Usually when a company is featured in a news item, there’s some reason why it’s considered newsworthy. Even after reading the article twice, I still don’t see what makes the Precision Nanosystems Inc. (PNI) newsworthy.
Kevin Griffin’s Jan. 17, 2021 article about Vancouver area Precision Nanosystems Inc. (PNI) for The Province is interesting for anyone who’s looking for information about members of the local biotechnology and/or nanomedicine community (Note: Links have been removed),
A Vancouver nanomedicine company is part of a team using new genetic technology to develop a COVID-19 vaccine.
Precision NanoSystems Incorporated is working on a vaccine in the same class the ones made by Pfizer-BioNTech and Moderna, the only two COVID-19 vaccines approved by Health Canada.
PNI’s vaccine is based on a new kind of technology called mRNA which stands for messenger ribonucleic acid. The mRNA class of vaccines carry genetic instructions to make proteins that trigger the body’s immune system. Once a body has antibodies, it can fight off a real infection when it comes in contact with SARS-CoV-2, the name of the virus that causes COVID-19.
James Taylor, CEO of Precision NanoSystems, said the “revolutionary technology is having an impact not only on COVID-19 pandemic but also the treatment of other diseases.
…
The federal government has invested $18.2 million in PNI to carry its vaccine candidate through pre-clinical studies and clinical trails.
Ottawa has also invested another $173 million in Medicago, a Quebec-city based company which is developing a virus-like particle vaccine on a plant-based platform and building a large-scale vaccine and antibody production facility. The federal government has an agreement with Medicago to buy up to 76 million doses (enough for 38 million people) of its COVID-19 vaccine.
PNI’s vaccine, which the company is developing with other collaborators, is still at an early, pre-clinical stage.
…
Taylor is one of the co-founders of PNI along with Euan Ramsay, the company’s chief commercial officer.
The scientific co-founders of PNI are physicist Carl Hansen [emphasis mine] and Pieter Cullis. Cullis is also board chairman and scientific adviser at Acuitas Therapeutics [emphasis mine], the UBC biotechnology company that developed the delivery system for the Pfizer-BioNTech COVID-19 vaccine.
PNI, founded in 2010 as a spin-off from UBC [University of British Columbia], focuses on developing technology and expertise in genetic medicine to treat a wide range of infectious and rare diseases and cancers.
What has been described as PNI’s flagship product is a NanoAssemblr Benchtop Instrument, which allows scientists to develop nanomedicines for testing.
…
It’s informational but none of this is new, if you’ve been following developments in the COVID-19 vaccine story or local biotechnology scene. The $18.2 million federal government investment was announced in the company’s latest press release dated October 23, 2020. Not exactly fresh news.
One possibility is that the company is trying to generate publicity prior to a big announcement. As to why a reporter would produce this profile, perhaps he was promised an exclusive?
Acuitas Therapeutics, which I highlighted in the excerpt from Griffin’s story, has been featured here before in a November 12, 2020 posting about lipid nanoparticles and their role in the development of the Pfizer-BioNTech COVID-19 vaccine.
Curiously (or not), Griffin didn’t mention Vancouver’s biggest ‘COVID-19 star’, AbCellera. You can find out more about that company in my December 30, 2020 posting titled, Avo Media, Science Telephone, and a Canadian COVID-19 billionaire scientist, which features a link to a video about AbCellera’s work (scroll down about 60% of the way to the subsection titled: Avo Media, The Tyee, and Science Telephone, second paragraph).
The Canadian COVID-19 billionaire scientist? That would be Carl Hansen, Chief Executive Officer and co-founder of AbCellera and co-founder of PNI. it’s such a small world sometimes.
Nearly a year after the first case of Covid-19 was reported in the Chinese city of Wuhan in December 2019, the world could be nearing the beginning of the end of a pandemic that has killed more than 1.7 million people. Vaccination for Covid-19 is underway in the United States and the United Kingdom, and promising antibody treatments could help doctors fight back against the disease more effectively. Tied to those breakthroughs: a host of new billionaires who have emerged in 2020, their fortunes propelled by a stock market surge as investors flocked to companies involved in the development of vaccines, treatments, medical devices and everything in between.
Altogether, Forbes found 50 new billionaires in the healthcare sector in 2020. …
Carl Hansen
Net worth: $2.9 billion
Citizenship: Canada
Source of wealth: AbCellera
Hansen is the CEO and cofounder of Vancouver-based AbCellera, a biotech firm that uses artificial intelligence and machine learning to identify the most promising antibody treatments for diseases. He founded the company in 2012. Until 2019 he also worked as a professor at the University of British Columbia, but shifted to focus full-time on AbCellera. That decision seems to have paid off, and Hansen’s 23% stake earned him a spot in the billionaire club after AbCellera’s successful listing on the Nasdaq on December 11. The U.S. government has ordered 300,000 doses of bamlanivimab, an antibody AbCellera discovered in partnership with Eli Lilly that received FDA approval as a Covid-19 treatment in November [2020].
AbCellera, a local biotechnology company founded at UBC, has developed a method that can search immune responses more deeply than any other technology. Using a microfluidic technology developed at the Michael Smith Laboratories, advanced immunology, protein chemistry, performance computing, and machine learning, AbCellera is changing the game for antibody therapeutics.
…
I believe a great deal of research that is commercialized was initially funded by taxpayers and I cannot recall any entrepreneurs here in Canada or elsewhere acknowledging that help in a big way. Should you be able to remember any comments of that type, please do let me know in the Comments.
Just prior to this financial bonanza, AbCellera was touting two new board members, John Montalbano on Nov. 18, 2020 and Peter Thiel on Nov. 19, 2020.
November 18, 2020 – AbCellera, a technology company that searches, decodes, and analyzes natural immune systems to find antibodies that can be developed to prevent and treat disease, today announced the appointment of John Montalbano to its Board of Directors. Mr. Montalbano will serve as the Chair of the Audit Committee of the Board of Directors.
…
Mr. Montalbano is Principal of Tower Beach Capital Ltd. and serves on the boards of the Canada Pension Plan Investment Board, Aritzia Inc., and the Asia Pacific Foundation of Canada. His previous appointments include the former Vice Chair of RBC Wealth Management and CEO of RBC Global Asset Management (RBC GAM). When Mr. Montalbano retired as CEO of RBC GAM in 2015, it was among the largest 50 asset managers worldwide with $370 billion under management and offices in Canada, the United States, the United Kingdom, and Hong Kong.
…
Montalbano has been on this blog before in a Nov. 4, 2015 posting. If you scroll down to the subsection “Justin Trudeau and his British Columbia connection,” you’ll see mention of Montalbano’s unexpected exit as member and chair of UBC’s board of governors.
AbCellera, a technology company that searches, decodes, and analyzes natural immune systems to find antibodies that can be developed to prevent and treat disease, today announced the appointment of Peter Thiel to its Board of Directors.
“Peter has been a valued AbCellera investor and brings deep experience in scaling global technology companies,” said Carl Hansen, Ph.D., CEO of AbCellera. “We share his optimistic vision for the future, faith in technological progress, and long-term view on company building. We’re excited to have him join our board and look forward to working with him over the coming years.”
Mr. Thiel is a technology entrepreneur, investor, and author. He was a co-founder and CEO of PayPal, a company that he took public before it was acquired by eBay for $1.5 billion in 2002. Mr. Thiel subsequently co-founded Palantir Technologies in 2004, where he continues to serve as Chairman. As a technology investor, Mr. Thiel made the first outside investment in Facebook, where he has served as a director since 2005, and provided early funding for LinkedIn, Yelp, and dozens of technology companies. He is a partner at Founders Fund, a Silicon Valley venture capital firm that has funded companies including SpaceX and Airbnb.
“AbCellera is executing a long-term plan to make biotech move faster. I am proud to help them as they raise our expectations of what’s possible,” said Mr. Thiel.
…
Some Canadian business journalists got very excited over Thiel’s involvement in particular. Perhaps they were anticipating this December 10, 2020 AbCellera news release announcing an initial public offering. Much money seems to have been made not least for Mr. Montalbano, Mr. Thiel, and Mr. Hansen.
As for Mr. Thiel and taxes, I don’t know for certain but can infer that he’s not a big fan from this portion of his Wikipedia entry,
…
Thiel is an ideological libertarian,[108] though more recently he has espoused support for national conservatism[109] and criticized libertarian attitudes towards free trade[110] and big tech.[109]
…
My understanding is that libertarians object to taxes and prefer as little government structure as possible.
In any event, it seems that COVID-19 has been quite the bonanza for some people. If you’re curious you can find out more about AbCellera here.
Onto Avo Media and how it has contributed to the AbCellera story.
Avo Media, The Tyee, and Science Telephone
Vancouver (Canada)-based Avo Media describes itself this way on its homepage,
We make documentary, educational, and branded content.
We specialize in communicating science and other complex concepts in a clear, engaging way.
I think that description boils down to videos and podcasts. There’s no mention of AbCellera as one of their clients but they do list The Tyee, which in a July 1, 2020 posting (The Vancouver Company Turning Blood into a COVID Treatment: A Tyee Video) by Mashal Butt hosts a video about AbCellera,
The world anxiously awaits a vaccine to end the pandemic. But having a treatment could save countless lives in the meantime.
This Tyee video explains how Vancouver biotech company AbCellera, with funding from the federal government, is racing to develop an antibody-based therapy treatment as quickly as possible.
Experts — immunologist Ralph Pantophlet at Simon Fraser University, and co-founder and COO of AbCellera Véronique Lecault — explain what an antibody treatment is and how it can protect us from COVID-19.
…
It is not a cure, but it can help save lives as we wait for the cure.
This video was made in partnership with Vancouver’s Avo Media team of Jesse Lupini, Koby Michaels and Lucas Kavanagh.
It’s a video with a good explanation of AbCellera’s research. Interestingly, the script notes that the Canadian federal government gave the company over $175M for its COVID-19 work.
Why The Tyee?
While Avo Media is a local company, I notice that Jessica Yingling is listed in the final credits for the video. Yingling founded Little Dog Communications, which is based in both California and Utah. If you read the AbCellera news releases, you’ll see that she’s the media contact.
Is there a more unlikely media outlet to feature a stock market star, which probably will be making billions of dollars from this pandemic, than The Tyee? Politically, its ideology could be described as the polar opposite to libertarian ideology.
I wonder what the thought process was for the media placement and how someone based in San Diego (check out her self description on this Twitter feed @jyingling) came up with the idea?
