Tag Archives: Australia

Highlights from Simon Fraser University’s (SFU) June 2024 Metacreation Lab newsletter

The latest newsletter from the Metacreation Lab for Creative AI (at Simon Fraser University [SFU]), features a ‘first’. From the June 2024 Metacreation Lab newsletter (received via email),

“Longing + Forgetting” at the 2024 Currents New Media Festival in Santa Fe

We are thrilled to announce that Longing + Forgetting has been invited to the esteemed Currents New Media Festival in Santa Fe, New Mexico. Longing + Forgetting is a generative audio-video installation that explores the relationship between humans and machines. This media art project, created by Canadian artists Philippe Pasquier and Thecla Schiphorst alongside Australian artist Matt Gingold, has garnered international acclaim since its inception. Initially presented in Canada in 2013, the piece has journeyed through multiple international festivals, captivating audiences with its exploration of human expression through movement.

Philippe Pasquier will be on-site for the festival, overseeing the site-specific installation at El Museo Cultural de Santa Fe. This marks the North American premiere of the redeveloped version of “Longing + Forgetting,” featuring a new soundtrack by Pasquier based solely on the close-mic recording of dancers.

Currents New Media Festival runs June 14–23, 2024 and brings together the work of established and emerging new media artists from around the world across various disciplines, with an expected 9,000 visitors during the festival’s run.

More Information

Discover “Longing + Forgetting” at Bunjil Place in Melbourne

We are excited to announce that “Longing + Forgetting” is being featured at Bunjil Place in Melbourne, Australia. As part of the Art After Dark Program curated by Angela Barnett, this outdoor screening will run from June 1 to June 28, illuminating the night from 5 pm to 7 pm.

More Information

Presenting “Unveiling New Artistic Dimensions in Calligraphic Arabic Script with GANs” at SIGGRAPH 2024

We are pleased to share that our paper, “Unveiling New Artistic Dimensions in Calligraphic Arabic Script with Generative Adversarial Networks,” will be presented at SIGGRAPH 2024, the premier conference on computer graphics and interactive techniques. The event will take place from July 28 to August 1, 2024, in Denver, Colorado.

This paper delves into the artistic potential of Generative Adversarial Networks (GANs) to create and innovate within the realm of calligraphic Arabic script, particularly the nastaliq style. By developing two custom datasets and leveraging the StyleGAN2-ada architecture, we have generated high-quality, stylistically coherent calligraphic samples. Our work bridges the gap between traditional calligraphy and modern technology and offers a new mode of creative expression for this artform.

SIGGRAPH’24

For those unfamiliar with the acronym, SIGGRAPH stands for special interest group for computer graphics and interactive techniques. SIGGRAPH is huge and it’s a special interest group (SIG) of the ACM (Association for Computing Machinery).

If memory serves, this is the first time I’ve seen the Metacreation Lab make a request for volunteers, from the June 2024 Metacreation Lab newsletter,

Are you interested in music-making and AI technology?

The Metacreation Lab for Creative AI at Simon Fraser University (SFU), is conducting a research study in partnership with Steinberg Media Technologies GmbH. We are testing and evaluating MMM-Cubase v2, a creative AI system for assisting composing music. The system is based on our best music transformer, the multitrack music machine (MMM), which can generate, re-generate or complete new musical content based on existing content.

There is no prerequisite for this study beyond a basic knowledge of DAW and MIDI. So everyone is welcome even if you do not consider yourself a composer, but are interested in trying the system. The entire study should take you around 3 hours, and you must be 19+ years old. Basic interest and familiarity with digital music composition will help, but no experience with making music is required.

We seek to better evaluate the potential for adoption of such systems for novice/beginner as well as for seasoned composers. More specifically, you will be asked to install and use the system to compose a short 4-track musical composition and to fill out a survey questionnaire at the end.

Participation in this study is rewarded with one free Steinberg software license of your choice among Cubase Element, Dorico Element or Wavelab Element.

For any question or further inquiry, please contact researcher Renaud Bougueng Tchemeube directly at rbouguen@sfu.ca.

Enroll in the Study

You can find the Metacreation Lab for Creative AI website here.

Portable and non-invasive (?) mind-reading AI (artificial intelligence) turns thoughts into text and some thoughts about the near future

First, here’s some of the latest research and if by ‘non-invasive,’ you mean that electrodes are not being planted in your brain, then this December 12, 2023 University of Technology Sydney (UTS) press release (also on EurekAlert) highlights non-invasive mind-reading AI via a brain-computer interface (BCI), Note: Links have been removed,

In a world-first, researchers from the GrapheneX-UTS Human-centric Artificial Intelligence Centre at the University of Technology Sydney (UTS) have developed a portable, non-invasive system that can decode silent thoughts and turn them into text. 

The technology could aid communication for people who are unable to speak due to illness or injury, including stroke or paralysis. It could also enable seamless communication between humans and machines, such as the operation of a bionic arm or robot.

The study has been selected as the spotlight paper at the NeurIPS conference, a top-tier annual meeting that showcases world-leading research on artificial intelligence and machine learning, held in New Orleans on 12 December 2023.

The research was led by Distinguished Professor CT Lin, Director of the GrapheneX-UTS HAI Centre, together with first author Yiqun Duan and fellow PhD candidate Jinzhou Zhou from the UTS Faculty of Engineering and IT.

In the study participants silently read passages of text while wearing a cap that recorded electrical brain activity through their scalp using an electroencephalogram (EEG). A demonstration of the technology can be seen in this video [See UTS press release].

The EEG wave is segmented into distinct units that capture specific characteristics and patterns from the human brain. This is done by an AI model called DeWave developed by the researchers. DeWave translates EEG signals into words and sentences by learning from large quantities of EEG data. 

“This research represents a pioneering effort in translating raw EEG waves directly into language, marking a significant breakthrough in the field,” said Distinguished Professor Lin.

“It is the first to incorporate discrete encoding techniques in the brain-to-text translation process, introducing an innovative approach to neural decoding. The integration with large language models is also opening new frontiers in neuroscience and AI,” he said.

Previous technology to translate brain signals to language has either required surgery to implant electrodes in the brain, such as Elon Musk’s Neuralink [emphasis mine], or scanning in an MRI machine, which is large, expensive, and difficult to use in daily life.

These methods also struggle to transform brain signals into word level segments without additional aids such as eye-tracking, which restrict the practical application of these systems. The new technology is able to be used either with or without eye-tracking.

The UTS research was carried out with 29 participants. This means it is likely to be more robust and adaptable than previous decoding technology that has only been tested on one or two individuals, because EEG waves differ between individuals. 

The use of EEG signals received through a cap, rather than from electrodes implanted in the brain, means that the signal is noisier. In terms of EEG translation however, the study reported state-of the art performance, surpassing previous benchmarks.

“The model is more adept at matching verbs than nouns. However, when it comes to nouns, we saw a tendency towards synonymous pairs rather than precise translations, such as ‘the man’ instead of ‘the author’,” said Duan. [emphases mine; synonymous, eh? what about ‘woman’ or ‘child’ instead of the ‘man’?]

“We think this is because when the brain processes these words, semantically similar words might produce similar brain wave patterns. Despite the challenges, our model yields meaningful results, aligning keywords and forming similar sentence structures,” he said.

The translation accuracy score is currently around 40% on BLEU-1. The BLEU score is a number between zero and one that measures the similarity of the machine-translated text to a set of high-quality reference translations. The researchers hope to see this improve to a level that is comparable to traditional language translation or speech recognition programs, which is closer to 90%.

The research follows on from previous brain-computer interface technology developed by UTS in association with the Australian Defence Force [ADF] that uses brainwaves to command a quadruped robot, which is demonstrated in this ADF video [See my June 13, 2023 posting, “Mind-controlled robots based on graphene: an Australian research story” for the story and embedded video].

About one month after the research announcement regarding the University of Technology Sydney’s ‘non-invasive’ brain-computer interface (BCI), I stumbled across an in-depth piece about the field of ‘non-invasive’ mind-reading research.

Neurotechnology and neurorights

Fletcher Reveley’s January 18, 2024 article on salon.com (originally published January 3, 2024 on Undark) shows how quickly the field is developing and raises concerns, Note: Links have been removed,

One afternoon in May 2020, Jerry Tang, a Ph.D. student in computer science at the University of Texas at Austin, sat staring at a cryptic string of words scrawled across his computer screen:

“I am not finished yet to start my career at twenty without having gotten my license I never have to pull out and run back to my parents to take me home.”

The sentence was jumbled and agrammatical. But to Tang, it represented a remarkable feat: A computer pulling a thought, however disjointed, from a person’s mind.

For weeks, ever since the pandemic had shuttered his university and forced his lab work online, Tang had been at home tweaking a semantic decoder — a brain-computer interface, or BCI, that generates text from brain scans. Prior to the university’s closure, study participants had been providing data to train the decoder for months, listening to hours of storytelling podcasts while a functional magnetic resonance imaging (fMRI) machine logged their brain responses. Then, the participants had listened to a new story — one that had not been used to train the algorithm — and those fMRI scans were fed into the decoder, which used GPT1, a predecessor to the ubiquitous AI chatbot ChatGPT, to spit out a text prediction of what it thought the participant had heard. For this snippet, Tang compared it to the original story:

“Although I’m twenty-three years old I don’t have my driver’s license yet and I just jumped out right when I needed to and she says well why don’t you come back to my house and I’ll give you a ride.”

