Tag Archives: Australia

The sound of dirt

So you don’t get your hopes up, this acoustic story doesn’t offer any accompanying audio/acoustic files, i.e., I couldn’t find the sound of dirt.

In any event, there’s still an interesting story in an April 10, 2023 news item on phys.org,

U.K. and Australian ecologists have used audio technology to record different types of sounds in the soils of a degraded and restored forest to indicate the health of ecosystems.

Non-invasive acoustic monitoring has great potential for scientists to gather long-term information on species and their abundance, says Flinders University [Australia] researcher Dr. Jake Robinson, who conducted the study while at the University of Sheffield in England.

Photo: Pixabay

An April 8, 2023 Flinders University press release, which originated the news item, delves into the researcher’s work, Note: Links have been removed,

“Eco-acoustics can measure the health lf landscapes affected by farming, mining and deforestation but can also monitor their recovery following revegetation,” he says.  

“From earthworms and plant roots to shifting soils and other underground activity, these subtle sounds were stronger and more diverse in healthy soils – once background noise was blocked out.”   

The subterranean study used special microphones to collect almost 200 sound samples, each about three minutes long, from soil samples collected in restored and cleared forests in South Yorkshire, England. 

“Like underwater and above-ground acoustic monitoring, below-ground biodiversity monitoring using eco-acoustics has great potential,” says Flinders University co-author, Associate Professor Martin Breed. 

Since joining Flinders University, Dr Robinson has released his first book, entitled Invisible Friends (DOI: 10.53061/NZYJ2969) [emphasis mine], which covers his core research into ‘how microbes in the environment shape our lives and the world around us’. 

Now a researcher in restoration genomics at the College of Science and Engineering at Flinders University, the new book examines the powerful role invisible microbes play in ecology, immunology, psychology, forensics and even architecture.  

“Instead of considering microbes the bane of our life, as we have done during the global pandemic, we should appreciate the many benefits they bring in keeping plants animals, and ourselves, alive.”  

In another new article, Dr Robinson and colleagues call for a return to ‘nature play’ for children [emphasis mine] to expose their developing immune systems to a diverse array of microbes at a young age for better long-term health outcomes. 

“Early childhood settings should optimise both outdoor and indoor environments for enhanced exposure to diverse microbiomes for social, cognitive and physiological health,” the researchers say.  

“It’s important to remember that healthy soils feed the air with these diverse microbes,” Dr Robinson adds.  

It seems Robinson has gone on a publicity blitz, academic style, for his book. There’s a May 22, 2023 essay by Robinson, Carlos Abrahams (Senior Lecturer in Environmental Biology – Director of Bioacoustics, Nottingham Trent University); and Martin Breed (Associate Professor in Biology, Flinders University) on the Conversation, Note: A link has been removed,

Nurturing a forest ecosystem back to life after it’s been logged is not always easy.

It can take a lot of hard work and careful monitoring to ensure biodiversity thrives again. But monitoring biodiversity can be costly, intrusive and resource-intensive. That’s where ecological acoustic survey methods, or “ecoacoustics”, come into play.

Indeed, the planet sings. Think of birds calling, bats echolocating, tree leaves fluttering in the breeze, frogs croaking and bush crickets stridulating. We live in a euphonious theatre of life.

Even the creatures in the soil beneath our feet emit unique vibrations as they navigate through the earth to commute, hunt, feed and mate.

Robinson has published three papers within five months of each other, in addition to the book, which seems like heavy output to me.

First, here’s a link to and a citation for the education paper,

Optimising Early Childhood Educational Settings for Health Using Nature-Based Solutions: The Microbiome Aspect by Jake M. Robinson and Alexia Barrable. Educ. Sci. 2023, 13 (2), 211 DOI: https://doi.org/10.3390/educsci13020211
Published: 16 February 2023

This is an open access paper.

For these two links and citations, the articles seem to be very closely linked.,

The sound of restored soil: Measuring soil biodiversity in a forest restoration chronosequence with ecoacoustics by Jake M. Robinson, Martin F. Breed, Carlos Abrahams. doi: https://doi.org/10.1101/2023.01.23.525240 Posted January 23, 2023

The sound of restored soil: using ecoacoustics to measure soil biodiversity in a temperate forest restoration context by Jake M. Robinson, Martin F. Breed, Carlos Abrahams. Restoration Ecology, Online Version of Record before inclusion in an issue e13934 DOI: https://doi.org/10.1111/rec.13934 First published: 22 May 2023

Both links lead to open access papers.

Finally, there’s the book,

Invisible Friends; How Microbes Shape Our Lives and the World Around Us by Jake Robinson. Pelagic Publishing, 2022. ISBN 9781784274337 DOI: 10.53061/NZYJ2969

This you have to pay for.

For those would would like to hear something from nature, I have a May 27, 2022 posting, The sound of the mushroom. Enjoy!

Mind-controlled robots based on graphene: an Australian research story

As they keep saying these days, ‘it’s not science fiction anymore’.

It’s so fascinating I almost forgot what it’s like to make a video where it can take hours to get a few minutes (the video is a little over 3 mins.) and all the failures are edited out. Plus, I haven’t found any information about training both the human users and the robotic dogs/quadrupeds. Does it take minutes? hours? days? more? Can you work with any old robotic dog /quadruped or does it have to be the one you’ve ‘gotten to know’? Etc. Bottom line: I don’t know if I can take what I see in the video at face value.

