Category Archives: space exploration

Space debris, water, and DIY biology, science events in Canada (Jan. 22 – 23, 2020)

There is a lot happening in the next day or two. I have two Vancouver (Canada) science events and an online event, which can be attended from anywhere.

Space debris on January 23, 2020 in Vancouver

I was surprised to learn about space debris (it was described as a floating junkyard in space) in 1992. It seems things have not gotten better. Here’s more from the Cosmic Nights: Space Debris event page on the H.R. MacMillan Space Centre website,

Cosmic Nights: Space Debris

….

There are tens of thousands of pieces of man-made debris, or “space junk,” orbiting the Earth that threaten satellites and other spacecraft. With the increase of space exploration and no debris removal processes in place that number is sure to increase.

Learn more about the impact space debris will have on current and future missions, space law, and the impact human activity, both scientific, and commercial are having on space as we discuss what it will take to make space exploration more sustainable. Physics professors Dr. Aaron Rosengren, and Dr. Aaron Boley will be joining us to share their expertise on the subject.

Tickets available for 7:30pm or 9:00pm planetarium star theatre shows.
________________

7:30 ticket holder schedule:
6:30 – check-in
7:00 – “Pooping in Space” (GroundStation Canada Theatre)
7:30 – 8:30 “Go Boldly and Sustainably” show (Planetarium Star Theatre)
9:00 – 9:30 “Space Debris” lecture

9:00 ticket holder schedule:
6:30 – check-in
7:00 – 9:00 (runs every 30 mins) “Pooping in Space” show (GroundStation Canada Theatre)
8:00 – 8:30 “Space Debris” lecture
9:00 – 10:00 “Go Boldly and Sustainably” show (Planetarium Star Theatre)
The bar will be open from 6:30 – 10:00pm in the Cosmic Courtyard.

Only planetarium shows are ticketed, all other activities are optional.

7:00pm, 7:30pm, 8:00pm, 8:30pm – “Pooping in Space” – GroundStation Canada Theatre
The ultimate waste! What happens when you have to “GO” in space? In this live show you’ll see how astronauts handle this on the ISS, look at some new innovations space suit design for future missions, and we’ll have some fun astronaut trivia.

7:30pm and 9:00pm – “Go Boldly and Sustainably” – Planetarium Star Theatre
As humans venture into a solar system, where no one can own anything, it is becoming increasingly important to create policies to control for waste and promote sustainability. But who will enact these policies? Will it be our governments or private companies? Our astronomer Rachel Wang, and special guest Dr. Aaron Boley will explore these concepts under the dome in the Planetarium Star Theatre. For the 7:30 show SFU’s Paul Meyer will be making an appearance to talk about the key aspects of space security diplomacy and how it relates to the space debris challenge.

Dr. Aaron Boley is an Assistant Professor in the Physics and Astronomy department at UBC whose research program uses theory and observations to explore a wide range of processes in the formation of planets, from the birth of planet-forming discs to the long-term evolution of planetary systems.

Paul Meyer is Fellow in International Security and Adjunct Professor of International Studies at Simon Fraser University and a founding member of the Outer Space Institute. Prior to his assuming his current positions in 2011, Mr. Meyer had a 35-year career with the Canadian Foreign Service, including serving as Canada’s Ambassador to the United Nations and to the Conference on Disarmament in Geneva (2003-2007). He teaches a course on diplomacy at SFU’s School for International Studies and writes on issues of nuclear non-proliferation and disarmament, outer space security and international cyber security.

8:00pm and 9:00pm – “Space Junk: Our Quest to Conquer the Space Environment Problem” lecture by Dr. Aaron Rosengren

At the end of 2019, after nearly two decades, the U.S. government issued updated orbital debris mitigation guidelines, but the revision fell short of the sweeping changes many in the space debris research community expected. The updated guidelines sets new quantitative limits on events that can create debris and updates the classes of orbits to be used for the retirement of satellites, even allowing for the new exotic idea of passive disposal through gravitational resonances (similar phenomena have left their mark on the asteroid belt between Mars and Jupiter). The revised guidelines, however, do not make major changes, and leave intact the 25-year time frame for end-of-life disposal of low-Earth orbit satellites, a period many now believe to be far too long with the ever increasing orbital traffic in near-Earth space. In this talk, I will discuss various approaches to cleaning up or containing space junk, such as a recent exciting activity in Australia to use laser photo pressure to nudge inactive debris to safe orbits.

Dr. Aaron J. Rosengren is an Assistant Professor in the College of Engineering at the University of Arizona and Member of the Interdisciplinary Graduate Program in Applied Mathematics. Prior to joining UA in 2017, he spent one year at the Aristotle University of Thessaloniki in Greece working in the Department of Physics, as part of the European Union H2020 Project ReDSHIFT. He has also served as a member of the EU Asteroid and Space Debris Network, Stardust, working for two years at the Institute of Applied Physics Nello Carrara of the Italian National Research Council. His research interests include space situational awareness, orbital debris, celestial mechanics, and planetary science. Aaron is currently part of the Space Situational Awareness (SSA)-Arizona initiative at the University of Arizona, a member of the Outer Space Institute (OSI) for the sustainable development of Space at the University of British Columbia, and a research affiliate of the Center for Orbital Debris Education and Research (CODER) at the University of Maryland.

*Choose between either the 7:30pm or 9:00pm planetarium show when purchasing your ticket.*

This is a 19+ event. All attendees will be required to provide photo ID upon entry.

Date and Time

Thu, 23 January 2020
6:30 PM – 10:00 PM PST

Location

H.R. MacMillan Space Centre
1100 Chestnut Street
Vancouver, BC V6J 3J9

Cosmic Nights is the name for a series of talks about space and astronomy and an opportunity to socialize with your choice of beer or wine for purchase.

Canada-wide 2nd Canadian DIY Biology Summit (live audio and webcast)

This is a January 22, 2020 event accessible Canada-wide. For anyone on Pacific Time, it does mean being ready to check-in at 5 am. The first DIY Biology (‘do-it-yourself’ biology) Summit was held in 2016.

Here’s more about the event from its Open Science Network events page on Meetup,

Organizers of Community Biolabs across Canada are converging on Ottawa this Wednesday for the second Canadian DIY Biology Summit organized by the Public Health Agency of Canada (PHAC). OSN [Open Science Network] President & Co-Founder, Scott Pownall, has been invited to talk about the Future of DIY/Community Biology in Canada.

