Ms. Shetterly was at the University of Toronto (Hart House) as a mentor at Tundra Technical Solutions’ 2023 Launchpad event. The company is a ‘talent recruitment’ agency and this is part of their outreach/public relations programme. This undated video (runtime: 2 mins. 27 secs.) from a previous Hart House event gives you a pretty good idea of what this year’s Toronto event was like,
On the heels of [US] National STEM Day, a landmark event unfolds tonight to advance the role of women in Science, Technology, Engineering, and Mathematics (STEM). Tundra, a trailblazer championing diversity within the world’s most innovative industries, hosts its annual Launchpad Mentorship Event at the University of Toronto’s Hart House.
This event welcomes hundreds of high school female students across the GTA [Greater Toronto Area?] to inspire and empower them to consider careers in STEM.
The night opens with a fascinating keynote speech by Margot Lee Shetterly, acclaimed author of the #1 New York Times bestseller Hidden Figures. Margot will share her insights into the critical contributions of African-American women mathematicians at NASA, setting a powerful tone for the evening. The spotlight also shines brightly on Arushi Nath, a 14-year-old Canadian prodigy and Tundra Launchpad Mentee of the Year whose contributions to astronomy have propelled her onto the world stage.
The Launchpad Event panel discussion features an impressive lineup of leaders, with Anne Steptoe, VP of Infrastructure at Wealthsimple; Linda Siksna, SVP of Technology Ops and Platforms at Canadian Tire; Natasha Nelson, VP of Ecostruxure at Schneider Electric; and Allison Atkins, National Leader for Cloud Endpoint at Microsoft. Moderated by Marisa Sterling, Assistant Dean and Director of Diversity, Inclusion, and Professionalism at the University of Toronto, the panel tackles the challenges and opportunities within STEM fields, emphasizing the need for diversity and inclusion.
In a seamless transition from Shetterly’s keynote to the voices of present-day STEM leaders, the event spotlights the potential of young women in these fields. Arushi Nath [emphasis mine], the 9th-grade Canadian astronomy sensation, embodied this potential. Fresh from her success at the European Union Contest for Young Scientists, Arushi’s presence will be a vibrant reminder of what the next generation can achieve with support from initiatives like Tundra’s Launchpad Event.
Tundra’s commitment to nurturing and developing STEM leaders of tomorrow is evident through its substantial investments in youth. Every year, Tundra connects thousands of students who identify as female and non-binary with mentors, awarding scholarships and prize packs to help students excel in their future.
Tundra’s dedication to diversity and empowerment in STEM remains unwavering since the Launchpad’s inception in 2019. The event is a testament to the bright future that awaits when we invest in the mentorship and recognition of young talent.
Female-identifying or non-binary students in grades 10-12 can apply for Tundra’s next Launchpad Scholarship here [deadline: December 3, 2023].
…
You can find out more about the Tundra Technical Solutions STEM initiatives here. (I’m not sure why they’ve listed Vancouver as a location for the event on the STEM initiatives page since there is no mention of it in the news release or elsewhere on the page.)
Arushi Nath was last mentioned here in a November 17, 2023 posting where her wins at the 2023 Canada Wide Science awards and the 34th European Union Contest for Young Scientists (EUCYS) and her appearance at the 2023 Natural Sciences and Engineering Research Council of Canada (NSERC) Awards were highlighted.
I’m having trouble keeping with her!
She has written up an account of her experience at the 2023 Launchpad Mentorship event at Hart House in a November 18 (?), 2023 blog posting on the HotPopRobot website,
…
Almost 150 students from across Toronto and the region attended the event. In addition, around 20 mentors from several organizations gathered to interact with the students. Many staff members from Tundra were also present to support the event.
Keynote Speech: Science and Space is for All
The evening started with a keynote speech from Margot Lee Shetterly, the author of Hidden Figures book. Hidden Figures [movie] explores the biographies of three African-American women who worked as computers to solve problems for engineers and others at NASA.
In her speech, she talked about her journey writing the book and what drew her to the topic. The fact that one of the three women was her neighbour was a big inspiring force. She shared the background of these brilliant women mathematicians, their personal stories, anecdotes and the crucial roles they played during the Space Race.
Several questions were posed to her, including how she felt about having her book transformed into a movie before the book was even complete and how students could merge their other passions with science.
…
Prizes and Awards: Winning 2023 Mentee of the Year Award
…
At the end of the raffle, I was surprised to hear my name called on the stage. I was honoured to receive the 2023 Mentee of the Year Award. I thanked the organizers for this gesture and for organizing such a wonderful evening of fun, learning and networking.
…
More about Hidden Figures on FrogHeart
First mentioned here in a September 2, 2016 posting titled, “Movies and science, science, science (Part 1 of 2),” it focused heavily on Margot Lee Shetterly‘s 2016 nonfiction book, “Hidden Figures: The American Dream and the Untold Story of the Black Women Who Helped Win the Space Race.”
The movie focused primarily on three women but the book cast a wider net. It’s fascinating social history.
They were computers
These days we think of computers as pieces of technology but for a significant chunk of time, computers were people with skills in mathematics. Over time, computers were increasingly women because they worked harder and they worked for less money than men.
I have an embedded video trailer for the then upcoming movie and more about human computers in my September 2, 2016 posting.
There’s also something about the Hidden Figures script writing process in my February 6, 2017 posting; scroll down about 80% of the way. Sadly, I was not using subheads that day.
More Canadian STEM information
The government of Canada (Innovation, Science and Economic Development Canada) has a webpage devoted to STEM initiatives, their own and others,
…
Canada has emerged as a world leader in many science, technology, engineering and math (STEM) fields, and many new jobs and career opportunities that have emerged in recent years are STEM-related. As more and more businesses and organizations look to innovate, modernize and grow, the demand for people who can fill STEM-related jobs will only increase. Canada needs a workforce that can continue to meet the challenges of the future.
Additionally, young Canadians today need to think carefully and critically about science misinformation. Misinformation is not new, but the intensity and speed in which it has been spreading is both increasing and concerning, especially within the science realm. Science literacy encourages people to question, evaluate, and understand information. By equipping youth with science literacy skills, they will be better positioned to navigate online information and make better decisions based on understanding the difference between personal opinions and evidence-based conclusions.
The Government of Canada and its federal partners have put forward several new opportunities that are aimed at increasing science literacy and the participation of Canadians in STEM, including under-represented groups like women and Indigenous communities.
…
CanCode (Innovation, Science and Economic Develoment Canada)
CanCode is an Innovation, Science and Economic Development Canada (ISED) funding program that provides financial support for organizations to equip Canadian youth, including traditionally underrepresented groups, with the skills they need to be prepared for further studies. This includes advanced digital skills, like coding and STEM courses, leading to jobs of the future. For more information on the program and future Calls for Proposals, visit the CanCode webpage.
…
Citizen Science Portal (ISED)
The Citizen Science Portal provides information and access to science projects and science experiments happening in various communities for Canadians to participate in. Some may only be available at certain times of year or in certain areas, but with a little exploration, there are exciting ways to take part in science.
…
Objective: Moon – including Junior Astronauts (Canadian Space Agency)
The Canadian Space Agency (CSA) aims to engage young Canadians, to get them excited about STEM and future careers in the field of space through a suite of resources for youth and educators. The CSA also helps them understand how they can play a role in Canada’s mission to the Moon. As part of Canada’s participation in Lunar Gateway, the Objective: Moon portfolio of activities, including the Junior Astronauts campaign that ended in July 2021, makes learning science fun and engaging for youth in grades K – 12.
…
Actua
Actua is a Canadian charitable organization preparing youth, ages 6-26, to be the next generation of leaders and innovators. It engages youth in inclusive, hands-on STEM experiences that build critical employability skills and confidence. Through a national outreach team and a vast member network of universities and colleges, Actua reaches youth in every province and territory in Canada through summer camps, classroom workshops, clubs, teacher training, and community outreach activities.
…
Mitacs
Mitacs is a national not-for-profit organization that designs and delivers internships and training programs in Canada. Working with universities, companies and federal and provincial governments, Mitacs builds and maintains partnerships that support industrial and social innovation in Canada. More information on Mitacs’ programs can be found here.
…
Science fairs, STEM competitions and awards
The Government of Canada supports the discoveries and the ingenuity of tomorrow’s scientists, engineers and inventors.
The page has not been updated since August 13, 2021.
There are more organizations and STEM efforts (e.g. ScienceRendezvous [a national one day science fair], Beakerhead [a four day science fair held annually in Calgary, Alberta], the Perimeter Institute for Theoretical Physics [they also offer “Inside the Perimeter” with all kinds of resources online]) than are listed on the page, which is a good place to start, but keep on looking.
A reminder: Tundra Launchpad scholarship deadline
Female-identifying or non-binary students in grades 10-12 can apply for Tundra’s next Launchpad Scholarship here [deadline: December 3, 2023].
This information about these events and papers comes courtesy of the Metacreation Lab for Creative AI (artificial intelligence) at Simon Fraser University and, as usual for the lab, the emphasis is on music.
Music + AI Reading Group @ Mila x Vector Institute
Philippe Pasquier, Metacreation Lab director and professor, is giving a presentation on Friday, August 12, 2022 at 11 am PST (2 pm EST). Here’s more from the August 10, 2022 Metacreation Lab announcement (received via email),
Metacreaton Lab director Philippe Pasquier and PhD researcher Jeff Enns will be presenting next week [tomorrow on August 12 ,2022] at the Music + AI Reading Group hosted by Mila. The presentation will be available as a Zoom meeting.
Mila is a community of more than 900 researchers specializing in machine learning and dedicated to scientific excellence and innovation. The institute is recognized for its expertise and significant contributions in areas such as modelling language, machine translation, object recognition and generative models.
Getting back to the Music + AI Reading Group @ Mila x Vector Institute, there is an invitation to join the group which meets every Friday at 2 pm EST, from the Google group page,
…
unread,Feb 24, 2022, 2:47:23 PMto Community Announcements🎹🧠🚨Online Music + AI Reading Group @ Mila x Vector Institute 🎹🧠🚨
Dear members of the ISMIR [International Society for Music Information Retrieval] Community,
Together with fellow researchers at Mila (the Québec AI Institute) in Montréal, canada [sic], we have the pleasure of inviting you to join the Music + AI Reading Group @ Mila x Vector Institute. Our reading group gathers every Friday at 2pm Eastern Time. Our purpose is to build an interdisciplinary forum of researchers, students and professors alike, across industry and academia, working at the intersection of Music and Machine Learning.
During each meeting, a speaker presents a research paper of their choice during 45’, leaving 15 minutes for questions and discussion. The purpose of the reading group is to : – Gather a group of Music+AI/HCI [human-computer interface]/others people to share their research, build collaborations, and meet peer students. We are not constrained to any specific research directions, and all people are welcome to contribute. – People share research ideas and brainstorm with others. – Researchers not actively working on music-related topics but interested in the field can join and keep up with the latest research in the area, sharing their thoughts and bringing in their own backgrounds.
Our topics of interest cover (beware : the list is not exhaustive !) : 🎹 Music Generation 🧠 Music Understanding 📇 Music Recommendation 🗣 Source Separation and Instrument Recognition 🎛 Acoustics 🗿 Digital Humanities … 🙌 … and more (we are waiting for you :]) !
— If you wish to attend one of our upcoming meetings, simply join our Google Group : https://groups.google.com/g/music_reading_group. You will automatically subscribe to our weekly mailing list and be able to contact other members of the group. —
Bravo to the two student organizers for putting this together!
Calliope Composition Environment for music makers
From the August 10, 2022 Metacreation Lab announcement,
Calling all music makers! We’d like to share some exciting news on one of the latest music creation tools from its creators, and .
Calliope is an interactive environment based on MMM for symbolic music generation in computer-assisted composition. Using this environment, the user can generate or regenerate symbolic music from a “seed” MIDI file by using a practical and easy-to-use graphical user interface (GUI). Through MIDI streaming, the system can interface with your favourite DAW (Digital Audio Workstation) such as Ableton Live, allowing creators to combine the possibilities of generative composition with their preferred virtual instruments sound design environments.
The project has now entered an open beta-testing phase, and inviting music creators to try the compositional system on their own! Head to the metacreation website to learn more and register for the beta testing.
You can also listen to a Calliope piece “the synthrider,” an Italo-disco fantasy of a machine, by Philippe Pasquier and Renaud Bougueng Tchemeube for the 2022 AI Song Contest.
3rd Conference on AI Music Creativity (AIMC 2022)
This in an online conference and it’s free but you do have to register. From the August 10, 2022 Metacreation Lab announcement,
Registration has opened for the 3rd Conference on AI Music Creativity (AIMC 2022), which will be held 13-15 September, 2022. The conference features 22 accepted papers, 14 music works, and 2 workshops. Registered participants will get full access to the scientific and artistic program, as well as conference workshops and virtual social events.
The conference theme is “The Sound of Future Past — Colliding AI with Music Tradition” and I noticed that a number of the organizers are based in Japan. Often, the organizers’ home country gets some extra time in the spotlight, which is what makes these international conferences so interesting and valuable.
Autolume Live
This concerns generative adversarial networks (GANs) and a paper proposing “… Autolume-Live, the first GAN-based live VJing-system for controllable video generation.”
Here’s more from the August 10, 2022 Metacreation Lab announcement,
Jonas Kraasch & Phiippe Pasquier recently presented their latest work on the Autolume system at xCoAx, the 10th annual Conference on Computation, Communication, Aesthetics & X. Their paper is an in-depth exploration of the ways that creative artificial intelligence is increasingly used to generate static and animated visuals.
While there are a host of systems to generate images, videos and music videos, there is a lack of real-time video synthesisers for live music performances. To address this gap, Kraasch and Pasquier propose Autolume-Live, the first GAN-based live VJing-system for controllable video generation.
As these things go, the paper is readable even by nonexperts (assuming you have some tolerance for being out of your depth from time to time). Here’s an example of the text and an installation (in Kelowna, BC) from the paper, Autolume-Live: Turning GANsinto a Live VJing tool,
Due to the 2020-2022 situation surrounding COVID-19, we were unable to use our system to accompany live performances. We have used different iterations of Autolume-Live to create two installations. We recorded some curated sessions and displayed them at the Distopya sound art festival in Istanbul 2021 (Dystopia Sound and Art Festival 2021) and Light-Up Kelowna 2022 (ARTSCO 2022) [emphasis mine]. In both iterations, we let the audio mapping automatically generate the video without using any of the additional image manipulations. These installations show that the system on its own is already able to generate interesting and responsive visuals for a musical piece.
For the installation at the Distopya sound art festival we trained a Style-GAN2 (-ada) model on abstract paintings and rendered a video using the de-scribed Latent Space Traversal mapping. For this particular piece we ran a super-resolution model on the final video as the original video output was in 512×512 and the wanted resolution was 4k. For our piece at Light-Up Kelowna [emphasis mine] we ran Autolume-Live with the Latent Space Interpolation mapping. The display included three urban screens, which allowed us to showcase three renders at the same time. We composed a video triptych using a dataset of figure drawings, a dataset of medical sketches and to tie the two videos together a model trained on a mixture of both datasets.
…
I found some additional information about the installation in Kelowna (from a February 7, 2022 article in The Daily Courier),
…
The artwork is called ‘Autolume Acedia’.
“(It) is a hallucinatory meditation on the ancient emotion called acedia. Acedia describes a mixture of contemplative apathy, nervous nostalgia, and paralyzed angst,” the release states. “Greek monks first described this emotion two millennia ago, and it captures the paradoxical state of being simultaneously bored and anxious.”
Algorithms created the set-to-music artwork but a team of humans associated with Simon Fraser University, including Jonas Kraasch and Philippe Pasquier, was behind the project.
…
You can find the videos used in the installation and more information on the Metacreation Lab’s Autolume Acedia webpage.