The decoder was not only capturing the gist of the original, but also producing exact matches of specific words — twenty, license. When Tang shared the results with his adviser, a UT Austin neuroscientist named Alexander Huth who had been working towards building such a decoder for nearly a decade, Huth was floored. “Holy shit,” Huth recalled saying. “This is actually working.” By the fall of 2021, the scientists were testing the device with no external stimuli at all — participants simply imagined a story and the decoder spat out a recognizable, albeit somewhat hazy, description of it. “What both of those experiments kind of point to,” said Huth, “is the fact that what we’re able to read out here was really like the thoughts, like the idea.”

The scientists brimmed with excitement over the potentially life-altering medical applications of such a device — restoring communication to people with locked-in syndrome, for instance, whose near full-body paralysis made talking impossible. But just as the potential benefits of the decoder snapped into focus, so too did the thorny ethical questions posed by its use. Huth himself had been one of the three primary test subjects in the experiments, and the privacy implications of the device now seemed visceral: “Oh my god,” he recalled thinking. “We can look inside my brain.”

Huth’s reaction mirrored a longstanding concern in neuroscience and beyond: that machines might someday read people’s minds. And as BCI technology advances at a dizzying clip, that possibility and others like it — that computers of the future could alter human identities, for example, or hinder free will — have begun to seem less remote. “The loss of mental privacy, this is a fight we have to fight today,” said Rafael Yuste, a Columbia University neuroscientist. “That could be irreversible. If we lose our mental privacy, what else is there to lose? That’s it, we lose the essence of who we are.”

Spurred by these concerns, Yuste and several colleagues have launched an international movement advocating for “neurorights” — a set of five principles Yuste argues should be enshrined in law as a bulwark against potential misuse and abuse of neurotechnology. But he may be running out of time.

Reveley’s January 18, 2024 article provides fascinating context and is well worth reading if you have the time.

For my purposes, I’m focusing on ethics, Note: Links have been removed,

… as these and other advances propelled the field forward, and as his own research revealed the discomfiting vulnerability of the brain to external manipulation, Yuste found himself increasingly concerned by the scarce attention being paid to the ethics of these technologies. Even Obama’s multi-billion-dollar BRAIN Initiative, a government program designed to advance brain research, which Yuste had helped launch in 2013 and supported heartily, seemed to mostly ignore the ethical and societal consequences of the research it funded. “There was zero effort on the ethical side,” Yuste recalled.

Yuste was appointed to the rotating advisory group of the BRAIN Initiative in 2015, where he began to voice his concerns. That fall, he joined an informal working group to consider the issue. “We started to meet, and it became very evident to me that the situation was a complete disaster,” Yuste said. “There was no guidelines, no work done.” Yuste said he tried to get the group to generate a set of ethical guidelines for novel BCI technologies, but the effort soon became bogged down in bureaucracy. Frustrated, he stepped down from the committee and, together with a University of Washington bioethicist named Sara Goering, decided to independently pursue the issue. “Our aim here is not to contribute to or feed fear for doomsday scenarios,” the pair wrote in a 2016 article in Cell, “but to ensure that we are reflective and intentional as we prepare ourselves for the neurotechnological future.”

In the fall of 2017, Yuste and Goering called a meeting at the Morningside Campus of Columbia, inviting nearly 30 experts from all over the world in such fields as neurotechnology, artificial intelligence, medical ethics, and the law. By then, several other countries had launched their own versions of the BRAIN Initiative, and representatives from Australia, Canada [emphasis mine], China, Europe, Israel, South Korea, and Japan joined the Morningside gathering, along with veteran neuroethicists and prominent researchers. “We holed ourselves up for three days to study the ethical and societal consequences of neurotechnology,” Yuste said. “And we came to the conclusion that this is a human rights issue. These methods are going to be so powerful, that enable to access and manipulate mental activity, and they have to be regulated from the angle of human rights. That’s when we coined the term ‘neurorights.’”

The Morningside group, as it became known, identified four principal ethical priorities, which were later expanded by Yuste into five clearly defined neurorights: The right to mental privacy, which would ensure that brain data would be kept private and its use, sale, and commercial transfer would be strictly regulated; the right to personal identity, which would set boundaries on technologies that could disrupt one’s sense of self; the right to fair access to mental augmentation, which would ensure equality of access to mental enhancement neurotechnologies; the right of protection from bias in the development of neurotechnology algorithms; and the right to free will, which would protect an individual’s agency from manipulation by external neurotechnologies. The group published their findings in an often-cited paper in Nature.

But while Yuste and the others were focused on the ethical implications of these emerging technologies, the technologies themselves continued to barrel ahead at a feverish speed. In 2014, the first kick of the World Cup was made by a paraplegic man using a mind-controlled robotic exoskeleton. In 2016, a man fist bumped Obama using a robotic arm that allowed him to “feel” the gesture. The following year, scientists showed that electrical stimulation of the hippocampus could improve memory, paving the way for cognitive augmentation technologies. The military, long interested in BCI technologies, built a system that allowed operators to pilot three drones simultaneously, partially with their minds. Meanwhile, a confusing maelstrom of science, science-fiction, hype, innovation, and speculation swept the private sector. By 2020, over $33 billion had been invested in hundreds of neurotech companies — about seven times what the NIH [US National Institutes of Health] had envisioned for the 12-year span of the BRAIN Initiative itself.

Now back to Tang and Huth (from Reveley’s January 18, 2024 article), Note: Links have been removed,

Central to the ethical questions Huth and Tang grappled with was the fact that their decoder, unlike other language decoders developed around the same time, was non-invasive — it didn’t require its users to undergo surgery. Because of that, their technology was free from the strict regulatory oversight that governs the medical domain. (Yuste, for his part, said he believes non-invasive BCIs pose a far greater ethical challenge than invasive systems: “The non-invasive, the commercial, that’s where the battle is going to get fought.”) Huth and Tang’s decoder faced other hurdles to widespread use — namely that fMRI machines are enormous, expensive, and stationary. But perhaps, the researchers thought, there was a way to overcome that hurdle too.

The information measured by fMRI machines — blood oxygenation levels, which indicate where blood is flowing in the brain — can also be measured with another technology, functional Near-Infrared Spectroscopy, or fNIRS. Although lower resolution than fMRI, several expensive, research-grade, wearable fNIRS headsets do approach the resolution required to work with Huth and Tang’s decoder. In fact, the scientists were able to test whether their decoder would work with such devices by simply blurring their fMRI data to simulate the resolution of research-grade fNIRS. The decoded result “doesn’t get that much worse,” Huth said.

And while such research-grade devices are currently cost-prohibitive for the average consumer, more rudimentary fNIRS headsets have already hit the market. Although these devices provide far lower resolution than would be required for Huth and Tang’s decoder to work effectively, the technology is continually improving, and Huth believes it is likely that an affordable, wearable fNIRS device will someday provide high enough resolution to be used with the decoder. In fact, he is currently teaming up with scientists at Washington University to research the development of such a device.

Even comparatively primitive BCI headsets can raise pointed ethical questions when released to the public. Devices that rely on electroencephalography, or EEG, a commonplace method of measuring brain activity by detecting electrical signals, have now become widely available — and in some cases have raised alarm. In 2019, a school in Jinhua, China, drew criticism after trialing EEG headbands that monitored the concentration levels of its pupils. (The students were encouraged to compete to see who concentrated most effectively, and reports were sent to their parents.) Similarly, in 2018 the South China Morning Post reported that dozens of factories and businesses had begun using “brain surveillance devices” to monitor workers’ emotions, in the hopes of increasing productivity and improving safety. The devices “caused some discomfort and resistance in the beginning,” Jin Jia, then a brain scientist at Ningbo University, told the reporter. “After a while, they got used to the device.”

But the primary problem with even low-resolution devices is that scientists are only just beginning to understand how information is actually encoded in brain data. In the future, powerful new decoding algorithms could discover that even raw, low-resolution EEG data contains a wealth of information about a person’s mental state at the time of collection. Consequently, nobody can definitively know what they are giving away when they allow companies to collect information from their brains.

Huth and Tang concluded that brain data, therefore, should be closely guarded, especially in the realm of consumer products. In an article on Medium from last April, Tang wrote that “decoding technology is continually improving, and the information that could be decoded from a brain scan a year from now may be very different from what can be decoded today. It is crucial that companies are transparent about what they intend to do with brain data and take measures to ensure that brain data is carefully protected.” (Yuste said the Neurorights Foundation recently surveyed the user agreements of 30 neurotech companies and found that all of them claim ownership of users’ brain data — and most assert the right to sell that data to third parties. [emphases mine]) Despite these concerns, however, Huth and Tang maintained that the potential benefits of these technologies outweighed their risks, provided the proper guardrails [emphasis mine] were put in place.

It would seem the first guardrails are being set up in South America (from Reveley’s January 18, 2024 article), Note: Links have been removed,

On a hot summer night in 2019, Yuste sat in the courtyard of an adobe hotel in the north of Chile with his close friend, the prominent Chilean doctor and then-senator Guido Girardi, observing the vast, luminous skies of the Atacama Desert and discussing, as they often did, the world of tomorrow. Girardi, who every year organizes the Congreso Futuro, Latin America’s preeminent science and technology event, had long been intrigued by the accelerating advance of technology and its paradigm-shifting impact on society — “living in the world at the speed of light,” as he called it. Yuste had been a frequent speaker at the conference, and the two men shared a conviction that scientists were birthing technologies powerful enough to disrupt the very notion of what it meant to be human.