Science Telephone
Avo Media’s latest project seems to be a podcast series, Science Telephone (this link is to the Spotify platform). Here’s more about the series and the various platforms where episodes can be found (from the Avo Media, Our Work, Science Telephone webpage) ,
Science Telephone is a new podcast that tests how well the science holds up when comedians get their hands onto it
Laugh while you learn, as the classic game of telephone is repurposed for scientific research. Each episode, one scientist explains their research to a comedian, who then has to explain it to the next comedian, and so on until it’s almost unrecognizable. See what sticks and what changes, with a rotating cast of brilliant scientists and hysterical comedians.
See a preview of the show below, or visit www.sciencetelephone.com to subscribe or listen to past episodes.
As rainy season approaches in the Pacific Northwest of Canada and the US, there’s some good news about a sustainable water- and oil-repellent fabric. Sadly, it won’t be available this year but it’s something to look forward to.
An August 10, 2020 news item on phys.org announces the news from the University of British Columbia (UBC) about a greener, water-repellent fabric,
A sustainable, non-toxic and high-performance water-repellent fabric has long been the holy grail of outdoor enthusiasts and clothing companies alike. New research from UBC Okanagan and outdoor apparel giant Arc’teryx is making that goal one step closer to reality with one of the world’s first non-toxic oil and water-repellent performance textile finishes.
Outdoor fabrics are typically treated with perfluorinated compounds (PFCs) to repel oil and water. But according to Sadaf Shabanian, doctoral student at UBC Okanagan’s School of Engineering and study lead author, PFCs come with a number of problems.
“PFCs have long been the standard for stain repellents, from clothing to non-stick frying pans, but we know these chemicals have a detrimental impact on human health and the environment,” explains Shabanian. “They pose a persistent, long-term risk to health and the environment because they take hundreds of years to breakdown and linger both in the environment and our bodies.”
According to Mary Glasper, materials developer at Arc’teryx and collaborator on the project, these lasting impacts are one of the major motivations for clothing companies to seek out new methods to achieve the same or better repellent properties in their products.
To solve the problem, Shabanian and the research team added a nanoscopic layer of silicone to each fibre in a woven fabric, creating an oil-repellent jacket fabric that repels water, sweat and oils.
By understanding how the textile weave and fibre roughness affect the liquid interactions, Shabanian says she was able to design a fabric finish that did not use any PFCs.
“The best part of the new design is that the fabric finish can be made from biodegradable materials and can be recyclable,” she says. “It addresses many of the issues related to PFC-based repellent products and remains highly suitable for the kind of technical apparel consumers and manufacturers are looking for.”
Arc’teryx is excited about the potential of this solution.
“An oil- and water-repellent finish that doesn’t rely on PFCs is enormously important in the world of textiles and is something the whole outdoor apparel industry has been working on for years,” says Glasper. “Now that we have a proof-of-concept, we’ll look to expand its application to other DWR-treated textiles used in our products and to improve the durability of the treatment.”
Kevin Golovin, principal investigator of the Okanagan Polymer Engineering Research & Applications Lab where the research was done, says the new research is important because it opens up a new area of green textile manufacturing.
He explains that while the new technology has immense potential, there are still several more years of development and testing needed before people will see fabrics with this treatment in stores.
“Demonstrating oil repellency without the use of PFCs is a critical first step towards a truly sustainable fabric finish,” says Golovin. “And it’s something previously thought impossible.”
The research is funded through a grant from the Natural Sciences and Engineering Research Council of Canada (NSERC), with support from Arc’teryx Equipment Inc.
Glass sponges in Howe Sound. Credit: Adam Taylor, MLSS [Marine Life Sanctuaries Society]
One of them looks to be screaming (Edvard Munch, anyone?) and none of it looks how I imagined an oceanic ‘living dinosaur’ might. While the news is not in my main area of interest (emerging technology), it is close to home. A June 1, 2020 University of British Columbia news release (also on EurekAlert) describes the glass sponge reefs (living dinosaurs) in the Pacific Northwest and current concerns about their welfare,
Warming ocean temperatures and acidification drastically reduce the skeletal strength and filter-feeding capacity of glass sponges, according to new UBC research.
The findings, published in Scientific Reports, indicate that ongoing climate change could have serious, irreversible impacts on the sprawling glass sponge reefs of the Pacific Northwest and their associated marine life – the only known reefs of their kind in the world.
Ranging from the Alaska-Canada border and down through the Strait of Georgia, the reefs play an essential role in water quality by filtering microbes and cycling nutrients through food chains. They also provide critical habitat for many fish and invertebrates, including rockfish, spot prawns, herring, halibut and sharks.
“Glass sponge reefs are ‘living dinosaurs’ thought to have been extinct for 40 million years before they were re-discovered in B.C. in 1986,” said Angela Stevenson, who led the study as a postdoctoral fellow at UBC Zoology. “Their sheer size and tremendous filtration capacity put them at the heart of a lush and productive underwater system, so we wanted to examine how climate change might impact their survival.”
Although the reefs are subject to strong, ongoing conservation efforts focused on limiting damage to their delicate glass structures, scientists know little about how these sponges respond to environmental changes.
For the study, Stevenson harvested Aphrocallistes vastus, one of three types of reef-building glass sponges, from Howe Sound and brought them to UBC where she ran the first successful long-term lab experiment involving live sponges by simulating their natural environment as closely as possible.
She then tested their resilience by placing them in warmer and more acidic waters that mimicked future projected ocean conditions.
Over a period of four months, Stevenson measured changes to their pumping capacity, body condition and skeletal strength, which are critical indicators of their ability to feed and build reefs.
Within one month, ocean acidification and warming, alone and in combination, reduced the sponges’ pumping capacity by more than 50 per cent and caused tissue losses of 10 to 25 per cent, which could starve the sponges.
“Most worryingly, pumping began to slow within two weeks of exposure to elevated temperatures,” said Stevenson.
The combination of acidification and warming also made their bodies weaker and more elastic by half. That could curtail reef formation and cause brittle reefs to collapse under the weight of growing sponges or animals walking and swimming among them.
Year-long temperature data collected from Howe Sound reefs in 2016 suggest it’s only a matter of time before sponges are exposed to conditions which exceed these thresholds.
“In Howe Sound, we want to figure out a way to track changes in sponge growth, size and area and area in the field so we can better understand potential climate implications at a larger scale,” said co-author Jeff Marliave, senior research scientist at the Ocean Wise Research Institute. “We also want to understand the microbial food webs that support sponges and how they might be influenced by climate cycles.”
Stevenson credits bottom-up community-led efforts and strong collaborations with government for the healthy, viable state of the B.C. reefs today. Added support for such community efforts and educational programs will be key to relieving future pressures.
“When most people think about reefs, they think of tropical shallow-water reefs like the beautiful Great Barrier Reef in Australia,” added Stevenson. “But we have these incredible deep-water reefs in our own backyard in Canada. If we don’t do our best to stand up for them, it will be like discovering a herd of dinosaurs and then immediately dropping dynamite on them.”
Background:
The colossal reefs can grow to 19 metres in height and are built by larval sponges settling atop the fused dead skeletons of previous generations. In northern B.C. the reefs are found at depths of 90 to 300 metres, while in southern B.C., they can be found as shallow as 22 metres.
The sponges feed by pumping sea water through their delicate bodies, filtering almost 80 per cent of microbes and particles and expelling clean water.
It’s estimated that the 19 known reefs in the Salish Sea can filter 100 billion litres of water every day, equivalent to one per cent of the total water volume in the Strait of Georgia and Howe Sound combined.
Almost finally, there’s a brief video of the glass sponges in their habitat,
Circling back to Edvard Munch,
Courtesy of www.EdvardMunch.org [downloaded from https://www.edvardmunch.org/the-scream.jsp]
Here’s more about the painting, from The Scream webpage on edvardmunch.org,
Munch’s The Scream is an icon of modern art, the Mona Lisa for our time. As Leonardo da Vinci evoked a Renaissance ideal of serenity and self-control, Munch defined how we see our own age – wracked with anxiety and uncertainty.
Essentially The Scream is autobiographical, an expressionistic construction based on Munch’s actual experience of a scream piercing through nature while on a walk, after his two companions, seen in the background, had left him. …
For all the times I’ve seen the image, I had no idea the inspiration was acoustic.
In any event, the image seems sadly à propos both for the glass sponge reefs (and nature generally) and with regard to Black Lives Matter (BLM). A worldwide conflagration was ignited by George Floyd’s death in Minneapolis on May 25, 2020. This African-American man died while saying, “I can’t breathe,” as a police officer held Floyd down with a knee on his neck. RIP (rest in peace) George Floyd while the rest of us make the changes necessary, no matter how difficult to create a just and respectful world for all. Black Lives Matter.
Part 1 covered some of the more formal aspects science culture in Canada, such as science communication education programmes, mainstream media, children’s science magazines, music, etc. Part 2 covered science festivals, art/sci or sciart (depending on who’s talking, informal science get togethers such ‘Cafe Sccientifque’, etc.
This became a much bigger enterprise than I anticipated and so part 3 is stuffed with the do-it-yourself (DIY) biology movement in Canada, individual art/sci or lit/sci projects, a look at what the mathematicians have done and are doing, etc. But first there’s the comedy.
Comedy, humour, and science
Weirdly, Canadians like to mix their science fiction (scifi) movies with humour. (I will touch on more scifi later in this post but it’s too big a topic to cover inadequately, let alone adequately, in this review.) I post as my evidence of the popularity of comedy science fiction films, this from the Category: Canadian science fiction films Wikipedia webpage,
As you see, comedy science fiction is the second most populated category. Also, the Wikipedia time frame is much broader than mine but I did check one Canadian science fiction comedy film, Bang Bang Baby, a 2014 film, which, as it turns out, is also a musical.
The 2019 iteration of the Vancouver Podcast Festival included the podcast duo, Daniel Chai and Jeff Porter, behind The Fear of Science (which seems to be a science podcast of a humourous bent). They participated in a live https://www.vanpodfest.ca/event/live-podcast-fear-science-vs-vancolour podcast titled, Live Podcast: Fear of Science vs. This is VANCOLOUR.
Daniel Chai is a Vancouver-based writer, comedian, actor and podcaster. He is co-host of The Fear of Science podcast, which combines his love of learning with his love of being on a microphone. Daniel is also co-founder of The Fictionals Comedy Co and the creator of Improv Against Humanity, and teaches improv at Kwantlen Polytechnic University. He is very excited to be part of Vancouver Podcast Festival, and thanks everyone for listening!