A March 20, 2023 news item on Nanowerk announces the work from Australia,

The advanced brain-computer interface [BCI] was developed by Distinguished Professor Chin-Teng Lin and Professor Francesca Iacopi, from the UTS [University of Technology Sydney; Australia] Faculty of Engineering and IT, in collaboration with the Australian Army and Defence Innovation Hub.

As well as defence applications, the technology has significant potential in fields such as advanced manufacturing, aerospace and healthcare – for example allowing people with a disability to control a wheelchair or operate prosthetics.

“The hands-free, voice-free technology works outside laboratory settings, anytime, anywhere. It makes interfaces such as consoles, keyboards, touchscreens and hand-gesture recognition redundant,” said Professor Iacopi.

A March 20, 2023 University of Technology Sydney (UTS) press release, also on EurekAlert but published March 19, 2023, which originated the news item, describes the interface in more detail,

“By using cutting edge graphene material, combined with silicon, we were able to overcome issues of corrosion, durability and skin contact resistance, to develop the wearable dry sensors,” she said.

A new study outlining the technology has just been published in the peer-reviewed journal ACS Applied Nano Materials. It shows that the graphene sensors developed at UTS are very conductive, easy to use and robust.

The hexagon patterned sensors are positioned over the back of the scalp, to detect brainwaves from the visual cortex. The sensors are resilient to harsh conditions so they can be used in extreme operating environments.

The user wears a head-mounted augmented reality lens which displays white flickering squares. By concentrating on a particular square, the brainwaves of the operator are picked up by the biosensor, and a decoder translates the signal into commands.

The technology was recently demonstrated by the Australian Army, where soldiers operated a Ghost Robotics quadruped robot using the brain-machine interface [BMI]. The device allowed hands-free command of the robotic dog with up to 94% accuracy.

“Our technology can issue at least nine commands in two seconds. This means we have nine different kinds of commands and the operator can select one from those nine within that time period,” Professor Lin said.

“We have also explored how to minimise noise from the body and environment to get a clearer signal from an operator’s brain,” he said.

The researchers believe the technology will be of interest to the scientific community, industry and government, and hope to continue making advances in brain-computer interface systems.

Here’s a link to and a citation for the paper,

Noninvasive Sensors for Brain–Machine Interfaces Based on Micropatterned Epitaxial Graphene by Shaikh Nayeem Faisal, Tien-Thong Nguyen Do, Tasauf Torzo, Daniel Leong, Aiswarya Pradeepkumar, Chin-Teng Lin, and Francesca Iacopi. ACS Appl. Nano Mater. 2023, 6, 7, 5440–5447 DOI: https://doi.org/10.1021/acsanm.2c05546 Publication Date: March 16, 2023 Copyright © 2023 The Authors. Published by American Chemical Society

This paper is open access.

Comments

For anyone who’s bothered by this, the terminology is fluid. Sometimes you’ll see brain-computer interface (BCI), sometimes you’ll see human-computer interface, or brain-machine interface (BMI) and, as I’ve now found in the video although I notice the Australians are not hyphenating it, brain-robotic interface (BRI).

You can find Ghost Robotics here, the makers of the robotic ‘dog’.

There seems to be a movement to replace the word ‘soldiers’ with warfighters and, according to this video, military practitioners. I wonder how medical doctors and other practitioners feel about the use of ‘practitioners’ in a military context.

Virtual panel discussion: Canadian Strategies for Responsible Neurotechnology Innovation on May 16, 2023

The Canadian Science Policy Centre (CSPC) sent a May 11, 2023 notice (via email) about an upcoming event but first, congratulations (Bravo!) are in order,

The Science Meets Parliament [SMP] Program 2023 is now complete and was a huge success. 43 Delegates from across Canada met with 62 Parliamentarians from across the political spectrum on the Hill on May 1-2, 2023.

The SMP Program is championed by CSPC and Canada’s Chief Science Advisor, Dr. Mona Nemer [through the Office of the Chief Science Advisor {OCSA}].

This Program would not have been possible without the generous support of our sponsors: The Royal Military College of Canada, The Stem Cell Network, and the University of British Columbia.

There are 443 seats in Canada’s Parliament with 338 in the House of Commons and 105 in the Senate and 2023 is the third time the SMP programme has been offered. (It was previously held in 2018 and 2022 according to the SMP program page.)

The Canadian programme is relatively new compared to Australia where they’ve had a Science Meets Parliament programme since 1999 (according to a March 20, 2017 essay by Ken Baldwin, Director of Energy Change Institute at Australian National University for The Conversation). The Scottish have had a Science and the Parliament programme since 2000 (according to this 2022 event notice on the Royal Society of Chemistry’s website).

By comparison to the other two, the Canadian programme is a toddler. (We tend not to recognize walking for the major achievement it is.) So, bravo to the CSPC and OCSA on getting 62 Parliamentarians to make time in their schedules to meet a scientist.

Responsible neurotechnology innovation?