The agenda was just released. Times are East Standard Time.
https://www.opensciencenet.org/wp-content/uploads/2020/01/2020-2nd-Canadian-DYI-Biology-Summit-Agenda.pdf

You can join in remotely via WebEx or audio conferencing.

WebEx Link: https://gts-ee.webex.com/webappng/sites/gts-ee/meeting/info/1144bc57660846349f15cf6e80a6a35f

A few points of clarification: DIYbio YVR has been renamed Open Science Network on Meetup and, should you wish to attend the summit virtually, there is information about passwords and codes on the agenda, which presumably will help you to get access.

Nerd Nite v. 49: Waterslides, Oil Tankers, and Predator-Prey Relationships on January 22, 2020 in Vancouver

Here’s more about Nerd Nite Vancouver v.49 from its event posting,

When you were young, did you spend your summers zooming down waterslides? We remember days where our calves ached from climbing stairs, and sore bums from well… you know. And, if you were like us, you also stared at those slides and thought “How are these things made? And, is it going to disassemble while I’m on it?”. Today, we spend more of our summer days staring out at the oil tankers lining the shore, or watching seagulls dive down to retrieve waste left behind by tourists on Granville Island, but we maintain that curiousity about the things around us! So, splash into a New Year with us to learn about all three: waterslides, oil tankers, and predator-prey relationships.

Hosted by: Kaylee Byers and Michael Unger

Where: The Fox Cabaret

When: Wednesday January 22nd; Doors @ 7, show starts @ 7:30

Tickets: Eventbrite

Poster by: Armin Mortazavi

Music by: DJ Burger

1. Ecology

Zachary Sherker 

Zachary is completing an MSc at UBC investigating freshwater and estuarine predation on juvenile salmon during their out-migration from natal rivers and works as a part-time contract biologist in the lower mainland. Prior to coming out west, Zach completed an interdisciplinary BSc in Aquatic Resources and Biology at St. F.X. University in Antigonish, N.S. During his undergraduate degree, Zach ran field and lab experiments to explore predator-induced phenotypic plasticity in intertidal blue mussels exposed to the waterborne cues of a drilling predator snail. He also conducted biological surveys on lobster fishing boats and worked as a fisheries observer for the offshore commercial snow crab fleet.

2. Waterslides

Shane Jensen

Shane is a professional mechanical engineer whose career transitioned from submarine designer to waterslide tester. He is currently a product manager for waterslides at WhiteWater West.

3. Oil Tankers 101

Kayla Glynn 

Kayla is an ocean enthusiast. She earned her Masters in Marine Management at Dalhousie University, studying compensation for environmental damage caused by ship-source oil spills. Passionate about sharing her knowledge of the ocean with others, Kayla’s shifted her focus to the realm of science communication to help more people foster a deeper relationship with science and the ocean. Kayla now works as a producer at The Story Collider, a non-profit dedicated to sharing true, personal stories about science, where she hosts live storytelling events and leads workshops on behalf of the organization. Follow her at @kaylamayglynn and catch her live on the Story Collider stage on February 11th, 2020!

There you have it.

More of the ‘blackest black’

There’s a very good November 11, 2019 article by Natalie Angier for the New York Times on carbon nanotubes (CNTs) and the colour black,

On a laboratory bench at the National Institute of Standards and Technology was a square tray with two black disks inside, each about the width of the top of a Dixie cup. Both disks were undeniably black, yet they didn’t look quite the same.

Solomon Woods, 49, a trim, dark-haired, soft-spoken physicist, was about to demonstrate how different they were, and how serenely voracious a black could be.

“The human eye is extraordinarily sensitive to light,” Dr. Woods said. Throw a few dozen photons its way, a few dozen quantum-sized packets of light, and the eye can readily track them.

Dr. Woods pulled a laser pointer from his pocket. “This pointer,” he said, “puts out 100 trillion photons per second.” He switched on the laser and began slowly sweeping its bright beam across the surface of the tray.

On hitting the white background, the light bounced back almost unimpeded, as rude as a glaring headlight in a rearview mirror.

The beam moved to the first black disk, a rondel of engineered carbon now more than a decade old. The light dimmed significantly, as a sizable tranche of the incident photons were absorbed by the black pigment, yet the glow remained surprisingly strong.

Finally Dr. Woods trained his pointer on the second black disk, and suddenly the laser’s brilliant beam, its brash photonic probe, simply — disappeared. Trillions of light particles were striking the black disk, and virtually none were winking back up again. It was like watching a circus performer swallow a sword, or a husband “share” your plate of French fries: Hey, where did it all go?

N.I.S.T. disk number two was an example of advanced ultra-black technology: elaborately engineered arrays of tiny carbon cylinders, or nanotubes, designed to capture and muzzle any light they encounter. Blacker is the new black, and researchers here and abroad are working to create ever more efficient light traps, which means fabricating materials that look ever darker, ever flatter, ever more ripped from the void.

The N.I.S.T. ultra-black absorbs at least 99.99 percent of the light that stumbles into its nanotube forest. But scientists at the Massachusetts Institute of Technology reported in September the creation of a carbon nanotube coating that they claim captures better than 99.995 of the incident light.

… The more fastidious and reliable the ultra-black, the more broadly useful it will prove to be — in solar power generators, radiometers, industrial baffles and telescopes primed to detect the faintest light fluxes as a distant planet traverses the face of its star.

Psychology and metaphors

It’s not all technical, Angier goes on to mention the psychological and metaphorical aspects,

Psychologists have gathered evidence that black is among the most metaphorically loaded of all colors, and that we absorb our often contradictory impressions about black at a young age.

Reporting earlier this year in the Quarterly Journal of Experimental Psychology, Robin Kramer and Joanne Prior of the University of Lincoln in the United Kingdom compared color associations in a group of 104 children, aged 5 to 10, with those of 100 university students.

The researchers showed subjects drawings in which a lineup of six otherwise identical images differed only in some aspect of color. The T-shirt of a boy taking a test, for example, was switched from black to blue to green to red to white to yellow. The same for a businessman’s necktie, a schoolgirl’s dress, a dog’s collar, a boxer’s gloves.

Participants were asked to link images with traits. Which boy was likeliest to cheat on the test? Which man was likely to be in charge at work? Which girl was the smartest in her class, which dog the scariest?

Again and again, among both children and young adults, black pulled ahead of nearly every color but red. Black was the color of cheating, and black was the color of cleverness. A black tie was the mark of a boss, a black collar the sign of a pit bull. Black was the color of strength and of winning. Black was the color of rage.