Movement and the Metacreation Lab
Here’s a walk down memory lane: Tom Calvert, a professor at Simon Fraser University (SFU) and deceased September 28, 2021, laid the groundwork for SFU’s School of Interactive Arts & Technology (SIAT) and, in particular studies in movement. From SFU’s In memory of Tom Calvert webpage,
…
As a researcher, Tom was most interested in computer-based tools for user interaction with multimedia systems, human figure animation, software for dance, and human-computer interaction. He made significant contributions to research in these areas resulting in the Life Forms system for human figure animation and the DanceForms system for dance choreography. These are now developed and marketed by Credo Interactive Inc., a software company of which he was CEO.
…
While the Metacreation Lab is largely focused on music, other fields of creativity are also studied, from the August 10, 2022 Metacreation Lab announcement,
MITACS Accelerate award – partnership with Kinetyx
We are excited to announce that the Metacreation Lab researchers will be expanding their work on motion capture and movement data thanks to a new MITACS Accelerate research award.
The project will focus on body pose estimation using Motion Capture data acquisition through a partnership with Kinetyx, a Calgary-based innovative technology firm that develops in-shoe sensor-based solutions for a broad range of sports and performance applications.
Movement Database – MoDa
On the subject of motion data and its many uses in conjunction with machine learning and AI, we invite you to check out the extensive Movement Database (MoDa), led by transdisciplinary artist and scholar Shannon Cyukendall, and AI Researcher Omid Alemi.
Spanning a wide range of categories such as dance, affect-expressive movements, gestures, eye movements, and more, this database offers a wealth of experiments and captured data available in a variety of formats.
MITACS (originally a federal government mathematics-focused Network Centre for Excellence) is now a funding agency (most of the funds they distribute come from the federal government) for innovation.
As for the Calgary-based company (in the province of Alberta for those unfamiliar with Canadian geography), here they are in their own words (from the Kinetyx About webpage),
Kinetyx® is a diverse group of talented engineers, designers, scientists, biomechanists, communicators, and creators, along with an energy trader, and a medical doctor that all bring a unique perspective to our team. A love of movement and the science within is the norm for the team, and we’re encouraged to put our sensory insoles to good use. We work closely together to make movement mean something.
…
We’re working towards a future where movement is imperceptibly quantified and indispensably communicated with insights that inspire action. We’re developing sensory insoles that collect high-fidelity data where the foot and ground intersect. Capturing laboratory quality data, out in the real world, unlocking entirely new ways to train, study, compete, and play. The insights we provide will unlock unparalleled performance, increase athletic longevity, and provide a clear path to return from injury. We transform lives by empowering our growing community to remain moved.
…
We believe that high quality data is essential for us to have a meaningful place in the Movement Metaverse [1]. Our team of engineers, sport scientists, and developers work incredibly hard to ensure that our insoles and the insights we gather from them will meet or exceed customer expectations. The forces that are created and experienced while standing, walking, running, and jumping are inferred by many wearables, but our sensory insoles allow us to measure, in real-time, what’s happening at the foot-ground intersection. Measurements of force and power in addition to other traditional gait metrics, will provide a clear picture of a part of the Kinesome [2] that has been inaccessible for too long. Our user interface will distill enormous amounts of data into meaningful insights that will lead to positive behavioral change.
[1] The Movement Metaverse is the collection of ever-evolving immersive experiences that seamlessly span both the physical and virtual worlds with unprecedented interoperability.
[2] Kinesome is the dynamic characterization and quantification encoded in an individual’s movement and activity. Broadly; an individual’s unique and dynamic movement profile. View the kinesome nft. [Note: Was not able to successfully open link as of August 11, 2022)
“… make movement mean something … .” Really?
The reference to “… energy trader …” had me puzzled but an August 11, 2022 Google search at 11:53 am PST unearthed this,
An energy trader is a finance professional who manages the sales of valuable energy resources like gas, oil, or petroleum. An energy trader is expected to handle energy production and financial matters in such a fast-paced workplace.May 16, 2022
If I understand the message from the Canadian Black Scientists Network’s (CBSN) president, Professor Maydianne CB Andrade correctly, the first meeting was in July 2020 and during that meeting the Canadian Black Scientists Network (CBSN)* was born and the website was established (in August 2021?).
The Canadian Black Scientists Network (CBSN) is a national coalition of Black people possessing or pursuing higher degrees in Science, Technology, Engineering, Mathematics and Medicine/Health (STEMM), together with Allies who are senior leaders with a demonstrated commitment to action for Black inclusion. Our network is young and growing. We were founded by a small group of faculty and held our first meeting in July 2020. Since then, we have expanded to include hundreds of members from across the country, including academics, graduate students and postdocs, research administrators, and STEMM practitioners. We have established a very active steering committee of volunteers, an online presence, and are increasingly recognized as the face of a multidisciplinary, national vanguard of Black excellence in STEMM.
….
We focus on those who identify as Black, which we define as those of Black African descent, which includes those who identify as Black Africans, and those found worldwide who identify as descendants of Black African peoples. We acknowledge and will be open to working in partnership with other organizations that focus on dismantling the challenges, discrimination, and barriers to inclusion in STEMM that are experienced by others. We simultaneously emphasize the need to maintain our network’s focus on Black Canadians. Deliberate, tailored interventions for Black communities are required to remove the long-standing discrimination, exclusion, and oppression that was initially created to justify slavery, and the ways in which those structures and stereotypes still manifest in systematic anti-Black racism in the lives of Canadians (see: the United Nations Report of the Working Group of Experts on People of African Descent on its mission to Canada). We will not shirk from pointing to these realities, but will maintain a strong commitment to joining with all Canadians to build a more equitable society.
…
Prof Maydianne CB Andrade Inaugural President & Co-Founder August 10, 2021
They’ve already been in involved in a number of media programmes and events. That’s a lot to get done (i.e., establishing a network, participating on [10 – 13] panels, podcasts, etc., and organizing a conference [BE-STEMM conference for January 30 – February 2, 2022], developing sponsorships, putting together a website, and more) in a little over 18 months.
Funding, conference, award-winning CBC programme
They must have gotten money from somewhere and while they don’t spell it out, you can find out more about the CBSN’s sponsors (i.e., funders and other supporters) here. As one would expect, you’ll find the Natural Sciences and Engineering Research Council of Canada (NSERC), the Natural Research Council of Canada (NRC), and the Canadian Institutes of Health Research (CIHR).
Information about the BE-STEMM Conference (January 30 – February 2, 2022) can be found here,
We are pleased to announce our first annual conference for Black Excellence in Science, Technology, Engineering, Mathematics and Medicine/Health (BE-STEMM 2022).
This virtual, interdisciplinary conference will highlight established and rising star Black Canadians in STEMM fields through plenary talks and concurrent talks sessions. Three days of academic programming will be anchored by a fourth day dedicated to leadership summits aimed at sharing best practices for actions supporting justice for Black Canadians in STEMM across sectors, educational levels, professional roles, and intersectional identities. Other highlights include a career fair, public panels and talks, and sessions featuring research of high school and undergraduate students.
Funded by grants from CIHR, NRC, NSERC, FRQNT [Fonds de recherche du Québec], and supported by MITACS [Canadian, national, not-for-profit organization designing and delivering research and training programs] and several academic partners, this bilingual, accessible conference invites all to attend. Black Canadians, Indigenous Canadians, and Allies of all identities from across the STEMM landscape are welcome. Visit this site often for more details on how to participate or become a sponsor.
The timing for the establishment of a Canadian Black Scientists Network couldn’t be much better. Just months after the July 2020 meeting, the Canadian Broadcasting Corporation’s (CBC) radio broadcasts a February 16, 2021 interview featuring Maydianne Andrade and Kevin Hewitt, co-founders of the Canadian Black Scientists Network, on the Mainstreet NS [news stories?] with Jeff Douglas.
On February 27, 2021, CBC’s Quirks and Quarks radio programme broadcasts an award-winning, three-part special “Black in science: The legacy of racism in science and how Black scientists are moving the dial,” which featured an interview with Angela Saini (author of 2019’s SUPERIOR; The Return of Race Science), as well as, Prof Maydianne CB Andrade (CBSN Inaugural President & Co-Founder), and many others.
The 2021 AAAS (American Association for the Advancement of Science) Kavli Science Journalism Award for “Black in science …,” was announced November 10, 2021,
Buckiewicz and Mortillaro, producers for a special edition of the Canadian Broadcasting Corporation’s long-running “Quirks & Quarks” program, looked at the past and future of Black people in science. The episode examined the history of biased and false “race science” that led to misunderstanding and mistreatment of Black people by the scientific and medical community, creating obstacles for them to participate in the scientific process. Buckiewicz and Mortillaro spoke to Black researchers about their work and how they are trying to increase recognition for the contributions of Black scientists and build more opportunities and representation across all disciplines of science. Judge Alexandra Witze, a freelance science journalist, called the program “unflinching in describing science’s racist history, such as how Carl Linnaeus classified people by skin color and how Black scientists have been intentionally marginalized and pushed out of research.” Through a variety of interviews with expert sources, she said, the episode illuminates the work required to make science more equitable. Rich Monastersky, chief features editor for Nature in Washington, D.C., said: “The show explored the difficult and important topic of racism in science—from its historical roots to the impact that it still has and to the ways that researchers are combating the problem. It should be required listening for all students studying science—as well as practicing scientists.” Commenting on the award, Buckiewicz and Mortillaro said: “We often think of the practice of science as being this unflappable, objective quest for knowledge, but it’s about time that we face some hard truths about the way science has been misused to justify the mistreatment of generations of people. With this radio special we really wanted to shed light on the long legacy of racism in science and unpack some of the ways we can do science better.”
Congratulations to Amanda Buckiewicz and Nicole Mortillaro; good luck to the CBSN; and thank you to Alon Eisenstein (https://twitter.com/AlonEisenstein) for the November 20, 2021 tweet that led me to the CBSN.
*Canadian Black Science Network (CBXN) corrected to Canadian Black Scientists Network (CBSN) on February 1, 2022.
Part 1 covered some of the more formal aspects science culture in Canada, such as science communication education programmes, mainstream media, children’s science magazines, music, etc. Part 2 covered science festivals, art/sci or sciart (depending on who’s talking, informal science get togethers such ‘Cafe Sccientifque’, etc.
This became a much bigger enterprise than I anticipated and so part 3 is stuffed with the do-it-yourself (DIY) biology movement in Canada, individual art/sci or lit/sci projects, a look at what the mathematicians have done and are doing, etc. But first there’s the comedy.
Comedy, humour, and science
Weirdly, Canadians like to mix their science fiction (scifi) movies with humour. (I will touch on more scifi later in this post but it’s too big a topic to cover inadequately, let alone adequately, in this review.) I post as my evidence of the popularity of comedy science fiction films, this from the Category: Canadian science fiction films Wikipedia webpage,
As you see, comedy science fiction is the second most populated category. Also, the Wikipedia time frame is much broader than mine but I did check one Canadian science fiction comedy film, Bang Bang Baby, a 2014 film, which, as it turns out, is also a musical.
The 2019 iteration of the Vancouver Podcast Festival included the podcast duo, Daniel Chai and Jeff Porter, behind The Fear of Science (which seems to be a science podcast of a humourous bent). They participated in a live https://www.vanpodfest.ca/event/live-podcast-fear-science-vs-vancolour podcast titled, Live Podcast: Fear of Science vs. This is VANCOLOUR.
Daniel Chai is a Vancouver-based writer, comedian, actor and podcaster. He is co-host of The Fear of Science podcast, which combines his love of learning with his love of being on a microphone. Daniel is also co-founder of The Fictionals Comedy Co and the creator of Improv Against Humanity, and teaches improv at Kwantlen Polytechnic University. He is very excited to be part of Vancouver Podcast Festival, and thanks everyone for listening!
Jeff is the producer and co-host of The Fear of Science. By day, he is a graphic designer/digital developer [according to his LinkedIn profile, he works at Science World], and by night he is a cosplayer, board gamer and full-time geek. Jeff is passionate about all things science, and has been working in science communication for over 4 years. He brings a general science knowledge point of view to The Fear of Science.
Here’s more about The Fear of Science from its homepage (where you will also find links to their podcasts),
A podcast that brings together experts and comedians for an unfiltered discussion about complicated and sometimes controversial science fears in a fun and respectful way.
This podcast seems to have taken life in August 2018.(Well, that’s as far back as the Archived episodes stretch on the website.)
This is Vancolour is a podcast hosted by Mo Amir and you will find this description on the website,
THIS IS A PODCAST ABOUT VANCOUVER AND THE PEOPLE WHO MAKE THIS CITY COLOURFUL
Cartoonist, writer, and educator, Raymond Nakamura produces work for Telus Science World and the Science Borealis science aggregator. His website is known as Raymond’s Brain features this image,
Much has been happening on this front. First for anyone unfamiliar with do-it-yourself biology, here’s more from its Wikipedia entry,
Do-it-yourself biology (DIY biology, DIY bio) is a growing biotechnological social movement in which individuals, communities, and small organizations study biology and life science using the same methods as traditional research institutions. DIY biology is primarily undertaken by individuals with extensive research training from academia or corporations, who then mentor and oversee other DIY biologists with little or no formal training. This may be done as a hobby, as a not-for-profit endeavour for community learning and open-science innovation, or for profit, to start a business.
A January 21, 2020 posting here listed the second Canadian DIY Biology Summit organized by the Public Health Agency of Canada (PHAC). It was possible to attend virtually from any part of Canada. The first meeting was in 2016 (you can see the agenda here). You’ll see in the agenda for the 2nd meeting in 2020 that there have been a few changes as groups rise into and fall out of existence.
From the 2020 agenda, here’s a list representing the players in Canada’s DIYbio scene,
Most of these organizations (e.g., Victoria Makerspace, Synbiota, Bricobio, etc.) seem to be relatively new (founded in 2009 or later) which is quite exciting to think about. This March 13, 2016 article in the Vancouver Observer gives you a pretty good overview of the DIY biology scene in Canada at the time while providing a preview of the then upcoming first DIY Biology summit.
*The Open Science Network in Vancouver was formerly known as DIYbio YVR. I’m not sure when the name change occurred but this July 17, 2018 article by Emily Ng for The Ubyssey (a University of British Columbia student newspaper) gives a little history,
…
In 2009, a group of UBC students and staff recognized these barriers and teamed up to democratize science, increase its accessibility and create an interdisciplinary platform for idea exchange. They created the Open Science Network (OSN).
The Open Science Network is a non-profit society that serves the science and maker community through education, outreach and the provision of space. Currently, they run an open community lab out of the MakerLabs space on East Cordova and Main street, which is a compact space housing microscopes, a freezer, basic lab equipment and an impressive amount of activity.
The lab is home to a community of citizen scientists, professional scientists, artists, designers and makers of all ages who are pursuing their own science projects.
…
Members who are interested in lab work can receive some training in “basic microbiology techniques like pipetting, growing bacteria, using the Polymerase Chain Reaction machine (PCR) [to amplify DNA] and running gels [through a gel ectrophoresis machine to separate DNA fragments by size] from Scott Pownall, a PhD graduate from UBC and the resident microbiologist,” said Wong [ Wes Wong, a staff member of UBC Botany and a founding member of OSN].
The group has also made further efforts to serve their members by offering more advanced synthetic biology classes and workshops at their lab.
…
There is another organization called ‘Open Science Network’ (an ethnobiology group and not part of the Vancouver organization). Here is a link to the Vancouver-based Open Science Network (a community science lab) where they provide further links to all their activities including a regular ‘meetup’.
The word
I have poetry, a book, a television adaptation, three plays with mathematics and/or physics themes and more.
Poetry
In 2012 there was a night of poetry readings in Vancouver. What made it special was that five poets had collaborated with five scientists (later amended to four scientists and a landscape architect) according to my December 4, 2012 posting. The whole thing was conceptualized and organized by Aileen Penner who went on to produce a chapbook of the poetry. She doesn’t have any copies available currently but you can contact her on her website’s art/science page if you are interested in obtaining a copy. She doesn’t seem to have organized any art/science projects since. For more about Aileen Penner who is a writer and poet, go to her website here.