Around midnight, as Yuste finished his pisco sour, Girardi made an intriguing proposal: What if they worked together to pass an amendment to Chile’s constitution, one that would enshrine protections for mental privacy as an inviolable right of every Chilean? It was an ambitious idea, but Girardi had experience moving bold pieces of legislation through the senate; years earlier he had spearheaded Chile’s famous Food Labeling and Advertising Law, which required companies to affix health warning labels on junk food. (The law has since inspired dozens of countries to pursue similar legislation.) With BCI, here was another chance to be a trailblazer. “I said to Rafael, ‘Well, why don’t we create the first neuro data protection law?’” Girardi recalled. Yuste readily agreed.

… Girardi led the political push, promoting a piece of legislation that would amend Chile’s constitution to protect mental privacy. The effort found surprising purchase across the political spectrum, a remarkable feat in a country famous for its political polarization. In 2021, Chile’s congress unanimously passed the constitutional amendment, which Piñera [Sebastián Piñera] swiftly signed into law. (A second piece of legislation, which would establish a regulatory framework for neurotechnology, is currently under consideration by Chile’s congress.) “There was no divide between the left or right,” recalled Girardi. “This was maybe the only law in Chile that was approved by unanimous vote.” Chile, then, had become the first country in the world to enshrine “neurorights” in its legal code.

Even before the passage of the Chilean constitutional amendment, Yuste had begun meeting regularly with Jared Genser, an international human rights lawyer who had represented such high-profile clients as Desmond Tutu, Liu Xiaobo, and Aung San Suu Kyi. (The New York Times Magazine once referred to Genser as “the extractor” for his work with political prisoners.) Yuste was seeking guidance on how to develop an international legal framework to protect neurorights, and Genser, though he had just a cursory knowledge of neurotechnology, was immediately captivated by the topic. “It’s fair to say he blew my mind in the first hour of discussion,” recalled Genser. Soon thereafter, Yuste, Genser, and a private-sector entrepreneur named Jamie Daves launched the Neurorights Foundation, a nonprofit whose first goal, according to its website, is “to protect the human rights of all people from the potential misuse or abuse of neurotechnology.”

To accomplish this, the organization has sought to engage all levels of society, from the United Nations and regional governing bodies like the Organization of American States, down to national governments, the tech industry, scientists, and the public at large. Such a wide-ranging approach, said Genser, “is perhaps insanity on our part, or grandiosity. But nonetheless, you know, it’s definitely the Wild West as it comes to talking about these issues globally, because so few people know about where things are, where they’re heading, and what is necessary.”

This general lack of knowledge about neurotech, in all strata of society, has largely placed Yuste in the role of global educator — he has met several times with U.N. Secretary-General António Guterres, for example, to discuss the potential dangers of emerging neurotech. And these efforts are starting to yield results. Guterres’s 2021 report, “Our Common Agenda,” which sets forth goals for future international cooperation, urges “updating or clarifying our application of human rights frameworks and standards to address frontier issues,” such as “neuro-technology.” Genser attributes the inclusion of this language in the report to Yuste’s advocacy efforts.

But updating international human rights law is difficult, and even within the Neurorights Foundation there are differences of opinion regarding the most effective approach. For Yuste, the ideal solution would be the creation of a new international agency, akin to the International Atomic Energy Agency — but for neurorights. “My dream would be to have an international convention about neurotechnology, just like we had one about atomic energy and about certain things, with its own treaty,” he said. “And maybe an agency that would essentially supervise the world’s efforts in neurotechnology.”

Genser, however, believes that a new treaty is unnecessary, and that neurorights can be codified most effectively by extending interpretation of existing international human rights law to include them. The International Covenant of Civil and Political Rights, for example, already ensures the general right to privacy, and an updated interpretation of the law could conceivably clarify that that clause extends to mental privacy as well.

There is no need for immediate panic (from Reveley’s January 18, 2024 article),

… while Yuste and the others continue to grapple with the complexities of international and national law, Huth and Tang have found that, for their decoder at least, the greatest privacy guardrails come not from external institutions but rather from something much closer to home — the human mind itself. Following the initial success of their decoder, as the pair read widely about the ethical implications of such a technology, they began to think of ways to assess the boundaries of the decoder’s capabilities. “We wanted to test a couple kind of principles of mental privacy,” said Huth. Simply put, they wanted to know if the decoder could be resisted.

In late 2021, the scientists began to run new experiments. First, they were curious if an algorithm trained on one person could be used on another. They found that it could not — the decoder’s efficacy depended on many hours of individualized training. Next, they tested whether the decoder could be thrown off simply by refusing to cooperate with it. Instead of focusing on the story that was playing through their headphones while inside the fMRI machine, participants were asked to complete other mental tasks, such as naming random animals, or telling a different story in their head. “Both of those rendered it completely unusable,” Huth said. “We didn’t decode the story they were listening to, and we couldn’t decode anything about what they were thinking either.”

Given how quickly this field of research is progressing, it seems like a good idea to increase efforts to establish neurorights (from Reveley’s January 18, 2024 article),

For Yuste, however, technologies like Huth and Tang’s decoder may only mark the beginning of a mind-boggling new chapter in human history, one in which the line between human brains and computers will be radically redrawn — or erased completely. A future is conceivable, he said, where humans and computers fuse permanently, leading to the emergence of technologically augmented cyborgs. “When this tsunami hits us I would say it’s not likely it’s for sure that humans will end up transforming themselves — ourselves — into maybe a hybrid species,” Yuste said. He is now focused on preparing for this future.

In the last several years, Yuste has traveled to multiple countries, meeting with a wide assortment of politicians, supreme court justices, U.N. committee members, and heads of state. And his advocacy is beginning to yield results. In August, Mexico began considering a constitutional reform that would establish the right to mental privacy. Brazil is currently considering a similar proposal, while Spain, Argentina, and Uruguay have also expressed interest, as has the European Union. In September [2023], neurorights were officially incorporated into Mexico’s digital rights charter, while in Chile, a landmark Supreme Court ruling found that Emotiv Inc, a company that makes a wearable EEG headset, violated Chile’s newly minted mental privacy law. That suit was brought by Yuste’s friend and collaborator, Guido Girardi.

“This is something that we should take seriously,” he [Huth] said. “Because even if it’s rudimentary right now, where is that going to be in five years? What was possible five years ago? What’s possible now? Where’s it gonna be in five years? Where’s it gonna be in 10 years? I think the range of reasonable possibilities includes things that are — I don’t want to say like scary enough — but like dystopian enough that I think it’s certainly a time for us to think about this.”

You can find The Neurorights Foundation here and/or read Reveley’s January 18, 2024 article on salon.com or as originally published January 3, 2024 on Undark. Finally, thank you for the article, Fletcher Reveley!

The sound of dirt

So you don’t get your hopes up, this acoustic story doesn’t offer any accompanying audio/acoustic files, i.e., I couldn’t find the sound of dirt.

In any event, there’s still an interesting story in an April 10, 2023 news item on phys.org,

U.K. and Australian ecologists have used audio technology to record different types of sounds in the soils of a degraded and restored forest to indicate the health of ecosystems.

Non-invasive acoustic monitoring has great potential for scientists to gather long-term information on species and their abundance, says Flinders University [Australia] researcher Dr. Jake Robinson, who conducted the study while at the University of Sheffield in England.

Photo: Pixabay

An April 8, 2023 Flinders University press release, which originated the news item, delves into the researcher’s work, Note: Links have been removed,

“Eco-acoustics can measure the health lf landscapes affected by farming, mining and deforestation but can also monitor their recovery following revegetation,” he says.  

“From earthworms and plant roots to shifting soils and other underground activity, these subtle sounds were stronger and more diverse in healthy soils – once background noise was blocked out.”   

The subterranean study used special microphones to collect almost 200 sound samples, each about three minutes long, from soil samples collected in restored and cleared forests in South Yorkshire, England. 

“Like underwater and above-ground acoustic monitoring, below-ground biodiversity monitoring using eco-acoustics has great potential,” says Flinders University co-author, Associate Professor Martin Breed. 

Since joining Flinders University, Dr Robinson has released his first book, entitled Invisible Friends (DOI: 10.53061/NZYJ2969) [emphasis mine], which covers his core research into ‘how microbes in the environment shape our lives and the world around us’. 

Now a researcher in restoration genomics at the College of Science and Engineering at Flinders University, the new book examines the powerful role invisible microbes play in ecology, immunology, psychology, forensics and even architecture.  

“Instead of considering microbes the bane of our life, as we have done during the global pandemic, we should appreciate the many benefits they bring in keeping plants animals, and ourselves, alive.”  

In another new article, Dr Robinson and colleagues call for a return to ‘nature play’ for children [emphasis mine] to expose their developing immune systems to a diverse array of microbes at a young age for better long-term health outcomes. 

“Early childhood settings should optimise both outdoor and indoor environments for enhanced exposure to diverse microbiomes for social, cognitive and physiological health,” the researchers say.  

“It’s important to remember that healthy soils feed the air with these diverse microbes,” Dr Robinson adds.  

It seems Robinson has gone on a publicity blitz, academic style, for his book. There’s a May 22, 2023 essay by Robinson, Carlos Abrahams (Senior Lecturer in Environmental Biology – Director of Bioacoustics, Nottingham Trent University); and Martin Breed (Associate Professor in Biology, Flinders University) on the Conversation, Note: A link has been removed,

Nurturing a forest ecosystem back to life after it’s been logged is not always easy.

It can take a lot of hard work and careful monitoring to ensure biodiversity thrives again. But monitoring biodiversity can be costly, intrusive and resource-intensive. That’s where ecological acoustic survey methods, or “ecoacoustics”, come into play.

Indeed, the planet sings. Think of birds calling, bats echolocating, tree leaves fluttering in the breeze, frogs croaking and bush crickets stridulating. We live in a euphonious theatre of life.