From the Canadian Strategies for Responsible Neurotechnology Innovation event page on the CSPC website,

Advances in neurotechnology are redefining the possibilities of improving neurologic health and mental wellbeing, but related ethical, legal, and societal concerns such as privacy of brain data, manipulation of personal autonomy and agency, and non-medical and dual uses are increasingly pressing concerns [emphasis mine]. In this regard, neurotechnology presents challenges not only to Canada’s federal and provincial health care systems, but to existing laws and regulations that govern responsible innovation. In December 2019, just before the pandemic, the OECD [Organisation for Economic Cooperation and Development] Council adopted a Recommendation on Responsible Innovation in Neurotechnology. It is now urging that member states develop right-fit implementation strategies.

What should these strategies look like for Canada? We will propose and discuss opportunities that balance and leverage different professional and governance approaches towards the goal of achieving responsible innovation for the current state of the art, science, engineering, and policy, and in anticipation of the rapid and vast capabilities expected for neurotechnology in the future by and for this country.

Link to the full OECD Recommendation on Responsible Innovation in Neurotechnology

Date: May 16 [2023]

Time: 12:00 pm – 1:30 pm EDT

Event Category: Virtual Session [on Zoom]

Registration Page: https://us02web.zoom.us/webinar/register/WN_-g8d1qubRhumPSCQi6WUtA

The panelists are:

Dr. Graeme Moffat
Neurotechnology entrepreneur & Senior Fellow, Munk School of Global Affairs & Public Policy [University of Toronto]

Dr. Graeme Moffat is a co-founder and scientist with System2 Neurotechnology. He previously was Chief Scientist and VP of Regulatory Affairs at Interaxon, Chief Scientist with ScienceScape (later Chan-Zuckerberg Meta), and a research engineer at Neurelec (a division of Oticon Medical). He served as Managing Editor of Frontiers in Neuroscience, the largest open access scholarly journal series in the field of neuroscience. Dr. Moffat is a Senior Fellow at the Munk School of Global Affairs and Public Policy and an advisor to the OECD’s neurotechnology policy initiative.

Professor Jennifer Chandler
Professor of Law at the Centre for Health Law, Policy and Ethics, University of Ottawa

Jennifer Chandler is Professor of Law at the Centre for Health Law, Policy and Ethics, University of Ottawa. She leads the “Neuroethics Law and Society” Research Pillar for the Brain Mind Research Institute and sits on its Scientific Advisory Council. Her research focuses on the ethical, legal and policy issues in brain sciences and the law. She teaches mental health law and neuroethics, tort law, and medico-legal issues. She is a member of the advisory board for CIHR’s Institute for Neurosciences, Mental Health and Addiction (IMNA) and serves on international editorial boards in the field of law, ethics and neuroscience, including Neuroethics, the Springer Book Series Advances in Neuroethics, and the Palgrave-MacMillan Book Series Law, Neuroscience and Human Behavior. She has published widely in legal, bioethical and health sciences journals and is the co-editor of the book Law and Mind: Mental Health Law and Policy in Canada (2016). Dr. Chandler brings a unique perspective to this panel as her research focuses on the ethical, legal and policy issues at the intersection of the brain sciences and the law. She is active in Canadian neuroscience research funding policy, and regularly contributes to Canadian governmental policy on contentious matters of biomedicine.

Ian Burkhart
Neurotech Advocate and Founder of BCI [brain-computer interface] Pioneers Coalition

Ian is a C5 tetraplegic [also known as quadriplegic] from a diving accident in 2010. He participated in a ground-breaking clinical trial using a brain-computer interface to control muscle stimulation. He is the founder of the BCI Pioneers Coalition, which works to establish ethics, guidelines and best practices for future patients, clinicians, and commercial entities engaging with BCI research. Ian serves as Vice President of the North American Spinal Cord Injury Consortium and chairs their project review committee. He has also worked with Unite2Fight Paralysis to advocate for $9 million of SCI research in his home state of Ohio. Ian has been a Reeve peer mentor since 2015 and helps lead two local SCI networking groups. As the president of the Ian Burkhart Foundation, he raises funds for accessible equipment for the independence of others with SCI. Ian is also a full-time consultant working with multiple medical device companies.

Andrew Atkinson
Manager, Emerging Science Policy, Health Canada

Andrew Atkinson is the Manager of the Emerging Sciences Policy Unit under the Strategic Policy Branch of Health Canada. He oversees coordination of science policy issues across the various regulatory and research programs under the mandate of Health Canada. Prior to Health Canada, he was a manager under Environment Canada’s CEPA new chemicals program, where he oversaw chemical and nanomaterial risk assessments, and the development of risk assessment methodologies. In parallel to domestic work, he has been actively engaged in ISO [International Organization for Standardization and OECD nanotechnology efforts.

Andrew is currently a member of the Canadian delegation to the OECD Working Party on Biotechnology, Nanotechnology and Converging Technologies (BNCT). BNCT aims to contribute original policy analysis on emerging science and technologies, such as gene editing and neurotechnology, including messaging to the global community, convening key stakeholders in the field, and making ground-breaking proposals to policy makers.