Art

Then, there is the world of art,

For artists, black is basal and nonnegotiable, the source of shadow, line, volume, perspective and mood. “There is a black which is old and a black which is fresh,” Ad Reinhardt, the abstract expressionist artist, said. “Lustrous black and dull black, black in sunlight and black in shadow.”

So essential is black to any aesthetic act that, as David Scott Kastan and Stephen Farthing describe in their scholarly yet highly entertaining book, “On Color,” modern artists have long squabbled over who pioneered the ultimate visual distillation: the all-black painting.

Was it the Russian Constructivist Aleksandr Rodchenko, who in 1918 created a series of eight seemingly all-black canvases? No, insisted the American artist Barnett Newman: Those works were very dark brown, not black. He, Mr. Newman, deserved credit for his 1949 opus, “Abraham,” which in 1966 he described as “the first and still the only black painting in history.”

But what about Kazimir Malevich’s “Black Square” of 1915? True, it was a black square against a white background, but the black part was the point. Then again, the English polymath Robert Fludd had engraved a black square in a white border back in 1617.

Clearly, said Alfred H. Barr, Jr., the first director of the Museum of Modern Art, “Each generation must paint its own black square.”

Structural colour

Solomon and his NIST colleagues and the MIT scientists are all trying to create materials with structural colour, in this case, black. Angier goes on to discuss structural colour in nature mentioning bird feathers and spiders as examples of where you might find superblacks. For anyone unfamiliar with structural colour, the colour is not achieved with pigment or dye but with tiny structures, usually measured at the nanoscale, on a bird’s wing, a spider’s belly, a plant leaf, etc. Structural colour does not fade or change . Still, it’s possible to destroy the structures, i.e., the colour, but light and time will not have any effect since it’s the tiny structures and their optical properties which are producing the colour . (Even after all these years, my favourite structural colour story remains a Feb. 1, 2013 article, Color from Structure, by Cristina Luiggi for The Scientist magazine. For a shorter version, I excerpted parts of Luiggi’s story for my February 7, 2013 posting.)

The examples of structural colour in Angier’s article were new to me. However, there are many, many examples elsewhere,. You can find some here by using the terms ‘structural colour’ or ‘structural color’ in the blog’s search engine.

Angier’s is a really good article and I strongly recommend reading it if you have time but I’m a little surprised she doesn’t mention Vantablack and the artistic feud. More about that in a moment,

Massachusetts Institute of Technology and a ‘blacker black’

According to MIT (Massachusetts Institute of Technology), they have the blackest black. It too is courtesy of carbon nanotubes.

The Redemption of Vanity, is a work of art by MIT artist in residence Diemut Strebe that has been realized together with Brian L. Wardle, Professor of Aeronautics and Astronautics and Director of necstlab and Nano- Engineered Composite aerospace STructures (NECST) Consortium and his team Drs. Luiz Acauan and Estelle Cohen. Strebe’s residency at MIT is supported by the Center for Art, Science & Technology (CAST). Image: Diemut Strebe

What you see in the above ‘The Redemption of Vanity’ was on show at the New York Stock Exchange (NYSE) from September 13 – November 29, 2019. It’s both an art piece and a demonstration of MIT’s blackest black.

There are two new releases from MIT. The first is the more technical one. From a Sept. 12, 2019 MIT news release,

With apologies to “Spinal Tap,” it appears that black can, indeed, get more black.

MIT engineers report today that they have cooked up a material that is 10 times blacker than anything that has previously been reported. The material is made from vertically aligned carbon nanotubes, or CNTs — microscopic filaments of carbon, like a fuzzy forest of tiny trees, that the team grew on a surface of chlorine-etched aluminum foil. The foil captures at least 99.995 percent* of any incoming light, making it the blackest material on record.

The researchers have published their findings today in the journal ACS-Applied Materials and Interfaces. They are also showcasing the cloak-like material as part of a new exhibit today at the New York Stock Exchange, titled “The Redemption of Vanity.”

The artwork, conceived by Diemut Strebe, an artist-in-residence at the MIT Center for Art, Science, and Technology, in collaboration with Brian Wardle, professor of aeronautics and astronautics at MIT, and his group, and MIT Center for Art, Science, and Technology artist-in-residence Diemut Strebe, features a 16.78-carat natural yellow diamond from LJ West Diamonds, estimated to be worth $2 million, which the team coated with the new, ultrablack CNT material. The effect is arresting: The gem, normally brilliantly faceted, appears as a flat, black void.

Wardle says the CNT material, aside from making an artistic statement, may also be of practical use, for instance in optical blinders that reduce unwanted glare, to help space telescopes spot orbiting exoplanets.

“There are optical and space science applications for very black materials, and of course, artists have been interested in black, going back well before the Renaissance,” Wardle says. “Our material is 10 times blacker than anything that’s ever been reported, but I think the blackest black is a constantly moving target. Someone will find a blacker material, and eventually we’ll understand all the underlying mechanisms, and will be able to properly engineer the ultimate black.”

Wardle’s co-author on the paper is former MIT postdoc Kehang Cui, now a professor at Shanghai Jiao Tong University.

Into the void

Wardle and Cui didn’t intend to engineer an ultrablack material. Instead, they were experimenting with ways to grow carbon nanotubes on electrically conducting materials such as aluminum, to boost their electrical and thermal properties.

But in attempting to grow CNTs on aluminum, Cui ran up against a barrier, literally: an ever-present layer of oxide that coats aluminum when it is exposed to air. This oxide layer acts as an insulator, blocking rather than conducting electricity and heat. As he cast about for ways to remove aluminum’s oxide layer, Cui found a solution in salt, or sodium chloride.

At the time, Wardle’s group was using salt and other pantry products, such as baking soda and detergent, to grow carbon nanotubes. In their tests with salt, Cui noticed that chloride ions were eating away at aluminum’s surface and dissolving its oxide layer.

“This etching process is common for many metals,” Cui says. “For instance, ships suffer from corrosion of chlorine-based ocean water. Now we’re using this process to our advantage.”

Cui found that if he soaked aluminum foil in saltwater, he could remove the oxide layer. He then transferred the foil to an oxygen-free environment to prevent reoxidation, and finally, placed the etched aluminum in an oven, where the group carried out techniques to grow carbon nanotubes via a process called chemical vapor deposition.

By removing the oxide layer, the researchers were able to grow carbon nanotubes on aluminum, at much lower temperatures than they otherwise would, by about 100 degrees Celsius. They also saw that the combination of CNTs on aluminum significantly enhanced the material’s thermal and electrical properties — a finding that they expected.

