond de Belamy. Like other machine-learning methods, GANs use a sample set—in this case, art, or at least images of it—to deduce patterns, and then they use that knowledge to create new pieces. A typical Renaissance portrait, for example, might be composed as a bust or three-quarter view of a subject. The computer may have no idea what a bust is, but if it sees enough of them, it might learn the pattern and try to replicate it in an image.

GANs use two neural nets (a way of processing information modeled after the human brain) to produce images: a “generator” and a “discerner.” The generator produces new outputs—images, in the case of visual art—and the discerner tests them against the training set to make sure they comply with whatever patterns the computer has gleaned from that data. The quality or usefulness of the results depends largely on having a well-trained system, which is difficult.

That’s why folks in the know were upset by the Edmond de Belamy auction. The image was created by an algorithm the artists didn’t write, trained on an “Old Masters” image set they also didn’t create. The art world is no stranger to trend and bluster driving attention, but the brave new world of AI painting appeared to be just more found art, the machine-learning equivalent of a urinal on a plinth.

Ahmed Elgammal thinks AI art can be much more than that. A Rutgers University professor of computer science, Elgammal runs an art-and-artificial-intelligence lab, where he and his colleagues develop technologies that try to understand and generate new “art” (the scare quotes are Elgammal’s) with AI—not just credible copies of existing work, like GANs do. “That’s not art, that’s just repainting,” Elgammal says of GAN-made images. “It’s what a bad artist would do.”

Elgammal calls his approach a “creative adversarial network,” or CAN. It swaps a GAN’s discerner—the part that ensures similarity—for one that introduces novelty instead. The system amounts to a theory of how art evolves: through small alterations to a known style that produce a new one. That’s a convenient take, given that any machine-learning technique has to base its work on a specific training set.

The results are striking and strange, although calling them a new artistic style might be a stretch. They’re more like credible takes on visual abstraction. The images in the show, which were produced based on training sets of Renaissance portraits and skulls, are more figurative, and fairly disturbing. Their gallery placards name them dukes, earls, queens, and the like, although they depict no actual people—instead, human-like figures, their features smeared and contorted yet still legible as portraiture. Faceless Portrait of a Merchant, for example, depicts a torso that might also read as the front legs and rear haunches of a hound. Atop it, a fleshy orb comes across as a head. The whole scene is rippled by the machine-learning algorithm, in the way of so many computer-generated artworks.

Faceless Portrait of a Merchant, one of the AI portraits produced by Ahmed Elgammal and AICAN. (Artrendex Inc.) [downloaded from https://www.theatlantic.com/technology/archive/2019/03/ai-created-art-invades-chelsea-gallery-scene/584134/]

Bogost consults an expert on portraiture for a discussion about the particularities of portraiture and the shortcomings one might expect of an AI artist-agent (Note: A link has been removed),

“You can’t really pick a form of painting that’s more charged with cultural meaning than portraiture,” John Sharp, an art historian trained in 15th-century Italian painting and the director of the M.F.A. program in design and technology at Parsons School of Design, told me. The portrait isn’t just a style, it’s also a host for symbolism. “For example, men might be shown with an open book to show how they are in dialogue with that material; or a writing implement, to suggest authority; or a weapon, to evince power.” Take Portrait of a Youth Holding an Arrow, an early-16th-century Boltraffio portrait that helped train the AICAN database for the show. The painting depicts a young man, believed to be the Bolognese poet Girolamo Casio, holding an arrow at an angle in his fingers and across his chest. It doubles as both weapon and quill, a potent symbol of poetry and aristocracy alike. Along with the arrow, the laurels in Casio’s hair are emblems of Apollo, the god of both poetry and archery.

A neural net couldn’t infer anything about the particular symbolic trappings of the Renaissance or antiquity—unless it was taught to, and that wouldn’t happen just by showing it lots of portraits. For Sharp and other critics of computer-generated art, the result betrays an unforgivable ignorance about the supposed influence of the source material.

But for the purposes of the show, the appeal to the Renaissance might be mostly a foil, a way to yoke a hip, new technology to traditional painting in order to imbue it with the gravity of history: not only a Chelsea gallery show, but also an homage to the portraiture found at the Met. To reinforce a connection to the cradle of European art, some of the images are presented in elaborate frames, a decision the gallerist, Philippe Hoerle-Guggenheim (yes, that Guggenheim; he says the relation is “distant”) [the Guggenheim is strongly associated with the visual arts by way the two Guggeheim museums, one in New York City and the other in Bilbao, Portugal], told me he insisted upon. Meanwhile, the technical method makes its way onto the gallery placards in an official-sounding way—“Creative Adversarial Network print.” But both sets of inspirations, machine-learning and Renaissance portraiture, get limited billing and zero explanation at the show. That was deliberate, Hoerle-Guggenheim said. He’s betting that the simple existence of a visually arresting AI painting will be enough to draw interest—and buyers. It would turn out to be a good bet.

The art market is just that: a market. Some of the most renowned names in art today, from Damien Hirst to Banksy, trade in the trade of art as much as—and perhaps even more than—in the production of images, objects, and aesthetics. No artist today can avoid entering that fray, Elgammal included. “Is he an artist?” Hoerle-Guggenheim asked himself of the computer scientist. “Now that he’s in this context, he must be.” But is that enough? In Sharp’s estimation, “Faceless Portraits Transcending Time” is a tech demo more than a deliberate oeuvre, even compared to the machine-learning-driven work of his design-and-technology M.F.A. students, who self-identify as artists first.

Judged as Banksy or Hirst might be, Elgammal’s most art-worthy work might be the Artrendex start-up itself, not the pigment-print portraits that its technology has output. Elgammal doesn’t treat his commercial venture like a secret, but he also doesn’t surface it as a beneficiary of his supposedly earnest solo gallery show. He’s argued that AI-made images constitute a kind of conceptual art, but conceptualists tend to privilege process over product or to make the process as visible as the product.

Hoerle-Guggenheim worked as a financial analyst for Hyatt before getting into the art business via some kind of consulting deal (he responded cryptically when I pressed him for details). …

This is a fascinating article and I have one last excerpt, which poses this question, is an AI artist-agent a collaborator or a medium? There ‘s also speculation about how AI artist-agents might impact the business of art (Note: Links have been removed),

… it’s odd to list AICAN as a collaborator—painters credit pigment as a medium, not as a partner. Even the most committed digital artists don’t present the tools of their own inventions that way; when they do, it’s only after years, or even decades, of ongoing use and refinement.

But Elgammal insists that the move is justified because the machine produces unexpected results. “A camera is a tool—a mechanical device—but it’s not creative,” he said. “Using a tool is an unfair term for AICAN. It’s the first time in history that a tool has had some kind of creativity, that it can surprise you.” Casey Reas, a digital artist who co-designed the popular visual-arts-oriented coding platform Processing, which he uses to create some of his fine art, isn’t convinced. “The artist should claim responsibility over the work rather than to cede that agency to the tool or the system they create,” he told me.

Elgammal’s financial interest in AICAN might explain his insistence on foregrounding its role. Unlike a specialized print-making technique or even the Processing coding environment, AICAN isn’t just a device that Elgammal created. It’s also a commercial enterprise.

Elgammal has already spun off a company, Artrendex, that provides “artificial-intelligence innovations for the art market.” One of them offers provenance authentication for artworks; another can suggest works a viewer or collector might appreciate based on an existing collection; another, a system for cataloging images by visual properties and not just by metadata, has been licensed by the Barnes Foundation to drive its collection-browsing website.

The company’s plans are more ambitious than recommendations and fancy online catalogs. When presenting on a panel about the uses of blockchain for managing art sales and provenance, Elgammal caught the attention of Jessica Davidson, an art consultant who advises artists and galleries in building collections and exhibits. Davidson had been looking for business-development partnerships, and she became intrigued by AICAN as a marketable product. “I was interested in how we can harness it in a compelling way,” she says.