Jeff is the producer and co-host of The Fear of Science. By day, he is a graphic designer/digital developer [according to his LinkedIn profile, he works at Science World], and by night he is a cosplayer, board gamer and full-time geek. Jeff is passionate about all things science, and has been working in science communication for over 4 years. He brings a general science knowledge point of view to The Fear of Science.
Here’s more about The Fear of Science from its homepage (where you will also find links to their podcasts),
A podcast that brings together experts and comedians for an unfiltered discussion about complicated and sometimes controversial science fears in a fun and respectful way.
This podcast seems to have taken life in August 2018.(Well, that’s as far back as the Archived episodes stretch on the website.)
This is Vancolour is a podcast hosted by Mo Amir and you will find this description on the website,
THIS IS A PODCAST ABOUT VANCOUVER AND THE PEOPLE WHO MAKE THIS CITY COLOURFUL
Cartoonist, writer, and educator, Raymond Nakamura produces work for Telus Science World and the Science Borealis science aggregator. His website is known as Raymond’s Brain features this image,
Getting an EEG to test whether my brain works. It does! [downloaded from http://www.raymondsbrain.com/biocontact]
Much has been happening on this front. First for anyone unfamiliar with do-it-yourself biology, here’s more from its Wikipedia entry,
Do-it-yourself biology (DIY biology, DIY bio) is a growing biotechnological social movement in which individuals, communities, and small organizations study biology and life science using the same methods as traditional research institutions. DIY biology is primarily undertaken by individuals with extensive research training from academia or corporations, who then mentor and oversee other DIY biologists with little or no formal training. This may be done as a hobby, as a not-for-profit endeavour for community learning and open-science innovation, or for profit, to start a business.
A January 21, 2020 posting here listed the second Canadian DIY Biology Summit organized by the Public Health Agency of Canada (PHAC). It was possible to attend virtually from any part of Canada. The first meeting was in 2016 (you can see the agenda here). You’ll see in the agenda for the 2nd meeting in 2020 that there have been a few changes as groups rise into and fall out of existence.
From the 2020 agenda, here’s a list representing the players in Canada’s DIYbio scene,
Most of these organizations (e.g., Victoria Makerspace, Synbiota, Bricobio, etc.) seem to be relatively new (founded in 2009 or later) which is quite exciting to think about. This March 13, 2016 article in the Vancouver Observer gives you a pretty good overview of the DIY biology scene in Canada at the time while providing a preview of the then upcoming first DIY Biology summit.
*The Open Science Network in Vancouver was formerly known as DIYbio YVR. I’m not sure when the name change occurred but this July 17, 2018 article by Emily Ng for The Ubyssey (a University of British Columbia student newspaper) gives a little history,
…
In 2009, a group of UBC students and staff recognized these barriers and teamed up to democratize science, increase its accessibility and create an interdisciplinary platform for idea exchange. They created the Open Science Network (OSN).
The Open Science Network is a non-profit society that serves the science and maker community through education, outreach and the provision of space. Currently, they run an open community lab out of the MakerLabs space on East Cordova and Main street, which is a compact space housing microscopes, a freezer, basic lab equipment and an impressive amount of activity.
The lab is home to a community of citizen scientists, professional scientists, artists, designers and makers of all ages who are pursuing their own science projects.
…
Members who are interested in lab work can receive some training in “basic microbiology techniques like pipetting, growing bacteria, using the Polymerase Chain Reaction machine (PCR) [to amplify DNA] and running gels [through a gel ectrophoresis machine to separate DNA fragments by size] from Scott Pownall, a PhD graduate from UBC and the resident microbiologist,” said Wong [ Wes Wong, a staff member of UBC Botany and a founding member of OSN].
The group has also made further efforts to serve their members by offering more advanced synthetic biology classes and workshops at their lab.
…
There is another organization called ‘Open Science Network’ (an ethnobiology group and not part of the Vancouver organization). Here is a link to the Vancouver-based Open Science Network (a community science lab) where they provide further links to all their activities including a regular ‘meetup’.
The word
I have poetry, a book, a television adaptation, three plays with mathematics and/or physics themes and more.
Poetry
In 2012 there was a night of poetry readings in Vancouver. What made it special was that five poets had collaborated with five scientists (later amended to four scientists and a landscape architect) according to my December 4, 2012 posting. The whole thing was conceptualized and organized by Aileen Penner who went on to produce a chapbook of the poetry. She doesn’t have any copies available currently but you can contact her on her website’s art/science page if you are interested in obtaining a copy. She doesn’t seem to have organized any art/science projects since. For more about Aileen Penner who is a writer and poet, go to her website here.
The Banff International Research Station (BIRS) it’s all about the mathematics) hosted a workshop for poets and mathematicians way back in 2011. I featured it (Mathematics: Muse, Maker, and Measure of the Arts) after the fact in my January 9, 2012 posting (scroll down about 30% of the way). If you have the time, do click on my link to Nassif Ghoussoub’s post on his blog (Piece of Mind) about mathematicians, poetry, and the arts. It’s especially interesting in retrospect as he is now the executive director for BIRS, which no longer seems to have workshops that meld any of the arts with mathematics, and science.
One of the guests at that 2011 meeting was Alice Major, former poet laureate for Edmonton and the author of a 2011 book titled, Intersecting Sets: A Poet Looks at Science.
That sadly seems to be it for poetry and the sciences, including mathematics. If you know of any other poetry/science projects or readings, etc. in Canada during the 2010-9 decade, please let me know in the comments.
Books
Karl Schroeder, a Canadian science fiction author, has written many books but of particular interest here are two futuristic novels for the Canadian military.The 2005 novel, Crisis in Zefra, doesn’t fit the time frame I’ve established for this review but the the 2014 novel, Crisis in Urla (scroll down) fits in nicely. His writing is considered ‘realistic’ science fiction in that it’s based on science research and his work is also associated with speculative realism (from his Wikipedia entry; Note: Links have been removed),
Karl Schroeder (born September 4, 1962) is a Canadianscience fiction author. His novels present far-future speculations on topics such as nanotechnology, terraforming, augmented reality, and interstellar travel, and are deeply philosophical.
The other author I’m mentioning here is Margaret Atwood. The television adaptation of her book, ‘The Handmaid’s Tale’ has turned a Canadian literary superstar into a supernova (an exploding star whose luminosity can be the equivalent of an entire galaxy). In 2019, she won the Booker Prize, for the second time for ‘The Testaments’ (a followup to ‘The Handmaid’s Tale’), sharing it with Bernardine Evaristo and her book ‘Girl, Woman, Other’. Atwood has described her work (The Handmaid’s Tale, and others) as speculative fiction rather than science fiction. For me, she bases her speculation on the social sciences and humanities, specifically history (read her Wikipedia entry for more).
In 2017 with the television adaptation of ‘The Handmaid’s Tale’, Atwood’s speculative fiction novel became a pop culture phenomenon. Originally published in 1985, the novel was also adapted for a film in 1990 and for an opera in 2000 before it came to television, according to its Wikipedia entry.
There’s a lot more out there, Schroeder and Atwood are just two I’ve stumbled across.
Theatre
I have drama, musical comedy and acting items.
Drama
Pi Theatre’s (Vancouver) mathematically-inclined show, ‘Long Division‘, ran in April 2017 and was mentioned in my April 20, 2017 posting (scroll down about 50% of the way).
This theatrical performance of concepts in mathematics runs from April 26 – 30, 2017 (check here for the times as they vary) at the Annex at 823 Seymour St. From the Georgia Straight’s April 12, 2017 Arts notice,
“Mathematics is an art form in itself, as proven by Pi Theatre’s number-charged Long Division. This is a “refreshed remount” of Peter Dickinson’s ambitious work, one that circles around seven seemingly unrelated characters (including a high-school math teacher, a soccer-loving imam, and a lesbian bar owner) bound together by a single traumatic incident. Directed by Richard Wolfe, with choreography by Lesley Telford and musical score by Owen Belton, it’s a multimedia, movement-driven piece that has a strong cast. … “
You can read more about the production here. As far as I’m aware, there are no upcoming show dates.
There seems to be some sort of affinity between theatre and mathematics, I recently featured (January 3, 2020 posting) a theatrical piece by Hannah Moscovitch titled, ‘Infinity‘, about time, physics, math and more. It had its first production in Toronto in 2015.
John Mighton, a playwright and mathematician, wrote ‘The Little Years’ which has been produced in both Vancouver and Toronto. From a May 9, 2005 article by Kathleen Oliver for the Georgia Straight,
The Little Years is a little jewel of a play: small but multifaceted, and beautifully crafted.
John Mighton’s script gives us glimpses into different stages in the life of Kate, a woman whose early promise as a mathematician is cut short. At age 13, she’s a gifted student whose natural abilities are overlooked by 1950s society, which has difficulty conceiving of women as scientists. Instead, she’s sent to vocational school while her older brother, William, grows up to become one of the most widely praised poets of his generation.
John Mighton is a successful playwright and mathematician, yet at times in his life, he’s struggled with doubt. However, he also learned there was hope, and that’s the genesis of The Little Years, which opens at the Tarragon Theatre on Nov. 16 and runs to Dec. 16 [2012].
In keeping (more or less) with this subsection’s theme ‘The Word’, Mighton has recently had a new book published, ‘All Things Being Equal: Why Math is the Key to a Better World’, according to a January 24, 2020 article (online version) by Jamie Portman for Postmedia,
It’s more than two decades since Canadian mathematician and playwright John Mighton found himself playing a small role in the film, Good Will Hunting. What he didn’t expect when he took on the job was that he would end up making a vital contribution to a screenplay that would go on to win an Oscar for its writers, Ben Affleck and Matt Damon.
What happened on that occasion tells you a great deal about Mighton’s commitment to the belief that society grossly underestimates the intellectual capacity of human beings — a belief reiterated with quiet eloquence in his latest book, All Things Being Equal.
…
Mighton loved the experience but as shooting continued he became troubled over his involvement in a movie that played “heavily on the idea that geniuses like Will are born and not made.” This was anathema to his own beliefs as a mathematician and he finally summoned up the courage to ask Affleck and Damon if he could write a few extra lines for his character. This speech was the result: “Most people never get the chance to see how brilliant they can be. They don’t find teachers who believe in them. They get convinced they’re stupid.”
At a time of growing controversy across Canada over the teaching of mathematics in school and continuing evidence of diminishing student results, Mighton continues to feel gratitude to the makers of Good Will Hunting for heeding his concerns. [I will be writing a post about the latest PISA scores where Canadian students have again slipped in their mathematics scores.]