What surprised them was the material’s color.

“I remember noticing how black it was before growing carbon nanotubes on it, and then after growth, it looked even darker,” Cui recalls. “So I thought I should measure the optical reflectance of the sample.

“Our group does not usually focus on optical properties of materials, but this work was going on at the same time as our art-science collaborations with Diemut, so art influenced science in this case,” says Wardle.

Wardle and Cui, who have applied for a patent on the technology, are making the new CNT process freely available to any artist to use for a noncommercial art project.

“Built to take abuse”

Cui measured the amount of light reflected by the material, not just from directly overhead, but also from every other possible angle. The results showed that the material absorbed at least 99.995 percent of incoming light, from every angle. In other words, it reflected 10 times less light than all other superblack materials, including Vantablack. If the material contained bumps or ridges, or features of any kind, no matter what angle it was viewed from, these features would be invisible, obscured in a void of black.  

The researchers aren’t entirely sure of the mechanism contributing to the material’s opacity, but they suspect that it may have something to do with the combination of etched aluminum, which is somewhat blackened, with the carbon nanotubes. Scientists believe that forests of carbon nanotubes can trap and convert most incoming light to heat, reflecting very little of it back out as light, thereby giving CNTs a particularly black shade.

“CNT forests of different varieties are known to be extremely black, but there is a lack of mechanistic understanding as to why this material is the blackest. That needs further study,” Wardle says.

The material is already gaining interest in the aerospace community. Astrophysicist and Nobel laureate John Mather, who was not involved in the research, is exploring the possibility of using Wardle’s material as the basis for a star shade — a massive black shade that would shield a space telescope from stray light.

“Optical instruments like cameras and telescopes have to get rid of unwanted glare, so you can see what you want to see,” Mather says. “Would you like to see an Earth orbiting another star? We need something very black. … And this black has to be tough to withstand a rocket launch. Old versions were fragile forests of fur, but these are more like pot scrubbers — built to take abuse.”

[Note] An earlier version of this story stated that the new material captures more than 99.96 percent of incoming light. That number has been updated to be more precise; the material absorbs at least 99.995 of incoming light.

Here’s an August 29, 2019 news release from MIT announcing the then upcoming show. Usually I’d expect to see a research paper associated with this work but this time it seems to an art exhibit only,

The MIT Center for Art, Science &Technology (CAST) and the New York Stock Exchange (NYSE) will present The Redemption of Vanity,created by artist Diemut Strebe in collaboration with MIT scientist Brian Wardle and his lab, on view at the New York Stock Exchange September 13, 2019 -November 25, 2019. For the work, a 16.78 carat natural yellow diamond valued at $2 million from L.J.West was coated using a new procedure of generating carbon nanotubes (CNTs), recently measured to be the blackest black ever created, which makes the diamond seem to disappear into an invisible void. The patented carbon nanotube technology (CNT) absorbs more than 99.96% of light and was developed by Professor Wardle and his necstlablab at MIT.

“Any object covered with this CNT material loses all its plasticity and appears entirely flat, abbreviated/reduced to a black silhouette. In outright contradiction to this we see that a diamond,while made of the very same element (carbon) performs the most intense reflection of light on earth.Because of the extremely high light absorbtive qualities of the CNTs, any object, in this case a large diamond coated with CNT’s, becomes a kind of black hole absent of shadows,“ explains Strebe.“The unification of extreme opposites in one object and the particular aesthetic features of the CNTs caught my imagination for this art project.”

“Strebe’s art-science collaboration caused us to look at the optical properties of our new CNT growth, and we discovered that these particular CNTs are blacker than all other reported materials by an order of magnitude across the visible spectrum”, says Wardle. The MIT team is offering the process for any artist to use. “We do not believe in exclusive ownership of any material or idea for any artwork and have opened our method to any artist,” say Strebe and Wardle.“

The project explores material and immaterial value attached to objects and concepts in reference to luxury, society and to art. We are presenting the literal devaluation of a diamond, which is highly symbolic and of high economic value.It presents a challenge to art market mechanisms on the one hand, while expressing at the same time questions of the value of art in a broader way. In this sense it manifests an inquiry into the significance of the value of objects of art and the art market,” says Strebe. “We are honored to present this work at The New York Stock Exchange, which I believe to be a most fitting location to consider the ideas embedded in The Redemption of Vanity.”

“The New York Stock Exchange, a center of financial and technological innovation for 227 years, is the perfect venue to display Diemut Strebe and Professor Brian Wardle’s collaboration. Their work brings together cutting-edge nanotube technology and a natural diamond, which is a symbol of both value and longevity,” said John Tuttle, NYSE Group Vice Chairman & Chief Commercial Officer.

“We welcome all scientists and artists to venture into the world of natural color diamonds. The Redemption of Vanity exemplifies the bond between art, science, and luxury. The 16-carat vivid yellow diamond in the exhibit spent millions of years in complete darkness, deep below the earth’s surface. It was only recently unearthed —a once-in-a-lifetime discovery of exquisite size and color. Now the diamond will relive its journey to darkness as it is covered in the blackest of materials. Once again, it will become a reminder that something rare and beautiful can exist even in darkness,”said Larry West.

The “disappearing” diamond in The Redemption of Vanity is a $2 Million Fancy Vivid Yellow SI1 (GIA), Radiant shape, from color diamond specialist, L.J. West Diamonds Inc. of New York.

The Redemption of Vanity, conceived by Diemut Strebe, has been realized with Brian L. Wardle, Professor of Aeronautics and Astronautics and Director of necstlab and Nano-Engineered Composite aerospace STructures (NECST) Consortium and his team Drs. Luiz Acauan and Estelle Cohen, in conjunction with Strebe’s residency at MIT supported by the Center for Art, Science & Technology (CAST).

ABOUT THE ARTISTS

Diemut Strebe is a conceptual artist based in Boston, MA and a MIT CAST Visiting Artist. She has collaborated with several MIT faculty, including Noam Chomsky and Robert Langer on Sugababe (2014), Litmus (2014) and Yeast Expression(2015); Seth Lloyd and Dirk Englund on Wigner’s Friends(2014); Alan Guth on Plötzlich! (2018); researchers in William Tisdale’s Lab on The Origin of the Works of Art(2018); Regina Barzilay and Elchanan Mossel on The Prayer (2019); and Ken Kamrin and John Brisson on The Gymnast (2019). Strebe is represented by the Ronald Feldman Gallery.