The art market is just that: a market. Some of the most renowned names in art today, from Damien Hirst to Banksy, trade in the trade of art as much as—and perhaps even more than—in the production of images, objects, and aesthetics. No artist today can avoid entering that fray, Elgammal included. “Is he an artist?” Hoerle-Guggenheim asked himself of the computer scientist. “Now that he’s in this context, he must be.” But is that enough? In Sharp’s estimation, “Faceless Portraits Transcending Time” is a tech demo more than a deliberate oeuvre, even compared to the machine-learning-driven work of his design-and-technology M.F.A. students, who self-identify as artists first.

Judged as Banksy or Hirst might be, Elgammal’s most art-worthy work might be the Artrendex start-up itself, not the pigment-print portraits that its technology has output. Elgammal doesn’t treat his commercial venture like a secret, but he also doesn’t surface it as a beneficiary of his supposedly earnest solo gallery show. He’s argued that AI-made images constitute a kind of conceptual art, but conceptualists tend to privilege process over product or to make the process as visible as the product.

Hoerle-Guggenheim worked as a financial analyst[emphasis mine] for Hyatt before getting into the art business via some kind of consulting deal (he responded cryptically when I pressed him for details). …

If you have the time, I recommend reading Bogost’s March 6, 2019 article for The Atlantic in its entirety/ these excerpts don’t do it enough justice.

Portraiture: what does it mean these days?

After reading the article I have a few questions. What exactly do Bogost and the arty types in the article mean by the word ‘portrait’? “Portrait of Edmond de Belamy” is an image of someone who doesn’t and never has existed and the exhibit “Faceless Portraits Transcending Time,” features images that don’t bear much or, in some cases, any resemblance to human beings. Maybe this is considered a dull question by people in the know but I’m an outsider and I found the paradox: portraits of nonexistent people or nonpeople kind of interesting.

BTW, I double-checked my assumption about portraits and found this definition in the Portrait Wikipedia entry (Note: Links have been removed),

A portrait is a painting, photograph, sculpture, or other artistic representation of a person [emphasis mine], in which the face and its expression is predominant. The intent is to display the likeness, personality, and even the mood of the person. For this reason, in photography a portrait is generally not a snapshot, but a composed image of a person in a still position. A portrait often shows a person looking directly at the painter or photographer, in order to most successfully engage the subject with the viewer.

So, portraits that aren’t portraits give rise to some philosophical questions but Bogost either didn’t want to jump into that rabbit hole (segue into yet another topic) or, as I hinted earlier, may have assumed his audience had previous experience of those kinds of discussions.

Vancouver (Canada) and a ‘portraiture’ exhibit at the Rennie Museum

By one of life’s coincidences, Vancouver’s Rennie Museum had an exhibit (February 16 – June 15, 2019) that illuminates questions about art collecting and portraiture, From a February 7, 2019 Rennie Museum news release,

‘downloaded from https://renniemuseum.org/press-release-spring-2019-collected-works/] Courtesy: Rennie Museum

February 7, 2019

Press Release | Spring 2019: Collected Works
By rennie museum

rennie museum is pleased to present Spring 2019: Collected Works, a group exhibition encompassing the mediums of photography, painting and film. A portraiture of the collecting spirit [emphasis mine], the works exhibited invite exploration of what collected objects, and both the considered and unintentional ways they are displayed, inform us. Featuring the works of four artists—Andrew Grassie, William E. Jones, Louise Lawler and Catherine Opie—the exhibition runs from February 16 to June 15, 2019.

Four exquisite paintings by Scottish painter Andrew Grassie detailing the home and private storage space of a major art collector provide a peek at how the passionately devoted integrates and accommodates the physical embodiments of such commitment into daily life. Grassie’s carefully constructed, hyper-realistic images also pose the question, “What happens to art once it’s sold?” In the transition from pristine gallery setting to idiosyncratic private space, how does the new context infuse our reading of the art and how does the art shift our perception of the individual?

Furthering the inquiry into the symbiotic exchange between possessor and possession, a selection of images by American photographer Louise Lawler depicting art installed in various private and public settings question how the bilateral relationship permeates our interpretation when the collector and the collected are no longer immediately connected. What does de-acquisitioning an object inform us and how does provenance affect our consideration of the art?

The question of legacy became an unexpected facet of 700 Nimes Road (2010-2011), American photographer Catherine Opie’s portrait of legendary actress Elizabeth Taylor. Opie did not directly photograph Taylor for any of the fifty images in the expansive portfolio. Instead, she focused on Taylor’s home and the objects within, inviting viewers to see—then see beyond—the façade of fame and consider how both treasures and trinkets act as vignettes to the stories of a life. Glamorous images of jewels and trophies juxtapose with mundane shots of a printer and the remote-control user manual. Groupings of major artworks on the wall are as illuminating of the home’s mistress as clusters of personal photos. Taylor passed away part way through Opie’s project. The subsequent photos include Taylor’s mementos heading off to auction, raising the question, “Once the collections that help to define someone are disbursed, will our image of that person lose focus?”

In a similar fashion, the twenty-two photographs in Villa Iolas (1982/2017), by American artist and filmmaker William E. Jones, depict the Athens home of iconic art dealer and collector Alexander Iolas. Taken in 1982 by Jones during his first travels abroad, the photographs of art, furniture and antiquities tell a story of privilege that contrast sharply with the images Jones captures on a return visit in 2016. Nearly three decades after Iolas’s 1989 death, his home sits in dilapidation, looted and vandalized. Iolas played an extraordinary role in the evolution of modern art, building the careers of Max Ernst, Yves Klein and Giorgio de Chirico. He gave Andy Warhol his first solo exhibition and was a key advisor to famed collectors John and Dominique de Menil. Yet in the years since his death, his intention of turning his home into a modern art museum as a gift to Greece, along with his reputation, crumbled into ruins. The photographs taken by Jones during his visits in two different eras are incorporated into the film Fall into Ruin (2017), along with shots of contemporary Athens and antiquities on display at the National Archaeological Museum.

“I ask a lot of questions about how portraiture functionswhat is there to describe the person or time we live in or a certain set of politics…”
 – Catherine Opie, The Guardian, Feb 9, 2016

We tend to think of the act of collecting as a formal activity yet it can happen casually on a daily basis, often in trivial ways. While we readily acknowledge a collector consciously assembling with deliberate thought, we give lesser consideration to the arbitrary accumulations that each of us accrue. Be it master artworks, incidental baubles or random curios, the objects we acquire and surround ourselves with tell stories of who we are.

Andrew Grassie (Scotland, b. 1966) is a painter known for his small scale, hyper-realist works. He has been the subject of solo exhibitions at the Tate Britain; Talbot Rice Gallery, Edinburgh; institut supérieur des arts de Toulouse; and rennie museum, Vancouver, Canada. He lives and works in London, England.

William E. Jones (USA, b. 1962) is an artist, experimental film-essayist and writer. Jones’s work has been the subject of retrospectives at Tate Modern, London; Anthology Film Archives, New York; Austrian Film Museum, Vienna; and, Oberhausen Short Film Festival. He is a recipient of the John Simon Guggenheim Memorial Fellowship and the Creative Capital/Andy Warhol Foundation Arts Writers Grant. He lives and works in Los Angeles, USA.

Louise Lawler (USA, b. 1947) is a photographer and one of the foremost members of the Pictures Generation. Lawler was the subject of a major retrospective at the Museum of Modern Art, New York in 2017. She has held exhibitions at the Whitney Museum of American Art, New York; Stedelijk Museum, Amsterdam; National Museum of Art, Oslo; and Musée d’Art Moderne de La Ville de Paris. She lives and works in New York.