The Banff International Research Station (BIRS) it’s all about the mathematics) hosted a workshop for poets and mathematicians way back in 2011. I featured it (Mathematics: Muse, Maker, and Measure of the Arts) after the fact in my January 9, 2012 posting (scroll down about 30% of the way). If you have the time, do click on my link to Nassif Ghoussoub’s post on his blog (Piece of Mind) about mathematicians, poetry, and the arts. It’s especially interesting in retrospect as he is now the executive director for BIRS, which no longer seems to have workshops that meld any of the arts with mathematics, and science.
One of the guests at that 2011 meeting was Alice Major, former poet laureate for Edmonton and the author of a 2011 book titled, Intersecting Sets: A Poet Looks at Science.
That sadly seems to be it for poetry and the sciences, including mathematics. If you know of any other poetry/science projects or readings, etc. in Canada during the 2010-9 decade, please let me know in the comments.
Books
Karl Schroeder, a Canadian science fiction author, has written many books but of particular interest here are two futuristic novels for the Canadian military.The 2005 novel, Crisis in Zefra, doesn’t fit the time frame I’ve established for this review but the the 2014 novel, Crisis in Urla (scroll down) fits in nicely. His writing is considered ‘realistic’ science fiction in that it’s based on science research and his work is also associated with speculative realism (from his Wikipedia entry; Note: Links have been removed),
Karl Schroeder (born September 4, 1962) is a Canadianscience fiction author. His novels present far-future speculations on topics such as nanotechnology, terraforming, augmented reality, and interstellar travel, and are deeply philosophical.
The other author I’m mentioning here is Margaret Atwood. The television adaptation of her book, ‘The Handmaid’s Tale’ has turned a Canadian literary superstar into a supernova (an exploding star whose luminosity can be the equivalent of an entire galaxy). In 2019, she won the Booker Prize, for the second time for ‘The Testaments’ (a followup to ‘The Handmaid’s Tale’), sharing it with Bernardine Evaristo and her book ‘Girl, Woman, Other’. Atwood has described her work (The Handmaid’s Tale, and others) as speculative fiction rather than science fiction. For me, she bases her speculation on the social sciences and humanities, specifically history (read her Wikipedia entry for more).
In 2017 with the television adaptation of ‘The Handmaid’s Tale’, Atwood’s speculative fiction novel became a pop culture phenomenon. Originally published in 1985, the novel was also adapted for a film in 1990 and for an opera in 2000 before it came to television, according to its Wikipedia entry.
There’s a lot more out there, Schroeder and Atwood are just two I’ve stumbled across.
Theatre
I have drama, musical comedy and acting items.
Drama
Pi Theatre’s (Vancouver) mathematically-inclined show, ‘Long Division‘, ran in April 2017 and was mentioned in my April 20, 2017 posting (scroll down about 50% of the way).
This theatrical performance of concepts in mathematics runs from April 26 – 30, 2017 (check here for the times as they vary) at the Annex at 823 Seymour St. From the Georgia Straight’s April 12, 2017 Arts notice,
“Mathematics is an art form in itself, as proven by Pi Theatre’s number-charged Long Division. This is a “refreshed remount” of Peter Dickinson’s ambitious work, one that circles around seven seemingly unrelated characters (including a high-school math teacher, a soccer-loving imam, and a lesbian bar owner) bound together by a single traumatic incident. Directed by Richard Wolfe, with choreography by Lesley Telford and musical score by Owen Belton, it’s a multimedia, movement-driven piece that has a strong cast. … “
You can read more about the production here. As far as I’m aware, there are no upcoming show dates.
There seems to be some sort of affinity between theatre and mathematics, I recently featured (January 3, 2020 posting) a theatrical piece by Hannah Moscovitch titled, ‘Infinity‘, about time, physics, math and more. It had its first production in Toronto in 2015.
John Mighton, a playwright and mathematician, wrote ‘The Little Years’ which has been produced in both Vancouver and Toronto. From a May 9, 2005 article by Kathleen Oliver for the Georgia Straight,
The Little Years is a little jewel of a play: small but multifaceted, and beautifully crafted.
John Mighton’s script gives us glimpses into different stages in the life of Kate, a woman whose early promise as a mathematician is cut short. At age 13, she’s a gifted student whose natural abilities are overlooked by 1950s society, which has difficulty conceiving of women as scientists. Instead, she’s sent to vocational school while her older brother, William, grows up to become one of the most widely praised poets of his generation.
John Mighton is a successful playwright and mathematician, yet at times in his life, he’s struggled with doubt. However, he also learned there was hope, and that’s the genesis of The Little Years, which opens at the Tarragon Theatre on Nov. 16 and runs to Dec. 16 [2012].
In keeping (more or less) with this subsection’s theme ‘The Word’, Mighton has recently had a new book published, ‘All Things Being Equal: Why Math is the Key to a Better World’, according to a January 24, 2020 article (online version) by Jamie Portman for Postmedia,
It’s more than two decades since Canadian mathematician and playwright John Mighton found himself playing a small role in the film, Good Will Hunting. What he didn’t expect when he took on the job was that he would end up making a vital contribution to a screenplay that would go on to win an Oscar for its writers, Ben Affleck and Matt Damon.
What happened on that occasion tells you a great deal about Mighton’s commitment to the belief that society grossly underestimates the intellectual capacity of human beings — a belief reiterated with quiet eloquence in his latest book, All Things Being Equal.
…
Mighton loved the experience but as shooting continued he became troubled over his involvement in a movie that played “heavily on the idea that geniuses like Will are born and not made.” This was anathema to his own beliefs as a mathematician and he finally summoned up the courage to ask Affleck and Damon if he could write a few extra lines for his character. This speech was the result: “Most people never get the chance to see how brilliant they can be. They don’t find teachers who believe in them. They get convinced they’re stupid.”
At a time of growing controversy across Canada over the teaching of mathematics in school and continuing evidence of diminishing student results, Mighton continues to feel gratitude to the makers of Good Will Hunting for heeding his concerns. [I will be writing a post about the latest PISA scores where Canadian students have again slipped in their mathematics scores.]
…
Mighton is on the phone from from Toronto, his voice soft-spoken but still edged with fervour. He pursues two successful careers — as an award-winning Canadian playwright and as a renowned mathematician and philosopher who has devoted a lifetime to developing strategies that foster the intellectual potential of all children through learning math. But even as he talks about his 2001 founding of JUMP Math, a respected charity that offers a radical alternative to conventional teaching of the subject, he’s anxious to remind you that he’s a guy who almost failed calculus at university and who once struggled to overcome his “own massive math anxiety.”
…
You can find out more about John Mighton in his Wikipedia entry (mostly about his academic accomplishments) and on the JUMP Math website (better overall biography).
Musical Comedy
It’s called ‘Math Out Loud’ and was first mentioned here in a January 9, 2012 posting (the same post also featured the BIRS poetry workshop),
“When Mackenzie Gray talks about the way Paul McCartney used a recursive sequence to make the song “I Want You (She’s So Heavy)” seem to last forever, you realize that part of the Beatles’ phenomenal success might have sprung from McCartney’s genius as a mathematician.
When Roger Kemp draws on a napkin to illustrate that you just have to change the way you think about numbers to come up with a binary code for pi (as in 3.14 ad infinitum), you get a sense that math can actually be a lot of fun.”
Produced by MITACS which in 2012 was known as ‘Mathematics of Information Technology and Complex Systems’, a not-for-profit research organization, the musical went on tour in the Fall of 2012 (according to my September 7, 2012 posting). Unusually, I did not embed the promotional trailer for this 2012 musical so, here it is now,
Since 2012, Mitacs has gone through some sort of rebranding process and it’s now described as a nonprofit national research organization. For more you can read its Wikipedia entry or go to its website.
Acting and storytelling
It turns out there was an acting class (five sessions) for scientists at the University of Calgary in 2017. Here’s more from the course’s information sheet,
Act Your Science: Improve Your Communication Skills with Training in Improvisation 2 hours a session, 5 sessions, every Wednesday starting November 14 [2017] …
Dr. Jeff Dunn, Faculty of Graduate Studies, Graduate Students Association, the Canadian Science Writers Association [also known as Science Writers and Communicators of Canada] and the Loose Moose Theatre have teamed together to provide training in a skill which will be useful where ever your career takes you.
The goal of this project is to improve the science communication skills of graduate students in science fields. We will improve your communication through the art of training in improvisation. Training will help with speech and body awareness. Improvisation will provide life‐long skills in communication, in a fun interactive environment.
For many years, Alan Alda, a well-known actor (originally of the “MASH” television series fame), has applied his acting skills and improvisation training to help scientists improve their communication. He developed the Alan Alda Centre for Communicating Science at Stony Brook University.
…
The training will involve five 2hr improvisation workshop sessions led by one of Canada’s top professional improvisation trainers, Dennis Cahill, the Artistic Director from Loose Moose Theatre. Dennis has an international reputation for developing the theatrical style of improvisation. Training involves a lot of moving around (and possibly rolling on the floor!) so dress casually. Be prepared to release your inhibitions!
…
The information sheet includes a link to this University of Chicago video (posted on Youtube February 24, 2014) of actor Alan Alda discussing science communication,
As for the storytelling, we’re back at the University of Calgary. A student video and storytelling workshop and contest (Innovation Untold) was held on Tuesday, February 4, 2020. Here’s more from the University of Calgary event page for Storytelling Workshop: Do photos and videos have voices?,
…
About the speaker:
Victoria Bouvier, a Michif-Metis woman, is of the Red River Settlement and Boggy Creek, Manitoba, and born and raised in Calgary. She is an Assistant professor in Indigenous Studies at Mount Royal University and a doctoral candidate in Educational Research [emphasis mine] at the University of Calgary. Her research is exploring how Michif/Métis people, born and raised in urban environments, practice and express their self-understandings, both individually and collectively through using an Indigenous oral system and visual media as methodology.
In a technology-laden society, people are capturing millions of photographs and videos that document their lived experiences, followed by uploading them to social media sites. As mass amounts of media is being shared each day, the question becomes: are we utilizing photos and videos to derive meaning from our everyday lived experiences, while settling in to a deeper sense of our self-in-relation?
This session will explore how photos and videos, positioned within an Indigenous oral system, are viewed and interacted with as a third perspective in the role of storytelling.
Finally, h/t to Jennifer Bon Bernard’s April 19, 2017 article (reposted Dec. 11, 2019) about Act Your Science for the Science Writers and Communicators blog. The original date doesn’t look right to me but perhaps she participated in a pilot project.
Neuroscience, science policy, and science advice
The end of this part is almost in sight
Knitting in Toronto and drawings in Vancouver (neuroscience)
In 2017, Toronto hosted a neuroscience event which combined storytelling and knitting (from my October 12, 2017 posting (Note: the portion below is an excerpt from an ArtSci Salon announcement),
With NARRATING NEUROSCIENCE we plan to initiate a discussion on the role and the use of storytelling and art (both in verbal and visual forms) to communicate abstract and complex concepts in neuroscience to very different audiences, ranging from fellow scientists, clinicians and patients, to social scientists and the general public. We invited four guests to share their research through case studies and experiences stemming directly from their research or from other practices they have adopted and incorporated into their research, where storytelling and the arts have played a crucial role not only in communicating cutting edge research in neuroscience, but also in developing and advancing it.
The ArtSci Salon folks also announced this (from the Sept. 25, 2017 ArtSci Salon announcement; received via email),
ATTENTION ARTSCI SALONISTAS AND FANS OF ART AND SCIENCE!! CALL FOR KNITTING AND CROCHET LOVERS!
In addition to being a PhD student at the University of Toronto, Tahani Baakdhah is a prolific knitter and crocheter and has been the motor behind two successful Knit-a-Neuron Toronto initiatives. We invite all Knitters and Crocheters among our ArtSci Salonistas to pick a pattern (link below) and knit a neuron (or 2! Or as many as you want!!)
BRING THEM TO OUR OCTOBER 20 ARTSCI SALON! Come to the ArtSci Salon and knit there!
That link to the patterns is still working.
Called “The Beautiful Brain” and held in the same time frame as Toronto’s neuro event, Vancouver hosted an exhibition of Santiago Ramon y Cajal’s drawings from September 5 to December 3, 2017. In concert with the exhibition, the local ‘neuro’ community held a number of outreach events. Here’s what I had in my September 11, 2017 posting where I quoted from the promotional material for the exhibition,
…
The Beautiful Brain is the first North American museum exhibition to present the extraordinary drawings of Santiago Ramón y Cajal (1852–1934), a Spanish pathologist, histologist and neuroscientist renowned for his discovery of neuron cells and their structure, for which he was awarded the Nobel Prize in Physiology and Medicine in 1906. Known as the father of modern neuroscience, Cajal was also an exceptional artist. He combined scientific and artistic skills to produce arresting drawings with extraordinary scientific and aesthetic qualities.
A century after their completion, Cajal’s drawings are still used in contemporary medical publications to illustrate important neuroscience principles, and continue to fascinate artists and visual art audiences. …
Pictured: Santiago Ramón y Cajal, injured Purkinje neurons, 1914, ink and pencil on paper. Courtesy of Instituto Cajal (CSIC).
From Vancouver, the exhibition traveled to a gallery in New York City and then onto the Massachusetts Institute of Technology (MIT).
Mehrdad Hariri has done a an extraordinary job as its founder and chief executive officer. The CSPC has developed from a single annual conference to an organization that hosts different events throughout the year and publishes articles and opinion pieces on Canadian science policy and has been instrumental in the development of a Canadian science policy community.
The magnitude of Hariri’s accomplishment becomes clear when reading J.w. Grove’s [sic] article, Science Policy, in The Canadian Encyclopedia and seeing that the most recent reports on a national science policy seem to be the Science Council’s (now defunct) 4th report in 1968, Towards a National Science Policy in Canada, the OECD’s (Organization for Economic Cooperation and Development) 1969 Review of [Canada’s] Science Policy, and 3 reports from the Senate’s Lamontagne Committee (Special Committee on Science Policy). Grove’s article takes us only to 1988 but I have been unable to find any more recent reports focused on a national science policy for Canada. (If you have any information about a more recent report, please do let me know in the comments.)
A November 5, 2019 piece (#VoteScience: lessons learned and building science advocacy beyond the election cycle) on the CSPC website further illustrates how the Canadian science policy community has gained ground (Note: Links have been removed),
… on August 8, 2019, a coalition of Canadian science organizations and student groups came together to launch the #VoteScience campaign: a national, non-partisan effort to advocate for science in the federal elections, and make science an election issue.
Specifically, we — aka Evidence for Democracy, Science & Policy Exchange (SPE), and the Toronto Science Policy Network (TSPN) [emphases mine] — built a collection of tools and resources to empower Canadian scientists and science supporters to engage with their local candidates on science issues and the importance of evidence-informed decision-making. Our goal was to make it easy for as many Canadians as possible to engage with their candidates — and they did.
Over the past three months, our #VoteScience portal received over 3,600 visitors, including 600 visitors who used our email form to reach out directly to their local candidates. Collectively, we took #VoteScience selfies, distributed postcards to supporters across Canada, and even wrote postcards to every sitting Member of Parliament (in addition to candidates from all parties in each of our own ridings). Also of note, we distributed a science policy questionnaire to the federal parties, to help better inform Canadians about where the federal parties stand on relevant science issues, and received responses from all but one party. We’ve also advocated for science through various media outlets, including commenting for articles appearing in The Narwhal and Nature News, and penning op-eds for outlets such as the National Observer, University Affairs, Le Devoir, and Découvrir.
Prior to SPIN, the Council of Canadian Academies (CCA; more about them in part 4), issued a 2017 report titled, Science Policy: Considerations for Subnational Governments. The report was the outcome of a 2016 CCA workshop originally titled, Towards a Science Policy in Alberta. I gather the scope broadened.
Interesting trajectory, yes?