Professor Judy Illes
Professor, Division of Neurology, Department of Medicine, Faculty of Medicine, UBC [University of British Columbia]

Dr. Illes is Professor of Neurology and Distinguished Scholar in Neuroethics at the University of British Columbia. She is the Director of Neuroethics Canada, and among her many leadership positions in Canada, she is Vice Chair of the Canadian Institutes of Health Research (CIHR) Advisory Board of the Institute on Neuroscience, Mental Health and Addiction (INMHA), and chair of the International Brain Initiative (www.internationalbraininitiative.org; www.canadianbrain.ca), Director at Large of the Canadian Academy of Health Sciences, and a member of the Board of Directors of the Council of Canadian Academies.

Dr. Illes is a world-renown expert whose research, teaching and outreach are devoted to ethical, legal, social and policy challenges at the intersection of the brain sciences and biomedical ethics. She has made ground breaking contributions to neuroethical thinking for neuroscience discovery and clinical translation across the life span, including in entrepreneurship and in the commercialization of health care. Dr. Illes has a unique and comprehensive overview of the field of neurotechnology and the relevant sectors in Canada.

One concern I don’t see mentioned is bankruptcy (in other words, what happens if the company that made your neural implant goes bankrupt?) either in the panel description or in the OECD recommendation. My April 5, 2022 posting “Going blind when your neural implant company flirts with bankruptcy (long read)” explored that topic and while many of the excerpted materials present a US perspective, it’s easy to see how it could also apply in Canada and elsewhere.

For those of us on the West Coast, this session starts at 9 am. Enjoy!

*June 20, 2023: This sentence changed (We tend not to recognize that walking for the major achievement it is.) to We tend not to recognize walking for the major achievement it is.

Nanotechnology-enabled pain relief for tooth sensitivity

A November 23, 2021 news item on phys.org announces research from Australia that may lead to pain relief for anyone with sensitive teeth,

In an Australian first, researchers from the University of Queensland have used nanotechnology to develop effective ways to manage tooth sensitivity.

Dr. Chun Xu from UQ’s [University of Queensland] School of Dentistry said the approach might provide more effective long-term pain relief for people with sensitive teeth, compared to current options.

A November 23, 2021 University of Queensland press release, which originated the news item, describes the condition leading to tooth sensitivity and how the proposed solution works (Note: Links have been removed),

“Dentin tubules are located in the dentin, one of the layers below the enamel surface of your teeth,” Dr Xu said.

“When tooth enamel has been worn down, and the dentin are exposed, eating or drinking something cold or hot can cause a sudden sharp flash of pain.

“The nanomaterials used in this preclinical study can rapidly block the exposed dentin tubules and prevent the unpleasant pain.

“Our approach acts faster and lasts longer than current treatment options.

“The materials could be developed into a paste, so people who have sensitive teeth could simply apply this paste to the tooth and massage for one to three minutes.

“The next step is clinical trials.”

Tooth sensitivity affects up to 74 per cent of the population, at times severely impacting quality of life and requiring expensive treatment.

“If clinical trials are successful people will benefit from this new method that can be used at home, without the need to go to a dentist in the near future,” Dr Xu said.

“We hope this study encourages more research using nanotechnology to address dental problems.”

The team also included researchers from UQ’s Australian Institute for Bioengineering and Nanotechnology (AIBN.

Here’s a link to and a citation for the paper,

Calcium-Doped Silica Nanoparticles Mixed with Phosphate-Doped Silica Nanoparticles for Rapid and Stable Occlusion of Dentin Tubules by Yuxue Cao, Chun Xu, Patricia P. Wright, Jingyu Liu, Yueqi Kong, Yue Wang, Xiaodan Huang, Hao Song, Jianye Fu, Fang Gao, Yang Liu, Laurence J. Walsh, and Chang Lei. ACS Appl. Nano Mater. 2021, 4, 9, 8761–8769 DOI: https://doi.org/10.1021/acsanm.1c01365 Publication Date:August 25, 2021 Copyright © 2021 American Chemical Society

This paper is behind a paywall.

Council of Canadian Academies (CCA): science policy internship and a new panel on Public Safety in the Digital Age

It’s been a busy week for the Council of Canadian Academies (CCA); I don’t usually get two notices in such close order.

2022 science policy internship

The application deadline is Oct. 18, 2021, you will work remotely, and the stipend for the 2020 internship was $18,500 for six months.

Here’s more from a September 13, 2021 CCA notice (received Sept. 13, 2021 via email),

CCA Accepting Applications for Internship Program

The program provides interns with an opportunity to gain experience working at the interface of science and public policy. Interns will participate in the development of assessments by conducting research in support of CCA’s expert panel process.

The internship program is a full-time commitment of six months and will be a remote opportunity due to the Covid-19 pandemic.

Applicants must be recent graduates with a graduate or professional degree, or post-doctoral fellows, with a strong interest in the use of evidence for policy. The application deadline is October 18, 2021. The start date is January 10, 2022. Applications and letters of reference should be addressed to Anita Melnyk at internship@cca-reports.ca.

More information about the CCA Internship Program and the application process can be found here. [Note: The link takes you to a page with information about a 2020 internship opportunity; presumably, the application requirements have not changed.]

Good luck!