Brian L. Wardle is a Professor of Aeronautics and Astronautics at MIT and the director of the necstlab research group and MIT’s Nano-Engineered Composite aerospace STructures (NECST) Consortium. Wardle previously worked with CAST Visiting Artist Trevor Paglen on The Last Picturesproject (2012).

ABOUT THE MIT CENTER FOR ART, SCIENCE & TECHNOLOGY

A major cross-school initiative, the MIT Center for Art, Science & Technology (CAST) creates new opportunities for art, science and technology to thrive as interrelated, mutually informing modes of exploration, knowledge and discovery. CAST’s multidisciplinary platform presents performing and visual arts programs, supports research projects for artists working with science and engineering labs, and sponsors symposia, classes, workshops, design studios, lectures and publications. The Center is funded in part by a generous grant from the Andrew W. Mellon Foundation. Evan Ziporyn is the Faculty Director and Leila W. Kinney is the Executive Director.Since its inception in 2012, CAST has been the catalyst for more than 150 artist residencies and collaborative projects with MIT faculty and students, including numerous cross-disciplinary courses, workshops, concert series, multimedia projects, lectures and symposia. The visiting artists program is a cornerstone of CAST’s activities, which encourages cross-fertilization among disciplines and intensive interaction with MIT’s faculty and students. More info at https://arts.mit.edu/cast/ .

HISTORY OF VISITING ARTISTS AT MIT

Since the late 1960s, MIT has been a leader in integrating the arts and pioneering a model for collaboration among artists, scientists and engineers in a research setting. CAST’s Visiting Artists Program brings internationally acclaimed artists to engage with MIT’s creative community in ways that are mutually enlightening for the artists and for faculty, students and research staff at the Institute. Artists who have worked extensively at MIT include Mel Chin, Olafur Eliasson, Rick Lowe, Vik Muniz, Trevor Paglen, Tomás Saraceno, Maya Beiser, Agnieszka Kurant, and Anicka Yi.

ABOUT L.J. WEST DIAMONDS

L.J. West Diamonds is a three generation natural color diamond whole sale rfounded in the late 1970’s by Larry J. West and based in New York City. L.J. West has established itself as one of the world’s prominent houses for some of the most rare and important exotic natural fancy color diamonds to have ever been unearthed. This collection includes a vast color spectrum of rare pink, blue, yellow, green, orange and red diamonds. L.J. West is an expert in every phase of the jewelry process –from sourcing to the cutting, polishing and final design. Each exceptional jewel is carefully set to become a unique work of art.The Redemption of Vanity is on view at the New York Stock Exchange by appointment only.

Press viewing: September 13, 2019 at 3pmNew York Stock Exchange, 11 Wall Street, New York, NY 10005RSVP required. Please check-in at the blue tent at 2 Broad Street(at the corner of Wall and Broad Streets). All guests are required to show a government issued photo ID and go through airport-like security upon entering the NYSE.NYSE follows a business casual dress code -jeans & sneakers are not permitted.

No word yet if there will be other showings.

An artistic feud (of sorts)

Earlier this year, I updated a story on Vantablack. It was the blackest black, blocking 99.8% of light when I featured it in a March 14, 2016 posting. The UK company making the announcement, Surrey NanoSystems, then laid the groundwork for an artistic feud when it granted exclusive rights to their carbon nanotube-based coating, Vantablack, to Sir Anish Kapoor mentioned here in an April 16, 2016 posting.

This exclusivity outraged some artists notably, Stuart Semple. In his first act of defiance, he created the pinkest pink. Next, came a Kickstarter campaign to fund Semple’s blackest black, which would be available to all artists except Anish Kapoor. You can read all about the pinkest pink and blackest black as per Semple in my February 21, 2019 posting. You can also get a bit of an update in an Oct. 17, 2019 Stuart Semple proffile by Berenice Baker for Verdict,

… so I managed to hire a scientist, Jemima, to work in the studio with me. She got really close to a super black, and we made our own pigment to this recipe and it was awesome, but we couldn’t afford to put it into manufacture because it cost £25,000.”

Semple launched a Kickstarter campaign and was amazed to raise half a million pounds, making it the second most-supported art Kickstarter of all time.

The ‘race to the blackest’ is well underway, with MIT researchers recently announcing a carbon nanotube-based black whose light absorption they tested by coasting a diamond. But Semple is determined that his black should be affordable by all artists and work like a paint, not only perform in laboratory conditions. He’s currently working with Jemima and two chemists to upgrade the recipe for Black 3.2.

I don’t know how Semple arrived at his blackest black. I think it’s unlikely that he achieved the result by working with carbon nanotubes since my understanding is that CNTs aren’t that easy to produce.

Finally

Interesting, eh? In just a few years scientists have progressed from achieving a 99.8% black to 99.999%. It doesn’t seem like that big a difference to me but with Solomon Woods, at the beginning of this post, making the point that our eyes are very sensitive to light, an artistic feud, and a study uncovering deep emotions, getting the blackest black is a much more artistically fraught endeavour than I had imagined.

Making nanoscale transistor chips out of thin air—sort of

Caption: The nano-gap transistors operating in air. As gaps become smaller than the mean-free path of electrons in air, there is ballistic electron transport. Credit: RMIT University

A November 19, 2018 news item on Nanowerk describes the ‘airy’ work ( Note: A link has been removed),

Researchers at RMIT University [Ausralia] have engineered a new type of transistor, the building block for all electronics. Instead of sending electrical currents through silicon, these transistors send electrons through narrow air gaps, where they can travel unimpeded as if in space.

The device unveiled in material sciences journal Nano Letters (“Metal–Air Transistors: Semiconductor-free field-emission air-channel nanoelectronics”), eliminates the use of any semiconductor at all, making it faster and less prone to heating up.

A November 19, 2018 RMIT University news release on EurkeAlert, which originated the news item, describes the work and possibilities in more detail,

Lead author and PhD candidate in RMIT’s Functional Materials and Microsystems Research Group, Ms Shruti Nirantar, said this promising proof-of-concept design for nanochips as a combination of metal and air gaps could revolutionise electronics.

“Every computer and phone has millions to billions of electronic transistors made from silicon, but this technology is reaching its physical limits where the silicon atoms get in the way of the current flow, limiting speed and causing heat,” Nirantar said.

“Our air channel transistor technology has the current flowing through air, so there are no collisions to slow it down and no resistance in the material to produce heat.”

The power of computer chips – or number of transistors squeezed onto a silicon chip – has increased on a predictable path for decades, roughly doubling every two years. But this rate of progress, known as Moore’s Law, has slowed in recent years as engineers struggle to make transistor parts, which are already smaller than the tiniest viruses, smaller still.