Chief Science advisors/scientists
In September 2017, the Canadian federal government announced that a Chief Science Advisor, Dr. Mona Nemer, had been appointed. I have more about the position and Dr. Nemer in my September 26, 2017 posting. (Prior to Dr. Nemer’s appointment a previous government had discontinued a National Science Advisor position that existed from 2004 to 2008.)
The Office of the Chief Science Advisor released it first annual report in 2019 and was covered here in a March 19, 2019 posting.
Québec is the only province (as far as I know) to have a Chief Scientist, Rémi Quirion who was appointed in 2011.
Onto Part 4 where you’ll find we’ve gone to the birds and more.
*The Canadian Science Policy Centre (CSPC) section was written sometime in February 2020. I believe they are planning to publish an editorial piece I submitted to them on April 20, 202 (in other words, before this post was published) in response to their call for submissions (see my April 1, 2020 post for details about the call). In short, I did not praise the organization with any intention of having my work published by them. (sigh) Awkward timing.
A company from Ontario (Canada) has signed a memorandum of unterstanding (MOU) for graphene research with the University of British Columbia (Canada, Okanagan Campus). From a June 20, 2019 news item on Azonano,
ZEN Graphene Solutions has announced the signing of a memorandum of understanding (“MOU”) with the University of British Columbia (UBC), Okanagan Campus, School of Engineering, where ZEN will contribute a minimum of $300,000 over three years in support of graphene research and application development.
The main initial objectives defined in the MOU are:
(a) To formalize a collaborative research program utilizing expertise and capabilities from both ZEN and UBC and, where applicable, utilizing additional support and resources from government agencies such as the Natural Sciences and Engineering Research Council (NSERC), Mitacs and the National Research Council Industrial Research Assistance Program (NRC-IRAP); and,
(b) To structure an initial three-year research program with a committed minimum contribution by ZEN of $100,000 per year in support of UBC-based research projects.
ZEN has already supplied samples of its graphene and graphene oxide to UBC where it has undergone preliminary testing in the following applications: In multiple battery technologies; As an additive in cement-based composites; As an additive to aluminum and aluminum alloys; and, As a diesel and jet fuel additive.
“UBC has become a strong partner for ZEN over the last year bringing top quality researchers from multiple fields and connecting us with potential industrial partners. We wish to recognize the excellent research contributions made to date by Prof. Lukas Bichler and his team, and we look forward to formalizing our relationship with this agreement,” commented Dr. Francis Dubé.
“The three-year project, slated to begin this summer, challenges UBC engineering researchers to develop the next generation of stronger and lighter composite materials. The partnership with ZEN Graphene will allow for a transformational approach to composite materials development utilizing the unique properties of the Albany Graphite product. This will result in new composite materials with performance characteristics long beyond the reach of engineers and scientists using traditional material processing techniques. Linking to R&D activities at UBC will in turn enable ZEN to develop the Albany Graphite Deposit and get its graphene product to market more rapidly with a clear focus on high-impact real-world applications,” commented Dr. Bichler, associate professor of engineering at UBC’s Okanagan campus and research supervisor. Click here for video
About ZEN Graphene Solutions Ltd
ZEN Graphene Solutions Ltd. is an emerging graphene technology company with a focus on development of the unique Albany Graphite Project. This precursor graphene material provides the company with a competitive advantage in the potential graphene market as independent labs in Japan, UK, Israel, USA and Canada have demonstrated that ZEN’s Albany Graphite/Naturally PureTM easily converts (exfoliates) to graphene, using a variety of simple mechanical and chemical methods.
For further information: Francis Dubé, Chief Executive Officer Tel: +1 (289) 821-2820 Email: drfdube@zengraphene.com
To find out more on ZEN Graphene Solutions Ltd., please visit our website at www.ZENGraphene.com. A copy of this news release and all material documents in respect of the Company may be obtained on ZEN’s SEDAR profile at www.sedar.ca
Forward Looking Statements
This news release includes certain “forward-looking statements”, which often, but not always, can be identified by the use of words such as “potential”, “believes”, “anticipates”, “expects”, “estimates”, “may”, “could”, “would”, “will”, or “plan”. These statements are based on information currently available to ZEN and ZEN provides no assurance that actual results will meet management’s expectations. Although the Company believes that the expectations reflected in these forward-looking statements are reasonable, undue reliance should not be placed on them because the Company can give no assurance that they will prove to be correct. Since forward-looking statements address future events and conditions, by their very nature they involve inherent risks and uncertainties. Although ZEN believes that the assumptions and factors used in preparing the forward-looking information in this news release are reasonable, undue reliance should not be placed on such information, which only applies as of the date of this news release, and no assurance can be given that such events will occur in the disclosed time frames or at all. ZEN disclaims any intention or obligation to update or revise any forward-looking information, whether as a result of new information, future events or otherwise, other than as required by law. Neither the TSX Venture Exchange nor its Regulation Services Provider (as that term is defined in the policies of the TSX Venture Exchange) accepts responsibility for the adequacy or accuracy of this release. The Company’s full disclosure can be found at https://zengraphene.com/disclaimer/
About Zenyatta
Zenyatta’s Albany Graphite Project hosts a large and unique deposit of highly crystalline graphite. Independent labs in Japan, UK, Israel, USA and Canada have demonstrated that Zenyatta’s Albany Graphite/Naturally PureTM easily converts (exfoliates) to graphene, using a variety of simple mechanical and chemical methods. The deposit is located in Northern Ontario, just 30km north of the Trans-Canada Highway, near the communities of Constance Lake First Nation and Hearst. Important nearby infrastructure includes hydro-power, natural gas pipeline, a rail line 50 km away, and an all-weather road just 10 km from the deposit.
For more information on Zenyatta Ventures Ltd., please visit our website at www.zenyatta.ca. A copy of this press release and all material documents with respect of the Company are available on Zenyatta’s SEDAR profile at www.sedar.ca.
CAUTIONARY STATEMENT: Neither TSX Venture Exchange nor its Regulation Services Provider (as that term is defined in the policies of the TSX Venture Exchange) accepts responsibility for the adequacy or accuracy of this release. This news release may contain forward looking information and Zenyatta cautions readers that forward-looking information is based on certain assumptions and risk factors that could cause actual results to differ materially from the expectations of Zenyatta included in this news release. This news release includes certain “forward-looking statements”, which often, but not always, can be identified by the use of words such as “potential”, “believes”, “anticipates”, “expects”, “estimates”, “may”, “could”, “would”, “will”, or “plan”. These statements are based on information currently available to Zenyatta and Zenyatta provides no assurance that actual results will meet management’s expectations. Forward-looking statements include estimates and statements with respect to Zenyatta’s future plans, objectives or goals, to the effect that Zenyatta or management expects a stated condition or result to occur, including the expected uses for graphite or graphene in the future, and the future uses of the graphite from Zenyatta’s Albany deposit. Since forward-looking statements are based on assumptions and address future events and conditions, by their very nature they involve inherent risks and uncertainties. Actual results relating to, among other things, results of metallurgical processing, ongoing exploration, project development, reclamation and capital costs of Zenyatta’s mineral properties, and Zenyatta’s financial condition and prospects, could differ materially from those currently anticipated in such statements for many reasons such as, but are not limited to: failure to convert estimated mineral resources to reserves; the preliminary nature of metallurgical test results; the inability to identify target markets and satisfy the product criteria for such markets; the inability to complete a prefeasibility study; the inability to enter into offtake agreements with qualified purchasers; delays in obtaining or failures to obtain required governmental, environmental or other project approvals; political risks; uncertainties relating to the availability and costs of financing needed in the future; changes in equity markets, inflation, changes in exchange rates; fluctuations in commodity prices; delays in the development of projects; capital and operating costs varying significantly from estimates and the other risks involved in the mineral exploration and development industry; and those risks set out in Zenyatta’s public documents filed on SEDAR. This list is not exhaustive of the factors that may affect any of Zenyatta’s forward-looking statements. These and other factors should be considered carefully and readers should not place undue reliance on Zenyatta’s forward-looking statements. Although Zenyatta believes that the assumptions and factors used in preparing the forward-looking information in this news release are reasonable, undue reliance should not be placed on such information, which only applies as of the date of this news release, and no assurance can be given that such events will occur in the disclosed time frames or at all. Zenyatta disclaims any intention or obligation to update or revise any forward-looking information, whether as a result of new information, future events or otherwise, other than as required by law.
Looking at the June 10, 2019 news release, it seems that they’ve split the company in two with Zenyatta being the corporate name for the mining interests and ZEN Graphene for applications.
Oddly, UBC has not issued its own news release with this happy announcement.
I have two science opportunities one for students (grades six and seven) who would like to submit a science project for the CBC Vancouver Science Fair and another for people who can’t get enough science policy and British Columbia politics. Coincidentally, it’s the inaugural year for both events.
Canadian Broadcasting Corporation (CBC) Vancouver science fair
Calling all grades six and seven students! CBC Vancouver is holding its first-ever Science Fair on Sunday, May 27th, 2018, and we are looking for your creative submissions.
If you love science fairs and are passionate about environment and technology, we would love to hear from YOU.
In order to apply, submit a short 100-word hypothesis about your concept for the science fair project, along with key application information below. You have until April 15th, 2018 at 11:59 p.m. PST to submit. All entries will be judged on creativity and originality, incorporation of the themes of environment and/or technology, realistic possibility of execution, and if entries meet all other criteria.
CBC Vancouver staff will select the top 30 submissions to participate in the science fair on Sunday, May 27th, 2018, held at CBC Vancouver, 700 Hamilton Street, Vancouver, B.C. These 30 entries will be judged by a panel including CBC Vancouver senior meteorologist and seismologist Johanna Wagstaffe and Science World’s Manager of Partnership Development & Science Promotion Magda Byma.
The grand prize
• A special CBC Vancouver Science Fair trophy
• $750 gift card from Best Buy for all your future STEM projects
• A spot in one of Simon Fraser University’s Science Al!ve Summer Camps
• And Johanna Wagstaffe will feature the winning project on her CBC TV segment Science Smart
I have found the rules (a seven-age PDF) and am including Eligibility here as that’s usually my first question,
2. ELIGIBILITY
Contest is open to all Canadian residents who a re full time students in grades 6 and 7 who areenrolled at an educational institute in Canada.
For any contestant who has not reached the age of majority in their province (a “minor”) parentor guardian consent is necessary to enter the Contest and participate in the prize.
Parent/guardian will be responsible for minor’s participation in the prize. Where appropriate,
the terms “contestant” and “winner” mean parent or guardian of the minor.
If a minor contestant has not received consent to enter the Con test or a minor winner do es noth ave parental/guardian consent to participate in the prize, or, where applicable, does not havea parent/guardian to accompany them in the prize, the prize shall be forfeited and a newpotential winner may be selected by CBC in its sole discretion.
Employees of CBC, Prize Provider and their respective affiliates, as well as such persons
immediate family (father/mother, brother/sister, son/daughter) or persons living under the
same roof are not eligible to enter this Contest.
CBC Law Department July 2017
Good luck!
British Columbia Science and Policy Conference
Some of the text seems a little overblown but I’ll get to that in a minute. British Columbia’s first (I believe it’s the very first ever) science policy conference is coming up on May 11, 2018 from 12 pm to 5 pm somewhere on the University of British Columbia (UBC) campus (presumablythe Vancouver campus). You can find more on the 2018 BC Science and Policy Conference webpage.
Impressively, they have 10 speakers lined up (from the Speakers page,
Terry Lake
Terry Lake is the Vice President of Corporate Social Responsibility for Hydropothecary Corporation, a licensed producer of medical cannabis in Gatineau Quebec. Before returning to the private sector, Terry served as a member of the BC Legislature for Kamloops with appointments as Environment Minister and Health Minister. He was Mayor of Kamloops and an instructor of Animal Health Technology at Thompson Rivers University. Prior to his career as a veterinarian, Terry was a broadcast journalist in Alberta working for Broadcast News, a division of Canadian Press. Lake was awarded Canada’s Public Health Hero Award by the Canadian Public Health Association for his ground breaking harm reduction initiatives launched in the face of BC’s opioid epidemic. He maintains a keen interest in public health and is an advocate of exploring the use of cannabis as a substitute for opioids and other substances.
Wendy Palen
Dr. Wendy Palen is an Associate Professor in Biological Sciences at Simon Fraser where her research focuses on the ecology of aquatic communities in the Pacific Northwest. Her passion for aquatic conservation has led her to serve as Board Chair of Evidence for Democracy, an organization that advocates for science and smart decision making in Canada. She is also committed to training the next generation of scientists to resolve ecological and conservation problems through her work as a co-founder of Earth to Ocean Research Group and as an Associate Director of the Liber Ero Postdoctoral Fellows program in applied conservation.
Sam Sullivan
Sam Sullivan is a twice-elected Member of the Legislative Assembly of British Columbia for the riding of Vancouver False Creek and served as Mayor of Vancouver from 2005-2008. He is a member of the Order of Canada and is the only non-medical doctor in the country to be made an Honorary Member of the 22,000-member College of Family Physicians of Canada. His work champions evidence-based policy development with respect to urban densification and drug prohibition alternatives that address social challenges.
Kei Koizumi
Kei is a Visiting Scholar in science policy at the American Association for the Advancement of Science (AAAS) where he explores ways to bring science, the public, and policy together. Previously, he served as Assistant Director for Federal Research and Development and Senior Advisor to the Director for the National Science and Technology Council at the White House Office of Science and Technology during the Obama-Biden administration. Kei is a leading authority on federal support for research and development, and coordinating federal policy in collaboration with White House staff, Federal agencies, Congress, and the science and technology community.
Dan Reist
Dan Reist leads a team within the Canadian Institute for Substance Use Research at the University of Victoria that focuses on communicating current evidence in a way that supports the evolution of effective policy and practice. With a background in continental philosophy and hermeneutics, Dan is quick to acknowledge that evidence is far more than statistics about patterns of use and harm and includes attention to the ways we as human beings experience and talk about drugs and drug use in our cultures and communities.
Amani Saini
Amani Saini is the President and Founder of Adverse Drug Reaction Canada, an organization committed to preventing the 4th leading cause of death for Canadians: adverse drug reactions. Her efforts are motivated by her sister’s near death experience from an adverse drug reaction to a common over the counter ibuprofen drug. They do so by bringing together patients, families, policy-makers, scientists, researchers, health care providers and academics to advocate, develop policy solutions and advance research. She holds a Master of Public Administration from Dalhousie University and a BA in Political Science from UBC. She is also the 2016 recipient of the Canadian Science Policy Award of Excellence.
Maxwell A. Cameron
Maxwell A. Cameron (Ph.D., California, Berkeley, 1989) directs the Centre for the Study of Democratic Institutions at UBC and founded the Summer Institute for Future Legislators. His research focuses on comparative democratization in Latin America, constitutions, and the role of wisdom and judgment in politics. His publications include Democracy and Authoritarianism in Peru, The Political Economy of North American Free Trade, and To Walk Without Fear: The Global Movement to Ban Landmines. Cameron created the Andean Democracy Research Network to monitor and report on the state of democracy in the Andean region, with funding from the Glyn Berry Program of the Department of Foreign Affairs and International Trade, Canada, the Ford Foundation, and IDRC. His forthcoming book, Political Institutions and Practical Wisdom will be published by Oxford University Press later this year.
Laurel L. Schafer
Dr. Schafer fulfills her role as the Canada Research Chair in Catalyst Development by researching chemical catalysts that allow for safe, waste-free, and environmentally friendly methods of producing chemicals. Her work impacts the chemical, pharmaceutical, agrochemical, and petrochemical industries – everything from the preparation of compostable plastics to potential treatments for chronic pain. She has published over 80 research papers and received several prestigious awards for both her research and teaching, including the UBC Sustainability Fellowship (2011), the Killam Award for Excellence in Mentoring (2013), and the Clara Benson Award (2015). She is also a fellow of the Royal Society of Canada and the American Association for the Advancement of Science.