…
Mighton is on the phone from from Toronto, his voice soft-spoken but still edged with fervour. He pursues two successful careers — as an award-winning Canadian playwright and as a renowned mathematician and philosopher who has devoted a lifetime to developing strategies that foster the intellectual potential of all children through learning math. But even as he talks about his 2001 founding of JUMP Math, a respected charity that offers a radical alternative to conventional teaching of the subject, he’s anxious to remind you that he’s a guy who almost failed calculus at university and who once struggled to overcome his “own massive math anxiety.”
…
You can find out more about John Mighton in his Wikipedia entry (mostly about his academic accomplishments) and on the JUMP Math website (better overall biography).
Musical Comedy
It’s called ‘Math Out Loud’ and was first mentioned here in a January 9, 2012 posting (the same post also featured the BIRS poetry workshop),
“When Mackenzie Gray talks about the way Paul McCartney used a recursive sequence to make the song “I Want You (She’s So Heavy)” seem to last forever, you realize that part of the Beatles’ phenomenal success might have sprung from McCartney’s genius as a mathematician.
When Roger Kemp draws on a napkin to illustrate that you just have to change the way you think about numbers to come up with a binary code for pi (as in 3.14 ad infinitum), you get a sense that math can actually be a lot of fun.”
Produced by MITACS which in 2012 was known as ‘Mathematics of Information Technology and Complex Systems’, a not-for-profit research organization, the musical went on tour in the Fall of 2012 (according to my September 7, 2012 posting). Unusually, I did not embed the promotional trailer for this 2012 musical so, here it is now,
Since 2012, Mitacs has gone through some sort of rebranding process and it’s now described as a nonprofit national research organization. For more you can read its Wikipedia entry or go to its website.
Acting and storytelling
It turns out there was an acting class (five sessions) for scientists at the University of Calgary in 2017. Here’s more from the course’s information sheet,
Act Your Science: Improve Your Communication Skills with Training in Improvisation 2 hours a session, 5 sessions, every Wednesday starting November 14 [2017] …
Dr. Jeff Dunn, Faculty of Graduate Studies, Graduate Students Association, the Canadian Science Writers Association [also known as Science Writers and Communicators of Canada] and the Loose Moose Theatre have teamed together to provide training in a skill which will be useful where ever your career takes you.
The goal of this project is to improve the science communication skills of graduate students in science fields. We will improve your communication through the art of training in improvisation. Training will help with speech and body awareness. Improvisation will provide life‐long skills in communication, in a fun interactive environment.
For many years, Alan Alda, a well-known actor (originally of the “MASH” television series fame), has applied his acting skills and improvisation training to help scientists improve their communication. He developed the Alan Alda Centre for Communicating Science at Stony Brook University.
…
The training will involve five 2hr improvisation workshop sessions led by one of Canada’s top professional improvisation trainers, Dennis Cahill, the Artistic Director from Loose Moose Theatre. Dennis has an international reputation for developing the theatrical style of improvisation. Training involves a lot of moving around (and possibly rolling on the floor!) so dress casually. Be prepared to release your inhibitions!
…
The information sheet includes a link to this University of Chicago video (posted on Youtube February 24, 2014) of actor Alan Alda discussing science communication,
As for the storytelling, we’re back at the University of Calgary. A student video and storytelling workshop and contest (Innovation Untold) was held on Tuesday, February 4, 2020. Here’s more from the University of Calgary event page for Storytelling Workshop: Do photos and videos have voices?,
…
About the speaker:
Victoria Bouvier, a Michif-Metis woman, is of the Red River Settlement and Boggy Creek, Manitoba, and born and raised in Calgary. She is an Assistant professor in Indigenous Studies at Mount Royal University and a doctoral candidate in Educational Research [emphasis mine] at the University of Calgary. Her research is exploring how Michif/Métis people, born and raised in urban environments, practice and express their self-understandings, both individually and collectively through using an Indigenous oral system and visual media as methodology.
In a technology-laden society, people are capturing millions of photographs and videos that document their lived experiences, followed by uploading them to social media sites. As mass amounts of media is being shared each day, the question becomes: are we utilizing photos and videos to derive meaning from our everyday lived experiences, while settling in to a deeper sense of our self-in-relation?
This session will explore how photos and videos, positioned within an Indigenous oral system, are viewed and interacted with as a third perspective in the role of storytelling.
Finally, h/t to Jennifer Bon Bernard’s April 19, 2017 article (reposted Dec. 11, 2019) about Act Your Science for the Science Writers and Communicators blog. The original date doesn’t look right to me but perhaps she participated in a pilot project.
Neuroscience, science policy, and science advice
The end of this part is almost in sight
Knitting in Toronto and drawings in Vancouver (neuroscience)
In 2017, Toronto hosted a neuroscience event which combined storytelling and knitting (from my October 12, 2017 posting (Note: the portion below is an excerpt from an ArtSci Salon announcement),
With NARRATING NEUROSCIENCE we plan to initiate a discussion on the role and the use of storytelling and art (both in verbal and visual forms) to communicate abstract and complex concepts in neuroscience to very different audiences, ranging from fellow scientists, clinicians and patients, to social scientists and the general public. We invited four guests to share their research through case studies and experiences stemming directly from their research or from other practices they have adopted and incorporated into their research, where storytelling and the arts have played a crucial role not only in communicating cutting edge research in neuroscience, but also in developing and advancing it.
The ArtSci Salon folks also announced this (from the Sept. 25, 2017 ArtSci Salon announcement; received via email),
ATTENTION ARTSCI SALONISTAS AND FANS OF ART AND SCIENCE!! CALL FOR KNITTING AND CROCHET LOVERS!
In addition to being a PhD student at the University of Toronto, Tahani Baakdhah is a prolific knitter and crocheter and has been the motor behind two successful Knit-a-Neuron Toronto initiatives. We invite all Knitters and Crocheters among our ArtSci Salonistas to pick a pattern (link below) and knit a neuron (or 2! Or as many as you want!!)
BRING THEM TO OUR OCTOBER 20 ARTSCI SALON! Come to the ArtSci Salon and knit there!
That link to the patterns is still working.
Called “The Beautiful Brain” and held in the same time frame as Toronto’s neuro event, Vancouver hosted an exhibition of Santiago Ramon y Cajal’s drawings from September 5 to December 3, 2017. In concert with the exhibition, the local ‘neuro’ community held a number of outreach events. Here’s what I had in my September 11, 2017 posting where I quoted from the promotional material for the exhibition,
…
The Beautiful Brain is the first North American museum exhibition to present the extraordinary drawings of Santiago Ramón y Cajal (1852–1934), a Spanish pathologist, histologist and neuroscientist renowned for his discovery of neuron cells and their structure, for which he was awarded the Nobel Prize in Physiology and Medicine in 1906. Known as the father of modern neuroscience, Cajal was also an exceptional artist. He combined scientific and artistic skills to produce arresting drawings with extraordinary scientific and aesthetic qualities.
A century after their completion, Cajal’s drawings are still used in contemporary medical publications to illustrate important neuroscience principles, and continue to fascinate artists and visual art audiences. …
Pictured: Santiago Ramón y Cajal, injured Purkinje neurons, 1914, ink and pencil on paper. Courtesy of Instituto Cajal (CSIC).
From Vancouver, the exhibition traveled to a gallery in New York City and then onto the Massachusetts Institute of Technology (MIT).
Mehrdad Hariri has done a an extraordinary job as its founder and chief executive officer. The CSPC has developed from a single annual conference to an organization that hosts different events throughout the year and publishes articles and opinion pieces on Canadian science policy and has been instrumental in the development of a Canadian science policy community.
The magnitude of Hariri’s accomplishment becomes clear when reading J.w. Grove’s [sic] article, Science Policy, in The Canadian Encyclopedia and seeing that the most recent reports on a national science policy seem to be the Science Council’s (now defunct) 4th report in 1968, Towards a National Science Policy in Canada, the OECD’s (Organization for Economic Cooperation and Development) 1969 Review of [Canada’s] Science Policy, and 3 reports from the Senate’s Lamontagne Committee (Special Committee on Science Policy). Grove’s article takes us only to 1988 but I have been unable to find any more recent reports focused on a national science policy for Canada. (If you have any information about a more recent report, please do let me know in the comments.)
A November 5, 2019 piece (#VoteScience: lessons learned and building science advocacy beyond the election cycle) on the CSPC website further illustrates how the Canadian science policy community has gained ground (Note: Links have been removed),
… on August 8, 2019, a coalition of Canadian science organizations and student groups came together to launch the #VoteScience campaign: a national, non-partisan effort to advocate for science in the federal elections, and make science an election issue.
Specifically, we — aka Evidence for Democracy, Science & Policy Exchange (SPE), and the Toronto Science Policy Network (TSPN) [emphases mine] — built a collection of tools and resources to empower Canadian scientists and science supporters to engage with their local candidates on science issues and the importance of evidence-informed decision-making. Our goal was to make it easy for as many Canadians as possible to engage with their candidates — and they did.
Over the past three months, our #VoteScience portal received over 3,600 visitors, including 600 visitors who used our email form to reach out directly to their local candidates. Collectively, we took #VoteScience selfies, distributed postcards to supporters across Canada, and even wrote postcards to every sitting Member of Parliament (in addition to candidates from all parties in each of our own ridings). Also of note, we distributed a science policy questionnaire to the federal parties, to help better inform Canadians about where the federal parties stand on relevant science issues, and received responses from all but one party. We’ve also advocated for science through various media outlets, including commenting for articles appearing in The Narwhal and Nature News, and penning op-eds for outlets such as the National Observer, University Affairs, Le Devoir, and Découvrir.
Prior to SPIN, the Council of Canadian Academies (CCA; more about them in part 4), issued a 2017 report titled, Science Policy: Considerations for Subnational Governments. The report was the outcome of a 2016 CCA workshop originally titled, Towards a Science Policy in Alberta. I gather the scope broadened.
Interesting trajectory, yes?
Chief Science advisors/scientists
In September 2017, the Canadian federal government announced that a Chief Science Advisor, Dr. Mona Nemer, had been appointed. I have more about the position and Dr. Nemer in my September 26, 2017 posting. (Prior to Dr. Nemer’s appointment a previous government had discontinued a National Science Advisor position that existed from 2004 to 2008.)
The Office of the Chief Science Advisor released it first annual report in 2019 and was covered here in a March 19, 2019 posting.
Québec is the only province (as far as I know) to have a Chief Scientist, Rémi Quirion who was appointed in 2011.
Onto Part 4 where you’ll find we’ve gone to the birds and more.