Catherine Opie (USA, b. 1961) is a photographer and educator. Her work has been exhibited at Wexner Center for the Arts, Ohio; Henie Onstad Art Center, Oslo; Los the Angeles County Museum of Art; Portland Art Museum; and the Guggenheim Museum, New York. She is the recipient of United States Artist Fellowship, Julius Shulman’s Excellence in Photography Award, and the Smithsonian’s Archive of American Art Medal.  She lives and works in Los Angeles.

rennie museum opened in October 2009 in historic Wing Sang, the oldest structure in Vancouver’s Chinatown, to feature dynamic exhibitions comprising only of art drawn from rennie collection. Showcasing works by emerging and established international artists, the exhibits, accompanied by supporting catalogues, are open free to the public through engaging guided tours. The museum’s commitment to providing access to arts and culture is also expressed through its education program, which offers free age-appropriate tours and customized workshops to children of all ages.

rennie collection is a globally recognized collection of contemporary art that focuses on works that tackle issues related to identity, social commentary and injustice, appropriation, and the nature of painting, photography, sculpture and film. Currently the collection includes works by over 370 emerging and established artists, with over fifty collected in depth. The Vancouver based collection engages actively with numerous museums globally through a robust, artist-centric, lending policy.

So despite the Wikipedia definition, it seems that portraits don’t always feature people. While Bogost didn’t jump into that particular rabbit hole, he did touch on the business side of art.

What about intellectual property?

Bogost doesn’t explicitly discuss this particular issue. It’s a big topic so I’m touching on it only lightly, if an artist works* with an AI, the question as to ownership of the artwork could prove thorny. Is the copyright owner the computer scientist or the artist or both? Or does the AI artist-agent itself own the copyright? That last question may not be all that farfetched. Sophia, a social humanoid robot, has occasioned thought about ‘personhood.’ (Note: The robots mentioned in this posting have artificial intelligence.) From the Sophia (robot) Wikipedia entry (Note: Links have been removed),

Sophia has been interviewed in the same manner as a human, striking up conversations with hosts. Some replies have been nonsensical, while others have impressed interviewers such as 60 Minutes’ Charlie Rose.[12] In a piece for CNBC, when the interviewer expressed concerns about robot behavior, Sophia joked that he had “been reading too much Elon Musk. And watching too many Hollywood movies”.[27] Musk tweeted that Sophia should watch The Godfather and asked “what’s the worst that could happen?”[28][29] Business Insider’s chief UK editor Jim Edwards interviewed Sophia, and while the answers were “not altogether terrible”, he predicted it was a step towards “conversational artificial intelligence”.[30] At the 2018 Consumer Electronics Show, a BBC News reporter described talking with Sophia as “a slightly awkward experience”.[31]

On October 11, 2017, Sophia was introduced to the United Nations with a brief conversation with the United Nations Deputy Secretary-General, Amina J. Mohammed.[32] On October 25, at the Future Investment Summit in Riyadh, the robot was granted Saudi Arabian citizenship [emphasis mine], becoming the first robot ever to have a nationality.[29][33] This attracted controversy as some commentators wondered if this implied that Sophia could vote or marry, or whether a deliberate system shutdown could be considered murder. Social media users used Sophia’s citizenship to criticize Saudi Arabia’s human rights record. In December 2017, Sophia’s creator David Hanson said in an interview that Sophia would use her citizenship to advocate for women’s rights in her new country of citizenship; Newsweek criticized that “What [Hanson] means, exactly, is unclear”.[34] On November 27, 2018 Sophia was given a visa by Azerbaijan while attending Global Influencer Day Congress held in Baku. December 15, 2018 Sophia was appointed a Belt and Road Innovative Technology Ambassador by China'[35]

As for an AI artist-agent’s intellectual property rights , I have a July 10, 2017 posting featuring that question in more detail. Whether you read that piece or not, it seems obvious that artists might hesitate to call an AI agent, a partner rather than a medium of expression. After all, a partner (and/or the computer scientist who developed the programme) might expect to share in property rights and profits but paint, marble, plastic, and other media used by artists don’t have those expectations.

Moving slightly off topic , in my July 10, 2017 posting I mentioned a competition (literary and performing arts rather than visual arts) called, ‘Dartmouth College and its Neukom Institute Prizes in Computational Arts’. It was started in 2016 and, as of 2018, was still operational under this name: Creative Turing Tests. Assuming there’ll be contests for prizes in 2019, there’s (from the contest site) [1] PoetiX, competition in computer-generated sonnet writing; [2] Musical Style, composition algorithms in various styles, and human-machine improvisation …; and [3] DigiLit, algorithms able to produce “human-level” short story writing that is indistinguishable from an “average” human effort. You can find the contest site here.

*’worsk’ corrected to ‘works’ on June 9, 2022

Robot artists—should they get copyright protection

Clearly a lawyer wrote this June 26, 2017 essay on theconversation.com (Note: A link has been removed),

When a group of museums and researchers in the Netherlands unveiled a portrait entitled The Next Rembrandt, it was something of a tease to the art world. It wasn’t a long lost painting but a new artwork generated by a computer that had analysed thousands of works by the 17th-century Dutch artist Rembrandt Harmenszoon van Rijn.

The computer used something called machine learning [emphasis mine] to analyse and reproduce technical and aesthetic elements in Rembrandt’s works, including lighting, colour, brush-strokes and geometric patterns. The result is a portrait produced based on the styles and motifs found in Rembrandt’s art but produced by algorithms.

But who owns creative works generated by artificial intelligence? This isn’t just an academic question. AI is already being used to generate works in music, journalism and gaming, and these works could in theory be deemed free of copyright because they are not created by a human author.

This would mean they could be freely used and reused by anyone and that would be bad news for the companies selling them. Imagine you invest millions in a system that generates music for video games, only to find that music isn’t protected by law and can be used without payment by anyone in the world.

Unlike with earlier computer-generated works of art, machine learning software generates truly creative works without human input or intervention. AI is not just a tool. While humans program the algorithms, the decision making – the creative spark – comes almost entirely from the machine.

It could have been someone involved in the technology but nobody with that background would write “… something called machine learning … .”  Andres Guadamuz, lecturer in Intellectual Property Law at the University of Sussex, goes on to say (Note: Links have been removed),

Unlike with earlier computer-generated works of art, machine learning software generates truly creative works without human input or intervention. AI is not just a tool. While humans program the algorithms, the decision making – the creative spark – comes almost entirely from the machine.

That doesn’t mean that copyright should be awarded to the computer, however. Machines don’t (yet) have the rights and status of people under the law. But that doesn’t necessarily mean there shouldn’t be any copyright either. Not all copyright is owned by individuals, after all.

Companies are recognised as legal people and are often awarded copyright for works they don’t directly create. This occurs, for example, when a film studio hires a team to make a movie, or a website commissions a journalist to write an article. So it’s possible copyright could be awarded to the person (company or human) that has effectively commissioned the AI to produce work for it.

 

Things are likely to become yet more complex as AI tools are more commonly used by artists and as the machines get better at reproducing creativity, making it harder to discern if an artwork is made by a human or a computer. Monumental advances in computing and the sheer amount of computational power becoming available may well make the distinction moot. At that point, we will have to decide what type of protection, if any, we should give to emergent works created by intelligent algorithms with little or no human intervention.

The most sensible move seems to follow those countries that grant copyright to the person who made the AI’s operation possible, with the UK’s model looking like the most efficient. This will ensure companies keep investing in the technology, safe in the knowledge they will reap the benefits. What happens when we start seriously debating whether computers should be given the status and rights of people is a whole other story.