Sally Otto
Dr. Otto is a Professor in Zoology at the University of British Columbia, Director of the Centre for Biodiversity Research, and a recipient of numerous awards including the coveted MacArthur Fellowship. Her research aims to understand how evolutionary processes have generated the wondrous diversity of biological features observed in the natural world. She addresses this fundamental topic using a combination of mathematical theory, statistical inference, and evolutionary experiments. In addition, she encourages scientists to engage in public policy through her work launching and directing the Liber Ero Fellowship Program and as initiator and advisor of the Mitacs Canadian Science Policy Fellowships.
Maria Giammarco
Maria is a Mitacs Science Policy Fellow and Behavioural Scientist with the Behavioural Insights Group in the BC Public Service. As a public service scientist, Maria uses experimental research methodologies and knowledge of how humans behave in the real world to guide public policy challenges and to improve citizen services. Maria holds a PhD in Psychology and Neuroscience, and has formerly worked as a science policy researcher at the Council of Canadian Academies, as a consultant with Dialectic Solutions, and as a course instructor at the University of Guelph.
Tickets are $79 for general admission or $20 if you’re a trainee.
Theme 1 – Lightning Talks
How does science research currently affect policy development in BC? Amani Saini, Conny Lin
1:20 – 1:40
Coffee Break
1:40 – 2:30
Theme 2 – Panel Discussion
What is the relationship between the scientific community and public policy makers? Laurel Schafer, Lynn Raymond, Sally Otto
2:30 – 2:40
2:40 – 3:00
Mitacs Canadian Science Policy Fellowship Program
Coffee Break
3:00 – 3:45
Keynote Address Terry Lake & Wendy Palen
3:45 – 4:45
Theme 3 – Audience Discussion
What is BC’s science policy strategy and how can it be improved? Dan Reist
4:45 – 5:00
Closing Remarks
*Program is tentative and times may be subject to change
I was not able to find any information about the organizers but at least some information can be inferred from the About webpage,
The expectation that government decision-making be built on a foundation of credible evidence has become a growing demand of the Canadian public. [emphasis mine] Access to information, availability of appropriate resources, and strong relationships with researchers are just a few of the many factors required to ensure government can obtain the best available data. While both researchers and government can agree that an evidence-based approach to policy-making is critical, the relationships between these sectors are not so clearly established and defined. Thus, to better support government efforts towards evidence-based decision making, it is worthwhile to keep strengthening the channels that bridge these gaps.
Canada’s current federal government reaffirmed its commitment to evidence-based decision making through the creation of a Ministry of Science and the re-appointment of a Chief Science Advisor, to name a few examples. Moreover, the commissioning of the Fundamental Science Review (also known as The Naylor Report) has brought much needed attention towards the critical role fundamental research plays in the growth of Canadian society. With increasing support towards science for policy at the federal level comes an opportunity for governments to capitalize on this momentum at the provincial level. Many domains fall under the jurisdiction of provincial governments, including health, education, natural resources, and social services. Moreover, provinces are the primary funders of Universities, and are therefore linked to Canada’s scientific efforts.
Following in the footsteps of the “Bridging the Gap between Life Sciences and Politics” conference series at the University of British Columbia, the 2018 British Columbia Science & Policy Conference aims to open up a discussion about the current status on the use of science for policy in British Columbia. Our goal will be to not only bring forward ideas on how we can better facilitate the communication and mobilization of scientific knowledge in policy development, but to drive motivation for change among both researchers and government to better support the sustained integration of science into everyday government decision making.
Was there some sort of general populist movement in BC or any other part of Canada demanding that government-decision-making be based on evidence? Certainly, experts have made those kinds of demands but as far as I’m can tell the demise of the penny aroused more passion from ‘average’ people. Which Canadian public made the demand? At a guess, someone got carried away by their own rhetoric.
After glancing at the speakers’ bios., it’s no surprise to see that a series of ‘life science and politics’ meetings birthed this conference.
Substance abuse and drug use seem to be of particular interest with political science and the environment rounding out the range of sciences represented by the speakers.
Should you be interested in attending, they are still looking speakers for their Lightning Talks and, if you have financial concerns but would like to attend, the organizers encourage you to contact them: info@thespin.ca
This is the final commentary on the report titled,(INVESTING IN CANADA’S FUTURE; Strengthening the Foundations of Canadian Research). Part 1 of my commentary having provided some introductory material and first thoughts about the report, Part 2 offering more detailed thoughts; this part singles out ‘special cases’, sums up* my thoughts (circling back to ideas introduced in the first part), and offers link to other commentaries.
Special cases
Not all of the science funding in Canada is funneled through the four agencies designed for that purpose, (The Natural Sciences and Engineering Research Council (NSERC), Social Sciences and Humanities Research Council (SSHRC), Canadian Institutes of Health Research (CIHR) are known collectively as the tri-council funding agencies and are focused on disbursement of research funds received from the federal government. The fourth ‘pillar’ agency, the Canada Foundation for Innovation (CFI) is focused on funding for infrastructure and, technically speaking, is a 3rd party organization along with MITACS, CANARIE, the Perimeter Institute, and others.
In any event, there are also major research facilities and science initiatives which may receive direct funding from the federal government bypassing the funding agencies and, it would seem, peer review. For example, I featured this in my April 28, 2015 posting about the 2015 federal budget,
The $45 million announced for TRIUMF will support the laboratory’s role in accelerating science in Canada, an important investment in discovery research.
While the news about the CFI seems to have delighted a number of observers, it should be noted (as per Woodgett’s piece) that the $1.3B is to be paid out over six years ($220M per year, more or less) and the money won’t be disbursed until the 2017/18 fiscal year. As for the $45M designated for TRIUMF (Canada’s National Laboratory for Particle and Nuclear Physics), this is exciting news for the lab which seems to have bypassed the usual channels, as it has before, to receive its funding directly from the federal government. [emphases mine]
The Naylor report made this recommendation for Canada’s major research facilities, (MRF)
We heard from many who recommended that the federal government should manage its investments in “Big Science” in a more coordinated manner, with a cradle-to-grave perspective. The Panel agrees. Consistent with NACRI’s overall mandate, it should work closely with the CSA [Chief Science Advisor] in establishing a Standing Committee on Major Research Facilities (MRFs).
CFI defines a national research facility in the following way:
We define a national research facility as one that addresses the needs of a community of Canadian researchers representing a critical mass of users distributed across the country. This is done by providing shared access to substantial and advanced specialized equipment, services, resources, and scientific and technical personnel. The facility supports leading-edge research and technology development, and promotes the mobilization of knowledge and transfer of technology to society. A national research facility requires resource commitments well beyond the capacity of any one institution. A national research facility, whether single-sited, distributed or virtual, is specifically identified or recognized as serving pan-Canadian needs and its governance and management structures reflect this mandate.8
We accept this definition as appropriate for national research facilities to be considered by the Standing Committee on MRFs, but add that the committee should:
• define a capital investment or operating cost level above which such facilities are considered “major” and thus require oversight by this committee (e.g., defined so as to include the national MRFs proposed in Section 6.3: Compute Canada, Canadian Light Source, Canada’s National Design Network, Canadian Research Icebreaker Amundsen, International Vaccine Centre, Ocean Networks Canada, Ocean Tracking Network, and SNOLAB plus the TRIUMF facility); and
• consider international MRFs in which Canada has a significant role, such as astronomical telescopes of global significance.
The structure and function of this Special Standing Committee would closely track the proposal made in 2006 by former NSA [National Science Advisor] Dr Arthur Carty. We return to this topic in Chapter 6. For now, we observe that this approach would involve:
• a peer-reviewed decision on beginning an investment;
• a funded plan for the construction and operation of the facility, with continuing oversight by a peer specialist/agency review group for the specific facility;
• a plan for decommissioning; and
• a regular review scheduled to consider whether the facility still serves current needs.
We suggest that the committee have 10 members, with an eminent scientist as Chair. The members should include the CSA, two representatives from NACRI for liaison, and seven others. The other members should include Canadian and international scientists from a broad range of disciplines and experts on the construction, operation, and administration of MRFs. Consideration should be given to inviting the presidents of NRC [National Research Council of Canada] and CFI to serve as ex-officio members. The committee should be convened by the CSA, have access to the Secretariat associated with the CSA and NACRI, and report regularly to NACRI. (pp. 66-7 print; pp. 100-1 PDF)
I have the impression there’s been some ill feeling over the years regarding some of the major chunks of money given for ‘big science’. At a guess, direct appeals to a federal government that has no official mechanism for assessing the proposed ‘big science’ whether that means a major research facility (e.g., TRIUMF) or major science initiative (e.g., Pan Canadian Artificial Intelligence Strategy [keep reading to find out how I got the concept of a major science initiative wrong]) or 3rd party (MITACS) has seemed unfair to those who have to submit funding applications and go through vetting processes. This recommendation would seem to be an attempt to redress some of the issues.
Moving onto the third-party delivery and matching programs,
Three bodies in particular are the largest of these third-party organizations and illustrate the challenges of evaluating contribution agreements: Genome Canada, Mitacs, and Brain Canada. Genome Canada was created in 2000 at a time when many national genomics initiatives were being developed in the wake of the Human Genome Project. It emerged from a “bottom-up” design process driven by genomic scientists to complement existing programs by focusing on large-scale projects and technology platforms. Its funding model emphasized partnerships and matching funds to leverage federal commitments with the objective of rapidly ramping up genomics research in Canada.
This approach has been successful: Genome Canada has received $1.1 billion from the Government of Canada since its creation in 2000, and has raised over $1.6 billion through co-funding commitments, for a total investment in excess of $2.7 billion.34 The scale of Genome Canada’s funding programs allows it to support large-scale genomics research that the granting councils might otherwise not be able to fund. Genome Canada also supports a network of genomics technology and innovation centres with an emphasis on knowledge translation and has built domestic and international strategic partnerships. While its primary focus has been human health, it has also invested extensively in agriculture, forestry, fisheries, environment, and, more recently, oil and gas and mining— all with a view to the application and commercialization of genomic biotechnology.
Mitacs attracts, trains, and retains HQP [highly qualified personnel] in the Canadian research enterprise. Founded in 1999 as an NCE [Network Centre for Excellence], it was developed at a time when enrolments in graduate programs had flat-lined, and links between mathematics and industry were rare. Independent since 2011, Mitacs has focused on providing industrial research internships and postdoctoral fellowships, branching out beyond mathematics to all disciplines. It has leveraged funding effectively from the federal and provincial governments, industry, and not-for-profit organizations. It has also expanded internationally, providing two-way research mobility. Budget 2015 made Mitacs the single mechanism of federal support for postsecondary research internships with a total federal investment of $135.4 million over the next five years. This led to the wind-down of NSERC’s Industrial Postgraduate Scholarships Program. With matching from multiple other sources, Mitacs’ average annual budget is now $75 to $80 million. The organization aims to more than double the number of internships it funds to 10,000 per year by 2020.35
Finally, Brain Canada was created in 1998 (originally called NeuroScience Canada) to increase the scale of brain research funding in Canada and widen its scope with a view to encouraging interdisciplinary collaboration. In 2011 the federal government established the Canada Brain Research Fund to expand Brain Canada’s work, committing $100 million in new public investment for brain research to be matched 1:1 through contributions raised by Brain Canada. According to the STIC ‘State of the Nation’ 2014 report, Canada’s investment in neuroscience research is only about 40 per cent of that in the U.S. after adjusting for the size of the U.S. economy.36 Brain Canada may be filling a void left by declining success rates and flat funding at CIHR.
Recommendation and Elaboration
The Panel noted that, in general, third-party organizations for delivering research funding are particularly effective in leveraging funding from external partners. They fill important gaps in research funding and complement the work of the granting councils and CFI. At the same time, we questioned the overall efficiency of directing federal research funding through third-party organizations, noting that our consultations solicited mixed reactions. Some respondents favoured more overall funding concentrated in the agencies rather than diverting the funding to third-party entities. Others strongly supported the business models of these organizations.
We have indicated elsewhere that a system-wide review panel such as ours is not well-suited to examine these and other organizations subject to third-party agreements. We recommended instead in Chapter 4 that a new oversight body, NACRI, be created to provide expert advice and guidance on when a new entity might reasonably be supported by such an agreement. Here we make the case for enlisting NACRI in determining not just the desirability of initiating a new entity, but also whether contribution agreements should continue and, if so, on what terms.
The preceding sketches of three diverse organizations subject to contribution agreements help illustrate the rationale for this proposal. To underscore the challenges of adjudication, we elaborate briefly. Submissions highlighted that funding from Genome Canada has enabled fundamental discoveries to be made and important knowledge to be disseminated to the Canadian and international research communities. However, other experts suggested a bifurcation with CIHR or NSERC funding research-intensive development of novel technologies, while Genome Canada would focus on application (e.g., large-scale whole genome studies) and commercialization of existing technologies. From the Panel’s standpoint, these observations underscore the subtleties of determining where and how Genome Canada’s mandate overlaps and departs from that of CIHR and NSERC as well as CFI. Added to the complexity of any assessment is Genome Canada’s meaningful role in providing large-scale infrastructure grants and its commercialization program. Mitacs, even more than Genome Canada, bridges beyond academe to the private and non-profit sectors, again highlighting the advantage of having any review overseen by a body with representatives from both spheres. Finally, as did the other two entities, Brain Canada won plaudits, but some interchanges saw discussants ask when and whether it might be more efficient to flow this type of funding on a programmatic basis through CIHR.
We emphasize that the Panel’s intent here is neither to signal agreement nor disagreement with any of these submissions or discussions. We simply wish to highlight that decisions about ongoing funding will involve expert judgments informed by deep expertise in the relevant research areas and, in two of these examples, an ability to bridge from research to innovation and from extramural independent research to the private and non-profit sectors. Under current arrangements, management consulting firms and public servants drive the review and decision-making processes. Our position is that oversight by NACRI and stronger reliance on advice from content experts would be prudent given the sums involved and the nature of the issues. (pp. 102-4 print; pp. 136-8 PDF)
I wasn’t able to find anything other than this about major science initiatives (MSIs),
Big Science facilities, such as MSIs, have had particular challenges in securing ongoing stable operating support. Such facilities often have national or international missions. We termed them “major research facilities” (MRFs) xi in Chapter 4, and proposed an improved oversight mechanism that would provide lifecycle stewardship of these national science resources, starting with the decision to build them in the first instance. (p. 132 print; p. 166 PDF)
So, an MSI is an MRF? (head shaking) Why two terms for the same thing? And, how does the newly announced Pan Canadian Artificial Intelligence Strategy fit into the grand scheme of things?
The last ‘special case’ I’m featuring is the ‘Programme for Research Chairs for Excellent Scholars and Scientists’. Here’s what the report had to say about the state of affairs,
The major sources of federal funding for researcher salary support are the CRC [Canada Research Chair]and CERC [Canada Excellence Reseach Chair] programs. While some salary support is provided through council-specific programs, these investments have been declining over time. The Panel supports program simplification but, as noted in Chapter 5, we are concerned about the gaps created by the elimination of these personnel awards. While we focus here on the CRC and CERC programs because of their size, profile, and impact, our recommendations will reflect these concerns.
The CRC program was launched in 2000 and remains the Government of Canada’s flagship initiative to keep Canada among the world’s leading countries in higher education R&D. The program has created 2,000 research professorships across Canada with the stated aim “to attract and retain some of the world’s most accomplished and promising minds”5 as part of an effort to curtail the potential academic brain drain to the U.S. and elsewhere. The program is a tri-council initiative with most Chairs allocated to eligible institutions based on the national proportion of total research grant funding they receive from the three granting councils. The vast majority of Chairs are distributed based on area of research, of which 45 per cent align with NSERC, 35 per cent with CIHR, and 20 per cent with SSHRC; an additional special allocation of 120 Chairs can be used in the area of research chosen by the universities receiving the Chairs. There are two types of Chairs: Tier 1 Chairs are intended for outstanding researchers who are recognized as world leaders in their fields and are renewable; Tier 2 Chairs are targeted at exceptional emerging researchers with the potential to become leaders in their field and can be renewed once. Awards are paid directly to the universities and are valued at $200,000 annually for seven years (Tier 1) or $100,000 annually for five years (Tier 2). The program notes that Tier 2 Chairs are not meant to be a feeder group for Tier 1 Chairs; rather, universities are expected to develop a succession plan for their Tier 2 Chairs.