*The Canadian Science Policy Centre (CSPC) section was written sometime in February 2020. I believe they are planning to publish an editorial piece I submitted to them on April 20, 202 (in other words, before this post was published) in response to their call for submissions (see my April 1, 2020 post for details about the call). In short, I did not praise the organization with any intention of having my work published by them. (sigh) Awkward timing.
Originally, the plan was to produce some sort of a Canadian science culture roundup for 2019 but it came to my attention that 2019 was also an end-of-decade year (sometimes I miss the obvious). I’ll do my best to make this snappy but it is a review (more or less) of the last 10 years (roughly) and with regard to science culture in Canada, I’m giving the term a wide interpretation while avoiding (for the most part) mention of traditional science communication/outreach efforts such as university rresearch, academic publishing, academic conferences, and the like.
Since writing that opening paragraph in late December 2019, COVID-19 took over the world and this review seemed irrelevant for a while but as time passed, Iit occurred to me it might serve as a reminder of past good times and as a hope for the future.
Having started this blog in 2008, I’ve had the good fortune to observe a big increase in the number and range of science outreach/communication/culture initiatives, projects, festivals, etc. It’s tempting to describe it as an explosion of popular interest but I have no idea if this is true. I spend much of my time searching out and writing up this kind of work in addition to the emerging science and technology that I follow and my perception is most likely skewed by my pursuits. What i can say is that in 2019 there was more of everything to do with science culture/outreach/communication than there was when I started in 2008.
Coincidentally, I wrote a three-part series about science communication (including science outreach/culture projects) in Canada in Sept. 2009, just months before the start of this decade. In retrospect, the series is sprawling everywhere and it looks to me like I was desperately trying to make something look bigger than it actually was.
I’m looking at the more formal aspects of science communication and so onto mainstream media and education. This is the saddest section but don’t worry it gets better as it goes on.
Mainstream Media
As I note in the following subsection, there are fewer science writers employed by mainstream media, especially in Canada. The only science writer (that I know of) who’s currently employed by a newspaper is Ivan Semeniuk. for the Globe and Mail.
Margaret Munro who was the science writer for PostMedia (publisher of most newspaper dailies in Canada) is now a freelancer. Kate Lunau, a health and science journalist for Maclean’s Magazine (Canada) until 2016 and then Motherboard/VICE (US online publication) until March 2019 now publishes her own newsletter.
Daily Planet, which was a long running science programme (under various names since 1995) on Discovery Channel Canada and which inspired iterations in other countries, was cancelled in 2018 but there is still a Twitter feed being kept up to date and a webpage with access to archived programmes.
The Canadian Broadcasting Corporation (CBC) programmes, Spark for technology and Quirks & Quarks for science on the radio side and the Nature of Things for science, wildlife, and technology on television carry on year after year and decade after decade.
A more recent addition (2019?) to the CBC lineup is a podcast that touches on science and other topics, Tai Asks Why? According to the programme’s About page, the host (Tai Poole) is in grade seven. No podcasts dated after September 2019 have been posted on Tia’s page.
Yes Magazine for children and Seed magazine (for adults) have both died since 2009. On a happier note, Canadian children’s science magazines are easier to find these days either because I got lucky on my search and/or because there are more of them to find.
Thank you to helpwevegotkids.com for their 10 Awesome Magazines for Canadian Kids webpage. First published in 2016, it is updated from time to time, most recently in October 2019 by Heather Camlot; it’s where I found many of these science/technology magazines (Note: I’m not sure how long these magazines have been published but they are all new to me),
Chickadee Magazine: ages 6-9 ( Every month, the Chickadee team creates a package of interactive stories, puzzles, animal features, and science experiments to educate and entertain readers.) It’s from the folks at owlkids.com
OWL Magazine: ages 9-13 (… highlight the elements of science and tech, engineering, art and math ) Also from the folks at owlkids.com
AdventureBox: ages 6 – 9 (… nature with beautiful photographs and fascinating scientific information … Hilarious and adventurous comic-strips, games and quizzes … An audio CD every 2 months) Also from the folks at owlkids.com
DiscoveryBox: ages 9 – 12 ( … Animals and nature, with spectacular photographs … Fascinating scientific topics, with clear explanations and experiments to carry out …) Also from the folks at owlkids.com BTW, I was not able to find out much about the Owl Kids organization.
WILD magazine ( … jam-packed with fun wildlife stories, games and pictures for youngsters of all ages. It’s a great way to get the children in your life engaged in nature and share your passion for the outdoors. Published 6 times per year) From the folks at the Canadian Wildlife Federation (enough said).
Bazoof! (… suited for ages 7-12 … nutrition, personal care, fitness, healthy lifestyles, character development, eco-education—all in a creative and zany style! Filled with short stories, comics, recipes, puzzles, games, crafts, jokes, riddles, pet care, interviews, healthy snacks, sports, true stories, fun facts, prizes and more!) Bazoof! is being brought to you by the team responsible for Zamoof! You might want to read their About page. That’s all I can dig up.
Brainspace (an augmented reality magazine for kids 8 – 14) As best I can determine they are still ‘publishing’ their interactive magazine but they make finding information about themselves or their organization a little challenging. It’s published in Ontario and its publisher Nicky Middleton had this in her LinkedIn profile: “Publisher of Brainspace interactive magazine for kids 8-12. Creating augmented reality content for teaching resources in partnership with Brock University, District School Board of Niagara.”
One more thing regarding mainstream media
While there are fewer science journalists being employed, there’s still a need for science writing and journalism. The Science Media Centre of Canada (SMCC) opened in 2010 (from its Wikipedia entry),
… to serve journalists with accurate information on scientific matters. The centre has a Research Advisory Panel of 20 Canadian scientists who will make their expertise available in a simple and understandable manner. In order to secure objectivity, the centre has an Editorial Advisory Committee of eight journalists. The centre is bilingual.
As of January 2020, the SMCC is still in operation.
Education
It’s been up and down. Banff Centre (for Arts and Creativity) no longer runs a Science Communication programme in the summer but Laurentian University, which in 2009 seemed to offer a single module for one programme, now offers a Masters of Science Communication or a Science Communication Graduate Diploma.
Mount St. Vincent University in Nova Scotia offers a minor in Science Communication (scroll down). I gather it’s a new minor.
The University of British Columbia’s Journalism School (Vancouver) no longer has a Science Journalism Research Group nor does Concordia University (Montréal) have its Science Journalism Project. I have checked both journalism schools and cannot find any indication there is a science programme or specific science courses of any kind for journalists or other communicators but I didn’t spend a lot of time digging. Interestingly, the chair, David Secko, of Concordia’s journalism programme is a science journalist himself and a member of the Editorial Advisory Committee of the Science Media Centre of Canada.
The lack of science journalism programmes in Canada seems to reflect on overall lack of science journalism. It’s predictable given that the newspapers that once harboured science journalists have trimmed and continue to trim back their staffs.
Miscellaneous
Science centres, museums, and the like are considered part of the informal science community with Makerspaces being a new addition. For the most part, their target audience is children but they are increasingly (since 2010, I believe) offering events aimed at adults. The Canadian Association of Science Centres (CASC) describes itself and its membership this way (from the CASC About Us webpage),
CASC members are a diverse group of organisations that support informal learning of science, technology and nature. Our common bond is that we offer creative programming and exhibitions for visitors that inspire a drive to learn, create, and innovate.
If you are a member of a Science Centres, Museums, Aquariums, Planetariums and Makerspaces [these are a 2010s phenomenon] you could benefit from our reciprocal admission agreement. Not all CASC Members are participants in the Reciprocal Admissions Agreement. Click here for more information.
You can find a full list of their members including the Ingenium museums (the federal consortium of national Canadian science museums), the Saskatchewan Science Centre, the Nunavut Research Institute, Science East, and more, here.
I’m calling what follows ‘truly informal science culture’.
Science: the informal (sometimes cultural) scene
When I first started (this blog) there was one informal science get-together (that I knew of locally) and that was Vancouver Café Scientifque and its monthly events, which are still ongoing. You can find our more about the parent organization, which was started in Leeds, England in 1998. Other Canadian cities listed as having a Café Scientifique: Ottawa, Victoria, Mississauga, and Saskatoon.
Now onto the music, the dance, and more
Sing a song of science
Baba Brinkman is well known for his science raps. The rapper and playwright (from British Columbia) lives in New York City these days with his wife and sometime performance collaborator, neuroscientist Dr. Heather Berlin and their two children (see his Wikipedia entry for more), he is still Canadian (I think).
He got his start rapping science in 2008 when I think he was still living in Vancouver (Canada) after gaining the attention of UK professor Mark Pallen who commissioned him to write a rap about evolution. The Rap Guide to Evolution premiered at the 2009 Edinburgh Fringe Festival. Here’s a video of Brinkman’s latest science rap (Data Science) posted on YouTube on October 21, 2019,
I find this one especially interesting since Brinkman’s mother is the Honourable Joyce Murray, a member of parliament and the Minister of Digital Government in Prime Minister Justin Trudeau’s latest cabinet. (My December 27, 2019 posting highlights what I believe to be the importance of the Minister of Digital Government in the context of the government’s science and technology vision. Scroll down about 25% of the way to the subhead titled “The Minister of Digital Government and a bureaucratic débacle,”) You can find out more about Baba Brinkman here.
Tim Blais of A Capella Science first attracted my notice in 2014 thanks to David Bruggeman and his Pasco Phronesis blog (btw: David, I miss your posts about science and music which are how I found out most of what I know about the Canadian science music scene).
Blais (who has a master’s degree in physics from McGill University in Québec) started producing his musical science videos in 2012. I featured one of his earliest efforts (and one of my favourites, Rolling in the Higgs [Adele parody]) in my July 18, 2014 posting.
Dating back to 2012. The Institute of Quantum Computing at the University of Waterloo held two performances of Quantum: Music at the Frontier of Science. Raymond Laflamme, then director of the institute, wrote a September 20, 2012 article (The Quantum Symphony: A Cultural Entanglement) about the performances. You can see a video (15 mins., 45 secs.,) of the February 2012 performances here.
More recently, the Life Sciences Institute at the University of British Columbia (UBC) hosted a performance of Sounds and Science – Vienna Meets Vancouver in late 2019. I covered it in a November 12, 2019 posting (scroll down to the Sounds and Science subheading). The story about how the series, which has its home base in Vienna, started is fascinating. The sold out Vancouver performance was a combination of music and lecture featuring the Vienna Philharmonic and UBC researchers. According to this Sounds and Science UBC update,
…
For those who missed this exceptional evening, JoyTV and its CARPe Diem show will be producing an episode focusing on the concert, to be aired in February, 2020 [emphasis mine].