Even the creatures in the soil beneath our feet emit unique vibrations as they navigate through the earth to commute, hunt, feed and mate.

Robinson has published three papers within five months of each other, in addition to the book, which seems like heavy output to me.

First, here’s a link to and a citation for the education paper,

Optimising Early Childhood Educational Settings for Health Using Nature-Based Solutions: The Microbiome Aspect by Jake M. Robinson and Alexia Barrable. Educ. Sci. 2023, 13 (2), 211 DOI: https://doi.org/10.3390/educsci13020211
Published: 16 February 2023

This is an open access paper.

For these two links and citations, the articles seem to be very closely linked.,

The sound of restored soil: Measuring soil biodiversity in a forest restoration chronosequence with ecoacoustics by Jake M. Robinson, Martin F. Breed, Carlos Abrahams. doi: https://doi.org/10.1101/2023.01.23.525240 Posted January 23, 2023

The sound of restored soil: using ecoacoustics to measure soil biodiversity in a temperate forest restoration context by Jake M. Robinson, Martin F. Breed, Carlos Abrahams. Restoration Ecology, Online Version of Record before inclusion in an issue e13934 DOI: https://doi.org/10.1111/rec.13934 First published: 22 May 2023

Both links lead to open access papers.

Finally, there’s the book,

Invisible Friends; How Microbes Shape Our Lives and the World Around Us by Jake Robinson. Pelagic Publishing, 2022. ISBN 9781784274337 DOI: 10.53061/NZYJ2969

This you have to pay for.

For those would would like to hear something from nature, I have a May 27, 2022 posting, The sound of the mushroom. Enjoy!

Mind-controlled robots based on graphene: an Australian research story

As they keep saying these days, ‘it’s not science fiction anymore’.

It’s so fascinating I almost forgot what it’s like to make a video where it can take hours to get a few minutes (the video is a little over 3 mins.) and all the failures are edited out. Plus, I haven’t found any information about training both the human users and the robotic dogs/quadrupeds. Does it take minutes? hours? days? more? Can you work with any old robotic dog /quadruped or does it have to be the one you’ve ‘gotten to know’? Etc. Bottom line: I don’t know if I can take what I see in the video at face value.

A March 20, 2023 news item on Nanowerk announces the work from Australia,

The advanced brain-computer interface [BCI] was developed by Distinguished Professor Chin-Teng Lin and Professor Francesca Iacopi, from the UTS [University of Technology Sydney; Australia] Faculty of Engineering and IT, in collaboration with the Australian Army and Defence Innovation Hub.

As well as defence applications, the technology has significant potential in fields such as advanced manufacturing, aerospace and healthcare – for example allowing people with a disability to control a wheelchair or operate prosthetics.

“The hands-free, voice-free technology works outside laboratory settings, anytime, anywhere. It makes interfaces such as consoles, keyboards, touchscreens and hand-gesture recognition redundant,” said Professor Iacopi.

A March 20, 2023 University of Technology Sydney (UTS) press release, also on EurekAlert but published March 19, 2023, which originated the news item, describes the interface in more detail,

“By using cutting edge graphene material, combined with silicon, we were able to overcome issues of corrosion, durability and skin contact resistance, to develop the wearable dry sensors,” she said.

A new study outlining the technology has just been published in the peer-reviewed journal ACS Applied Nano Materials. It shows that the graphene sensors developed at UTS are very conductive, easy to use and robust.

The hexagon patterned sensors are positioned over the back of the scalp, to detect brainwaves from the visual cortex. The sensors are resilient to harsh conditions so they can be used in extreme operating environments.

The user wears a head-mounted augmented reality lens which displays white flickering squares. By concentrating on a particular square, the brainwaves of the operator are picked up by the biosensor, and a decoder translates the signal into commands.

The technology was recently demonstrated by the Australian Army, where soldiers operated a Ghost Robotics quadruped robot using the brain-machine interface [BMI]. The device allowed hands-free command of the robotic dog with up to 94% accuracy.

“Our technology can issue at least nine commands in two seconds. This means we have nine different kinds of commands and the operator can select one from those nine within that time period,” Professor Lin said.

“We have also explored how to minimise noise from the body and environment to get a clearer signal from an operator’s brain,” he said.

The researchers believe the technology will be of interest to the scientific community, industry and government, and hope to continue making advances in brain-computer interface systems.

Here’s a link to and a citation for the paper,

Noninvasive Sensors for Brain–Machine Interfaces Based on Micropatterned Epitaxial Graphene by Shaikh Nayeem Faisal, Tien-Thong Nguyen Do, Tasauf Torzo, Daniel Leong, Aiswarya Pradeepkumar, Chin-Teng Lin, and Francesca Iacopi. ACS Appl. Nano Mater. 2023, 6, 7, 5440–5447 DOI: https://doi.org/10.1021/acsanm.2c05546 Publication Date: March 16, 2023 Copyright © 2023 The Authors. Published by American Chemical Society

This paper is open access.

Comments

For anyone who’s bothered by this, the terminology is fluid. Sometimes you’ll see brain-computer interface (BCI), sometimes you’ll see human-computer interface, or brain-machine interface (BMI) and, as I’ve now found in the video although I notice the Australians are not hyphenating it, brain-robotic interface (BRI).

You can find Ghost Robotics here, the makers of the robotic ‘dog’.

There seems to be a movement to replace the word ‘soldiers’ with warfighters and, according to this video, military practitioners. I wonder how medical doctors and other practitioners feel about the use of ‘practitioners’ in a military context.

Virtual panel discussion: Canadian Strategies for Responsible Neurotechnology Innovation on May 16, 2023

The Canadian Science Policy Centre (CSPC) sent a May 11, 2023 notice (via email) about an upcoming event but first, congratulations (Bravo!) are in order,

The Science Meets Parliament [SMP] Program 2023 is now complete and was a huge success. 43 Delegates from across Canada met with 62 Parliamentarians from across the political spectrum on the Hill on May 1-2, 2023.

The SMP Program is championed by CSPC and Canada’s Chief Science Advisor, Dr. Mona Nemer [through the Office of the Chief Science Advisor {OCSA}].

This Program would not have been possible without the generous support of our sponsors: The Royal Military College of Canada, The Stem Cell Network, and the University of British Columbia.

There are 443 seats in Canada’s Parliament with 338 in the House of Commons and 105 in the Senate and 2023 is the third time the SMP programme has been offered. (It was previously held in 2018 and 2022 according to the SMP program page.)

The Canadian programme is relatively new compared to Australia where they’ve had a Science Meets Parliament programme since 1999 (according to a March 20, 2017 essay by Ken Baldwin, Director of Energy Change Institute at Australian National University for The Conversation). The Scottish have had a Science and the Parliament programme since 2000 (according to this 2022 event notice on the Royal Society of Chemistry’s website).

By comparison to the other two, the Canadian programme is a toddler. (We tend not to recognize walking for the major achievement it is.) So, bravo to the CSPC and OCSA on getting 62 Parliamentarians to make time in their schedules to meet a scientist.

Responsible neurotechnology innovation?

From the Canadian Strategies for Responsible Neurotechnology Innovation event page on the CSPC website,

Advances in neurotechnology are redefining the possibilities of improving neurologic health and mental wellbeing, but related ethical, legal, and societal concerns such as privacy of brain data, manipulation of personal autonomy and agency, and non-medical and dual uses are increasingly pressing concerns [emphasis mine]. In this regard, neurotechnology presents challenges not only to Canada’s federal and provincial health care systems, but to existing laws and regulations that govern responsible innovation. In December 2019, just before the pandemic, the OECD [Organisation for Economic Cooperation and Development] Council adopted a Recommendation on Responsible Innovation in Neurotechnology. It is now urging that member states develop right-fit implementation strategies.

What should these strategies look like for Canada? We will propose and discuss opportunities that balance and leverage different professional and governance approaches towards the goal of achieving responsible innovation for the current state of the art, science, engineering, and policy, and in anticipation of the rapid and vast capabilities expected for neurotechnology in the future by and for this country.

Link to the full OECD Recommendation on Responsible Innovation in Neurotechnology

Date: May 16 [2023]

Time: 12:00 pm – 1:30 pm EDT

Event Category: Virtual Session [on Zoom]

Registration Page: https://us02web.zoom.us/webinar/register/WN_-g8d1qubRhumPSCQi6WUtA

The panelists are:

Dr. Graeme Moffat
Neurotechnology entrepreneur & Senior Fellow, Munk School of Global Affairs & Public Policy [University of Toronto]

Dr. Graeme Moffat is a co-founder and scientist with System2 Neurotechnology. He previously was Chief Scientist and VP of Regulatory Affairs at Interaxon, Chief Scientist with ScienceScape (later Chan-Zuckerberg Meta), and a research engineer at Neurelec (a division of Oticon Medical). He served as Managing Editor of Frontiers in Neuroscience, the largest open access scholarly journal series in the field of neuroscience. Dr. Moffat is a Senior Fellow at the Munk School of Global Affairs and Public Policy and an advisor to the OECD’s neurotechnology policy initiative.

Professor Jennifer Chandler
Professor of Law at the Centre for Health Law, Policy and Ethics, University of Ottawa

Jennifer Chandler is Professor of Law at the Centre for Health Law, Policy and Ethics, University of Ottawa. She leads the “Neuroethics Law and Society” Research Pillar for the Brain Mind Research Institute and sits on its Scientific Advisory Council. Her research focuses on the ethical, legal and policy issues in brain sciences and the law. She teaches mental health law and neuroethics, tort law, and medico-legal issues. She is a member of the advisory board for CIHR’s Institute for Neurosciences, Mental Health and Addiction (IMNA) and serves on international editorial boards in the field of law, ethics and neuroscience, including Neuroethics, the Springer Book Series Advances in Neuroethics, and the Palgrave-MacMillan Book Series Law, Neuroscience and Human Behavior. She has published widely in legal, bioethical and health sciences journals and is the co-editor of the book Law and Mind: Mental Health Law and Policy in Canada (2016). Dr. Chandler brings a unique perspective to this panel as her research focuses on the ethical, legal and policy issues at the intersection of the brain sciences and the law. She is active in Canadian neuroscience research funding policy, and regularly contributes to Canadian governmental policy on contentious matters of biomedicine.