Nirantar says their research is a promising way forward for nano electronics in response to the limitation of silicon-based electronics.

“This technology simply takes a different pathway to the miniaturisation of a transistor in an effort to uphold Moore’s Law for several more decades,” Shruti said.

Research team leader Associate Professor Sharath Sriram said the design solved a major flaw in traditional solid channel transistors – they are packed with atoms – which meant electrons passing through them collided, slowed down and wasted energy as heat.

“Imagine walking on a densely crowded street in an effort to get from point A to B. The crowd slows your progress and drains your energy,” Sriram said.

“Travelling in a vacuum on the other hand is like an empty highway where you can drive faster with higher energy efficiency.”

But while this concept is obvious, vacuum packaging solutions around transistors to make them faster would also make them much bigger, so are not viable.

“We address this by creating a nanoscale gap between two metal points. The gap is only a few tens of nanometers, or 50,000 times smaller than the width of a human hair, but it’s enough to fool electrons into thinking that they are travelling through a vacuum and re-create a virtual outer-space for electrons within the nanoscale air gap,” he said.

The nanoscale device is designed to be compatible with modern industry fabrication and development processes. It also has applications in space – both as electronics resistant to radiation and to use electron emission for steering and positioning ‘nano-satellites’.

“This is a step towards an exciting technology which aims to create something out of nothing to significantly increase speed of electronics and maintain pace of rapid technological progress,” Sriram said.

Here’s a link to and a citation for the paper,

Metal–Air Transistors: Semiconductor-free field-emission air-channel nanoelectronics by
Shruti Nirantar, Taimur Ahmed, Guanghui Ren, Philipp Gutruf, Chenglong Xu, Madhu Bhaskaran, Sumeet Walia, and Sharath Sriram. Nano Lett., DOI: 10.1021/acs.nanolett.8b02849 Publication Date (Web): November 16, 2018

Copyright © 2018 American Chemical Society

This paper is behind a paywall.

A Café Scientifique Vancouver (Canada) May 28, 2019 talk ‘Getting to the heart of Mars with insight’ and an update on Baba Brinkman (former Vancouverite) and his science raps

It’s been a while since I’ve received any notices about upcoming talks from the local Café Scientifique crowd but on May 22, 2019 there was this announcement in an email,

Dear Café Scientifiquers,

Our next café will happen on TUESDAY, MAY 28TH [2019] at 7:30PM in the back room at YAGGER’S DOWNTOWN (433 W Pender). Our speaker for the evening will be DR. CATHERINE JOHNSON from the Department of Earth, Ocean and Atmospheric Sciences at UBC [University of British Columbia] .

GETTING TO THE HEART OF MARS WITH INSIGHT

Catherine Johnson is a professor of geophysics in the Dept of Earth, Ocean and Atmospheric Sciences at UBC Vancouver [campus], and a senior scientist at the Planetary Science Institute, Tucson.  She is a Co-Investigator on the InSight mission to Mars, the OSIRIS-REx mission to asteroid Bennu and was previously a Participating Scientist on the MESSENGER mission to Mercury.

We hope to see you there!

I did some digging and found two articles about Johnson, the InSight mission, and Mars. The first one is an October 21, 2012 article by James Keller on the Huffington Post Canada website,

As NASA’s Curiosity rover beams back photos of the rocky surface of Mars, another group of scientists, including one from British Columbia, is preparing the next mission to uncover what’s underneath.

Prof. Catherine Johnson, of the University of British Columbia, is among the scientists whose project, named Insight, was selected by NASA this week as part of the U.S. space agency’s Discovery program, which invites proposals from within the scientific community.

Insight will send a stationary robotic lander to Mars in 2016, drilling down several metres into the surface as it uses a combination of temperature readings and seismic measurements to help scientists on this planet learn more about the Martian core.

The second one is a May 6, 2018 article (I gather it took them longer to get to Mars than they anticipated in 2012) by Ivan Semeniuk for the Globe and Mail newspaper website,

Thanks to a thick bank of predawn fog, Catherine Johnson couldn’t see the rocket when it blasted off early Saturday morning at the Vandenberg Air Force Base in California – but she could hear the roar as NASA’s InSight mission set off on its 6½-month journey to Mars.

“It was really impressive,” said Dr. Johnson, a planetary scientist at the University of British Columbia and a member of the mission’s science team. Describing the mood at the launch as a mixture of relief and joy, Dr. Johnson added that “the spacecraft is finally en route to do what we have worked toward for many years.”

But while InSight’s mission is just getting under way, it also marks the last stage in a particularly fruitful period for the U.S. space agency’s Mars program. In the past two decades, multiple, complementary spacecraft tackled different aspects of Mars science.

Unlike the Curiosity rover, which landed on Mars nearly six years ago and is in the process of climbing a mountain in the middle of an ancient crater, InSight is designed to stay in one place after it touches down Nov. 26 [2018]. Its purpose is to open a new direction in Mars exploration – one that leads straight down as the spacecraft deploys a unique set of instruments to spy on the planet’s interior.

“What we will learn … will help us understand the earliest history of rocky planets, including Earth,” Dr. Johnson said.

It has been a prolonged voyage to the red planet. In 2015, technical problems forced program managers to postpone InSight’s launch for 2½ years. Now, scientists are hoping for smooth sailing to Mars and an uneventful landing a few hundred kilometres north of Curiosity, at a site that Dr. Johnson cheerfully describes as “boring.”

Does the timing of this talk mean you’ll be getting the latest news since InSight landed on Mars roughly six months ago? One can only hope. Finally, Johnson’s UBC bio webpage is here.

Baba Brinkman brings us up-to-date

Here’s most of a May 22, 2019 newsletter update (received via email) from former Vancouverite and current rapper, playwright, and science communicator, Baba Brinkman,

… Over the past five years I have been collaborating frequently with a company in California called SpectorDance, after the artistic director Fran Spector Atkins invited me to write and perform a rap soundtrack to one of her dance productions. Well, a few weeks ago we played our biggest venue yet with our latest collaborative show, Ocean Trilogy, which is all about the impact of human activities including climate change on marine ecosystems. The show was developed in collaboration with scientists at the Monterey Bay Aquarium Research Institute, and for the first time there’s now a full video of the production online. Have you ever seen scientifically-informed eco rap music combined in live performance with ballet and modern dance? Enjoy.