…
There is another way to look at musical science and that’s to consider the science of music which is what they do at the Large Interactive Virtual Environment Laboratory (LIVELab) at McMaster University (Hamilton, Ontario, Canada). it’s “a research concert hall. It functions as both a high-tech laboratory and theatre, opening up tremendous opportunities for research and investigation”, you can read more about it in my November 29, 2019 posting.
One last thing, there is data sonification which means finding a way to turn data into music or a sound which can more or less be defined as musical. There may be other data sonification projects and presentations in Canada but these are the ones I’ve tripped across (Note: Some links have bee removed),
Songs of the Ottawa From the website: “Songs of the Ottawa” is the Master’s Research Project of Cristina Wood, under the co-supervision of Dr. Joanna Dean and Dr. Shawn Graham. She completed her Master’s of Arts in Public History with a Specialization in Digital Humanities at Carleton University in spring 2019. She will continue her explorations of the Ottawa River in the Ph.D. program at York University [fall 2020]. Be in touch with Cristina on Twitter or send an email to hello [at] cristinawood [dot] ca.”
The Art of Data Sonification (This January 2019 workshop at Inter/Access in Toronto is over.) From the website: “Learn how to turn data into sound! Dan Tapper will teach participants how to apply different data sonification techniques, collect and produce a variety of sonifications, and how to creatively use these sonifications in their own work. The workshop will move from looking at data sonification through the lens of Dan Tapper’s work sonifying data sets from NASA, to collecting, cleaning and using your own data for artistic creation. Participants will work with pre-gathered and cleaned data sets before collecting and working with personal data and online data sets. Tools will be provided by Tapper created in Pure Data and Processing, as well as versions for Max/MSP users. A particular focus will be placed on how to use data sets and the created sonifications in creative practice – moving beyond quantitative sonic representations to richer material. “
Sonification: Making Data Sound (This September 2019 workshop at the Peter Wall Institute for Advanced Studies at the University of British Columbia is also over.) From the website: ” Computers and music have been mingling their intimate secrets for over 50 years. These two worlds evolve in tandem, and where they intersect they spawn practices that are entirely novel. One of these is “sonification,” turning raw data into sounds and sonic streams to discover new musical relationships within the dataset. This is similar to data visualization, a strategy that reveals new insights from data when it is made for the eye to perceive as graphs or animations. A key advantage with sonification is sound’s ability to present trends and details simultaneously at multiple time scales, allowing us to absorb and integrate information in the same way we listen to music. In this workshop, Chris Chafe will lead a discussion of the practice and application of sonification in a wide array of disciplines, drawing on his own extensive experience in this field.”
I have been looking for data sonification projects in Canada for years. It’s amazing to me that all of this sprung up in the last year of this decade. If there’s more, please do let me know in the Comments section.
Science blogging in Canada
The big news for the decade was the founding and launch of Science Borealis, a Canadian science blog aggregator in 2013. Assuming I counted right in December 2019, there are 146 blogs. These are not all independent bloggers, many institutional blogs are included. Also, I’m not sure how active some of these blogs are. Regardless, that’s a pretty stunning number especially when I consider that my annual Canadian blog roundup from 2010 -2012 would have boasted 20 – 30 Canadian science blogs at most.
I’m not sure why ASAP Science (Michael Moffit and Gregory Brown) isn’t included on Science Borealis but maybe the science vloggers (video bloggers) prefer to go it alone. or they fit into another category of online science. Regardless, ASAP Science has been around since May 2012 according to their About page. In addition to the science education/information they provide, there’s music, including this Taylor Swift Acapella Parody.
One of the earliest Canadians to create a science blog,Gregor Wolbring, Associate Professor at the University of Calgary’s Cumming School of Medicine, started his in 2006. He has taken a few breaks, 2011 and August 2013 – June 2017 but he’s back at it these days. He is in a sense a progenitor for Canadian science blogging. At one time, his blog was so popular that US researchers included it in their studies on what was then ‘the blogging phenomenon’. His focus academically and on his blog is on rehabilitation and disability. This webpage on his blog is of particular interest to me: FUTUREBODY: The Future of the Body in the Light of Neurotechnology. It’s where he lists papers from himself and his colleagues’ in the ERANET NEURON ELSI/ELSA funded by the European Community. (ELSI is Ethical, Legal and Social Implications and ELSA is Ethical, Legal, and Social Aspects.)
Canada’s Favourite Science Online, a competition co-sponsored by Science Borealia and the Science Writers and Communicators of Canada (SWCC), gives a People’s Choice Award annually in two categories: blog and science site. This September 16, 2019 posting on the Science Borealis blog features the finalists in the categories and a pretty decent sampling of what available online from the Canadian science community.
Science in the City is a Canadian life sciences blog aggregator and job and event listing website. The name is an official mark of McMaster University (Ontario, Canada) and it is used and registered by STEMCELL Technologies Canada Inc. Here’s more from their AboutScienceInTheCity webpage,
As scientists ourselves, we know that science is accelerated by collaboration and connection, but that the busy, demanding lifestyle of a scientist makes this challenging. Thus, we saw the need for a central resource that connects local scientists, provides them with a platform to share their ideas, and helps them stay current with the news, events, and jobs within their local scientific community. This inspired us to launch Science in the City in our hometown of Vancouver, Canada in 2017.
Science in the City is your complete source for all the life science news and events happening in your city. The Science in the City website and weekly newsletter provide researchers and medical professionals with breaking news, in-depth articles, and insightful commentary on what is happening around them. By supplying scientists with a resource for the local news and events that affect them, Science in the City fosters learning and collaboration within scientific communities, ultimately supporting the advancement of science and medicine.
…
Vancouver is our hometown, so it made sense to launch this exciting initiative in our own backyard. But we’re only getting started! We’ve launched Science in the City in Seattle and Boston, and we’re currently working on bringing Science in the City to several more scientific communities across North America and Europe!
….
Do check their event listings as they range past life science to many other interesting ‘sciencish’ get togethers. For example, in early 2020 (in Vancouver) there was,
At a guess their funding comes from STEMCELL Technologies while Science Borealis was originally (not sure what the status is today) bankrolled by Canadian Science Publishing (CSP).
It’s just dance, dance, dance
Ranging from pigeon courtship to superconductivity, Canadian scientists have scored a number of wins in the Dance Your Ph.D. competition founded in 2008 according to its Wikipedia entry and held by Science Magazine and the American Association for the Advancement of Science (AAAS). The contest requires that the entrant dance either as a solo artist or as part of a troupe.
In 2018, a University of Alberta student won in the physics category and then went on to win overall. I covered it in a February 22, 2019 posting. Because I love the video, here is Pramodh Senarath Yapa with his Superconductivity: The Musical!, again,
BTW, John Bohannon who came up with the idea for the contest wrote this February 15, 2019 article about Yapa’s win for Science Magazine.
While searching for other Canadian Dance Your Ph.D. winners, I found some from the 2010 and 2011 contests. (If there are others, please do let me know in the Comments section.)
McConnell’s video did not win in its division but another Canadian student, Queen’s University (Ontario) biologist, Emma Ware won the 2011 social science division for ‘A Study of Social Interactivity Using Pigeon Courtship‘. For more about McConnell and Ware’s 2011 efforts, you can read Tyler Irving’s October 20, 2011 posting on his eponymous blog. (Side note: Irving is a Canadian science writer who started the blog in 2011 and took a five year hiatus from January 2015 to January 2020.)
Onward dance
Lesley Telford, choreographer and director of Inverso Productions based in Vancouver, seems to have started showing a dance piece inspired by Albert Einstein’s famous description of quantum entanglement as “spooky action from s a distance” in 2017.
I first wrote about it in an April 20, 2017 posting. The title, at that time, was, ‘Three Sets/Relating At A Distance; My tongue, your ear / If / Spooky Action at a Distance (phase 1‘. In 2017, Telford was artist-in-residence at the Dance Centre and TRIUMF, Canada’s national laboratory for particle and nuclear physics and accelerator-based science, both located in Vancouver.
She has continued to work with the concept and most recently her company gave performances of ‘Spooky Action’ in 2019 and will go on tour in 2020 according to her company’s homepage.
Unlike Lesley Telford who has a single science-inspired piece, Blue Ceilingdance in Toronto, is organized around the idea of art (dance) and science according to the company’s About page,
Blue Ceiling dance aims to pierce the soul through investigations at the intersection of art and science, and physical rigour provoked by the imagination. By peering into the mysterious corners of human experience and embodying the natural laws of the universe, we want to inspire empathy and curiosity. Through creation, production, commissioning and touring of new dance and multi-disciplinary works and through the Imaginative Body Classes, Blue Ceiling dance uses the poetry of the body and of scientific language to describe our experience of the world through the lens of poetic naturalism.
Blue Ceiling dance was founded by Lucy Rupert in 2004, as an umbrella for her creative endeavours. …
Our biggest project to date premieres January 23-26th, 2020 at The Theatre Centre [Toronto].
Using the length of time it takes light to travel from the Sun to Earth, we launch into 8 overlapping meditations on the physical behaviour of light, the metaphors of astrophysics, and the soul of cosmology, as they brush against a sense of our own mortality. What would you do with your last 8 minutes and 17 seconds before the lights go out?
Choreographed and conceived by Lucy Rupert with additional choreography by Karen Kaeja, Emma Kerson and Jane Alison McKinney, and Michael Caldwell. With text written by Hume Baugh.
The company’s repertoire is diverse and focused largely on science,
Animal Vegetable Mineral is a site-specific work with a naturalist-led hike. Exploring embodiments of each category of matter, the dancers form an ecosystem under stress, and highlight the interconnectedness of all species and our deep need for one another. Audiences explore their local environment and encounter human embodiments in an intimate performance setting.
Originally made for the High Park Nature Centre in Toronto, the piece is adaptable to different ecosystems and environments.
dead reckoning Perplexing, haunting and slightly mischievous, with choreography by Lucy Rupert and international ballet choreographer Peter Quanz. The launching point for this work of dance-theatre is Sir Ernest Shackleton’s ill-fated expedition to Antarctica in 1914 and the mysterious experiences surrounding his life-or-death situation. Three linked dances offer three views of an explorer pursued by an enigmatic “other”.
…
Bye, bye ScienceOnline Vancouver
A ScienceOnline conference and community based in the United States inspired a short-lived but exciting offshoot in Vancouver. With much ado, their first event was held on April 19, 2012. As I recall, by December 2012, it had died.