Expert Panel on Public Safety in the Digital Age Announced

I have a few comments (see the ‘Concerns and hopes’ subhead) about this future report but first, here’s the announcement of the expert panel that was convened to look into the matter of public safety (received via email September 15, 2021),

CCA Appoints Expert Panel on Public Safety in the Digital Age

Access to the internet and digital technologies are essential for people, businesses, and governments to carry out everyday activities. But as more and more activities move online, people and organizations are increasingly vulnerable to serious threats and harms that are enabled by constantly evolving technology. At the request of Public Safety Canada, [emphasis mine] the Council of Canadian Academies (CCA) has formed an Expert Panel to examine leading practices that could help address risks to public safety while respecting human rights and privacy. Jennifer Stoddart, O.C., Strategic Advisor, Privacy and Cybersecurity Group, Fasken Martineau DuMoulin [law firm], will serve as Chair of the Expert Panel.

“The ever-evolving nature of crimes and threats that take place online present a huge challenge for governments and law enforcement,” said Ms. Stoddart. “Safeguarding public safety while protecting civil liberties requires a better understanding of the impacts of advances in digital technology and the challenges they create.”

As Chair, Ms. Stoddart will lead a multidisciplinary group with expertise in cybersecurity, social sciences, criminology, law enforcement, and law and governance. The Panel will answer the following question:

Considering the impact that advances in information and communications technologies have had on a global scale, what do current evidence and knowledge suggest regarding promising and leading practices that could be applied in Canada for investigating, preventing, and countering threats to public safety while respecting human rights and privacy?

“This is an important question, the answer to which will have both immediate and far-reaching implications for the safety and well-being of people living in Canada. Jennifer Stoddart and this expert panel are very well-positioned to answer it,” said Eric M. Meslin, PhD, FRSC, FCAHS, President and CEO of the CCA.

More information about the assessment can be found here.

The Expert Panel on Public Safety in the Digital Age:

  • Jennifer Stoddart (Chair), O.C., Strategic Advisor, Privacy and Cybersecurity Group, Fasken Martineau DuMoulin [law firm].
  • Benoît Dupont, Professor, School of Criminology, and Canada Research Chair in Cybersecurity and Research Chair for the Prevention of Cybercrime, Université de Montréal; Scientific Director, Smart Cybersecurity Network (SERENE-RISC). Note: This is one of Canada’s Networks of Centres of Excellence (NCE)
  • Richard Frank, Associate Professor, School of Criminology, Simon Fraser University; Director, International CyberCrime Research Centre International. Note: This is an SFU/ Society for the Policing of Cyberspace (POLCYB) partnership
  • Colin Gavaghan, Director, New Zealand Law Foundation Centre for Law and Policy in Emerging Technologies, Faculty of Law, University of Otago.
  • Laura Huey, Professor, Department of Sociology, Western University; Founder, Canadian Society of Evidence Based Policing [Can-SEPB].
  • Emily Laidlaw, Associate Professor and Canada Research Chair in Cybersecurity Law, Faculty of Law, University of Calgary.
  • Arash Habibi Lashkari, Associate Professor, Faculty of Computer Science, University of New Brunswick; Research Coordinator, Canadian Institute of Cybersecurity [CIC].
  • Christian Leuprecht, Class of 1965 Professor in Leadership, Department of Political Science and Economics, Royal Military College; Director, Institute of Intergovernmental Relations, School of Policy Studies, Queen’s University.
  • Florian Martin-Bariteau, Associate Professor of Law and University Research Chair in Technology and Society, University of Ottawa; Director, Centre for Law, Technology and Society.
  • Shannon Parker, Detective/Constable, Saskatoon Police Service.
  • Christopher Parsons, Senior Research Associate, Citizen Lab, Munk School of Global Affairs & Public Policy, University of Toronto.
  • Jad Saliba, Founder and Chief Technology Officer, Magnet Forensics Inc.
  • Heidi Tworek, Associate Professor, School of Public Policy and Global Affairs, and Department of History, University of British Columbia.

Oddly, there’s no mention that Jennifer Stoddart (Wikipedia entry) was Canada’s sixth privacy commissioner. Also, Fasken Martineau DuMoulin (her employer) changed its name to Fasken in 2017 (Wikipedia entry). The company currently has offices in Canada, UK, South Africa, and China (Firm webpage on company website).

Exactly how did the question get framed?

It’s always informative to look at the summary (from the reports Public Safety in the Digital Age webpage on the CCA website),

Information and communications technologies have profoundly changed almost every aspect of life and business in the last two decades. While the digital revolution has brought about many positive changes, it has also created opportunities for criminal organizations and malicious actors [emphasis mine] to target individuals, businesses, and systems. Ultimately, serious crime facilitated by technology and harmful online activities pose a threat to the safety and well-being of people in Canada and beyond.

Damaging or criminal online activities can be difficult to measure and often go unreported. Law enforcement agencies and other organizations working to address issues such as the sexual exploitation of children, human trafficking, and violent extremism [emphasis mine] must constantly adapt their tools and methods to try and prevent and respond to crimes committed online.

A better understanding of the impacts of these technological advances on public safety and the challenges they create could help to inform approaches to protecting public safety in Canada.

This assessment will examine promising practices that could help to address threats to public safety related to the use of digital technologies while respecting human rights and privacy.