Ian Burkhart
Neurotech Advocate and Founder of BCI [brain-computer interface] Pioneers Coalition

Ian is a C5 tetraplegic [also known as quadriplegic] from a diving accident in 2010. He participated in a ground-breaking clinical trial using a brain-computer interface to control muscle stimulation. He is the founder of the BCI Pioneers Coalition, which works to establish ethics, guidelines and best practices for future patients, clinicians, and commercial entities engaging with BCI research. Ian serves as Vice President of the North American Spinal Cord Injury Consortium and chairs their project review committee. He has also worked with Unite2Fight Paralysis to advocate for $9 million of SCI research in his home state of Ohio. Ian has been a Reeve peer mentor since 2015 and helps lead two local SCI networking groups. As the president of the Ian Burkhart Foundation, he raises funds for accessible equipment for the independence of others with SCI. Ian is also a full-time consultant working with multiple medical device companies.

Andrew Atkinson
Manager, Emerging Science Policy, Health Canada

Andrew Atkinson is the Manager of the Emerging Sciences Policy Unit under the Strategic Policy Branch of Health Canada. He oversees coordination of science policy issues across the various regulatory and research programs under the mandate of Health Canada. Prior to Health Canada, he was a manager under Environment Canada’s CEPA new chemicals program, where he oversaw chemical and nanomaterial risk assessments, and the development of risk assessment methodologies. In parallel to domestic work, he has been actively engaged in ISO [International Organization for Standardization and OECD nanotechnology efforts.

Andrew is currently a member of the Canadian delegation to the OECD Working Party on Biotechnology, Nanotechnology and Converging Technologies (BNCT). BNCT aims to contribute original policy analysis on emerging science and technologies, such as gene editing and neurotechnology, including messaging to the global community, convening key stakeholders in the field, and making ground-breaking proposals to policy makers.

Professor Judy Illes
Professor, Division of Neurology, Department of Medicine, Faculty of Medicine, UBC [University of British Columbia]

Dr. Illes is Professor of Neurology and Distinguished Scholar in Neuroethics at the University of British Columbia. She is the Director of Neuroethics Canada, and among her many leadership positions in Canada, she is Vice Chair of the Canadian Institutes of Health Research (CIHR) Advisory Board of the Institute on Neuroscience, Mental Health and Addiction (INMHA), and chair of the International Brain Initiative (www.internationalbraininitiative.org; www.canadianbrain.ca), Director at Large of the Canadian Academy of Health Sciences, and a member of the Board of Directors of the Council of Canadian Academies.

Dr. Illes is a world-renown expert whose research, teaching and outreach are devoted to ethical, legal, social and policy challenges at the intersection of the brain sciences and biomedical ethics. She has made ground breaking contributions to neuroethical thinking for neuroscience discovery and clinical translation across the life span, including in entrepreneurship and in the commercialization of health care. Dr. Illes has a unique and comprehensive overview of the field of neurotechnology and the relevant sectors in Canada.

One concern I don’t see mentioned is bankruptcy (in other words, what happens if the company that made your neural implant goes bankrupt?) either in the panel description or in the OECD recommendation. My April 5, 2022 posting “Going blind when your neural implant company flirts with bankruptcy (long read)” explored that topic and while many of the excerpted materials present a US perspective, it’s easy to see how it could also apply in Canada and elsewhere.

For those of us on the West Coast, this session starts at 9 am. Enjoy!

*June 20, 2023: This sentence changed (We tend not to recognize that walking for the major achievement it is.) to We tend not to recognize walking for the major achievement it is.

Nanotechnology-enabled pain relief for tooth sensitivity

A November 23, 2021 news item on phys.org announces research from Australia that may lead to pain relief for anyone with sensitive teeth,

In an Australian first, researchers from the University of Queensland have used nanotechnology to develop effective ways to manage tooth sensitivity.

Dr. Chun Xu from UQ’s [University of Queensland] School of Dentistry said the approach might provide more effective long-term pain relief for people with sensitive teeth, compared to current options.

A November 23, 2021 University of Queensland press release, which originated the news item, describes the condition leading to tooth sensitivity and how the proposed solution works (Note: Links have been removed),

“Dentin tubules are located in the dentin, one of the layers below the enamel surface of your teeth,” Dr Xu said.

“When tooth enamel has been worn down, and the dentin are exposed, eating or drinking something cold or hot can cause a sudden sharp flash of pain.

“The nanomaterials used in this preclinical study can rapidly block the exposed dentin tubules and prevent the unpleasant pain.

“Our approach acts faster and lasts longer than current treatment options.

“The materials could be developed into a paste, so people who have sensitive teeth could simply apply this paste to the tooth and massage for one to three minutes.

“The next step is clinical trials.”

Tooth sensitivity affects up to 74 per cent of the population, at times severely impacting quality of life and requiring expensive treatment.

“If clinical trials are successful people will benefit from this new method that can be used at home, without the need to go to a dentist in the near future,” Dr Xu said.

“We hope this study encourages more research using nanotechnology to address dental problems.”

The team also included researchers from UQ’s Australian Institute for Bioengineering and Nanotechnology (AIBN.

Here’s a link to and a citation for the paper,

Calcium-Doped Silica Nanoparticles Mixed with Phosphate-Doped Silica Nanoparticles for Rapid and Stable Occlusion of Dentin Tubules by Yuxue Cao, Chun Xu, Patricia P. Wright, Jingyu Liu, Yueqi Kong, Yue Wang, Xiaodan Huang, Hao Song, Jianye Fu, Fang Gao, Yang Liu, Laurence J. Walsh, and Chang Lei. ACS Appl. Nano Mater. 2021, 4, 9, 8761–8769 DOI: https://doi.org/10.1021/acsanm.1c01365 Publication Date:August 25, 2021 Copyright © 2021 American Chemical Society

This paper is behind a paywall.

Council of Canadian Academies (CCA): science policy internship and a new panel on Public Safety in the Digital Age

It’s been a busy week for the Council of Canadian Academies (CCA); I don’t usually get two notices in such close order.

2022 science policy internship

The application deadline is Oct. 18, 2021, you will work remotely, and the stipend for the 2020 internship was $18,500 for six months.

Here’s more from a September 13, 2021 CCA notice (received Sept. 13, 2021 via email),

CCA Accepting Applications for Internship Program

The program provides interns with an opportunity to gain experience working at the interface of science and public policy. Interns will participate in the development of assessments by conducting research in support of CCA’s expert panel process.

The internship program is a full-time commitment of six months and will be a remote opportunity due to the Covid-19 pandemic.

Applicants must be recent graduates with a graduate or professional degree, or post-doctoral fellows, with a strong interest in the use of evidence for policy. The application deadline is October 18, 2021. The start date is January 10, 2022. Applications and letters of reference should be addressed to Anita Melnyk at internship@cca-reports.ca.

More information about the CCA Internship Program and the application process can be found here. [Note: The link takes you to a page with information about a 2020 internship opportunity; presumably, the application requirements have not changed.]

Good luck!

Expert Panel on Public Safety in the Digital Age Announced

I have a few comments (see the ‘Concerns and hopes’ subhead) about this future report but first, here’s the announcement of the expert panel that was convened to look into the matter of public safety (received via email September 15, 2021),

CCA Appoints Expert Panel on Public Safety in the Digital Age

Access to the internet and digital technologies are essential for people, businesses, and governments to carry out everyday activities. But as more and more activities move online, people and organizations are increasingly vulnerable to serious threats and harms that are enabled by constantly evolving technology. At the request of Public Safety Canada, [emphasis mine] the Council of Canadian Academies (CCA) has formed an Expert Panel to examine leading practices that could help address risks to public safety while respecting human rights and privacy. Jennifer Stoddart, O.C., Strategic Advisor, Privacy and Cybersecurity Group, Fasken Martineau DuMoulin [law firm], will serve as Chair of the Expert Panel.

“The ever-evolving nature of crimes and threats that take place online present a huge challenge for governments and law enforcement,” said Ms. Stoddart. “Safeguarding public safety while protecting civil liberties requires a better understanding of the impacts of advances in digital technology and the challenges they create.”

As Chair, Ms. Stoddart will lead a multidisciplinary group with expertise in cybersecurity, social sciences, criminology, law enforcement, and law and governance. The Panel will answer the following question:

Considering the impact that advances in information and communications technologies have had on a global scale, what do current evidence and knowledge suggest regarding promising and leading practices that could be applied in Canada for investigating, preventing, and countering threats to public safety while respecting human rights and privacy?

“This is an important question, the answer to which will have both immediate and far-reaching implications for the safety and well-being of people living in Canada. Jennifer Stoddart and this expert panel are very well-positioned to answer it,” said Eric M. Meslin, PhD, FRSC, FCAHS, President and CEO of the CCA.

More information about the assessment can be found here.