The CERC program was established in 2008 with the expressed aim of “support[ing] Canadian universities in their efforts to build on Canada’s growing reputation as a global leader in research and innovation.”6 The program aims to award world-renowned researchers and their teams with up to $10 million over seven years to establish ambitious research programs at Canadian universities, making these awards among the most prestigious and generous available internationally. There are currently 27 CERCs with funding available to support up to 30 Chairs, which are awarded in the priority areas established by the federal government. The awards, which are not renewable, require 1:1 matching funds from the host institution, and all degree-granting institutions that receive tri-council funding are eligible to compete. Both the CERC and CRC programs are open to Canadians and foreign citizens. However, until the most recent round, the CERCs have been constrained to the government’s STEM-related priorities; this has limited their availability to scholars and scientists from SSHRC-related disciplines. As well, even though Canadian-based researchers are eligible for CERC awards, the practice has clearly been to use them for international recruitment with every award to date going to researchers from abroad.
Similar to research training support, the funding for salary support to researchers and scholars is a significant proportion of total federal research investments, but relatively small with respect to the research ecosystem as a whole. There are more than 45,000 professors and teaching staff at Canada’s universities7 and a very small fraction hold these awards. Nevertheless, the programs can support research excellence by repatriating top Canadian talent from abroad and by recruiting and retaining top international talent in Canada.
The programs can also lead by example in promoting equity and diversity in the research enterprise. Unfortunately, both the CRC and CERC programs suffer from serious challenges regarding equity and diversity, as described in Chapter 5. Both programs have been criticized in particular for under-recruitment of women.
While the CERC program has recruited exclusively from outside Canada, the CRC program has shown declining performance in that regard. A 2016 evaluation of the CRC program8 observed that a rising number of chairholders were held by nominees who originated from within the host institution (57.5 per cent), and another 14.4 per cent had been recruited from other Canadian institutions. The Panel acknowledges that some of these awards may be important to retaining Canadian talent. However, we were also advised in our consultations that CRCs are being used with some frequency to offset salaries as part of regular faculty complement planning.
The evaluation further found that 28.1 per cent of current chairholders had been recruited from abroad, a decline from 32 per cent in the 2010 evaluation. That decline appears set to continue. The evaluation reported that “foreign nominees accounted, on average, for 13 per cent and 15 per cent respectively of new Tier 1 and Tier 2 nominees over the five-year period 2010 to 2014”, terming it a “large decrease” from 2005 to 2009 when the averages respectively were 32 per cent and 31 per cent. As well, between 2010-11 and 2014-15, the attrition rate for chairholders recruited from abroad was 75 per cent higher than for Canadian chairholders, indicating that the program is also falling short in its ability to retain international talent.9
One important factor here appears to be the value of the CRC awards. While they were generous in 2000, their value has remained unchanged for some 17 years, making it increasingly difficult to offer the level of support that world-leading research professors require. The diminishing real value of the awards also means that Chair positions are becoming less distinguishable from regular faculty positions, threatening the program’s relevance and effectiveness. To rejuvenate this program and make it relevant for recruitment and retention of top talent, it seems logical to take two steps:
• ask the granting councils and the Chairs Secretariat to work with universities in developing a plan to restore the effectiveness of these awards; and
• once that plan is approved, increase the award values by 35 per cent, thereby restoring the awards to their original value and making them internationally competitive once again.
In addition, the Panel observes that the original goal was for the program to fund 2,000 Chairs. Due to turnover and delays in filling Chair positions, approximately 10 to 15 per cent of them are unoccupied at any one time.i As a result, the program budget was reduced by $35 million in 2012. However, the occupancy rate has continued to decline since then, with an all-time low of only 1,612 Chair positions (80.6 per cent) filled as of December 2016. The Panel is dismayed by this inefficiency, especially at a time when Tier 2 Chairs remain one of the only external sources of salary support for ECRs [early career researchers]—a group that represents the future of Canadian research and scholarship. (pp. 142-4 print; pp. 176-8 PDF)
I think what you can see as a partial subtext in this report and which I’m attempting to highlight here in ‘special cases’ is a balancing act between supporting a broad range of research inquiries and focusing or pouring huge sums of money into ‘important’ research inquiries for high impact outcomes.
Final comments
There are many things to commend this report including the writing style. The notion that more coordination is needed amongst the various granting agencies, that greater recognition (i.e,, encouragement and funding opportunities) should be given to boundary-crossing research, and that we need to do more interprovincial collaboration is welcome. And yes, they want more money too. (That request is perfectly predictable. When was the last time a report suggested less funding?) Perhaps more tellingly, the request for money is buttressed with a plea to make it partisan-proof. In short, that funding doesn’t keep changing with the political tides.
One area that was not specifically mentioned, except when discussing prizes, was mathematics. I found that a bit surprising given how important the field of mathematics is to to virtually all the ‘sciences’. A 2013 report, Spotlight on Science, suggests there’s a problem(as noted my Oct. 9, 2013 posting about that report, (I also mention Canada’s PISA scores [Programme for International Student Assessment] by the OECD [Organization for Economic Cooperation and Development], which consistently show Canadian students at the age of 15 [grade 10] do well) ,
… it appears that we have high drop out rates in the sciences and maths, from an Oct. 8, 2013 news item on the CBC (Canadian Broadcasting Corporation) website,
… Canadians are paying a heavy price for the fact that less than 50 per cent of Canadian high school students graduate with senior courses in science, technology, engineering and math (STEM) at a time when 70 per cent of Canada’s top jobs require an education in those fields, said report released by the science education advocacy group Let’s Talk Science and the pharmaceutical company Amgen Canada.
Spotlight on Science Learning 2013 compiles publicly available information about individual and societal costs of students dropping out STEM courses early.
…
Even though most provinces only require math and science courses until Grade 10, the report [Spotlight on Science published by Let’s Talk Science and pharmaceutical company Amgen Canada) found students without Grade 12 math could expect to be excluded from 40 to 75 per cent of programs at Canadian universities, and students without Grade 11 could expect to be excluded from half of community college programs. [emphasis mine]
While I realize that education wasn’t the panel’s mandate they do reference the topic elsewhere and while secondary education is a provincial responsibility there is a direct relationship between it and postsecondary education.
On the lack of imagination front, there was some mention of our aging population but not much planning or discussion about integrating older researchers into the grand scheme of things. It’s all very well to talk about the aging population but shouldn’t we start introducing these ideas into more of our discussions on such topics as research rather than only those discussions focused on aging?
Continuing on with the lack of imagination and lack of forethought, I was not able to find any mention of independent scholars. The assumption, as always, is that one is affiliated with an institution. Given the ways in which our work world is changing with fewer jobs at the institutional level, it seems the panel was not focused on important and fra reaching trends. Also, there was no mention of technologies, such as artificial intelligence, that could affect basic research. One other thing from my wish list, which didn’t get mentioned, art/science or SciArt. Although that really would have been reaching.
Weirdly, one of the topics the panel did note, the pitiifull lack of interprovincial scientific collaboration, was completely ignored when it came time for recommendations.
Should you spot any errors in this commentary, please do drop me a comment.
Other responses to the report:
Nassif Ghoussoub (Piece of Mind blog; he’s a professor mathematics at the University of British Columbia; he attended one of the roundtable discussions held by the panel). As you might expect, he focuses on the money end of things in his May 1, 2017 posting.
You can find a series of essays about the report here under the title Response to Naylor Panel Report ** on the Canadian Science Policy Centre website.
There’s also this May 31, 2017 opinion piece by Jamie Cassels for The Vancouver Sun exhorting us to go forth collaborate internationally, presumably with added funding for the University of Victoria of which Cassels is the president and vice-chancellor. He seems not to have noticed that Canadian do much more poorly with interprovincial collaboration.
*ETA June 21, 2017: I’ve just stumbled across Ivan Semeniuk’s April 10, 2017 analysis (Globe and Mail newspaper) of the report. It’s substantive and well worth checking out.*
Again, here’s a link to the other parts:
INVESTING IN CANADA’S FUTURE; Strengthening the Foundations of Canadian Research (Review of fundamental research final report) Commentaries
There’s not much happening in the 2017-18 budget in terms of new spending according to Paul Wells’ March 22, 2017 article for TheStar.com,
This is the 22nd or 23rd federal budget I’ve covered. And I’ve never seen the like of the one Bill Morneau introduced on Wednesday [March 22, 2017].
Not even in the last days of the Harper Conservatives did a budget provide for so little new spending — $1.3 billion in the current budget year, total, in all fields of government. That’s a little less than half of one per cent of all federal program spending for this year.
But times are tight. The future is a place where we can dream. So the dollars flow more freely in later years. In 2021-22, the budget’s fifth planning year, new spending peaks at $8.2 billion. Which will be about 2.4 per cent of all program spending.
…
He’s not alone in this 2017 federal budget analysis; CBC (Canadian Broadcasting Corporation) pundits, Chantal Hébert, Andrew Coyne, and Jennifer Ditchburn said much the same during their ‘At Issue’ segment of the March 22, 2017 broadcast of The National (news).
Before I focus on the science and technology budget, here are some general highlights from the CBC’s March 22, 2017 article on the 2017-18 budget announcement (Note: Links have been removed,
Here are highlights from the 2017 federal budget:
Deficit: $28.5 billion, up from $25.4 billion projected in the fall.
Trend: Deficits gradually decline over next five years — but still at $18.8 billion in 2021-22.
Housing: $11.2 billion over 11 years, already budgeted, will go to a national housing strategy.
Child care: $7 billion over 10 years, already budgeted, for new spaces, starting 2018-19.
Indigenous: $3.4 billion in new money over five years for infrastructure, health and education.
Defence: $8.4 billion in capital spending for equipment pushed forward to 2035.
Care givers: New care-giving benefit up to 15 weeks, starting next year.
Skills: New agency to research and measure skills development, starting 2018-19.
Innovation: $950 million over five years to support business-led “superclusters.”
Startups: $400 million over three years for a new venture capital catalyst initiative.
AI: $125 million to launch a pan-Canadian Artificial Intelligence Strategy.
Coding kids: $50 million over two years for initiatives to teach children to code.
Families: Option to extend parental leave up to 18 months.
Uber tax: GST to be collected on ride-sharing services.
Sin taxes: One cent more on a bottle of wine, five cents on 24 case of beer.
Bye-bye: No more Canada Savings Bonds.
Transit credit killed: 15 per cent non-refundable public transit tax credit phased out this year.
Finance officials, who speak on condition of anonymity during the budget lock-up, indicated the budgets of the granting councils, the main source of operational grants for university researchers, will be “static” until the government can assess recommendations that emerge from an expert panel formed in 2015 and headed by former University of Toronto President David Naylor to review basic science in Canada [highlighted in my June 15, 2016 posting ; $2M has been allocated for the advisor and associated secretariat]. Until then, the officials said, funding for the Natural Sciences and Engineering Research Council of Canada (NSERC) will remain at roughly $848 million, whereas that for the Canadian Institutes of Health Research (CIHR) will remain at $773 million, and for the Social Sciences and Humanities Research Council [SSHRC] at $547 million.
NSERC, though, will receive $8.1 million over 5 years to administer a PromoScience Program that introduces youth, particularly unrepresented groups like Aboriginal people and women, to science, technology, engineering, and mathematics through measures like “space camps and conservation projects.” CIHR, meanwhile, could receive modest amounts from separate plans to identify climate change health risks and to reduce drug and substance abuse, the officials added.
… Canada’s Innovation and Skills Plan, would funnel $600 million over 5 years allocated in 2016, and $112.5 million slated for public transit and green infrastructure, to create Silicon Valley–like “super clusters,” which the budget defined as “dense areas of business activity that contain large and small companies, post-secondary institutions and specialized talent and infrastructure.” …
…
… The Canadian Institute for Advanced Research will receive $93.7 million [emphasis mine] to “launch a Pan-Canadian Artificial Intelligence Strategy … (to) position Canada as a world-leading destination for companies seeking to invest in artificial intelligence and innovation.”
…
… Among more specific measures are vows to: Use $87.7 million in previous allocations to the Canada Research Chairs program to create 25 “Canada 150 Research Chairs” honoring the nation’s 150th year of existence, provide $1.5 million per year to support the operations of the office of the as-yet-unappointed national science adviser [see my Dec. 7, 2016 post for information about the job posting, which is now closed]; provide $165.7 million [emphasis mine] over 5 years for the nonprofit organization Mitacs to create roughly 6300 more co-op positions for university students and grads, and provide $60.7 million over five years for new Canadian Space Agency projects, particularly for Canadian participation in the National Aeronautics and Space Administration’s next Mars Orbiter Mission.
Kondros was either reading an earlier version of the budget or made an error regarding Mitacs (from the budget in the “A New, Ambitious Approach to Work-Integrated Learning” subsection),
Mitacs has set an ambitious goal of providing 10,000 work-integrated learning placements for Canadian post-secondary students and graduates each year—up from the current level of around 3,750 placements. Budget 2017 proposes to provide $221 million [emphasis mine] over five years, starting in 2017–18, to achieve this goal and provide relevant work experience to Canadian students.
As well, the budget item for the Pan-Canadian Artificial Intelligence Strategy is $125M.
Moving from Kondros’ précis, the budget (in the “Positioning National Research Council Canada Within the Innovation and Skills Plan” subsection) announces support for these specific areas of science,
Stem Cell Research
The Stem Cell Network, established in 2001, is a national not-for-profit organization that helps translate stem cell research into clinical applications, commercial products and public policy. Its research holds great promise, offering the potential for new therapies and medical treatments for respiratory and heart diseases, cancer, diabetes, spinal cord injury, multiple sclerosis, Crohn’s disease, auto-immune disorders and Parkinson’s disease. To support this important work, Budget 2017 proposes to provide the Stem Cell Network with renewed funding of $6 million in 2018–19.
Space Exploration
Canada has a long and proud history as a space-faring nation. As our international partners prepare to chart new missions, Budget 2017 proposes investments that will underscore Canada’s commitment to innovation and leadership in space. Budget 2017 proposes to provide $80.9 million on a cash basis over five years, starting in 2017–18, for new projects through the Canadian Space Agency that will demonstrate and utilize Canadian innovations in space, including in the field of quantum technology as well as for Mars surface observation. The latter project will enable Canada to join the National Aeronautics and Space Administration’s (NASA’s) next Mars Orbiter Mission.
Quantum Information
The development of new quantum technologies has the potential to transform markets, create new industries and produce leading-edge jobs. The Institute for Quantum Computing is a world-leading Canadian research facility that furthers our understanding of these innovative technologies. Budget 2017 proposes to provide the Institute with renewed funding of $10 million over two years, starting in 2017–18.
Social Innovation
Through community-college partnerships, the Community and College Social Innovation Fund fosters positive social outcomes, such as the integration of vulnerable populations into Canadian communities. Following the success of this pilot program, Budget 2017 proposes to invest $10 million over two years, starting in 2017–18, to continue this work.
International Research Collaborations
The Canadian Institute for Advanced Research (CIFAR) connects Canadian researchers with collaborative research networks led by eminent Canadian and international researchers on topics that touch all humanity. Past collaborations facilitated by CIFAR are credited with fostering Canada’s leadership in artificial intelligence and deep learning. Budget 2017 proposes to provide renewed and enhanced funding of $35 million over five years, starting in 2017–18.
Earlier this week, I highlighted Canada’s strength in the field of regenerative medicine, specifically stem cells in a March 21, 2017 posting. The $6M in the current budget doesn’t look like increased funding but rather a one-year extension. I’m sure they’re happy to receive it but I imagine it’s a little hard to plan major research projects when you’re not sure how long your funding will last.