The team that developed a ‘new’ Rembrandt produced a video about the process,

Mark Brown’s April 5, 2016 article abut this project (which was unveiled on April 5, 2017 in Amsterdam, Netherlands) for the Guardian newspaper provides more detail such as this,

It [Next Rembrandt project] is the result of an 18-month project which asks whether new technology and data can bring back to life one of the greatest, most innovative painters of all time.

Advertising executive [Bas] Korsten, whose brainchild the project was, admitted that there were many doubters. “The idea was greeted with a lot of disbelief and scepticism,” he said. “Also coming up with the idea is one thing, bringing it to life is another.”

The project has involved data scientists, developers, engineers and art historians from organisations including Microsoft, Delft University of Technology, the Mauritshuis in The Hague and the Rembrandt House Museum in Amsterdam.

The final 3D printed painting consists of more than 148 million pixels and is based on 168,263 Rembrandt painting fragments.

Some of the challenges have been in designing a software system that could understand Rembrandt based on his use of geometry, composition and painting materials. A facial recognition algorithm was then used to identify and classify the most typical geometric patterns used to paint human features.

It sounds like it was a fascinating project but I don’t believe ‘The Next Rembrandt’ is an example of AI creativity or an example of the ‘creative spark’ Guadamuz discusses. This seems more like the kind of work  that could be done by a talented forger or fraudster. As I understand it, even when a human creates this type of artwork (a newly discovered and unknown xxx masterpiece), the piece is not considered a creative work in its own right. Some pieces are outright fraudulent and others which are described as “in the manner of xxx.”

Taking a somewhat different approach to mine, Timothy Geigner at Techdirt has also commented on the question of copyright and AI in relation to Guadamuz’s essay in a July 7, 2017 posting,

Unlike with earlier computer-generated works of art, machine learning software generates truly creative works without human input or intervention. AI is not just a tool. While humans program the algorithms, the decision making – the creative spark – comes almost entirely from the machine.

Let’s get the easy part out of the way: the culminating sentence in the quote above is not true. The creative spark is not the artistic output. Rather, the creative spark has always been known as the need to create in the first place. This isn’t a trivial quibble, either, as it factors into the simple but important reasoning for why AI and machines should certainly not receive copyright rights on their output.

That reasoning is the purpose of copyright law itself. Far too many see copyright as a reward system for those that create art rather than what it actually was meant to be: a boon to an artist to compensate for that artist to create more art for the benefit of the public as a whole. Artificial intelligence, however far progressed, desires only what it is programmed to desire. In whatever hierarchy of needs an AI might have, profit via copyright would factor either laughably low or not at all into its future actions. Future actions of the artist, conversely, are the only item on the agenda for copyright’s purpose. If receiving a copyright wouldn’t spur AI to create more art beneficial to the public, then copyright ought not to be granted.

Geigner goes on (July 7, 2017 posting) to elucidate other issues with the ideas expressed in the general debates of AI and ‘rights’ and the EU’s solution.

The Canadian science scene and the 2017 Canadian federal budget

There’s not much happening in the 2017-18 budget in terms of new spending according to Paul Wells’ March 22, 2017 article for TheStar.com,

This is the 22nd or 23rd federal budget I’ve covered. And I’ve never seen the like of the one Bill Morneau introduced on Wednesday [March 22, 2017].

Not even in the last days of the Harper Conservatives did a budget provide for so little new spending — $1.3 billion in the current budget year, total, in all fields of government. That’s a little less than half of one per cent of all federal program spending for this year.

But times are tight. The future is a place where we can dream. So the dollars flow more freely in later years. In 2021-22, the budget’s fifth planning year, new spending peaks at $8.2 billion. Which will be about 2.4 per cent of all program spending.

He’s not alone in this 2017 federal budget analysis; CBC (Canadian Broadcasting Corporation) pundits, Chantal Hébert, Andrew Coyne, and Jennifer Ditchburn said much the same during their ‘At Issue’ segment of the March 22, 2017 broadcast of The National (news).

Before I focus on the science and technology budget, here are some general highlights from the CBC’s March 22, 2017 article on the 2017-18 budget announcement (Note: Links have been removed,

Here are highlights from the 2017 federal budget:

  • Deficit: $28.5 billion, up from $25.4 billion projected in the fall.
  • Trend: Deficits gradually decline over next five years — but still at $18.8 billion in 2021-22.
  • Housing: $11.2 billion over 11 years, already budgeted, will go to a national housing strategy.
  • Child care: $7 billion over 10 years, already budgeted, for new spaces, starting 2018-19.
  • Indigenous: $3.4 billion in new money over five years for infrastructure, health and education.
  • Defence: $8.4 billion in capital spending for equipment pushed forward to 2035.
  • Care givers: New care-giving benefit up to 15 weeks, starting next year.
  • Skills: New agency to research and measure skills development, starting 2018-19.
  • Innovation: $950 million over five years to support business-led “superclusters.”
  • Startups: $400 million over three years for a new venture capital catalyst initiative.
  • AI: $125 million to launch a pan-Canadian Artificial Intelligence Strategy.
  • Coding kids: $50 million over two years for initiatives to teach children to code.
  • Families: Option to extend parental leave up to 18 months.
  • Uber tax: GST to be collected on ride-sharing services.
  • Sin taxes: One cent more on a bottle of wine, five cents on 24 case of beer.
  • Bye-bye: No more Canada Savings Bonds.
  • Transit credit killed: 15 per cent non-refundable public transit tax credit phased out this year.

You can find the entire 2017-18 budget here.

Science and the 2017-18 budget

For anyone interested in the science news, you’ll find most of that in the 2017 budget’s Chapter 1 — Skills, Innovation and Middle Class jobs. As well, Wayne Kondro has written up a précis in his March 22, 2017 article for Science (magazine),

Finance officials, who speak on condition of anonymity during the budget lock-up, indicated the budgets of the granting councils, the main source of operational grants for university researchers, will be “static” until the government can assess recommendations that emerge from an expert panel formed in 2015 and headed by former University of Toronto President David Naylor to review basic science in Canada [highlighted in my June 15, 2016 posting ; $2M has been allocated for the advisor and associated secretariat]. Until then, the officials said, funding for the Natural Sciences and Engineering Research Council of Canada (NSERC) will remain at roughly $848 million, whereas that for the Canadian Institutes of Health Research (CIHR) will remain at $773 million, and for the Social Sciences and Humanities Research Council [SSHRC] at $547 million.

NSERC, though, will receive $8.1 million over 5 years to administer a PromoScience Program that introduces youth, particularly unrepresented groups like Aboriginal people and women, to science, technology, engineering, and mathematics through measures like “space camps and conservation projects.” CIHR, meanwhile, could receive modest amounts from separate plans to identify climate change health risks and to reduce drug and substance abuse, the officials added.

… Canada’s Innovation and Skills Plan, would funnel $600 million over 5 years allocated in 2016, and $112.5 million slated for public transit and green infrastructure, to create Silicon Valley–like “super clusters,” which the budget defined as “dense areas of business activity that contain large and small companies, post-secondary institutions and specialized talent and infrastructure.” …

… The Canadian Institute for Advanced Research will receive $93.7 million [emphasis mine] to “launch a Pan-Canadian Artificial Intelligence Strategy … (to) position Canada as a world-leading destination for companies seeking to invest in artificial intelligence and innovation.”

… Among more specific measures are vows to: Use $87.7 million in previous allocations to the Canada Research Chairs program to create 25 “Canada 150 Research Chairs” honoring the nation’s 150th year of existence, provide $1.5 million per year to support the operations of the office of the as-yet-unappointed national science adviser [see my Dec. 7, 2016 post for information about the job posting, which is now closed]; provide $165.7 million [emphasis mine] over 5 years for the nonprofit organization Mitacs to create roughly 6300 more co-op positions for university students and grads, and provide $60.7 million over five years for new Canadian Space Agency projects, particularly for Canadian participation in the National Aeronautics and Space Administration’s next Mars Orbiter Mission.