The Sponsor:

Public Safety Canada

The Question:

Considering the impact that advances in information and communications technologies have had on a global scale, what do current evidence and knowledge suggest regarding promising and leading practices that could be applied in Canada for investigating, preventing, and countering threats to public safety while respecting human rights and privacy?

Three things stand out for me. First, public safety, what is it?, second, ‘malicious actors’, and third, the examples used for the issues being addressed (more about this in the Comments subsection, which follows).

What is public safety?

Before launching into any comments, here’s a description for Public Safety Canada (from their About webpage) where you’ll find a hodge podge,

Public Safety Canada was created in 2003 to ensure coordination across all federal departments and agencies responsible for national security and the safety of Canadians.

Our mandate is to keep Canadians safe from a range of risks such as natural disasters, crime and terrorism.

Our mission is to build a safe and resilient Canada.

The Public Safety Portfolio

A cohesive and integrated approach to Canada’s security requires cooperation across government. Together, these agencies have an annual budget of over $9 billion and more than 66,000 employees working in every part of the country.

Public Safety Partner Agencies

The Canada Border Services Agency (CBSA) manages the nation’s borders by enforcing Canadian laws governing trade and travel, as well as international agreements and conventions. CBSA facilitates legitimate cross-border traffic and supports economic development while stopping people and goods that pose a potential threat to Canada.

The Canadian Security Intelligence Service (CSIS) investigates and reports on activities that may pose a threat to the security of Canada. CSIS also provides security assessments, on request, to all federal departments and agencies.

The Correctional Service of Canada (CSC) helps protect society by encouraging offenders to become law-abiding citizens while exercising reasonable, safe, secure and humane control. CSC is responsible for managing offenders sentenced to two years or more in federal correctional institutions and under community supervision.

The Parole Board of Canada (PBC) is an independent body that grants, denies or revokes parole for inmates in federal prisons and provincial inmates in province without their own parole board. The PBC helps protect society by facilitating the timely reintegration of offenders into society as law-abiding citizens.

The Royal Canadian Mounted Police (RCMP) enforces Canadian laws, prevents crime and maintains peace, order and security.

So, Public Safety includes a spy agency (CSIS), the prison system (Correctional Services and Parole Board), and the national police force (RCMP) and law enforcement at the borders with the Canada Border Services Agency (CBSA). None of the partner agencies are dedicated to natural disasters although it’s mentioned in the department’s mandate.

The focus is largely on criminal activity and espionage. On that note, a very senior civilian RCMP intelligence official, Cameron Ortis*, was charged with passing secrets to foreign entities (malicious actors?). (See the September 13, 2021 [updated Sept. 15, 2021] news article by Amanda Connolly, Mercedes Stephenson, Stewart Bell, Sam Cooper & Rachel Browne for CTV news and the Sept. 18, 2019 [updated January 6, 2020] article by Douglas Quan for the National Post for more details.)

There appears to be at least one other major security breach; that involving Canada’s only level four laboratory, the Winnipeg-based National Microbiology Lab (NML). (See a June 10, 2021 article by Karen Pauls for Canadian Broadcasting Corporation news online for more details.)

As far as I’m aware, Ortis is still being held with a trial date scheduled for September 2022 (see Catherine Tunney’s April 9, 2021 article for CBC news online) and, to date, there have been no charges laid in the Winnipeg lab case.

Concerns and hopes

Ordinarily I’d note links and relationships between the various expert panel members but in this case it would be a big surprise if they weren’t linked in some fashion as the focus seems to be heavily focused on cybersecurity (as per the panel member’s bios.), which I imagine is a smallish community in Canada.

As I’ve made clear in the paragraphs leading into the comments, Canada appears to have seriously fumbled the ball where national and international cybersecurity is concerned.

So getting back to “First, public safety, what is it?, second, ‘malicious actors’, and third, the examples used for the issues,” I’m a bit puzzled.

Public safety as best I can tell, is just about anything they’d like it to be. ‘Malicious actors’ is a term I’ve seen used to imply a foreign power is behind the actions being held up for scrutiny.

The examples used for the issues being addressed “sexual exploitation of children, human trafficking, and violent extremism” hint at a focus on crimes that cross borders and criminal organizations, as well as, like-minded individuals organizing violent and extremist acts but not specifically at any national or international security concerns.

On a more mundane note, I’m a little surprised that identity theft wasn’t mentioned as an example.

I’m hopeful there will be some examination of emerging technologies such as quantum communication (specifically, encryption issues) and artificial intelligence. I also hope the report will include a discussion about mistakes and over reliance on technology (for a refresher course on what happens when organizations, such as the Canadian federal government, make mistakes in the digital world; search ‘Phoenix payroll system’, a 2016 made-in-Canada and preventable debacle, which to this day is still being fixed).

In the end, I think the only topic that can be safely excluded from the report is climate change otherwise it’s a pretty open mandate as far as can be told from publicly available information.

I noticed the international panel member is from New Zealand (the international component is almost always from the US, UK, northern Europe, and/or the Commonwealth). Given that New Zealand (as well as being part of the commonwealth) is one of the ‘Five Eyes Intelligence Community’, which includes Canada, Australia, the UK, the US, and, NZ, I was expecting a cybersecurity expert. If Professor Colin Gavaghan does have that expertise, it’s not obvious on his University of Otaga profile page (Note: Links have been removed),

Research interests

Colin is the first director of the New Zealand Law Foundation sponsored Centre for Law and Policy in Emerging Technologies. The Centre examines the legal, ethical and policy issues around new technologies. To date, the Centre has carried out work on biotechnology, nanotechnology, information and communication technologies and artificial intelligence.