As for Canadian leadership in artificial intelligence, that was news to me. Here’s more from the budget,
Canada a Pioneer in Deep Learning in Machines and Brains
CIFAR’s Learning in Machines & Brains program has shaken up the field of artificial intelligence by pioneering a technique called “deep learning,” a computer technique inspired by the human brain and neural networks, which is now routinely used by the likes of Google and Facebook. The program brings together computer scientists, biologists, neuroscientists, psychologists and others, and the result is rich collaborations that have propelled artificial intelligence research forward. The program is co-directed by one of Canada’s foremost experts in artificial intelligence, the Université de Montréal’s Yoshua Bengio, and for his many contributions to the program, the University of Toronto’s Geoffrey Hinton, another Canadian leader in this field, was awarded the title of Distinguished Fellow by CIFAR in 2014.
Meanwhile, from chapter 1 of the budget in the subsection titled “Preparing for the Digital Economy,” there is this provision for children,
Providing educational opportunities for digital skills development to Canadian girls and boys—from kindergarten to grade 12—will give them the head start they need to find and keep good, well-paying, in-demand jobs. To help provide coding and digital skills education to more young Canadians, the Government intends to launch a competitive process through which digital skills training organizations can apply for funding. Budget 2017 proposes to provide $50 million over two years, starting in 2017–18, to support these teaching initiatives.
I wonder if BC Premier Christy Clark is heaving a sigh of relief. At the 2016 #BCTECH Summit, she announced that students in BC would learn to code at school and in newly enhanced coding camp programmes (see my Jan. 19, 2016 posting). Interestingly, there was no mention of additional funding to support her initiative. I guess this money from the federal government comes at a good time as we will have a provincial election later this spring where she can announce the initiative again and, this time, mention there’s money for it.
Attracting brains from afar
Ivan Semeniuk in his March 23, 2017 article (for the Globe and Mail) reads between the lines to analyze the budget’s possible impact on Canadian science,
But a between-the-lines reading of the budget document suggests the government also has another audience in mind: uneasy scientists from the United States and Britain.
The federal government showed its hand at the 2017 #BCTECH Summit. From a March 16, 2017 article by Meera Bains for the CBC news online,
At the B.C. tech summit, Navdeep Bains, Canada’s minister of innovation, said the government will act quickly to fast track work permits to attract highly skilled talent from other countries.
“We’re taking the processing time, which takes months, and reducing it to two weeks for immigration processing for individuals [who] need to come here to help companies grow and scale up,” Bains said.
“So this is a big deal. It’s a game changer.”
That change will happen through the Global Talent Stream, a new program under the federal government’s temporary foreign worker program. It’s scheduled to begin on June 12, 2017.
U.S. companies are taking notice and a Canadian firm, True North, is offering to help them set up shop.
“What we suggest is that they think about moving their operations, or at least a chunk of their operations, to Vancouver, set up a Canadian subsidiary,” said the company’s founder, Michael Tippett.
“And that subsidiary would be able to house and accommodate those employees.”
Industry experts says while the future is unclear for the tech sector in the U.S., it’s clear high tech in B.C. is gearing up to take advantage.
US business attempts to take advantage of Canada’s relative stability and openness to immigration would seem to be the motive for at least one cross border initiative, the Cascadia Urban Analytics Cooperative. From my Feb. 28, 2017 posting,
There was some big news about the smallest version of the Cascadia region on Thursday, Feb. 23, 2017 when the University of British Columbia (UBC) , the University of Washington (state; UW), and Microsoft announced the launch of the Cascadia Urban Analytics Cooperative. From the joint Feb. 23, 2017 news release (read on the UBC website or read on the UW website),
In an expansion of regional cooperation, the University of British Columbia and the University of Washington today announced the establishment of the Cascadia Urban Analytics Cooperative to use data to help cities and communities address challenges from traffic to homelessness. The largest industry-funded research partnership between UBC and the UW, the collaborative will bring faculty, students and community stakeholders together to solve problems, and is made possible thanks to a $1-million gift from Microsoft.
…
Today’s announcement follows last September’s [2016] Emerging Cascadia Innovation Corridor Conference in Vancouver, B.C. The forum brought together regional leaders for the first time to identify concrete opportunities for partnerships in education, transportation, university research, human capital and other areas.
A Boston Consulting Group study unveiled at the conference showed the region between Seattle and Vancouver has “high potential to cultivate an innovation corridor” that competes on an international scale, but only if regional leaders work together. The study says that could be possible through sustained collaboration aided by an educated and skilled workforce, a vibrant network of research universities and a dynamic policy environment.
It gets better, it seems Microsoft has been positioning itself for a while if Matt Day’s analysis is correct (from my Feb. 28, 2017 posting),
Matt Day in a Feb. 23, 2017 article for the The Seattle Times provides additional perspective (Note: Links have been removed),
Microsoft’s effort to nudge Seattle and Vancouver, B.C., a bit closer together got an endorsement Thursday [Feb. 23, 2017] from the leading university in each city.
…
The partnership has its roots in a September [2016] conference in Vancouver organized by Microsoft’s public affairs and lobbying unit [emphasis mine.] That gathering was aimed at tying business, government and educational institutions in Microsoft’s home region in the Seattle area closer to its Canadian neighbor.
Microsoft last year [2016] opened an expanded office in downtown Vancouver with space for 750 employees, an outpost partly designed to draw to the Northwest more engineers than the company can get through the U.S. guest worker system [emphasis mine].
This was all prior to President Trump’s legislative moves in the US, which have at least one Canadian observer a little more gleeful than I’m comfortable with. From a March 21, 2017 article by Susan Lum for CBC News online,
U.S. President Donald Trump’s efforts to limit travel into his country while simultaneously cutting money from science-based programs provides an opportunity for Canada’s science sector, says a leading Canadian researcher.
“This is Canada’s moment. I think it’s a time we should be bold,” said Alan Bernstein, president of CIFAR [which on March 22, 2017 was awarded $125M to launch the Pan Canada Artificial Intelligence Strategy in the Canadian federal budget announcement], a global research network that funds hundreds of scientists in 16 countries.
Bernstein believes there are many reasons why Canada has become increasingly attractive to scientists around the world, including the political climate in the United States and the Trump administration’s travel bans.
Thankfully, Bernstein calms down a bit,
“It used to be if you were a bright young person anywhere in the world, you would want to go to Harvard or Berkeley or Stanford, or what have you. Now I think you should give pause to that,” he said. “We have pretty good universities here [emphasis mine]. We speak English. We’re a welcoming society for immigrants.”
…
Bernstein cautions that Canada should not be seen to be poaching scientists from the United States — but there is an opportunity.
“It’s as if we’ve been in a choir of an opera in the back of the stage and all of a sudden the stars all left the stage. And the audience is expecting us to sing an aria. So we should sing,” Bernstein said.
Bernstein said the federal government, with this week’s so-called innovation budget, can help Canada hit the right notes.
“Innovation is built on fundamental science, so I’m looking to see if the government is willing to support, in a big way, fundamental science in the country.”
Pretty good universities, eh? Thank you, Dr. Bernstein, for keeping some of the boosterism in check. Let’s leave the chest thumping to President Trump and his cronies.
Ivan Semeniuk’s March 23, 2017 article (for the Globe and Mail) provides more details about the situation in the US and in Britain,
Last week, Donald Trump’s first budget request made clear the U.S. President would significantly reduce or entirely eliminate research funding in areas such as climate science and renewable energy if permitted by Congress. Even the National Institutes of Health, which spearheads medical research in the United States and is historically supported across party lines, was unexpectedly targeted for a $6-billion (U.S.) cut that the White House said could be achieved through “efficiencies.”
In Britain, a recent survey found that 42 per cent of academics were considering leaving the country over worries about a less welcoming environment and the loss of research money that a split with the European Union is expected to bring.
In contrast, Canada’s upbeat language about science in the budget makes a not-so-subtle pitch for diversity and talent from abroad, including $117.6-million to establish 25 research chairs with the aim of attracting “top-tier international scholars.”
For good measure, the budget also includes funding for science promotion and $2-million annually for Canada’s yet-to-be-hired Chief Science Advisor, whose duties will include ensuring that government researchers can speak freely about their work.
“What we’ve been hearing over the last few months is that Canada is seen as a beacon, for its openness and for its commitment to science,” said Ms. Duncan [Kirsty Duncan, Minister of Science], who did not refer directly to either the United States or Britain in her comments.
Providing a less optimistic note, Erica Alini in her March 22, 2017 online article for Global News mentions a perennial problem, the Canadian brain drain,
The budget includes a slew of proposed reforms and boosted funding for existing training programs, as well as new skills-development resources for unemployed and underemployed Canadians not covered under current EI-funded programs.
There are initiatives to help women and indigenous people get degrees or training in science, technology, engineering and mathematics (the so-called STEM subjects) and even to teach kids as young as kindergarten-age to code.
But there was no mention of how to make sure Canadians with the right skills remain in Canada, TD’s DePratto {Toronto Dominion Bank} Economics; TD is currently experiencing a scandal {March 13, 2017 Huffington Post news item}] told Global News.
Canada ranks in the middle of the pack compared to other advanced economies when it comes to its share of its graduates in STEM fields, but the U.S. doesn’t shine either, said DePratto [Brian DePratto, senior economist at TD .
The key difference between Canada and the U.S. is the ability to retain domestic talent and attract brains from all over the world, he noted.
To be blunt, there may be some opportunities for Canadian science but it does well to remember (a) US businesses have no particular loyalty to Canada and (b) all it takes is an election to change any perceived advantages to disadvantages.
Digital policy and intellectual property issues
Dubbed by some as the ‘innovation’ budget (official title: Building a Strong Middle Class), there is an attempt to address a longstanding innovation issue (from a March 22, 2017 posting by Michael Geist on his eponymous blog (Note: Links have been removed),
The release of today’s [march 22, 2017] federal budget is expected to include a significant emphasis on innovation, with the government revealing how it plans to spend (or re-allocate) hundreds of millions of dollars that is intended to support innovation. Canada’s dismal innovation record needs attention, but spending our way to a more innovative economy is unlikely to yield the desired results. While Navdeep Bains, the Innovation, Science and Economic Development Minister, has talked for months about the importance of innovation, Toronto Star columnist Paul Wells today delivers a cutting but accurate assessment of those efforts:
“This government is the first with a minister for innovation! He’s Navdeep Bains. He frequently posts photos of his meetings on Twitter, with the hashtag “#innovation.” That’s how you know there is innovation going on. A year and a half after he became the minister for #innovation, it’s not clear what Bains’s plans are. It’s pretty clear that within the government he has less than complete control over #innovation. There’s an advisory council on economic growth, chaired by the McKinsey guru Dominic Barton, which periodically reports to the government urging more #innovation.
There’s a science advisory panel, chaired by former University of Toronto president David Naylor, that delivered a report to Science Minister Kirsty Duncan more than three months ago. That report has vanished. One presumes that’s because it offered some advice. Whatever Bains proposes, it will have company.”
Wells is right. Bains has been very visible with plenty of meetings and public photo shoots but no obvious innovation policy direction. This represents a missed opportunity since Bains has plenty of policy tools at his disposal that could advance Canada’s innovation framework without focusing on government spending.
For example, Canada’s communications system – wireless and broadband Internet access – falls directly within his portfolio and is crucial for both business and consumers. Yet Bains has been largely missing in action on the file. He gave approval for the Bell – MTS merger that virtually everyone concedes will increase prices in the province and make the communications market less competitive. There are potential policy measures that could bring new competitors into the market (MVNOs [mobile virtual network operators] and municipal broadband) and that could make it easier for consumers to switch providers (ban on unlocking devices). Some of this falls to the CRTC, but government direction and emphasis would make a difference.
Even more troubling has been his near total invisibility on issues relating to new fees or taxes on Internet access and digital services. Canadian Heritage Minister Mélanie Joly has taken control of the issue with the possibility that Canadians could face increased costs for their Internet access or digital services through mandatory fees to contribute to Canadian content. Leaving aside the policy objections to such an approach (reducing affordable access and the fact that foreign sources now contribute more toward Canadian English language TV production than Canadian broadcasters and distributors), Internet access and e-commerce are supposed to be Bains’ issue and they have a direct connection to the innovation file. How is it possible for the Innovation, Science and Economic Development Minister to have remained silent for months on the issue?
Bains has been largely missing on trade related innovation issues as well. My Globe and Mail column today focuses on a digital-era NAFTA, pointing to likely U.S. demands on data localization, data transfers, e-commerce rules, and net neutrality. These are all issues that fall under Bains’ portfolio and will impact investment in Canadian networks and digital services. There are innovation opportunities for Canada here, but Bains has been content to leave the policy issues to others, who will be willing to sacrifice potential gains in those areas.
Intellectual property policy is yet another area that falls directly under Bains’ mandate with an obvious link to innovation, but he has done little on the file. Canada won a huge NAFTA victory late last week involving the Canadian patent system, which was challenged by pharmaceutical giant Eli Lilly. Why has Bains not promoted the decision as an affirmation of how Canada’s intellectual property rules?
On the copyright front, the government is scheduled to conduct a review of the Copyright Act later this year, but it is not clear whether Bains will take the lead or again cede responsibility to Joly. The Copyright Act is statutorily under the Industry Minister and reform offers the chance to kickstart innovation. …
For anyone who’s not familiar with this area, innovation is often code for commercialization of science and technology research efforts. These days, digital service and access policies and intellectual property policies are all key to research and innovation efforts.
The country that’s most often (except in mainstream Canadian news media) held up as an example of leadership in innovation is Estonia. The Economist profiled the country in a July 31, 2013 article and a July 7, 2016 article on apolitical.co provides and update.
Conclusions
Science monies for the tri-council science funding agencies (NSERC, SSHRC, and CIHR) are more or less flat but there were a number of line items in the federal budget which qualify as science funding. The $221M over five years for Mitacs, the $125M for the Pan-Canadian Artificial Intelligence Strategy, additional funding for the Canada research chairs, and some of the digital funding could also be included as part of the overall haul. This is in line with the former government’s (Stephen Harper’s Conservatives) penchant for keeping the tri-council’s budgets under control while spreading largesse elsewhere (notably the Perimeter Institute, TRIUMF [Canada’s National Laboratory for Particle and Nuclear Physics], and, in the 2015 budget, $243.5-million towards the Thirty Metre Telescope (TMT) — a massive astronomical observatory to be constructed on the summit of Mauna Kea, Hawaii, a $1.5-billion project). This has lead to some hard feelings in the past with regard to ‘big science’ projects getting what some have felt is an undeserved boost in finances while the ‘small fish’ are left scrabbling for the ever-diminishing (due to budget cuts in years past and inflation) pittances available from the tri-council agencies.
Mitacs, which started life as a federally funded Network Centre for Excellence focused on mathematics, has since shifted focus to become an innovation ‘champion’. You can find Mitacs here and you can find the organization’s March 2016 budget submission to the House of Commons Standing Committee on Finance here. At the time, they did not request a specific amount of money; they just asked for more.
The amount Mitacs expects to receive this year is over $40M which represents more than double what they received from the federal government and almost of 1/2 of their total income in the 2015-16 fiscal year according to their 2015-16 annual report (see p. 327 for the Mitacs Statement of Operations to March 31, 2016). In fact, the federal government forked over $39,900,189. in the 2015-16 fiscal year to be their largest supporter while Mitacs’ total income (receipts) was $81,993,390.
It’s a strange thing but too much money, etc. can be as bad as too little. I wish the folks Mitacs nothing but good luck with their windfall.
I don’t see anything in the budget that encourages innovation and investment from the industrial sector in Canada.
Finallyl, innovation is a cultural issue as much as it is a financial issue and having worked with a number of developers and start-up companies, the most popular business model is to develop a successful business that will be acquired by a large enterprise thereby allowing the entrepreneurs to retire before the age of 30 (or 40 at the latest). I don’t see anything from the government acknowledging the problem let alone any attempts to tackle it.
All in all, it was a decent budget with nothing in it to seriously offend anyone.