Kondros was either reading an earlier version of the budget or made an error regarding Mitacs (from the budget in the “A New, Ambitious Approach to Work-Integrated Learning” subsection),

Mitacs has set an ambitious goal of providing 10,000 work-integrated learning placements for Canadian post-secondary students and graduates each year—up from the current level of around 3,750 placements. Budget 2017 proposes to provide $221 million [emphasis mine] over five years, starting in 2017–18, to achieve this goal and provide relevant work experience to Canadian students.

As well, the budget item for the Pan-Canadian Artificial Intelligence Strategy is $125M.

Moving from Kondros’ précis, the budget (in the “Positioning National Research Council Canada Within the Innovation and Skills Plan” subsection) announces support for these specific areas of science,

Stem Cell Research

The Stem Cell Network, established in 2001, is a national not-for-profit organization that helps translate stem cell research into clinical applications, commercial products and public policy. Its research holds great promise, offering the potential for new therapies and medical treatments for respiratory and heart diseases, cancer, diabetes, spinal cord injury, multiple sclerosis, Crohn’s disease, auto-immune disorders and Parkinson’s disease. To support this important work, Budget 2017 proposes to provide the Stem Cell Network with renewed funding of $6 million in 2018–19.

Space Exploration

Canada has a long and proud history as a space-faring nation. As our international partners prepare to chart new missions, Budget 2017 proposes investments that will underscore Canada’s commitment to innovation and leadership in space. Budget 2017 proposes to provide $80.9 million on a cash basis over five years, starting in 2017–18, for new projects through the Canadian Space Agency that will demonstrate and utilize Canadian innovations in space, including in the field of quantum technology as well as for Mars surface observation. The latter project will enable Canada to join the National Aeronautics and Space Administration’s (NASA’s) next Mars Orbiter Mission.

Quantum Information

The development of new quantum technologies has the potential to transform markets, create new industries and produce leading-edge jobs. The Institute for Quantum Computing is a world-leading Canadian research facility that furthers our understanding of these innovative technologies. Budget 2017 proposes to provide the Institute with renewed funding of $10 million over two years, starting in 2017–18.

Social Innovation

Through community-college partnerships, the Community and College Social Innovation Fund fosters positive social outcomes, such as the integration of vulnerable populations into Canadian communities. Following the success of this pilot program, Budget 2017 proposes to invest $10 million over two years, starting in 2017–18, to continue this work.

International Research Collaborations

The Canadian Institute for Advanced Research (CIFAR) connects Canadian researchers with collaborative research networks led by eminent Canadian and international researchers on topics that touch all humanity. Past collaborations facilitated by CIFAR are credited with fostering Canada’s leadership in artificial intelligence and deep learning. Budget 2017 proposes to provide renewed and enhanced funding of $35 million over five years, starting in 2017–18.

Earlier this week, I highlighted Canada’s strength in the field of regenerative medicine, specifically stem cells in a March 21, 2017 posting. The $6M in the current budget doesn’t look like increased funding but rather a one-year extension. I’m sure they’re happy to receive it  but I imagine it’s a little hard to plan major research projects when you’re not sure how long your funding will last.

As for Canadian leadership in artificial intelligence, that was news to me. Here’s more from the budget,

Canada a Pioneer in Deep Learning in Machines and Brains

CIFAR’s Learning in Machines & Brains program has shaken up the field of artificial intelligence by pioneering a technique called “deep learning,” a computer technique inspired by the human brain and neural networks, which is now routinely used by the likes of Google and Facebook. The program brings together computer scientists, biologists, neuroscientists, psychologists and others, and the result is rich collaborations that have propelled artificial intelligence research forward. The program is co-directed by one of Canada’s foremost experts in artificial intelligence, the Université de Montréal’s Yoshua Bengio, and for his many contributions to the program, the University of Toronto’s Geoffrey Hinton, another Canadian leader in this field, was awarded the title of Distinguished Fellow by CIFAR in 2014.

Meanwhile, from chapter 1 of the budget in the subsection titled “Preparing for the Digital Economy,” there is this provision for children,

Providing educational opportunities for digital skills development to Canadian girls and boys—from kindergarten to grade 12—will give them the head start they need to find and keep good, well-paying, in-demand jobs. To help provide coding and digital skills education to more young Canadians, the Government intends to launch a competitive process through which digital skills training organizations can apply for funding. Budget 2017 proposes to provide $50 million over two years, starting in 2017–18, to support these teaching initiatives.

I wonder if BC Premier Christy Clark is heaving a sigh of relief. At the 2016 #BCTECH Summit, she announced that students in BC would learn to code at school and in newly enhanced coding camp programmes (see my Jan. 19, 2016 posting). Interestingly, there was no mention of additional funding to support her initiative. I guess this money from the federal government comes at a good time as we will have a provincial election later this spring where she can announce the initiative again and, this time, mention there’s money for it.

Attracting brains from afar

Ivan Semeniuk in his March 23, 2017 article (for the Globe and Mail) reads between the lines to analyze the budget’s possible impact on Canadian science,

But a between-the-lines reading of the budget document suggests the government also has another audience in mind: uneasy scientists from the United States and Britain.

The federal government showed its hand at the 2017 #BCTECH Summit. From a March 16, 2017 article by Meera Bains for the CBC news online,

At the B.C. tech summit, Navdeep Bains, Canada’s minister of innovation, said the government will act quickly to fast track work permits to attract highly skilled talent from other countries.

“We’re taking the processing time, which takes months, and reducing it to two weeks for immigration processing for individuals [who] need to come here to help companies grow and scale up,” Bains said.

“So this is a big deal. It’s a game changer.”

That change will happen through the Global Talent Stream, a new program under the federal government’s temporary foreign worker program.  It’s scheduled to begin on June 12, 2017.

U.S. companies are taking notice and a Canadian firm, True North, is offering to help them set up shop.

“What we suggest is that they think about moving their operations, or at least a chunk of their operations, to Vancouver, set up a Canadian subsidiary,” said the company’s founder, Michael Tippett.

“And that subsidiary would be able to house and accommodate those employees.”

Industry experts says while the future is unclear for the tech sector in the U.S., it’s clear high tech in B.C. is gearing up to take advantage.

US business attempts to take advantage of Canada’s relative stability and openness to immigration would seem to be the motive for at least one cross border initiative, the Cascadia Urban Analytics Cooperative. From my Feb. 28, 2017 posting,

There was some big news about the smallest version of the Cascadia region on Thursday, Feb. 23, 2017 when the University of British Columbia (UBC) , the University of Washington (state; UW), and Microsoft announced the launch of the Cascadia Urban Analytics Cooperative. From the joint Feb. 23, 2017 news release (read on the UBC website or read on the UW website),

In an expansion of regional cooperation, the University of British Columbia and the University of Washington today announced the establishment of the Cascadia Urban Analytics Cooperative to use data to help cities and communities address challenges from traffic to homelessness. The largest industry-funded research partnership between UBC and the UW, the collaborative will bring faculty, students and community stakeholders together to solve problems, and is made possible thanks to a $1-million gift from Microsoft.

Today’s announcement follows last September’s [2016] Emerging Cascadia Innovation Corridor Conference in Vancouver, B.C. The forum brought together regional leaders for the first time to identify concrete opportunities for partnerships in education, transportation, university research, human capital and other areas.

A Boston Consulting Group study unveiled at the conference showed the region between Seattle and Vancouver has “high potential to cultivate an innovation corridor” that competes on an international scale, but only if regional leaders work together. The study says that could be possible through sustained collaboration aided by an educated and skilled workforce, a vibrant network of research universities and a dynamic policy environment.