Speaking of “Science is Everywhere”, about a year ago I got to perform my song “Can’t Stop” about the neurobiology of free will for a sold-out crowd at the Brooklyn Academy of Music alongside physicist Brian Greene, comedian Chuck Nice, and Neil deGrasse Tyson. The song is half scripted and half freestyle (can you tell which part is which?) They just released the video.

Over the past few months I’ve been performing Rap Guide to Evolution, Consciousness, and Climate Chaos off-Broadway 2-3 times per week, which has been a roller coaster. Some nights I have 80 people and it’s rocking, other nights I step on stage and play to 15 people and it takes effort to keep it lively. But since this is New York, occasionally when there’s only 15 people one of them will turn out to be a former Obama Administration Energy Advisor or will publish a five star review, which keeps it exciting.

Tonight I fly to the UK where I’ll be performing all next week, including the premiere of my newest show Rap Guide to Culture, with upcoming shows in Brighton, followed by off-Broadway previews in June, followed by a full run at the Edinburgh Fringe in August (plus encores of my other shows), followed by… well I can’t really see any further than August at the moment, but the next few months promise to be action-packed.

What’s Rap Guide to Culture about? Cultural evolution and the psychology of norms of course. I recently attended a conference at the National Institute for Mathematical and Biological Synthesis in Knoxville, TN where I performed a sneak preview and did a “Rap Up” of the various conference talks, summarizing the scientific content at the end of the day, check out the video.

Okay, time to get back to packing and hit the road. More to come soon, and wish me luck continuing to dominate my lonely genre.

Brinkman has been featured here many times (just use his name as the term in the blog’s search engine). While he lives in New York City these days, he does retain a connection to Vancouver in that his mother Joyce Murray is the Member of Parliament for Vancouver Quadra and, currently, the president of the Treasury Board.

Cryptology exhibit and special breakfast celebrating Canadian astronaut David Saint-Jacques’ Dec. 3, 2018 launch in Ontario (Canada)

I wish I was near either Ottawa or Kingston in December as there are a couple of very interesting events, assuming you have an interest in cryptology and/or space travel.

Cipher/Decipher

This show has been on tour in Ontario and, until Dec. 2, 2018, it will be at the Canada Science and Technology Museum before moving to Kingston (from the Canada Science and Technology Museum’s exhibitions page),

Cipher | Decipher

Pssst…want to know a secret?

One way to safely share secret information is through encryption — which means converting your message into something only the intended recipient can understand. For as long as we’ve had secret information, individuals and organizations have encrypted and analyzed encrypted communications. One way people encrypt their secrets is through ciphers that replace the original message with other letters, numbers, words, or symbols. From schoolyard gossip to military plans, ciphers keep secrets out of the wrong hands.

Cipher | Decipher is an interactive, new exhibition exploring the past and present of communications cryptology — what it is, how it works, and how it affects our lives. See an authentic Enigma cipher machine, or try your hand at logic puzzles and games to see if you have what it takes to work in the field of cryptology!

Developed by the Canada Science and Technology Museum, in partnership with the Communications Security Establishment, this 750 sq. ft. travelling exhibition is already on the move!

Mark your calendar to see Cipher | Decipher at the following locations:

  • Library and Archives Canada: October 5 to October 31, 2018
  • Canada Science and Technology Museum: November 6 to December 2, 2018
  • Military Communications and Electronics Museum, Kingston: December 7, 2018 to March 31, 2019

Blast-off!

This information came in a November 27, 2018 special announcement (received via email) from Ingenium (formerly Canada Science and Technology Museums Corporation and not to be confused with the Canada Science and Technology Museum),

Join the Canada Aviation and Space Museum for a special breakfast at the museum, as we witness the historic launch of Canadian astronaut David Saint-Jacques!

Start your day with a breakfast and a big cup of “rocket fuel” (a.k.a. coffee) as we watch the launch of this important space mission.

You’ll hear from Jesse Rogerson, the museum’s Science Advisor, and Iain Christie,

Executive Vice President of the Aerospace Industries Association of Canada about the intricacies of space travel. Canadian astronauts Bob Thirsk and Jenni Sidey-Gibbons will also join the conversation via livestream!

Take a selfie with our cut-out image of David Saint-Jacques, while the kids work on fun space-themed crafts. David Saint-Jacques themed merchandise will be 10% off during the event. Each purchase of a breakfast ticket/group of tickets will receive one FREE family pass, to visit the museum in 2019.

December 3, 2018
6 a.m. – 8:30 a.m.
Tickets: $16 (+ taxes)
Parking fees are additional.

Buy Tickets!

3… 2… 1… liftoff!

Enjoy!

Interstellar fullerenes

This work from Russia on fullerenes (also known as buckministerfullerenes, C60, and/or buckyballs) is quite interesting and dates back more than a year. I’m not sure why the work is being publicized now but nanotechnology and interstellar space is not covered here often enough so, here goes, (from a January 29, 2018 Kazan Federal University press release (also on EurekAlert), Note: Links have been removed,

Here’s a link to and a citation for the paper,

C60+ – looking for the bucky-ball in interstellar space by G. A. Galazutdinov, V. V. Shimansky, A. Bondar, G. Valyavin, J. Krełowski. Monthly Notices of the Royal Astronomical Society, Volume 465, Issue 4, 11 March 2017, Pages 3956–3964, https://doi.org/10.1093/mnras/stw2948 Published: 22 December 2016

This paper is behind a paywall.

h/t January 29, 2018 news item on Nanowerk

Materials that may protect astronauts from radiation in space

Sparing astronauts from harmful radiation  is one of the goals for this project according to a July 3, 2017 news item on Nanowerk (Note: A link has been removed),

Scientists at The Australian National University (ANU) have designed a new nano material that can reflect or transmit light on demand with temperature control, opening the door to technology that protects astronauts in space from harmful radiation (Advanced Functional Materials, “Reversible Thermal Tuning of All-Dielectric Metasurfaces”).

Lead researcher Dr Mohsen Rahmani from ANU said the material was so thin that hundreds of layers could fit on the tip of a needle and could be applied to any surface, including spacesuits.

The first speaker’s enthusiasm leaps off the screen,

For whose who prefer to read their news, a July 4, 2017 ANU press release, which originated the news item, provides more detail,

“Our invention has a lot of potential applications, such as protecting astronauts or satellites with an ultra-thin film that can be adjusted to reflect various dangerous ultraviolet or infrared radiation in different environments,” said Dr Rahmani, an Australian Research Council (ARC) Discovery Early Career Research Fellow at the Nonlinear Physics Centre within the ANU Research School of Physics and Engineering.