The volunteers were wildly ambitious and it’s very hard to maintain the level of dynamism and technology they established on their first night. Here’s how I described the first event in my April 20, 2012 posting, ” It was a very technology-heavy event in that there was livestreaming, multiple computers and screens, references to tweeting and Storify, etc.” That’s a lot to do on a regular basis as volunteers. By Christmas 2012, ScienceOnline was gone. It was a great and I’m thankful for it.
Now onto part 2 where you’ll find the visual arts, poetry, festivals, and more.
Gold stars for everyone who recognized the loose paraphrasing of the title, Love in the Time of Cholera, for Gabrial Garcia Marquez’s 1985 novel.
I wrote my headline and first paragraph yesterday and found this in my email box this morning, from a March 25, 2020 University of British Columbia news release, which compares times, diseases, and scares of the past with today’s COVID-19 (Perhaps politicians and others could read this piece and stop using the word ‘unprecedented’ when discussing COVID-19?),
How globalization stoked fear of disease during the Romantic era
In the late 18th and early 19th centuries, the word “communication” had several meanings. People used it to talk about both media and the spread of disease, as we do today, but also to describe transport—via carriages, canals and shipping.
Miranda Burgess, an associate professor in UBC’s English department, is working on a book called Romantic Transport that covers these forms of communication in the Romantic era and invites some interesting comparisons to what the world is going through today.
We spoke with her about the project.
What is your book about?
It’s about global infrastructure at the dawn of globalization—in particular the extension of ocean navigation through man-made inland waterways like canals and ship’s canals. These canals of the late 18th and early 19th century were like today’s airline routes, in that they brought together places that were formerly understood as far apart, and shrunk time because they made it faster to get from one place to another.
This book is about that history, about the fears that ordinary people felt in response to these modernizations, and about the way early 19th-century poets and novelists expressed and responded to those fears.
What connections did those writers make between transportation and disease?
In the 1810s, they don’t have germ theory yet, so there’s all kinds of speculation about how disease happens. Works of tropical medicine, which is rising as a discipline, liken the human body to the surface of the earth. They talk about nerves as canals that convey information from the surface to the depths, and the idea that somehow disease spreads along those pathways.
When the canals were being built, some writers opposed them on the grounds that they could bring “strangers” through the heart of the city, and that standing water would become a breeding ground for disease. Now we worry about people bringing disease on airplanes. It’s very similar to that.
What was the COVID-19 of that time?
Probably epidemic cholera [emphasis mine], from about the 1820s onward. The Quarterly Review, a journal that novelist Walter Scott was involved in editing, ran long articles that sought to trace the map of cholera along rivers from South Asia, to Southeast Asia, across Europe and finally to Britain. And in the way that its spread is described, many of the same fears that people are evincing now about COVID-19 were visible then, like the fear of clothes. Is it in your clothes? Do we have to burn our clothes? People were concerned.
What other comparisons can be drawn between those times and what is going on now?
Now we worry about the internet and “fake news.” In the 19th century, they worried about what William Wordsworth called “the rapid communication of intelligence,” which was the daily newspaper. Not everybody had access to newspapers, but each newspaper was read by multiple families and newspapers were available in taverns and coffee shops. So if you were male and literate, you had access to a newspaper, and quite a lot of women did, too.
Paper was made out of rags—discarded underwear. Because of the French Revolution and Napoleonic Wars that followed, France blockaded Britain’s coast and there was a desperate shortage of rags to make paper, which had formerly come from Europe. And so Britain started to import rags from the Caribbean that had been worn by enslaved people.
Papers of the time are full of descriptions of the high cost of rags, how they’re getting their rags from prisons, from prisoners’ underwear, and fear about the kinds of sweat and germs that would have been harboured in those rags—and also discussions of scarcity, as people stole and hoarded those rags. It rings very well with what the internet is telling us now about a bunch of things around COVID-19.
Pietsch, who is also curator emeritus of fishes at the Burke Museum of Natural History and Culture, has published over 200 articles and a dozen books on the biology and behavior of marine fishes. He wrote this book with Rachel J. Arnold, a faculty member at Northwest Indian College in Bellingham and its Salish Sea Research Center.
These walking fishes have stepped into the spotlight lately, with interest growing in recent decades. And though these predatory fishes “will almost certainly devour anything else that moves in a home aquarium,” Pietsch writes, “a cadre of frogfish aficionados around the world has grown within the dive community and among aquarists.” In fact, Pietsch said, there are three frogfish public groups on Facebook, with more than 6,000 members.
…
First, what is a frogfish?
Ted Pietsch: A member of a family of bony fishes, containing 52 species, all of which are highly camouflaged and whose feeding strategy consists of mimicking the immobile, inert, and benign appearance of a sponge or an algae-encrusted rock, while wiggling a highly conspicuous lure to attract prey.
This is a fish that “walks” and “hops” across the sea bottom, and clambers about over rocks and coral like a four-legged terrestrial animal but, at the same time, can jet-propel itself through open water. Some lay their eggs encapsulated in a complex, floating, mucus mass, called an “egg raft,” while some employ elaborate forms of parental care, carrying their eggs around until they hatch.
They are among the most colorful of nature’s productions, existing in nearly every imaginable color and color pattern, with an ability to completely alter their color and pattern in a matter of days or seconds. All these attributes combined make them one of the most intriguing groups of aquatic vertebrates for the aquarist, diver, and underwater photographer as well as the professional zoologist.
…
I couldn’t resist the ‘frog’ reference and I’m glad since this is a good read with a number of fascinating photographs and illustrations.,
An illustration of the frogfish Antennarius pictus, published by George Shaw in 1794. From a new book by Ted Pietsch, UW professor of emeritus of aquatic and fishery sciences. Courtesy: University of Washington (state)
A block of sand particles held together by living cells. Credit: The University of Colorado Boulder College of Engineering and Applied Science
A March 24, 2020 news item on phys.org features the future of building construction as perceived by synthetic biologists,
Buildings are not unlike a human body. They have bones and skin; they breathe. Electrified, they consume energy, regulate temperature and generate waste. Buildings are organisms—albeit inanimate ones.
But what if buildings—walls, roofs, floors, windows—were actually alive—grown, maintained and healed by living materials? Imagine architects using genetic tools that encode the architecture of a building right into the DNA of organisms, which then grow buildings that self-repair, interact with their inhabitants and adapt to the environment.
…
A March 23, 2020 essay by Wil Srubar (Professor of Architectural Engineering and Materials Science, University of Colorado Boulder), which originated the news item, provides more insight,
Living architecture is moving from the realm of science fiction into the laboratory as interdisciplinary teams of researchers turn living cells into microscopic factories. At the University of Colorado Boulder, I lead the Living Materials Laboratory. Together with collaborators in biochemistry, microbiology, materials science and structural engineering, we use synthetic biology toolkits to engineer bacteria to create useful minerals and polymers and form them into living building blocks that could, one day, bring buildings to life.
In our most recent work, published in Matter, we used photosynthetic cyanobacteria to help us grow a structural building material – and we kept it alive. Similar to algae, cyanobacteria are green microorganisms found throughout the environment but best known for growing on the walls in your fish tank. Instead of emitting CO2, cyanobacteria use CO2 and sunlight to grow and, in the right conditions, create a biocement, which we used to help us bind sand particles together to make a living brick.
By keeping the cyanobacteria alive, we were able to manufacture building materials exponentially. We took one living brick, split it in half and grew two full bricks from the halves. The two full bricks grew into four, and four grew into eight. Instead of creating one brick at a time, we harnessed the exponential growth of bacteria to grow many bricks at once – demonstrating a brand new method of manufacturing materials.
Researchers have only scratched the surface of the potential of engineered living materials. Other organisms could impart other living functions to material building blocks. For example, different bacteria could produce materials that heal themselves, sense and respond to external stimuli like pressure and temperature, or even light up. If nature can do it, living materials can be engineered to do it, too.
It also take less energy to produce living buildings than standard ones. Making and transporting today’s building materials uses a lot of energy and emits a lot of CO2. For example, limestone is burned to make cement for concrete. Metals and sand are mined and melted to make steel and glass. The manufacture, transport and assembly of building materials account for 11% of global CO2 emissions. Cement production alone accounts for 8%. In contrast, some living materials, like our cyanobacteria bricks, could actually sequester CO2.
…
The field of engineered living materials is in its infancy, and further research and development is needed to bridge the gap between laboratory research and commercial availability. Challenges include cost, testing, certification and scaling up production. Consumer acceptance is another issue. For example, the construction industry has a negative perception of living organisms. Think mold, mildew, spiders, ants and termites. We’re hoping to shift that perception. Researchers working on living materials also need to address concerns about safety and biocontamination.
The [US] National Science Foundation recently named engineered living materials one of the country’s key research priorities. Synthetic biology and engineered living materials will play a critical role in tackling the challenges humans will face in the 2020s and beyond: climate change, disaster resilience, aging and overburdened infrastructure, and space exploration.
…
If you have time and interest, this is fascinating. Strubar is a little exuberant and, at this point, I welcome it.
Fitness
The Lithuanians are here for us. Scientists from the Kaunas University of Technology have just published a paper on better exercises for lower back pain in our increasingly sedentary times, from a March 23, 2020 Kaunas University of Technology press release (also on EurekAlert) Note: There are a few minor grammatical issues,
With the significant part of the global population forced to work from home, the occurrence of lower back pain may increase. Lithuanian scientists have devised a spinal stabilisation exercise programme for managing lower back pain for people who perform a sedentary job. After testing the programme with 70 volunteers, the researchers have found that the exercises are not only efficient in diminishing the non-specific lower back pain, but their effect lasts 3 times longer than that of a usual muscle strengthening exercise programme.
According to the World Health Organisation, lower back pain is among the top 10 diseases and injuries that are decreasing the quality of life across the global population. It is estimated that non-specific low back pain is experienced by 60% to 70% of people in industrialised societies. Moreover, it is the leading cause of activity limitation and work absence throughout much of the world. For example, in the United Kingdom, low back pain causes more than 100 million workdays lost per year, in the United States – an estimated 149 million.
Chronic lower back pain, which starts from long-term irritation or nerve injury affects the emotions of the afflicted. Anxiety, bad mood and even depression, also the malfunctioning of the other bodily systems – nausea, tachycardia, elevated arterial blood pressure – are among the conditions, which may be caused by lower back pain.
During the coronavirus disease (COVID-19) outbreak, with a significant part of the global population working from home and not always having a properly designed office space, the occurrence of lower back pain may increase.