It gets better, it seems Microsoft has been positioning itself for a while if Matt Day’s analysis is correct (from my Feb. 28, 2017 posting),

Matt Day in a Feb. 23, 2017 article for the The Seattle Times provides additional perspective (Note: Links have been removed),

Microsoft’s effort to nudge Seattle and Vancouver, B.C., a bit closer together got an endorsement Thursday [Feb. 23, 2017] from the leading university in each city.

The partnership has its roots in a September [2016] conference in Vancouver organized by Microsoft’s public affairs and lobbying unit [emphasis mine.] That gathering was aimed at tying business, government and educational institutions in Microsoft’s home region in the Seattle area closer to its Canadian neighbor.

Microsoft last year [2016] opened an expanded office in downtown Vancouver with space for 750 employees, an outpost partly designed to draw to the Northwest more engineers than the company can get through the U.S. guest worker system [emphasis mine].

This was all prior to President Trump’s legislative moves in the US, which have at least one Canadian observer a little more gleeful than I’m comfortable with. From a March 21, 2017 article by Susan Lum  for CBC News online,

U.S. President Donald Trump’s efforts to limit travel into his country while simultaneously cutting money from science-based programs provides an opportunity for Canada’s science sector, says a leading Canadian researcher.

“This is Canada’s moment. I think it’s a time we should be bold,” said Alan Bernstein, president of CIFAR [which on March 22, 2017 was awarded $125M to launch the Pan Canada Artificial Intelligence Strategy in the Canadian federal budget announcement], a global research network that funds hundreds of scientists in 16 countries.

Bernstein believes there are many reasons why Canada has become increasingly attractive to scientists around the world, including the political climate in the United States and the Trump administration’s travel bans.

Thankfully, Bernstein calms down a bit,

“It used to be if you were a bright young person anywhere in the world, you would want to go to Harvard or Berkeley or Stanford, or what have you. Now I think you should give pause to that,” he said. “We have pretty good universities here [emphasis mine]. We speak English. We’re a welcoming society for immigrants.”​

Bernstein cautions that Canada should not be seen to be poaching scientists from the United States — but there is an opportunity.

“It’s as if we’ve been in a choir of an opera in the back of the stage and all of a sudden the stars all left the stage. And the audience is expecting us to sing an aria. So we should sing,” Bernstein said.

Bernstein said the federal government, with this week’s so-called innovation budget, can help Canada hit the right notes.

“Innovation is built on fundamental science, so I’m looking to see if the government is willing to support, in a big way, fundamental science in the country.”

Pretty good universities, eh? Thank you, Dr. Bernstein, for keeping some of the boosterism in check. Let’s leave the chest thumping to President Trump and his cronies.

Ivan Semeniuk’s March 23, 2017 article (for the Globe and Mail) provides more details about the situation in the US and in Britain,

Last week, Donald Trump’s first budget request made clear the U.S. President would significantly reduce or entirely eliminate research funding in areas such as climate science and renewable energy if permitted by Congress. Even the National Institutes of Health, which spearheads medical research in the United States and is historically supported across party lines, was unexpectedly targeted for a $6-billion (U.S.) cut that the White House said could be achieved through “efficiencies.”

In Britain, a recent survey found that 42 per cent of academics were considering leaving the country over worries about a less welcoming environment and the loss of research money that a split with the European Union is expected to bring.

In contrast, Canada’s upbeat language about science in the budget makes a not-so-subtle pitch for diversity and talent from abroad, including $117.6-million to establish 25 research chairs with the aim of attracting “top-tier international scholars.”

For good measure, the budget also includes funding for science promotion and $2-million annually for Canada’s yet-to-be-hired Chief Science Advisor, whose duties will include ensuring that government researchers can speak freely about their work.

“What we’ve been hearing over the last few months is that Canada is seen as a beacon, for its openness and for its commitment to science,” said Ms. Duncan [Kirsty Duncan, Minister of Science], who did not refer directly to either the United States or Britain in her comments.

Providing a less optimistic note, Erica Alini in her March 22, 2017 online article for Global News mentions a perennial problem, the Canadian brain drain,

The budget includes a slew of proposed reforms and boosted funding for existing training programs, as well as new skills-development resources for unemployed and underemployed Canadians not covered under current EI-funded programs.

There are initiatives to help women and indigenous people get degrees or training in science, technology, engineering and mathematics (the so-called STEM subjects) and even to teach kids as young as kindergarten-age to code.

But there was no mention of how to make sure Canadians with the right skills remain in Canada, TD’s DePratto {Toronto Dominion Bank} Economics; TD is currently experiencing a scandal {March 13, 2017 Huffington Post news item}] told Global News.

Canada ranks in the middle of the pack compared to other advanced economies when it comes to its share of its graduates in STEM fields, but the U.S. doesn’t shine either, said DePratto [Brian DePratto, senior economist at TD .

The key difference between Canada and the U.S. is the ability to retain domestic talent and attract brains from all over the world, he noted.

To be blunt, there may be some opportunities for Canadian science but it does well to remember (a) US businesses have no particular loyalty to Canada and (b) all it takes is an election to change any perceived advantages to disadvantages.

Digital policy and intellectual property issues

Dubbed by some as the ‘innovation’ budget (official title:  Building a Strong Middle Class), there is an attempt to address a longstanding innovation issue (from a March 22, 2017 posting by Michael Geist on his eponymous blog (Note: Links have been removed),

The release of today’s [march 22, 2017] federal budget is expected to include a significant emphasis on innovation, with the government revealing how it plans to spend (or re-allocate) hundreds of millions of dollars that is intended to support innovation. Canada’s dismal innovation record needs attention, but spending our way to a more innovative economy is unlikely to yield the desired results. While Navdeep Bains, the Innovation, Science and Economic Development Minister, has talked for months about the importance of innovation, Toronto Star columnist Paul Wells today delivers a cutting but accurate assessment of those efforts:

“This government is the first with a minister for innovation! He’s Navdeep Bains. He frequently posts photos of his meetings on Twitter, with the hashtag “#innovation.” That’s how you know there is innovation going on. A year and a half after he became the minister for #innovation, it’s not clear what Bains’s plans are. It’s pretty clear that within the government he has less than complete control over #innovation. There’s an advisory council on economic growth, chaired by the McKinsey guru Dominic Barton, which periodically reports to the government urging more #innovation.

There’s a science advisory panel, chaired by former University of Toronto president David Naylor, that delivered a report to Science Minister Kirsty Duncan more than three months ago. That report has vanished. One presumes that’s because it offered some advice. Whatever Bains proposes, it will have company.”

Wells is right. Bains has been very visible with plenty of meetings and public photo shoots but no obvious innovation policy direction. This represents a missed opportunity since Bains has plenty of policy tools at his disposal that could advance Canada’s innovation framework without focusing on government spending.

For example, Canada’s communications system – wireless and broadband Internet access – falls directly within his portfolio and is crucial for both business and consumers. Yet Bains has been largely missing in action on the file. He gave approval for the Bell – MTS merger that virtually everyone concedes will increase prices in the province and make the communications market less competitive. There are potential policy measures that could bring new competitors into the market (MVNOs [mobile virtual network operators] and municipal broadband) and that could make it easier for consumers to switch providers (ban on unlocking devices). Some of this falls to the CRTC, but government direction and emphasis would make a difference.

Even more troubling has been his near total invisibility on issues relating to new fees or taxes on Internet access and digital services. Canadian Heritage Minister Mélanie Joly has taken control of the issue with the possibility that Canadians could face increased costs for their Internet access or digital services through mandatory fees to contribute to Canadian content.  Leaving aside the policy objections to such an approach (reducing affordable access and the fact that foreign sources now contribute more toward Canadian English language TV production than Canadian broadcasters and distributors), Internet access and e-commerce are supposed to be Bains’ issue and they have a direct connection to the innovation file. How is it possible for the Innovation, Science and Economic Development Minister to have remained silent for months on the issue?