The Expert Panel on Public Safety in the Digital Age:

  • Jennifer Stoddart (Chair), O.C., Strategic Advisor, Privacy and Cybersecurity Group, Fasken Martineau DuMoulin [law firm].
  • Benoît Dupont, Professor, School of Criminology, and Canada Research Chair in Cybersecurity and Research Chair for the Prevention of Cybercrime, Université de Montréal; Scientific Director, Smart Cybersecurity Network (SERENE-RISC). Note: This is one of Canada’s Networks of Centres of Excellence (NCE)
  • Richard Frank, Associate Professor, School of Criminology, Simon Fraser University; Director, International CyberCrime Research Centre International. Note: This is an SFU/ Society for the Policing of Cyberspace (POLCYB) partnership
  • Colin Gavaghan, Director, New Zealand Law Foundation Centre for Law and Policy in Emerging Technologies, Faculty of Law, University of Otago.
  • Laura Huey, Professor, Department of Sociology, Western University; Founder, Canadian Society of Evidence Based Policing [Can-SEPB].
  • Emily Laidlaw, Associate Professor and Canada Research Chair in Cybersecurity Law, Faculty of Law, University of Calgary.
  • Arash Habibi Lashkari, Associate Professor, Faculty of Computer Science, University of New Brunswick; Research Coordinator, Canadian Institute of Cybersecurity [CIC].
  • Christian Leuprecht, Class of 1965 Professor in Leadership, Department of Political Science and Economics, Royal Military College; Director, Institute of Intergovernmental Relations, School of Policy Studies, Queen’s University.
  • Florian Martin-Bariteau, Associate Professor of Law and University Research Chair in Technology and Society, University of Ottawa; Director, Centre for Law, Technology and Society.
  • Shannon Parker, Detective/Constable, Saskatoon Police Service.
  • Christopher Parsons, Senior Research Associate, Citizen Lab, Munk School of Global Affairs & Public Policy, University of Toronto.
  • Jad Saliba, Founder and Chief Technology Officer, Magnet Forensics Inc.
  • Heidi Tworek, Associate Professor, School of Public Policy and Global Affairs, and Department of History, University of British Columbia.

Oddly, there’s no mention that Jennifer Stoddart (Wikipedia entry) was Canada’s sixth privacy commissioner. Also, Fasken Martineau DuMoulin (her employer) changed its name to Fasken in 2017 (Wikipedia entry). The company currently has offices in Canada, UK, South Africa, and China (Firm webpage on company website).

Exactly how did the question get framed?

It’s always informative to look at the summary (from the reports Public Safety in the Digital Age webpage on the CCA website),

Information and communications technologies have profoundly changed almost every aspect of life and business in the last two decades. While the digital revolution has brought about many positive changes, it has also created opportunities for criminal organizations and malicious actors [emphasis mine] to target individuals, businesses, and systems. Ultimately, serious crime facilitated by technology and harmful online activities pose a threat to the safety and well-being of people in Canada and beyond.

Damaging or criminal online activities can be difficult to measure and often go unreported. Law enforcement agencies and other organizations working to address issues such as the sexual exploitation of children, human trafficking, and violent extremism [emphasis mine] must constantly adapt their tools and methods to try and prevent and respond to crimes committed online.

A better understanding of the impacts of these technological advances on public safety and the challenges they create could help to inform approaches to protecting public safety in Canada.

This assessment will examine promising practices that could help to address threats to public safety related to the use of digital technologies while respecting human rights and privacy.

The Sponsor:

Public Safety Canada

The Question:

Considering the impact that advances in information and communications technologies have had on a global scale, what do current evidence and knowledge suggest regarding promising and leading practices that could be applied in Canada for investigating, preventing, and countering threats to public safety while respecting human rights and privacy?

Three things stand out for me. First, public safety, what is it?, second, ‘malicious actors’, and third, the examples used for the issues being addressed (more about this in the Comments subsection, which follows).

What is public safety?

Before launching into any comments, here’s a description for Public Safety Canada (from their About webpage) where you’ll find a hodge podge,

Public Safety Canada was created in 2003 to ensure coordination across all federal departments and agencies responsible for national security and the safety of Canadians.

Our mandate is to keep Canadians safe from a range of risks such as natural disasters, crime and terrorism.

Our mission is to build a safe and resilient Canada.

The Public Safety Portfolio

A cohesive and integrated approach to Canada’s security requires cooperation across government. Together, these agencies have an annual budget of over $9 billion and more than 66,000 employees working in every part of the country.

Public Safety Partner Agencies

The Canada Border Services Agency (CBSA) manages the nation’s borders by enforcing Canadian laws governing trade and travel, as well as international agreements and conventions. CBSA facilitates legitimate cross-border traffic and supports economic development while stopping people and goods that pose a potential threat to Canada.

The Canadian Security Intelligence Service (CSIS) investigates and reports on activities that may pose a threat to the security of Canada. CSIS also provides security assessments, on request, to all federal departments and agencies.

The Correctional Service of Canada (CSC) helps protect society by encouraging offenders to become law-abiding citizens while exercising reasonable, safe, secure and humane control. CSC is responsible for managing offenders sentenced to two years or more in federal correctional institutions and under community supervision.

The Parole Board of Canada (PBC) is an independent body that grants, denies or revokes parole for inmates in federal prisons and provincial inmates in province without their own parole board. The PBC helps protect society by facilitating the timely reintegration of offenders into society as law-abiding citizens.

The Royal Canadian Mounted Police (RCMP) enforces Canadian laws, prevents crime and maintains peace, order and security.

So, Public Safety includes a spy agency (CSIS), the prison system (Correctional Services and Parole Board), and the national police force (RCMP) and law enforcement at the borders with the Canada Border Services Agency (CBSA). None of the partner agencies are dedicated to natural disasters although it’s mentioned in the department’s mandate.

The focus is largely on criminal activity and espionage. On that note, a very senior civilian RCMP intelligence official, Cameron Ortis*, was charged with passing secrets to foreign entities (malicious actors?). (See the September 13, 2021 [updated Sept. 15, 2021] news article by Amanda Connolly, Mercedes Stephenson, Stewart Bell, Sam Cooper & Rachel Browne for CTV news and the Sept. 18, 2019 [updated January 6, 2020] article by Douglas Quan for the National Post for more details.)

There appears to be at least one other major security breach; that involving Canada’s only level four laboratory, the Winnipeg-based National Microbiology Lab (NML). (See a June 10, 2021 article by Karen Pauls for Canadian Broadcasting Corporation news online for more details.)

As far as I’m aware, Ortis is still being held with a trial date scheduled for September 2022 (see Catherine Tunney’s April 9, 2021 article for CBC news online) and, to date, there have been no charges laid in the Winnipeg lab case.

Concerns and hopes

Ordinarily I’d note links and relationships between the various expert panel members but in this case it would be a big surprise if they weren’t linked in some fashion as the focus seems to be heavily focused on cybersecurity (as per the panel member’s bios.), which I imagine is a smallish community in Canada.

As I’ve made clear in the paragraphs leading into the comments, Canada appears to have seriously fumbled the ball where national and international cybersecurity is concerned.

So getting back to “First, public safety, what is it?, second, ‘malicious actors’, and third, the examples used for the issues,” I’m a bit puzzled.

Public safety as best I can tell, is just about anything they’d like it to be. ‘Malicious actors’ is a term I’ve seen used to imply a foreign power is behind the actions being held up for scrutiny.

The examples used for the issues being addressed “sexual exploitation of children, human trafficking, and violent extremism” hint at a focus on crimes that cross borders and criminal organizations, as well as, like-minded individuals organizing violent and extremist acts but not specifically at any national or international security concerns.

On a more mundane note, I’m a little surprised that identity theft wasn’t mentioned as an example.

I’m hopeful there will be some examination of emerging technologies such as quantum communication (specifically, encryption issues) and artificial intelligence. I also hope the report will include a discussion about mistakes and over reliance on technology (for a refresher course on what happens when organizations, such as the Canadian federal government, make mistakes in the digital world; search ‘Phoenix payroll system’, a 2016 made-in-Canada and preventable debacle, which to this day is still being fixed).

In the end, I think the only topic that can be safely excluded from the report is climate change otherwise it’s a pretty open mandate as far as can be told from publicly available information.

I noticed the international panel member is from New Zealand (the international component is almost always from the US, UK, northern Europe, and/or the Commonwealth). Given that New Zealand (as well as being part of the commonwealth) is one of the ‘Five Eyes Intelligence Community’, which includes Canada, Australia, the UK, the US, and, NZ, I was expecting a cybersecurity expert. If Professor Colin Gavaghan does have that expertise, it’s not obvious on his University of Otaga profile page (Note: Links have been removed),

Research interests

Colin is the first director of the New Zealand Law Foundation sponsored Centre for Law and Policy in Emerging Technologies. The Centre examines the legal, ethical and policy issues around new technologies. To date, the Centre has carried out work on biotechnology, nanotechnology, information and communication technologies and artificial intelligence.

In addition to emerging technologies, Colin lectures and writes on medical and criminal law.

Together with colleagues in Computer Science and Philosophy, Colin is the leader of a three-year project exploring the legal, ethical and social implications of artificial intelligence for New Zealand.

Background

Colin regularly advises on matters of technology and regulation. He is first Chair of the NZ Police’s Advisory Panel on Emergent Technologies, and a member of the Digital Council for Aotearoa, which advises the Government on digital technologies. Since 2017, he has been a member (and more recently Deputy Chair) of the Advisory Committee on Assisted Reproductive Technology. He was an expert witness in the High Court case of Seales v Attorney General, and has advised members of parliament on draft legislation.

He is a frustrated writer of science fiction, but compensates with occasional appearances on panels at SF conventions.

I appreciate the sense of humour evident in that last line.