“Our technology significantly increases the resistance threshold against harmful radiation compared to today’s technologies, which rely on absorbing radiation with thick filters.”

Co-researcher Associate Professor Andrey Miroshnichenko said the invention could be tailored for other light spectrums including visible light, which opened up a whole array of innovations, including architectural and energy saving applications.

“For instance, you could have a window that can turn into a mirror in a bathroom on demand, or control the amount of light passing through your house windows in different seasons,” said Dr Miroshnichenko from the Nonlinear Physics Centre within the ANU Research School of Physics and Engineering.

“What I love about this invention is that the design involved different research disciplines including physics, materials science and engineering.”

Co-lead researcher Dr Lei Xu said achieving cost-efficient and confined temperature control such as local heating was feasible.

“Much like your car has a series of parallel resistive wires on the back windscreen to defog the rear view, a similar arrangement could be used with our invention to confine the temperature control to a precise location,” said Dr Xu from the Nonlinear Physics Centre within the ANU Research School of Physics and Engineering.

The innovation builds on more than 15 years of research supported by the ARC through CUDOS, a Centre of Excellence, and the Australian National Fabrication Facility.

Here’s a link to and a citation for the paper,

Reversible Thermal Tuning of All-Dielectric Metasurfaces by Mohsen Rahmani, Lei Xu, Andrey E. Miroshnichenko, Andrei Komar, Rocio Camacho-Morales, Haitao Chen, Yair Zárate, Sergey Kruk, Guoquan Zhang, Dragomir N. Neshev, and Yuri S. Kivshar. Advanced Functional Materials DOI: 10.1002/adfm.201700580 Version of Record online: 3 JUL 2017

© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This paper is behind a paywall.

Ultra-thin superconducting film for outer space

Truth in a press release? But first, there’s this April 6, 2017 news item on Nanowerk announcing research that may have applications in aerospace and other sectors,

Experimental physicists in the research group led by Professor Uwe Hartmann at Saarland University have developed a thin nanomaterial with superconducting properties. Below about -200 °C these materials conduct electricity without loss, levitate magnets and can screen magnetic fields.

The particularly interesting aspect of this work is that the research team has succeeded in creating superconducting nanowires that can be woven into an ultra-thin film that is as flexible as cling film. As a result, novel coatings for applications ranging from aerospace to medical technology are becoming possible.

The research team will be exhibiting their superconducting film at Hannover Messe from April 24th to April 28th [2017] (Hall 2, Stand B46) and are looking for commercial and industrial partners with whom they can develop their system for practical applications.

An April 6, 2017 University of Saarland press release (also on EurekAlert), which originated the news item, provides more details along with a line that rings with the truth,

A team of experimental physicists at Saarland University have developed something that – it has to be said – seems pretty unremarkable at first sight. [emphasis mine] It looks like nothing more than a charred black piece of paper. But appearances can be deceiving. This unassuming object is a superconductor. The term ‘superconductor’ is given to a material that (usually at a very low temperatures) has zero electrical resistance and can therefore conduct an electric current without loss. Put simply, the electrons in the material can flow unrestricted through the cold immobilized atomic lattice. In the absence of electrical resistance, if a magnet is brought up close to a cold superconductor, the magnet effectively ‘sees’ a mirror image of itself in the superconducting material. So if a superconductor and a magnet are placed in close proximity to one another and cooled with liquid nitrogen they will repel each another and the magnet levitates above the superconductor. The term ‘levitation’ comes from the Latin word levitas meaning lightness. It’s a bit like a low-temperature version of the hoverboard from the ‘Back to the Future’ films. If the temperature is too high, however, frictionless sliding is just not going to happen.
Many of the common superconducting materials available today are rigid, brittle and dense, which makes them heavy. The Saarbrücken physicists have now succeeded in packing superconducting properties into a thin flexible film. The material is a essentially a woven fabric of plastic fibres and high-temperature superconducting nanowires. ‘That makes the material very pliable and adaptable – like cling film (or ‘plastic wrap’ as it’s also known). Theoretically, the material can be made to any size. And we need fewer resources than are typically required to make superconducting ceramics, so our superconducting mesh is also cheaper to fabricate,’ explains Uwe Hartmann, Professor of Nanostructure Research and Nanotechnology at Saarland University.

The low weight of the film is particularly advantageous. ‘With a density of only 0.05 grams per cubic centimetre, the material is very light, weighing about a hundred times less than a conventional superconductor. This makes the material very promising for all those applications where weight is an issue, such as in space technology. There are also potential applications in medical technology,’ explains Hartmann. The material could be used as a novel coating to provide low-temperature screening from electromagnetic fields, or it could be used in flexible cables or to facilitate friction-free motion.

In order to be able to weave this new material, the experimental physicists made use of a technique known as electrospinning, which is usually used in the manufacture of polymeric fibres. ‘We force a liquid material through a very fine nozzle known as a spinneret to which a high electrical voltage has been applied. This produces nanowire filaments that are a thousand times thinner than the diameter of a human hair, typically about 300 nanometres or less. We then heat the mesh of fibres so that superconductors of the right composition are created. The superconducting material itself is typically an yttrium-barium-copper-oxide or similar compound,’ explains Dr. Michael Koblischka, one of the research scientists in Hartmann‘s group.

The research project received €100,000 in funding from the Volkswagen Foundation as part of its ‘Experiment!’ initiative. The initiative aims to encourage curiosity-driven, blue-skies research. The positive results from the Saarbrücken research team demonstrate the value of this type of funding. Since September 2016, the project has been supported by the German Research Foundation (DFG). Total funds of around €425,000 will be provided over a three-year period during which the research team will be carrying out more detailed investigations into the properties of the nanowires.

I’d say the “unremarkable but appearances can be deceiving” comments are true more often than not. I think that’s one of the hard things about science. Big advances can look nondescript.

What looks like a pretty unremarkable piece of burnt paper is in fact an ultrathin superconductor that has been developed by the team lead by Uwe Hartmann (r.) shown here with doctoral student XianLin Zeng. Courtesy: Saarland University

In any event, here’s a link to and a citation for the paper,

Preparation of granular Bi-2212 nanowires by electrospinning by Xian Lin Zeng, Michael R Koblischka, Thomas Karwoth, Thomas Hauet, and Uwe Hartmann. Superconductor Science and Technology, Volume 30, Number 3 Published 1 February 2017

© 2017 IOP Publishing Ltd

This paper is behind a paywall.