In addition to emerging technologies, Colin lectures and writes on medical and criminal law.

Together with colleagues in Computer Science and Philosophy, Colin is the leader of a three-year project exploring the legal, ethical and social implications of artificial intelligence for New Zealand.

Background

Colin regularly advises on matters of technology and regulation. He is first Chair of the NZ Police’s Advisory Panel on Emergent Technologies, and a member of the Digital Council for Aotearoa, which advises the Government on digital technologies. Since 2017, he has been a member (and more recently Deputy Chair) of the Advisory Committee on Assisted Reproductive Technology. He was an expert witness in the High Court case of Seales v Attorney General, and has advised members of parliament on draft legislation.

He is a frustrated writer of science fiction, but compensates with occasional appearances on panels at SF conventions.

I appreciate the sense of humour evident in that last line.

Almost breaking news

Wednesday, September 15, 2021 an announcement of a new alliance in the Indo-Pacific region, the Three Eyes (Australia, UK, and US or AUKUS) was made.

Interestingly all three are part of the Five Eyes intelligence alliance comprised of Australia, Canada, New Zealand, UK, and US. Hmmm … Canada and New Zealand both border the Pacific and last I heard, the UK is still in Europe.

A September 17, 2021 article, “Canada caught off guard by exclusion from security pact” by Robert Fife and Steven Chase for the Globe and Mail (I’m quoting from my paper copy),

The Canadian government was surprised this week by the announcement of a new security pact among the United States, Britain and Australia, one that excluded Canada [and New Zealand too] and is aimed at confronting China’s growing military and political influence in the Indo-Pacific region, according to senior government officials.

Three officials, representing Canada’s Foreign Affairs, Intelligence and Defence departments, told the Globe and Mail that Ottawa was not consulted about the pact, and had no idea the trilateral security announcement was coming until it was made on Wednesday [September 15, 2021] by U.S. President Joe Biden, British Prime Minister Boris Johnson and Australian Prime Minister Scott Morrison.

The new trilateral alliance, dubbed AUKUS, after the initials of the three countries, will allow for greater sharing of information in areas such as artificial intelligence and cyber and underwater defence capabilities.

Fife and Chase have also written a September 17, 2021 Globe and Mail article titled, “Chinese Major-General worked with fired Winnipeg Lab scientist,”

… joint research conducted between Major-General Chen Wei and former Canadian government lab scientist Xiangguo Qiu indicates that co-operation between the Chinese military and scientists at the National Microbiology Laboratory (NML) went much higher than was previously known. The People’s Liberation Army is the military of China’s ruling Communist Party.

Given that no one overseeing the Canadian lab, which is a level 4 and which should have meant high security, seems to have known that Wei was a member of the military and with the Cameron Ortis situation still looming, would you have included Canada in the new pact?

*ETA September 20, 2021: For anyone who’s curious about the Cameron Ortis case, there’s a Fifth Estate documentary (approximately 46 minutes): The Smartest Guy in the Room: Cameron Ortis and the RCMP Secrets Scandal.

Science policy updates (INGSA in Canada and SCWIST)

I had just posted my Aug. 30, 2021 piece (4th International Conference on Science Advice to Governments (INGSA2021) August 30 – September 2, 2021) when the organization issued a news release, which was partially embargoed. By the time this is published (after 8 am ET on Wednesday, Sept. 1, 2021), the embargo will have lifted and i can announce that Rémi Quirion, Chief Scientist of Québec (Canada), has been selected to replace Sir Peter Gluckman (New Zealand) as President of INGSA.

Here’s the whole August 30, 2021 International Network for Government Science Advice (INGSA) news release on EurekAlert, Note: This looks like a direct translation from a French language news release, which may account for some unusual word choices and turns of phrase,

What? 4th International Conference on Science Advice to Governments, INGSA2021.

Where? Palais des Congrès de Montréal, Québec, Canada and online at www.ingsa2021.org

When? 30 August – 2 September, 2021.

CONTEXT: The largest ever independent gathering of interest groups, thought-leaders, science advisors to governments and global institutions, researchers, academics, communicators and diplomats is taking place in Montreal and online. Organized by Prof Rémi Quirion, Chief Scientist of Québec, speakers from over 50 countries[1] from Brazil to Burkina Faso and from Ireland to Indonesia, plus over 2000 delegates from over 130 countries, will spotlight what is really at stake in the relationship between science and policy-making, both during crises and within our daily lives. From the air we breathe, the food we eat and the cars we drive, to the medical treatments or the vaccines we take, and the education we provide to children, this relationship, and the decisions it can influence, matter immensely.  

Prof Rémi Quirion, Conference Organizer, Chief Scientist of Québec and incoming President of INGSA added: “For those of us who believe wholeheartedly in evidence and the integrity of science, the past 18 months have been challenging. Information, correct and incorrect, can spread like a virus. The importance of open science and access to data to inform our UN sustainable development goals discussions or domestically as we strengthen the role of cities and municipalities, has never been more critical. I have no doubt that this transparent and honest platform led from Montréal will act as a carrier-wave for greater engagement”.