Almost breaking news

Wednesday, September 15, 2021 an announcement of a new alliance in the Indo-Pacific region, the Three Eyes (Australia, UK, and US or AUKUS) was made.

Interestingly all three are part of the Five Eyes intelligence alliance comprised of Australia, Canada, New Zealand, UK, and US. Hmmm … Canada and New Zealand both border the Pacific and last I heard, the UK is still in Europe.

A September 17, 2021 article, “Canada caught off guard by exclusion from security pact” by Robert Fife and Steven Chase for the Globe and Mail (I’m quoting from my paper copy),

The Canadian government was surprised this week by the announcement of a new security pact among the United States, Britain and Australia, one that excluded Canada [and New Zealand too] and is aimed at confronting China’s growing military and political influence in the Indo-Pacific region, according to senior government officials.

Three officials, representing Canada’s Foreign Affairs, Intelligence and Defence departments, told the Globe and Mail that Ottawa was not consulted about the pact, and had no idea the trilateral security announcement was coming until it was made on Wednesday [September 15, 2021] by U.S. President Joe Biden, British Prime Minister Boris Johnson and Australian Prime Minister Scott Morrison.

The new trilateral alliance, dubbed AUKUS, after the initials of the three countries, will allow for greater sharing of information in areas such as artificial intelligence and cyber and underwater defence capabilities.

Fife and Chase have also written a September 17, 2021 Globe and Mail article titled, “Chinese Major-General worked with fired Winnipeg Lab scientist,”

… joint research conducted between Major-General Chen Wei and former Canadian government lab scientist Xiangguo Qiu indicates that co-operation between the Chinese military and scientists at the National Microbiology Laboratory (NML) went much higher than was previously known. The People’s Liberation Army is the military of China’s ruling Communist Party.

Given that no one overseeing the Canadian lab, which is a level 4 and which should have meant high security, seems to have known that Wei was a member of the military and with the Cameron Ortis situation still looming, would you have included Canada in the new pact?

*ETA September 20, 2021: For anyone who’s curious about the Cameron Ortis case, there’s a Fifth Estate documentary (approximately 46 minutes): The Smartest Guy in the Room: Cameron Ortis and the RCMP Secrets Scandal.

Science policy updates (INGSA in Canada and SCWIST)

I had just posted my Aug. 30, 2021 piece (4th International Conference on Science Advice to Governments (INGSA2021) August 30 – September 2, 2021) when the organization issued a news release, which was partially embargoed. By the time this is published (after 8 am ET on Wednesday, Sept. 1, 2021), the embargo will have lifted and i can announce that Rémi Quirion, Chief Scientist of Québec (Canada), has been selected to replace Sir Peter Gluckman (New Zealand) as President of INGSA.

Here’s the whole August 30, 2021 International Network for Government Science Advice (INGSA) news release on EurekAlert, Note: This looks like a direct translation from a French language news release, which may account for some unusual word choices and turns of phrase,

What? 4th International Conference on Science Advice to Governments, INGSA2021.

Where? Palais des Congrès de Montréal, Québec, Canada and online at www.ingsa2021.org

When? 30 August – 2 September, 2021.

CONTEXT: The largest ever independent gathering of interest groups, thought-leaders, science advisors to governments and global institutions, researchers, academics, communicators and diplomats is taking place in Montreal and online. Organized by Prof Rémi Quirion, Chief Scientist of Québec, speakers from over 50 countries[1] from Brazil to Burkina Faso and from Ireland to Indonesia, plus over 2000 delegates from over 130 countries, will spotlight what is really at stake in the relationship between science and policy-making, both during crises and within our daily lives. From the air we breathe, the food we eat and the cars we drive, to the medical treatments or the vaccines we take, and the education we provide to children, this relationship, and the decisions it can influence, matter immensely.  

Prof Rémi Quirion, Conference Organizer, Chief Scientist of Québec and incoming President of INGSA added: “For those of us who believe wholeheartedly in evidence and the integrity of science, the past 18 months have been challenging. Information, correct and incorrect, can spread like a virus. The importance of open science and access to data to inform our UN sustainable development goals discussions or domestically as we strengthen the role of cities and municipalities, has never been more critical. I have no doubt that this transparent and honest platform led from Montréal will act as a carrier-wave for greater engagement”.

Chief Science Advisor of Canada and Conference co-organizer, Dr Mona Nemer, stated that: “Rapid scientific advances in managing the Covid pandemic have generated enormous public interest in evidence-based decision making. This attention comes with high expectations and an obligation to achieve results. Overcoming the current health crisis and future challenges will require global coordination in science advice, and INGSA is well positioned to carry out this important work. Canada and our international peers can benefit greatly from this collaboration.”

Sir Peter Gluckman, founding Chair of INGSA stated that: “This is a timely conference as we are at a turning point not just in the pandemic, but globally in our management of longer-term challenges that affect us all. INGSA has helped build and elevate open and ongoing public and policy dialogue about the role of robust evidence in sound policy making”.

He added that: “Issues that were considered marginal seven years ago when the network was created are today rightly seen as central to our social, environmental and economic wellbeing. The pandemic highlights the strengths and weaknesses of evidence-based policy-making at all levels of governance. Operating on all continents, INGSA demonstrates the value of a well-networked community of emerging and experienced practitioners and academics, from countries at all levels of development. Learning from each other, we can help bring scientific evidence more centrally into policy-making. INGSA has achieved much since its formation in 2014, but the energy shown in this meeting demonstrates our potential to do so much more”.

Held previously in Auckland 2014, Brussels 2016, Tokyo 2018 and delayed for one year due to Covid, the advantage of the new hybrid and virtual format is that organizers have been able to involve more speakers, broaden the thematic scope and offer the conference as free to view online, reaching thousands more people. Examining the complex interactions between scientists, public policy and diplomatic relations at local, national, regional and international levels, especially in times of crisis, the overarching INGSA2021 theme is: “Build back wiser: knowledge, policy & publics in dialogue”.

The first three days will scrutinize everything from concrete case-studies outlining successes and failures in our advisory systems to how digital technologies and AI are reshaping the profession itself. The final day targets how expertize and action in the cultural context of the French-speaking world is encouraging partnerships and contributing to economic and social development. A highlight of the conference is the 2 September announcement of a new ‘Francophonie Science Advisory Network’.       

Prof. Salim Abdool Karim, a member of the World Health Organization’s Science Council, and the face of South Africa’s Covid-19 science, speaking in the opening plenary outlined that: “As a past anti-apartheid activist now providing scientific advice to policy-makers, I have learnt that science and politics share common features. Both operate at the boundaries of knowledge and uncertainty, but approach problems differently. We scientists constantly question and challenge our assumptions, constantly searching for empiric evidence to determine the best options. In contrast, politicians are most often guided by the needs or demands of voters and constituencies, and by ideology”.

He added: “What is changing is that grass-roots citizens worldwide are no longer ill-informed and passive bystanders. And they are rightfully demanding greater transparency and accountability. This has brought the complex contradictions between evidence and ideology into the public eye. Covid-19 is not just a disease, its social fabric exemplifies humanity’s interdependence in slowing global spread and preventing new viral mutations through global vaccine equity. This starkly highlights the fault-lines between the rich and poor countries, especially the maldistribution of life-saving public health goods like vaccines. I will explore some of the key lessons from Covid-19 to guide a better response to the next pandemic”.

Speaking on a panel analysing different advisory models, Prof. Mark Ferguson, Chair of the European Innovation Council’s Advisory Board and Chief Science Advisor to the Government of Ireland, sounded a note of optimism and caution in stating that: “Around the world, many scientists have become public celebrities as citizens engage with science like never before. Every country has a new, much followed advisory body. With that comes tremendous opportunities to advance the status of science and the funding of scientific research. On the flipside, my view is that we must also be mindful of the threat of science and scientists being viewed as a political force”.

Strength in numbers

What makes the 4th edition of this biennial event stand out is the perhaps never-before assembled range of speakers from all continents working at the boundary between science, society and policy willing to make their voices heard. In a truly ‘Olympics’ approach to getting all stakeholders on-board, organisers succeeded in involving, amongst others, the UN Office for Disaster Risk Reduction, the United Nations Development Programme, UNESCO and the OECD. The in-house science services of the European Commission and Parliament, plus many country-specific science advisors also feature prominently.

As organisers foster informed debate, we get a rare glimpse inside the science advisory worlds of the Comprehensive Nuclear Test Ban Treaty Organisation, the World Economic Forum and the Global Young Academy to name a few. From Canadian doctors, educators and entrepreneurs and charitable foundations like the Welcome Trust, to Science Europe and media organisations, the programme is rich in its diversity. The International Organisation of the Francophonie and a keynote address by H.E. Laurent Fabius, President of the Constitutional Council of the French Republic are just examples of two major draws on the final day dedicated to spotlighting advisory groups working through French. 

INGSA’s Elections: New Canadian President and Three Vice Presidents from Chile, Ethiopia, UK

The International Network for Government Science Advice has recently undertaken a series of internal reforms intended to better equip it to respond to the growing demands for support from its international partners, while realising the project proposals and ideas of its members.

Part of these reforms included the election in June, 2021 of a new President replacing Sir Peter Gluckman (2014 – 2021) and the creation of three new Vice President roles.

These results will be announced at 13h15 on Wednesday, 1st September during a special conference plenary and awards ceremony. While noting the election results below, media are asked to respect this embargo.

Professor Rémi Quirion, Chief Scientist of Québec (Canada), replaces Sir Peter Gluckman (New Zealand) as President of INGSA.
 

Professor Claire Craig (United Kingdom), CBE, Provost of Queen’s College Oxford and a member of the UK government’s AI Council, has been elected by members as the inaugural Vice President for Evidence.
 