#BCTECH Summit 2016*, a joint event between the province of British Columbia (BC, Canada) and the BC Innovation Council (BCIC), a crown corporation formerly known as the Science Council of British Columbia, launched on Jan. 18, 2016. I have written a preview (Jan. 17, 2016 post) and a commentary on the new #BCTECH strategy (Jan. 19, 2016 posting) announced by British Columbia Premier, Christy Clark, on the opening day (Jan. 18, 2016) of the summit.
I was primarily interested in the trade show/research row/technology showcase aspect of the summit focusing (but not exclusively) on nanotechnology. Here’s what I found,
Nano at the Summit
Precision NanoSystems: fabricates equipment which allows researchers to create polymer nanoparticles for delivering medications.
One of the major problems with creating nanoparticles is ensuring a consistent size and rapid production. According to Shell Ip, a Precision NanoSystems field application scientist, their NanoAssemblr Platform has solved the consistency problem and a single microfluidic cartridge can produce 15 ml in two minutes. Cartridges can run in parallel for maximum efficiency when producing nanoparticles in greater quantity.
The NanoAssemblr Platform is in use in laboratories around the world (I think the number is 70) and you can find out more on the company’s About our technology webpage,
The NanoAssemblr™ Platform
The microfluidic approach to particle formulation is at the heart of the NanoAssemblr Platform. This well-controlled process mediates bottom-up self-assembly of nanoparticles with reproducible sizes and low polydispersity. Users can control size by process and composition, and adjust parameters such as mixing ratios, flow rate and lipid composition in order to fine-tune nanoparticle size, encapsulation efficiency and much more. The system technology enables manufacturing scale-up through microfluidic reactor parallelization similar to the arraying of transistors on an integrated chip. Superior design ensures that the platform is fast and easy to use with a software controlled manufacturing process. This usability allows for the simplified transfer of manufacturing protocols between sites, which accelerates development, reduces waste and ultimately saves money. Precision NanoSystems’ flagship product is the NanoAssemblr™ Benchtop Instrument, designed for rapid prototyping of novel nanoparticles. Preparation time on the system is streamlined to approximately one minute, with the ability to complete 30 formulations per day in the hands of any user.
The company is located on property known as the Endowment Lands or, more familiarly, the University of British Columbia (UBC).
A few comments before moving on, being able to standardize the production of medicine-bearing nanoparticles is a tremendous step forward which is going to help scientists dealing with other issues. Despite all the talk in the media about delivering nanoparticles with medication directly to diseased cells, there are transport issues: (1) getting the medicine to the right location/organ and (2) getting the medicine into the cell. My Jan. 12, 2016 posting featured a project with Malaysian scientists and a team at Harvard University who are tackling the transport and other nanomedicine) issues as they relate to the lung. As well, I have a Nov. 26, 2015 posting which explores a controversy about nanoparticles getting past the ‘cell walls’ into the nucleus of the cell.
The next ‘nano’ booths were,
4D Labs located at Simon Fraser University (SFU) was initially hailed as a nanotechnology facility but these days they’re touting themselves as an ‘advanced materials’ facility. Same thing, different branding.
They advertise services including hands-on training for technology companies and academics. There is a nanoimaging facility and nanofabrication facility, amongst others.
I spoke with their operations manager, Nathaniel Sieb who mentioned a few of the local companies that use their facilities. (1) Nanotech Security (featured here most recently in a Dec. 29, 2015 post), an SFU spinoff company, does some of their anticounterfeiting research work at 4D Labs. (2) Switch Materials (a smart window company, electrochromic windows if memory serves) also uses the facilities. It is Neil Branda’s (4D Labs Executive Director) company and I have been waiting impatiently (my May 14, 2010 post was my first one about Switch) for either his or someone else’s electrochromic windows (they could eliminate or reduce the need for air conditioning during the hotter periods and reduce the need for heat in the colder periods) to come to market. Seib tells me, I’ll have to wait longer for Switch. (3) A graduate student was presenting his work at the booth, a handheld diagnostic device that can be attached to a smartphone to transmit data to the cloud. While the first application is for diabetics, there are many other possibilities. Unfortunately, glucose means you need to produce blood for the test when I suggested my preference for saliva the student explained some of the difficulties. Apparently, your saliva changes dynamically and frequently and something as simple as taking a sip of orange juice could result in a false reading. Our conversation (mine, Seib’s and the student’s) also drifted over into the difficulties of bringing products to market. Sadly, we were not able to solve that problem in our 10 minute conversation.
FPInnovations is a scientific research centre and network for the forestry sector. They had a display near their booth which was like walking into a peculiar forest (I was charmed). The contrast with the less imaginative approaches all around was striking.
FPInnovation helped to develop cellulose nanocrystals (CNC), then called nanocrystalline cellulose (NCC), and I was hoping to be updated about CNC and about the spinoff company Celluforce. The researcher I spoke to was from Sweden and his specialty was business development. He didn’t know much about CNC in Canada and when I commented on how active Sweden has been its pursuit of a CNC application, he noted Finland has been the most active. The researcher noted that making the new materials being derived from the forest, such as CNC, affordable and easily produced for use in applications that have yet to be developed are all necessities and challenges. He mentioned that cultural changes also need to take place. Canadians are accustomed to slicing away and discarding most of the tree instead of using as much of it as possible. We also need to move beyond the construction and pulp & paper sectors (my Feb. 15, 2012 posting featured nanocellulose research in Sweden where sludge was the base material).
Other interests at the Summit
I visited:
“The Wearable Lower Limb Anthropomorphic Exoskeleton (WLLAE) – a lightweight, battery-operated and ergonomic robotic system to help those with mobility issues improve their lives. The exoskeleton features joints and links that correspond to those of a human body and sync with motion. SFU has designed, manufactured and tested a proof-of-concept prototype and the current version can mimic all the motions of hip joints.” The researchers (Siamak Arzanpour and Edward Park) pointed out that the ability to mimic all the motions of the hip is a big difference between their system and others which only allow the leg to move forward or back. They rushed the last couple of months to get this system ready for the Summit. In fact, they received their patent for the system the night before (Jan. 17, 2016) the Summit opened.
It’s the least imposing of the exoskeletons I’ve seen (there’s a description of one of the first successful exoskeletons in a May 20, 2014 posting; if you scroll down to the end you’ll see an update about the device’s unveiling at the 2014 World Cup [soccer/football] in Brazil).
Unfortunately, there aren’t any pictures of WLLAE yet and the proof-of-concept version may differ significantly from the final version. This system could be used to help people regain movement (paralysis/frail seniors) and I believe there’s a possibility it could be used to enhance human performance (soldiers/athletes). The researchers still have some significant hoops to jump before getting to the human clinical trial stage. They need to refine their apparatus, ensure that it can be safely operated, and further develop the interface between human and machine. I believe WLLAE is considered a neuroprosthetic device. While it’s not a fake leg or arm, it enables movement (prosthetic) and it operates on brain waves (neuro). It’s a very exciting area of research, consequently, there’s a lot of international competition. [ETA January 3, 2024: I’m pretty sure I got the neuroprosthetic part wrong]
Delightfully, after losing contact for a while, I reestablished it with the folks (Sean Lee, Head External Relations and Jim Hanlon, Chief Administrative Officer) at TRIUMF (Canada’s national laboratory for particle and nuclear physics). It’s a consortium of 19 Canadian research institutions (12 full members and seven associate members).
It’s a little disappointing that TRIUMF wasn’t featured in the opening for the Summit since the institution houses theoretical, experimental, and applied science work. It’s a major BC (and Canada) science and technology success story. My latest post (July 16, 2015) about their work featured researchers from California (US) using the TRIUMF cyclotron for imaging nanoscale materials and, on the more practical side, there’s a Mar. 6, 2015 posting about their breakthrough for producing nuclear material-free medical isotopes. Plus, Maclean’s Magazine ran a Jan. 3, 2016 article by Kate Lunau profiling an ‘art/science’ project that took place at TRIUMF (Note: Links have been removed),
“It’s not every day that most people get to peek inside a world-class particle physics lab, where scientists probe deep mysteries of the universe. In September [2015], Vancouver’s TRIUMF—home to the world’s biggest cyclotron, a type of particle accelerator—opened its doors to professional and amateur photographers, part of an event called Global Physics Photowalk 2015. (Eight labs around the world participated, including CERN [European particle physics laboratory], in Geneva, where the Higgs boson particle was famously discovered.)”
Here’s the local (Vancouver) jury’s pick for the winning image (from the Nov. 4, 2015 posting [Winning Photographs Revealed] by Alexis Fong on the TRIUMF website),
Caption: DESCANT (at TRIUMF) neutron detector array composed of 70 hexagonal detectors Credit: Pamela Joe McFarlane
With all those hexagons and a spherical shape, the DESCANT looks like a ‘buckyball’ or buckminsterfullerene or C60 to me.
I hope the next Summit features TRIUMF and/or some other endeavours which exemplify, Science, Technology, and Creativity in British Columbia and Canada.
Onto the last booth,
MITACS was originally one of the Canadian federal government’s Network Centres for Excellence projects. It was focused on mathematics, networking, and innovation but once the money ran out the organization took a turn. These days, it’s describing itself as (from their About page) “a national, not-for-profit organization that has designed and delivered research and training programs in Canada for 15 years. Working with 60 universities, thousands of companies, and both federal and provincial governments, we build partnerships that support industrial and social innovation in Canada.”Their Jan. 19, 2016 news release (coincidental with the #BCTECH Summit, Jan. 18 – 19, 2016?) features a new report about improving international investment in Canada,”Opportunities to improve Canada’s attractiveness for R&D investment were identified:1.Canada needs to better incentivize R&D by rebalancing direct and indirect support measures
2.Canada requires a coordinated, client-centric approach to incentivizing R&D
3.Canada needs to invest in training programs that grow the knowledge economy”
Oddly, entrepreneurial/corporate/business types never have a problem with government spending when the money is coming to them; it’s only a problem when it’s social services.
Back to MITACS, one of their more interesting (to me) projects was announced at the 2015 Canadian Science Policy Conference. MITACS has inaugurated a Canadian Science Policy Fellowships programme which in its first year (pilot) will see up up to 10 academics applying their expertise to policy-making while embedded in various federal government agencies. I don’t believe anything similar has occurred here in Canada although, if memory serves, the Brits have a similar programme.
Finally, I offer kudos to Sherry Zhao, MITACS Business Development Specialist, the only person to ask me how her organization might benefit my business. Admittedly I didn’t talk to a lot of people but it’s striking to me that at an ‘innovation and business’ tech summit, only one person approached me about doing business. Of course, I’m not a male aged between 25 and 55. So, extra kudos to Sherry Zhao and MITACS.
Christy Clark (Premier of British Columbia), in her opening comments, stated 2800 (they were expecting about 1000) had signed up for the #BCTECH Summit. I haven’t been able to verify that number or get other additional information, e.g., business deals, research breakthroughs, etc. announced at the Summit. Regardless, it was exciting to attend and find out about the latest and greatest on the BC scene.
I wish all the participants great and good luck and look forward to next year’s where perhaps we’ll here about how the province plans to help with the ‘manufacturing middle’ issue. For new products you need to have facilities capable of reproducing your devices at a speed that satisfies your customers; see my Feb. 10, 2014 post featuring a report on this and other similar issues from the US General Accountability Office.
I wasn’t the only *one* writing about the new cabinet. In my Nov. 4, 2015 posting I included a roundup of early responses to the election *(oops, the roundup of responses is in my Nov. 2, 2015 posting)* and what that might mean for science and I also speculated on what the new government’s first ‘science’ move might be.
I missed John Dupuis’ (Confessions of a Science Librarian) posting where he provides a roster of the new ministers with some science or technology responsibilities in their portfolios in his Nov. 4, 2015 posting (Note: Links have been removed),
But Canada has a new government, a new prime minister in Justin Trudeau and a new cabinet. Kirsty Duncan, an actual scientist who worked on the IPPC [Intergovernmental Panel on Climate Change], has been appointed Science Minister. Come to think of it, we have a Science Minister. [Note: Canada has had a Minister of State (Science and Technology) for a number of years. This was considered a junior ministry and the junior minister reported to the Minister of Industry Canada, a ministry which seems to have been changed to Innovation, Science and Economic Development.]
The roster of ministers in other science and technology-related portfolios is also very strong. Navdeep Singh Bains at Innovation, Science and Economic Development. Lawrence MacAulay at Agriculture and Agri-Food. Jane Philpott at Health. Marc Garneau at Transport. Jim Carr at Natural Resources. Hunter Tootoo at Fisheries and Oceans, and Canadian Coast Guard. Catherine McKenna at Environment and Climate Change. And yes, we have a Minister of Climate Change. And Mélanie Joly at Heritage, in charge of Libraries and Archives Canada. [emphasis mine]
Bit of a surprise to see Libraries and Archives Canada listed there but it makes sense when you follow the reasoning (from Dupuis’ Nov. 4, 2015 posting; Note: A link has been removed),
What hasn’t really appeared on any of the lists [of recommendations for what the new government should be addressing] I’ve seen is fixing the damage that the previous Conservative government did to the science library infrastructure in Canada, most prominently to the Department of Fisheries and Oceans library system but also to the systems at Environment Canada and others.
While those libraries were being closed and consolidated, we were assured that the collections were properly merged and weeded, that new scanning and document delivery procedures were being implemented that would effectively replace the local staff and collections and that researchers would see no difference in the level of service. The Federal government did announce an extensive re-visioning of it’s science library infrastructure. Which looks good on paper.
But it’s safe to say that basically no one believed the Conservatives were up to the challenge of doing a good job of this. All the evidence that we were able to see indicated that the merging and consolidation of collections was rushed, haphazard and devoid of planning at best and willfully destructive at worst. As far as I can tell, we have nothing but the previous government’s word that the scanning and document delivery services that were rushed into the breach are anywhere near sufficient. Nor did we see real evidence that they were truly committed to the revisioning.
…
For more about the depredations to the Fisheries and Oceans libraries along with other government science libraries see my Jan. 30, 2014 posting. In it I note there are issues with digitizing material (there were claims the books weren’t needed as they’d been digitized) and accessing that information in the future.
Getting back to Dupuis, do read his post in its entirety to find out what his suggestions are for a renaissance of a science library system in Canada.
Suggestions for a Chief Science Officer/Advisor
I haven’t seen anyone making suggestions for this office and while I feel the choice of Ted Hsu would be too partisan given that he was a Liberal Member of Parliament and the party’s science critic in the last government, there are other possibilities such as Arvind Gupta (computer scientist) and Lynnd Quarmby (molecular biology).
Gupta who recently and unexpectedly resigned as president of the University of British Columbia (UBC; there’s more about the resignation in my Nov. 4, 2015 posting) has moved, temporarily at least, to the University of Toronto. From 2000 to 2014, Gupta had a enviable reputation as the CEO [Chief Executive Officer] and scientific director of Mitacs Canada, a non-profit that worked with federal and provincial governments and industry to fund student researchers. He was also a member of the Conservative government’s Science, Technology and Innovation Council and was involved in a review of government funding for science (aka, Review of Support to R&D [Research and Development]) resulting in what was known as the Jenkins report or by its formal title: Innovation Canada: A Call to Action (published in 2011).
Lynne Quarmby who recently ran for election as a member of the Green Party has had her research recognized by the Natural Sciences and Engineering Research Council of Canada (NSERC) with a 2011 Discovery Accelerator Supplement, a funding program reserved for researchers who show strong potential to become international leaders within their field. She is an advocate in a number of areas including gender equality for women in science and technology, as well as, science and climate issues.
Truthfully, I’d like to see Gupta and Quarmby share the position.
Also, I’d like to find out who you’d suggest take on the role* of Canada’s Chief Science Officer/Advisor. Please let me know your recommendations in the comments section.
*This correction made to the first sentence ‘one’ and this correction made to the first paragraph ‘(oops, the roundup of responses is in my Nov. 2, 2015 posting)’ Nov. 5, 2015 at 1145 hours PST.