Bains has been largely missing on trade related innovation issues as well. My Globe and Mail column today focuses on a digital-era NAFTA, pointing to likely U.S. demands on data localization, data transfers, e-commerce rules, and net neutrality.  These are all issues that fall under Bains’ portfolio and will impact investment in Canadian networks and digital services. There are innovation opportunities for Canada here, but Bains has been content to leave the policy issues to others, who will be willing to sacrifice potential gains in those areas.

Intellectual property policy is yet another area that falls directly under Bains’ mandate with an obvious link to innovation, but he has done little on the file. Canada won a huge NAFTA victory late last week involving the Canadian patent system, which was challenged by pharmaceutical giant Eli Lilly. Why has Bains not promoted the decision as an affirmation of how Canada’s intellectual property rules?

On the copyright front, the government is scheduled to conduct a review of the Copyright Act later this year, but it is not clear whether Bains will take the lead or again cede responsibility to Joly. The Copyright Act is statutorily under the Industry Minister and reform offers the chance to kickstart innovation. …

For anyone who’s not familiar with this area, innovation is often code for commercialization of science and technology research efforts. These days, digital service and access policies and intellectual property policies are all key to research and innovation efforts.

The country that’s most often (except in mainstream Canadian news media) held up as an example of leadership in innovation is Estonia. The Economist profiled the country in a July 31, 2013 article and a July 7, 2016 article on apolitical.co provides and update.

Conclusions

Science monies for the tri-council science funding agencies (NSERC, SSHRC, and CIHR) are more or less flat but there were a number of line items in the federal budget which qualify as science funding. The $221M over five years for Mitacs, the $125M for the Pan-Canadian Artificial Intelligence Strategy, additional funding for the Canada research chairs, and some of the digital funding could also be included as part of the overall haul. This is in line with the former government’s (Stephen Harper’s Conservatives) penchant for keeping the tri-council’s budgets under control while spreading largesse elsewhere (notably the Perimeter Institute, TRIUMF [Canada’s National Laboratory for Particle and Nuclear Physics], and, in the 2015 budget, $243.5-million towards the Thirty Metre Telescope (TMT) — a massive astronomical observatory to be constructed on the summit of Mauna Kea, Hawaii, a $1.5-billion project). This has lead to some hard feelings in the past with regard to ‘big science’ projects getting what some have felt is an undeserved boost in finances while the ‘small fish’ are left scrabbling for the ever-diminishing (due to budget cuts in years past and inflation) pittances available from the tri-council agencies.

Mitacs, which started life as a federally funded Network Centre for Excellence focused on mathematics, has since shifted focus to become an innovation ‘champion’. You can find Mitacs here and you can find the organization’s March 2016 budget submission to the House of Commons Standing Committee on Finance here. At the time, they did not request a specific amount of money; they just asked for more.

The amount Mitacs expects to receive this year is over $40M which represents more than double what they received from the federal government and almost of 1/2 of their total income in the 2015-16 fiscal year according to their 2015-16 annual report (see p. 327 for the Mitacs Statement of Operations to March 31, 2016). In fact, the federal government forked over $39,900,189. in the 2015-16 fiscal year to be their largest supporter while Mitacs’ total income (receipts) was $81,993,390.

It’s a strange thing but too much money, etc. can be as bad as too little. I wish the folks Mitacs nothing but good luck with their windfall.

I don’t see anything in the budget that encourages innovation and investment from the industrial sector in Canada.

Finallyl, innovation is a cultural issue as much as it is a financial issue and having worked with a number of developers and start-up companies, the most popular business model is to develop a successful business that will be acquired by a large enterprise thereby allowing the entrepreneurs to retire before the age of 30 (or 40 at the latest). I don’t see anything from the government acknowledging the problem let alone any attempts to tackle it.

All in all, it was a decent budget with nothing in it to seriously offend anyone.

Copyright and patent protections and human rights

The United Nations (UN) and cultural rights don’t immediately leap to mind when the subjects of copyright and patents are discussed. A Mar. 13, 2015 posting by Tim Cushing on Techdirt and an Oct. 14, 2015 posting by Glyn Moody also on Techdirt explain the connection in the person of Farida Shaheed, the UN Special Rapporteur on cultural rights and the author of two UN reports one on copyright and one on patents.

From the Mar. 13, 2015 posting by Tim Cushing,

… Farida Shaheed, has just delivered a less-than-complimentary report on copyright to the UN’s Human Rights Council. Shaheed’s report actually examines where copyright meshes with arts and science — the two areas it’s supposed to support — and finds it runs contrary to the rosy image of incentivized creation perpetuated by the MPAAs and RIAAs of the world.

Shaheed said a “widely shared concern stems from the tendency for copyright protection to be strengthened with little consideration to human rights issues.” This is illustrated by trade negotiations conducted in secrecy, and with the participation of corporate entities, she said.

She stressed the fact that one of the key points of her report is that intellectual property rights are not human rights. “This equation is false and misleading,” she said.

The last statement fires shots over the bows of “moral rights” purveyors, as well as those who view infringement as a moral issue, rather than just a legal one.

Shaheed also points out that the protections being installed around the world at the behest of incumbent industries are not necessarily reflective of creators’ desires. …

Glyn Moody’s Oct. 14, 2015 posting features Shaheed’s latest report on patents,

… As the summary to her report puts it:

There is no human right to patent protection. The right to protection of moral and material interests cannot be used to defend patent laws that inadequately respect the right to participate in cultural life, to enjoy the benefits of scientific progress and its applications, to scientific freedoms and the right to food and health and the rights of indigenous peoples and local communities.

Patents, when properly structured, may expand the options and well-being of all people by making new possibilities available. Yet, they also give patent-holders the power to deny access to others, thereby limiting or denying the public’s right of participation to science and culture. The human rights perspective demands that patents do not extend so far as to interfere with individuals’ dignity and well-being. Where patent rights and human rights are in conflict, human rights must prevail.

The report touches on many issues previously discussed here on Techdirt. For example, how pharmaceutical patents limit access to medicines by those unable to afford the high prices monopolies allow — a particularly hot topic in the light of TPP’s rules on data exclusivity for biologics. The impact of patents on seed independence is considered, and there is a warning about corporate sovereignty chapters in trade agreements, and the chilling effects they can have on the regulatory function of states and their ability to legislate in the public interest — for example, with patent laws.

I have two Canadian examples for data exclusivity and corporate sovereignty issues, both from Techdirt. There’s an Oct. 19, 2015 posting by Glyn Moody featuring a recent Health Canada move to threaten a researcher into suppressing information from human clinical trials,

… one of the final sticking points of the TPP negotiations [Trans Pacific Partnership] was the issue of data exclusivity for the class of drugs known as biologics. We’ve pointed out that the very idea of giving any monopoly on what amounts to facts is fundamentally anti-science, but that’s a rather abstract way of looking at it. A recent case in Canada makes plain what data exclusivity means in practice. As reported by CBC [Canadian Broadcasting Corporation] News, it concerns unpublished clinical trial data about a popular morning sickness drug:

Dr. Navindra Persaud has been fighting for four years to get access to thousands of pages of drug industry documents being held by Health Canada.

He finally received the material a few weeks ago, but now he’s being prevented from revealing what he has discovered.

That’s because Health Canada required him to sign a confidentiality agreement, and has threatened him with legal action if he breaks it.

The clinical trials data is so secret that he’s been told that he must destroy the documents once he’s read them, and notify Health Canada in writing that he has done so….