Professor Binyam Sisay Mendisu (Egypt), PhD, Lecture at the University of Addis Ababa and Programme Advisor, UNESCO Institute for Building Capacity in Africa, has been elected by members as the inaugural Vice President for Capacity Building.
 

Professor Soledad Quiroz Valenzuela (Chile), Science Advisor on Climate Change to the Ministry of Science, Technology, Knowledge and Innovation of the government of Chile, has been elected by members as the Vice President for Policy.

Satellite Events: From 7 – 9 September, as part of INGSA2021, the conference is partnering with local,  national and international organisations to ignite further conversations about the science/policy/society interface. Six satellite events are planned to cover everything from climate science advice and energy policy, open science and publishing during a crisis, to the politicisation of science and pre-school scientific education. International delegates are equally encouraged to join in online. 

About INGSA: Founded in 2014 with regional chapters in Africa, Asia and Latin America and the Caribbean, INGSA has quicky established an important reputation as aa collaborative platform for policy exchange, capacity building and research across diverse global science advisory organisations and national systems. Currently, over 5000 individuals and institutions are listed as members. Science communicators and members of the media are warmly welcomed to join.

As the body of work detailed on its website shows (www.ingsa.org) through workshops, conferences and a growing catalogue of tools and guidance, the network aims to enhance the global science-policy interface to improve the potential for evidence-informed policy formation at sub-national, national and transnational levels. INGSA operates as an affiliated body of the International Science Council which acts as trustee of INGSA funds and hosts its governance committee. INGSA’s secretariat is based in Koi Tū: The Centre for Informed Futures at the University of Auckland in New Zealand.

Conference Programme: 4th International Conference on Science Advice to Government (ingsa2021.org)

Newly released compendium of Speaker Viewpoints: Download Essays From The Cutting Edge Of Science Advice – Viewpoints

[1] Argentina, Australia, Austria, Barbados, Belgium, Benin, Brazil, Burkina Faso, Cameroon, Canada, Chad, Colombia, Costa Rica, Côte D’Ivoire, Denmark, Estonia, Finland, France, Germany, Hong Kong, Indonesia, Ireland, Japan, Lebanon, Luxembourg, Malaysia, Mexico, Morocco, Netherlands, New Zealand, Pakistan, Papua New Guinea, Rwanda, Senegal, Singapore, Slovakia, South Africa, Spain, Sri Lanka, Sweden, Switzerland, Thailand, UK, USA. 

Society for Canadian Women in Science and Technology (SCWIST)

As noted earlier this year in my January 28, 2021 posting, it’s SCWIST’s 40th anniversary and the organization is celebrating with a number of initiatives, here are some of the latest including as talk on science policy (from the August 2021 newsletter received via email),

SCWIST “STEM Forward Project”
Receives Federal Funding

SCWIST’s “STEM Forward for Economic Prosperity” project proposal was among 237 projects across the country to receive funding from the $100 million Feminist Response Recovery Fund of the Government of Canada through the Women and Gender Equality Canada (WAGE) federal department.

Read more. 

iWIST and SCWIST Ink Affiliate MOU [memorandum of understanding]

Years in planning, the Island Women in Science and Technology (iWIST) of Victoria, British Columbia and SCWIST finally signed an Affiliate MOU (memorandum of understanding) on Aug 11, 2021.

The MOU strengthens our commitment to collaborate on advocacy (e.g. grants, policy and program changes at the Provincial and Federal level), events (networking, workshops, conferences), cross promotion ( event/ program promotion via digital media), and membership growth (discounts for iWIST members to join SCWIST and vice versa).

Dr. Khristine Carino, SCWIST President, travelled to Victoria to sign the MOU in person. She was invited as an honoured guest to the iWIST annual summer picnic by Claire Skillen, iWIST President. Khristine’s travel expenses were paid from her own personal funds.

Discovery Foundation x SBN x SCWIST Business Mentorship Program: Enhancing Diversity in today’s Biotechnology Landscape

The Discovery Foundation, Student Biotechnology Network, and Society for Canadian Women in Science and Technology are proud to bring you the first-ever “Business Mentorship Program: Enhancing Diversity in today’s Biotechnology Landscape”. 

The Business Mentorship Program aims to support historically underrepresented communities (BIPOC, Women, LGBTQIAS+ and more) in navigating the growth of the biotechnology industry. The program aims to foster relationships between individuals and professionals through networking and mentorship, providing education and training through workshops and seminars, and providing 1:1 consultation with industry leaders. Participants will be paired with mentors throughout the week and have the opportunity to deliver a pitch for the chance to win prizes at the annual Building Biotechnology Expo. 

This is a one week intensive program running from September 27th – October 1st, 2021 and is limited to 10 participants. Please apply early. 

Events

September 10

Art of Science and Policy-Making Go Together

Science and policy-making go together. Acuitas’ [emphasis mine] Molly Sung shares her journey and how more scientists need to engage in this important area.

September 23

Au-delà de l’apparence :

des femmes de courage et de résilience en STIM

Dans le cadre de la semaine de l’égalité des sexes au Canada, ce forum de la division québécoise de la Société pour les femmes canadiennes en science et technologie (la SCWIST) mettra en vedette quatre panélistes inspirantes avec des parcours variés qui étudient ou travaillent en science, technologie, ingénierie et mathématiques (STIM) au Québec. Ces femmes immigrantes ont laissé leurs proches et leurs pays d’origine pour venir au Québec et contribuer activement à la recherche scientifique québécoise. 

….

The ‘Art and Science Policy-Making Go Together’ talk seems to be aimed at persuasion and is not likely to offer any insider information as to how the BC life sciences effort is progressing. For a somewhat less rosy view of science and policy efforts, you can check out my August 23, 2021 posting, Who’s running the life science companies’ public relations campaign in British Columbia (Vancouver, Canada)?; scroll down to ‘The BC biotech gorillas’ subhead for more about Acuitas and some of the other life sciences companies in British Columbia (BC).

For some insight into how competitive the scene is here in BC, you can see my August 20, 2021 posting (Getting erased from the mRNA/COVID-19 story) about Ian MacLachlan.

You can check out more at the SCWIST website and I’m not sure when the August issue will be placed there but they do have a Newsletter Archive.

Help scientists identify why dead frogs are unexpectedly turning up across eastern Australia

Australian scientists are calling on citizen scientists to help them understand why frogs in eastern Australia are dying in what seems to be record numbers.

Here’s more from a July 28, 2021 essay by Jodi Rowley (curator, Amphibian & Reptile Conservation Biology, Australian Museum at the University of New South Wales [UNSW]), and Karrie Rose (Australian Registry of Wildlife Health – Taronga Conservation Society, University of Sydney) for The Conversation (can also be found as a July 28, 2021 news item on phys.org), Note: Links have been removed,

Over the past few weeks, we’ve received a flurry of emails from concerned people who’ve seen sick and dead frogs across eastern Victoria, New South Wales and Queensland.

One person wrote:

“About a month ago, I noticed the Green Tree Frogs living around our home showing signs of lethargy & ill health. I was devastated to find about 7 of them dead.”

In most circumstances, it’s rare to see a dead frog. Most frogs are secretive in nature and, when they die, they decompose rapidly. So the growing reports of dead and dying frogs from across eastern Australia over the last few months are surprising, to say the least.

While the first cold snap of each year can be accompanied by a few localised frog deaths, this outbreak has affected more animals over a greater range than previously encountered.

This is truly an unusual amphibian mass mortality event.

In this outbreak, frogs appear to be either darker or lighter than normal, slow, out in the daytime (they’re usually nocturnal), and are thin. Some frogs have red bellies, red feet, and excessive sloughed skin.

The iconic green tree frog (Litoria caeulea) seems hardest hit in this event, with the often apple-green and plump frogs turning brown and shrivelled.

This frog is widespread and generally rather common. [emphasis mine] In fact, it’s the ninth most commonly recorded frog in the national citizen science project, FrogID. But it has disappeared from parts of its former range. [emphasis mine]

We simply don’t know the true impacts of this event on Australia’s frog species, particularly those that are rare, cryptic or living in remote places. Well over 100 species of frog live within the geographic range of this outbreak. Dozens of these are considered threatened, including the booroolong Frog (Litoria booroolongensis) and the giant barred frog (Mixophyes iteratus).

Here’s more about the Australian agencies investigating the mass mortality event and some information about how you can help, from the July 28, 2021 essay by Rowley and Rose,

… the Australian Registry of Wildlife Health is working with the Australian Museum, government biosecurity and environment agencies as part of the investigation.

While we suspect a combination of the amphibian chytrid fungus and the chilly temperatures, we simply don’t know what factors may be contributing to the outbreak.

We also aren’t sure how widespread it is, what impact it will have on our frog populations, or how long it will last.

While the temperatures stay low, we suspect our frogs will continue to succumb. If we don’t investigate quickly, we will lose the opportunity to achieve a diagnosis and understand what has transpired.

We need your help to solve this mystery.

Please send any reports of sick or dead frogs (and if possible, photos) to us, via the national citizen science project FrogID, or email calls@frogid.net.au.

You can find FrogID here. At this writing (Monday, Aug. 2, 2021), there doesn’t seem to be a specific link to the current investigation on the FrogID homepage, which is devoted to reporting frog sounds. However, at the bottom of the homepage there is a ‘Contact us’ section with a ‘Research Enquiries’ option.

For any Canadians who are reading this and are unable to participate but would still like to contribute to frog welfare, there’s a Canadian effort, frogwatch. For anyone in the UK, there’s Froglife. Both of which, like FrogID, are citizen science projects.