“Lower back pain is reaching epidemic proportions. Although it is usually clear what is causing the pain and its chronic nature, people tend to ignore these circumstances and are not willing to change their lifestyle. Lower back pain usually comes away itself, however, the chances of the recurring pain are very high”, says Dr Irina Klizienė, a researcher at Kaunas University of Technology (KTU) Faculty of Social Sciences, Humanities and Arts.
Dr Klizienė, together with colleagues from KTU and from Lithuanian Sports University has designed a set of stabilisation exercises aimed at strengthening the muscles which support the spine at the lower back, i.e. lumbar area. The exercise programme is based on Pilates methodology.
According to Dr Klizienė, the stability of lumbar segments is an essential element of body biomechanics. Previous research evidence shows that in order to avoid the lower back pain it is crucial to strengthen the deep muscles, which are stabilising the lumbar area of the spine. One of these muscles is multifidus muscle.
“Human central nervous system is using several strategies, such as preparing for keeping the posture, preliminary adjustment to the posture, correcting the mistakes of the posture, which need to be rectified by specific stabilising exercises. Our aim was to design a set of exercises for this purpose”, explains Dr Klizienė.
The programme, designed by Dr Klizienė and her colleagues is comprised of static and dynamic exercises, which train the muscle strength and endurance. The static positions are to be held from 6 to 20 seconds; each exercise to be repeated 8 to 16 times.
Caption: The static positions are to be held from 6 to 20 seconds; each exercise to be repeated 8 to 16 times. Credit: KTU
The previous set is a little puzzling but perhaps you’ll find these ones below easier to follow,
Caption: The exercises are aimed at strengthening the muscles which support the spine at the lower back. Credit: KTU
I think more pictures of intervening moves would have been useful. Now. getting back to the press release,
In order to check the efficiency of the programme, 70 female volunteers were randomly enrolled either to the lumbar stabilisation exercise programme or to a usual muscle strengthening exercise programme. Both groups were exercising twice a week for 45 minutes for 20 weeks. During the experiment, ultrasound scanning of the muscles was carried out.
As soon as 4 weeks in lumbar stabilisation programme, it was observed that the cross-section area of the multifidus muscle of the subjects of the stabilisation group has increased; after completing the programme, this increase was statistically significant (p < 0,05). This change was not observed in the strengthening group.
Moreover, although both sets of exercises were efficient in eliminating lower back pain and strengthening the muscles of the lower back area, the effect of stabilisation exercises lasted 3 times longer – 12 weeks after the completion of the stabilisation programme against 4 weeks after the completion of the muscle strengthening programme.
“There are only a handful of studies, which have directly compared the efficiency of stabilisation exercises against other exercises in eliminating lower back pain”, says Dr Klizienė, “however, there are studies proving that after a year, lower back pain returned only to 30% of people who have completed a stabilisation exercise programme, and to 84% of people who haven’t taken these exercises. After three years these proportions are 35% and 75%.”
According to her, research shows that the spine stabilisation exercises are more efficient than medical intervention or usual physical activities in curing the lower back pain and avoiding the recurrence of the symptoms in the future.
This waffled, greyish thing may not look like much but scientists are hopeful that it can be useful as a health sensor in athletic shoes and elsewhere. A March 6, 2020 news item on Nanowerk describes the work in more detail (Note: Links have been removed),
Researchers have utilized 3D printing and nanotechnology to create a durable, flexible sensor for wearable devices to monitor everything from vital signs to athletic performance (ACS Nano, “3D-Printed Ultra-Robust Surface-Doped Porous Silicone Sensors for Wearable Biomonitoring”).
The new technology, developed by engineers at the University of Waterloo [Ontario, Canada], combines silicone rubber with ultra-thin layers of graphene in a material ideal for making wristbands or insoles in running shoes.
When that rubber material bends or moves, electrical signals are created by the highly conductive, nanoscale graphene embedded within its engineered honeycomb structure.
“Silicone gives us the flexibility and durability required for biomonitoring applications, and the added, embedded graphene makes it an effective sensor,” said Ehsan Toyserkani, research director at the Multi-Scale Additive Manufacturing (MSAM) Lab at Waterloo. “It’s all together in a single part.”
Fabricating a silicone rubber structure with such complex internal features is only possible using state-of-the-art 3D printing – also known as additive manufacturing – equipment and processes.
The rubber-graphene material is extremely flexible and durable in addition to highly conductive.
“It can be used in the harshest environments, in extreme temperatures and humidity,” said Elham Davoodi, an engineering PhD student at Waterloo who led the project. “It could even withstand being washed with your laundry.”
The material and the 3D printing process enable custom-made devices to precisely fit the body shapes of users, while also improving comfort compared to existing wearable devices and reducing manufacturing costs due to simplicity.
Toyserkani, a professor of mechanical and mechatronics engineering, said the rubber-graphene sensor can be paired with electronic components to make wearable devices that record heart and breathing rates, register the forces exerted when athletes run, allow doctors to remotely monitor patients and numerous other potential applications.
Researchers from the University of California, Los Angeles and the University of British Columbia collaborated on the project.
[downloaded from http://arpico.ca/arpico/event/the-eyes-are-the-windows-to-the-mind–arpico-agm-2020]
A February 12, 2020 announcement (received via email) from ARPICO (Society of Italian Researchers and Professionals in Western Canada) features an upcoming March 2020 meeting,
ARPICO’s activity in 2020 will begin on Wednesday March 4th at the Italian Cultural Centre, Room 5, near the Museum & Art Gallery.
We’re sure many of us have often heard the words “artificial intelligence” also known by its acronym “AI”, a concept that appears to be infiltrating many aspects of our lives. It is probably a good guess to say that many of us wonder what AI really is and about the pros and cons of AI technology’s ubiquitous presence.
While it would take far longer than the typical ARPICO speaking event duration to even define AI, we will be able to delve into some of its workings and their effect on our lives at our next event when we are very pleased to host Dr. Cristina Conati, who will be presenting “The Eyes Are the Windows to the Mind: Implications for Artificial Intelligence (AI)-driven Personalized Interaction“
…
Ahead of the speaking event, ARPICO will be holding its 2020 Annual General Meeting in the same location. We encourage everyone to participate in the AGM and have their say on all aspects of ARPICO’s matters. ARPICO is made by all of its members, not just the Board, and it is therefore paramount that you all make an effort to attend, let us know what your wishes are for the Society and tell us how we can do better together as we go forward.
If you are driving to the venue, there is plenty of free parking space.
We look forward to seeing everyone there.
The evening agenda is as follows:
5:45PM to 6:30PM – Annual General Meeting
[ Doors Open for Registration at 5:30PM ]
7:00pm – Start of the evening Event with introductions & lecture by Dr. Cristina Conati
[ Doors Open for Registration at 6:30PM ]
8:00 pm – Q & A Period
to follow – Mingling & Refreshments until about 9:30 pm
Here’s a description of the talk and Dr. Conati,
Eye-tracking has been extensively used both in psychology for understanding various aspects of human cognition, as well as in human computer interaction (HCI) for evaluation of interface design or as a form of direct input. In recent years, eye-tracking has also been investigated as a source of information for machine learning models that predict relevant user states and traits (e.g., attention, confusion, learning, perceptual abilities). These predictions can then be leveraged by AI agents to personalize the interaction with their users. In this talk, Dr. Conati will provide an overview of the research her lab has done in this area, including predicting user cognitive skills, and affective states, with applications to User-Adaptive Visualizations and Intelligent Tutoring Systems.
Dr. Conati is a Professor of Computer Science at the University of British Columbia, Vancouver, Canada. She received an M.Sc. in Computer Science at the University of Milan, as well as an M.Sc. and Ph.D. in Intelligent Systems at the University of Pittsburgh. Conati’s research is at the intersection of Artificial Intelligence (AI), Human Computer Interaction (HCI) and Cognitive Science, with the goal to create intelligent interactive systems that can capture relevant user’s properties (states, skills, needs) and personalize the interaction accordingly. Conati has over 100 peer-reviewed publications in this field and her research has received awards from a variety of venues, including UMUAI, the Journal of User Modeling and User Adapted Interaction (2002), the ACM International Conference on Intelligent User Interfaces (IUI 2007), the International Conference of User Modeling, Adaptation and Personalization (UMAP 2013, 2014), TiiS, ACM Transactions on Intelligent Interactive Systems (2014), and the International Conference on Intelligent Virtual Agents (IVA 2016).
I have more registration information from the announcement,
WHEN (AGM): Wednesday, March 4th, 2020 at 5:45PM (doors open at 5:30PM)
WHEN (EVENT): Wednesday, March 4th, 2020 at 7:00PM (doors open at 6:30PM)
WHERE: Italian Cultural Centre – Museum & Art Gallery – Room 5 – 3075 Slocan St, Vancouver, BC, V5M 3E4
Tickets
are FREE, but all individuals are requested to obtain “free-admission”
tickets on EventBrite site due to limited seating at the venue.
Organizers need accurate registration numbers to manage wait lists and
prepare name tags.
All
ARPICO events are 100% staffed by volunteer organizers and helpers,
however, room rental, stationery, and guest refreshments are costs
incurred and underwritten by members of ARPICO. Therefore to be fair,
all audience participants are asked to donate to the best of their
ability at the door or via EventBrite to “help” defray costs of the
event.
Just in time for Valentine’s Day 2020, there’s this February 12, 2020 University of British Columbia (UBC) Faculty of Medicine Brain Talks event (from the Brain Talks event page),
When: Wednesday February 12, 2019 at 6:00pm
Where: VGH [Vancouver General Hospital] Paetzhold Theatre
Dr. Spencer Wade and Veronica Li, RCC: Is Love an Emotion?
Dr. Rebecca Cobb is an Associate Professor of Psychology at Simon Fraser University. Dr. Cobb directs the Close Relationships Lab at SFU. Her research examines developmental trajectories of and transitions in close relationships; factors that predict sexual functioning and relationship success; and prevention of relationship distress. See more about Dr. Cobb’s research here: https://www.youtube.com/watch?v=kKJgHmTGZyQ
Dr. Spencer Wade is a Clinical Psychologist working primarily in the field of rehabilitation psychology. He routinely assists clients to navigate the challenges following a traumatic injury, including issues related to sexuality and barriers to engaging in a fulfilling, intimate relationship. Dr. Wade’s curiosity about human intimacy led him to study the nature of love, sex and relationships over the life span.
Veronica Li is a Registered Clinical Counselor and a PsyD Candidate at Adler University. Ms. Li’s research interests are focused on the influence of social norms on human sexuality. She is currently training in the area of traumatic brain injuries and is specifically interested in the intersection between brain injury and intimate relationships.
Panel discussion and catered networking to follow!