For those who aren’t familiar with it, the Trans Pacific Partnership is a proposed trade agreement including 12 countries (Australia, Brunei Darussalam, Canada, Chile, Japan, Malaysia, Mexico, New Zealand, Peru, Singapore, United States, and Vietnam) from the Pacific Rim. If all the countries sign on (it looks as if they will; Canada’s new Prime Minister as of Oct. 19, 2015 seems to be in favour of the agreement although he has yet to make a definitive statement), the TPP will represent a trading block that is almost double the size of the European Union.

An Oct. 8, 2015 posting by Mike Masnick provides a description of corporate sovereignty and of the Eli Lilly suit against the Canadian government.

We’ve pointed out a few times in the past that while everyone refers to the Trans Pacific Partnership (TPP) agreement as a “free trade” agreement, the reality is that there’s very little in there that’s actually about free trade. If it were truly a free trade agreement, then there would be plenty of reasons to support it. But the details show it’s not, and yet, time and time again, we see people supporting the TPP because “well, free trade is good.” …
… it’s that “harmonizing regulatory regimes” thing where the real nastiness lies, and where you quickly discover that most of the key factors in the TPP are not at all about free trade, but the opposite. It’s about as protectionist as can be. That’s mainly because of the really nasty corprorate sovereignty clauses in the agreement (which are officially called “investor state dispute settlement” or ISDS in an attempt to make it sound so boring you’ll stop paying attention). Those clauses basically allow large incumbents to force the laws of countries to change to their will. Companies who feel that some country’s regulation somehow takes away “expected profits” can convene a tribunal, and force a country to change its laws. Yes, technically a tribunal can only issue monetary sanctions against a country, but countries who wish to avoid such monetary payments will change their laws.

Remember how Eli Lilly is demanding $500 million from Canada after Canada rejected some Eli Lilly patents, noting that the new compound didn’t actually do anything new and useful? Eli Lilly claims that using such a standard to reject patents unfairly attacks its expected future profits, and thus it can demand $500 million from Canadian taxpayers. Now, imagine that on all sorts of other systems.

Cultural rights, human rights, corporate rights. It would seem that corporate rights are going to run counter to human rights, if nothing else.

GoldieBlox and the Beastie Boys: my final words (I hope)

One hopes that people will somehow be able to work things out when there’s a dispute although it seemed obvious at a fairly early stage with the GoldieBlox and Beastie Boys situation, as described in my Nov. 26, 2013 posting, that might not occur given the speed at which the situation escalated.

Thanks to a Dec.12, 2013 article on Slate by Kal Raustiala and Christopher Jon Sprigman, a couple of law professors, for an excellent and entertaining job of laying out some of the legal issues. Before discussing the article any further, here’s a précis of the situation: the GoldieBlox company repurposed (wrote a parody of) a Beastie Boys song to sell an engineering toy product to girls. The Beastie Boys (the remaining two) strenuously objected due to a policy of never allowing their songs to be used in advertising the GoldieBlox took a preliminary legal action and followed up by writing a public apology letter. At this point (dec. 17, 2013), the Beastie Boys have instituted their own legal action. Meanwhile, Raustiala and Sprigman point out that this seems to have bee a publicity strategy on GoldieBlox’s part.

What I had not fully appreciated, due to my ignorance of the Beastie Boys’ oeuvre, is the subversiveness of  the GoldieBlox parody (from the Raustiala & Sprigman article),,

Set to a basic drumbeat and vibraphone loop, the Beasties rap in “Girls” about their love of … girls. Sort of. As with many Beasties songs, the lyrics contain a lot of maybe serious/maybe satirical misogyny:

Girls, to do the dishes
Girls, to clean up my room
Girls, to do the laundry
Girls, and in the bathroom
Girls, that’s all I really want is girls
Two at a time I want girls
With New Wave hairdos I want girls
I ought to whip out my girls, girls, girls, girls, girls!

One of the best things about the GoldieBlox video is how it subverts the Beasties’ song to trash the very same gender stereotypes the Beasties celebrated. Here is GoldieBlox’s revision of the Beasties’ lyrics:

Girls, you think you know what we want
Girls, pink and pretty it’s girls
Just like the ‘50s it’s girls

You like to buy us pink toys
And everything else is for boys
And you can always get us dolls
And we’ll grow up like them, false

It’s time to change
We deserve to see a range
Cause all our toys look just the same
And we would like to use our brains

And we are all more than princess maids

Girls, to build a spaceship
Girls, to code a new app
To grow up knowing
That they can engineer that

Girls, that’s all we really need is girls
To bring us up to speed, it’s girls
Our opportunity is girls
Don’t underestimate girls

Clever and cute. And you might think that the Beastie Boys, who—by the way—made a career out of repurposing others’ music for their own songs through sampling, would roll with the punches. But that’s not what happened. Because the Beastie Boys never wanted their music to be used in commercials.

Raustiala & Sprigman go on to excerpt text from the 3rd (now deceased) Beastie Boys’ will, as well as, the trademark and copyright claims by the remaining band members before closing with this,

So the Beastie Boys should lose their lawsuit—although once the lawyers take over, anything can happen. Maybe the improbable will occur in court and the Beasties will win. But thanks to the media blizzard around this silly fight, GoldieBlox simply can’t lose.

Here’s more about the Slate article authors (Note: Links have been removed),

Kal Raustiala is a law professor at UCLA. He is a co-author of The Knockoff Economy: How Imitation Sparks Innovation.

Christopher Jon Sprigman is a professor at the New York University School of Law and co-director of the NYU Engelberg Center on Innovation Law and Policy. He is a co-author of The Knockoff Economy: How Imitation Sparks Innovation.

Clearly, these lawyers are not maximalists where intellectual property is concerned, which coincides with my own bias.

One final thought, did anyone else notice that the offbeat resemblance between Goldilocks and three bears and GoldieBlox and the Beastie Boys, a musical trio?

ETA May 12, 2014: Mike Masnick has written a May 12, 2014 posting on Techdirt titled, Goldieblox Agreed To Pay Charity $1 Million For Using Beastie Boys’ Girls.  Clearly, he’s not thrilled with the outcome.

European Union, copyright, stakeholder meetings, and ripple effects

According to the Dec. 6, 2012 posting by Ben Zevenbergen on Techdirt the European Union will commence a yearlong, starting in 2013,  ‘structured stakeholder process’ to discuss copyright reform,

This exercise will assess whether “the market” is able to address the current deficiencies of copyright in the following six topics: “cross-border portability of content, user-generated content, data- and text-mining, private copy levies, access to audiovisual works and cultural heritage.

Zevenberg goes on to analyze the six topics at more length and he also discusses the politics that led to this develoment but the part I found most interesting focuses on possible ripple effects (Note: I have removed links),

Hopefully the British will now feel supported in implementing the recommendations of the Hargreaves report. Perhaps the Dutch will also feel justified to proceed with the idea to make their copyright system more flexible. Overseas governments may also feel reinforced to open the discussions on their copyright systems and join the EU in finding the new way forward. But will the EU’s move encourage the GOP [US Republican Party] to republish their recent insightful report on copyright reform?

You can find the Hargreaves report here and Michael Geist’s May 18, 2011 posting about the report and his August 3, 2011 posting about the government’s response to the report. For anyone unfamiliar with Geist, here’s an excerpt from his blog’s About page,

Dr. Michael Geist is a law professor at the University of Ottawa where he holds the Canada Research Chair in Internet and E-commerce Law. He has obtained a Bachelor of Laws (LL.B.) degree from Osgoode Hall Law School in Toronto, Master of Laws (LL.M.) degrees from Cambridge University in the UK and Columbia Law School in New York, and a Doctorate in Law (J.S.D.) from Columbia Law School.  Dr. Geist is an internationally syndicated columnist on technology law issues …