Chief Science Advisor of Canada and Conference co-organizer, Dr Mona Nemer, stated that: “Rapid scientific advances in managing the Covid pandemic have generated enormous public interest in evidence-based decision making. This attention comes with high expectations and an obligation to achieve results. Overcoming the current health crisis and future challenges will require global coordination in science advice, and INGSA is well positioned to carry out this important work. Canada and our international peers can benefit greatly from this collaboration.”

Sir Peter Gluckman, founding Chair of INGSA stated that: “This is a timely conference as we are at a turning point not just in the pandemic, but globally in our management of longer-term challenges that affect us all. INGSA has helped build and elevate open and ongoing public and policy dialogue about the role of robust evidence in sound policy making”.

He added that: “Issues that were considered marginal seven years ago when the network was created are today rightly seen as central to our social, environmental and economic wellbeing. The pandemic highlights the strengths and weaknesses of evidence-based policy-making at all levels of governance. Operating on all continents, INGSA demonstrates the value of a well-networked community of emerging and experienced practitioners and academics, from countries at all levels of development. Learning from each other, we can help bring scientific evidence more centrally into policy-making. INGSA has achieved much since its formation in 2014, but the energy shown in this meeting demonstrates our potential to do so much more”.

Held previously in Auckland 2014, Brussels 2016, Tokyo 2018 and delayed for one year due to Covid, the advantage of the new hybrid and virtual format is that organizers have been able to involve more speakers, broaden the thematic scope and offer the conference as free to view online, reaching thousands more people. Examining the complex interactions between scientists, public policy and diplomatic relations at local, national, regional and international levels, especially in times of crisis, the overarching INGSA2021 theme is: “Build back wiser: knowledge, policy & publics in dialogue”.

The first three days will scrutinize everything from concrete case-studies outlining successes and failures in our advisory systems to how digital technologies and AI are reshaping the profession itself. The final day targets how expertize and action in the cultural context of the French-speaking world is encouraging partnerships and contributing to economic and social development. A highlight of the conference is the 2 September announcement of a new ‘Francophonie Science Advisory Network’.       

Prof. Salim Abdool Karim, a member of the World Health Organization’s Science Council, and the face of South Africa’s Covid-19 science, speaking in the opening plenary outlined that: “As a past anti-apartheid activist now providing scientific advice to policy-makers, I have learnt that science and politics share common features. Both operate at the boundaries of knowledge and uncertainty, but approach problems differently. We scientists constantly question and challenge our assumptions, constantly searching for empiric evidence to determine the best options. In contrast, politicians are most often guided by the needs or demands of voters and constituencies, and by ideology”.

He added: “What is changing is that grass-roots citizens worldwide are no longer ill-informed and passive bystanders. And they are rightfully demanding greater transparency and accountability. This has brought the complex contradictions between evidence and ideology into the public eye. Covid-19 is not just a disease, its social fabric exemplifies humanity’s interdependence in slowing global spread and preventing new viral mutations through global vaccine equity. This starkly highlights the fault-lines between the rich and poor countries, especially the maldistribution of life-saving public health goods like vaccines. I will explore some of the key lessons from Covid-19 to guide a better response to the next pandemic”.

Speaking on a panel analysing different advisory models, Prof. Mark Ferguson, Chair of the European Innovation Council’s Advisory Board and Chief Science Advisor to the Government of Ireland, sounded a note of optimism and caution in stating that: “Around the world, many scientists have become public celebrities as citizens engage with science like never before. Every country has a new, much followed advisory body. With that comes tremendous opportunities to advance the status of science and the funding of scientific research. On the flipside, my view is that we must also be mindful of the threat of science and scientists being viewed as a political force”.

Strength in numbers

What makes the 4th edition of this biennial event stand out is the perhaps never-before assembled range of speakers from all continents working at the boundary between science, society and policy willing to make their voices heard. In a truly ‘Olympics’ approach to getting all stakeholders on-board, organisers succeeded in involving, amongst others, the UN Office for Disaster Risk Reduction, the United Nations Development Programme, UNESCO and the OECD. The in-house science services of the European Commission and Parliament, plus many country-specific science advisors also feature prominently.

As organisers foster informed debate, we get a rare glimpse inside the science advisory worlds of the Comprehensive Nuclear Test Ban Treaty Organisation, the World Economic Forum and the Global Young Academy to name a few. From Canadian doctors, educators and entrepreneurs and charitable foundations like the Welcome Trust, to Science Europe and media organisations, the programme is rich in its diversity. The International Organisation of the Francophonie and a keynote address by H.E. Laurent Fabius, President of the Constitutional Council of the French Republic are just examples of two major draws on the final day dedicated to spotlighting advisory groups working through French. 

INGSA’s Elections: New Canadian President and Three Vice Presidents from Chile, Ethiopia, UK

The International Network for Government Science Advice has recently undertaken a series of internal reforms intended to better equip it to respond to the growing demands for support from its international partners, while realising the project proposals and ideas of its members.

Part of these reforms included the election in June, 2021 of a new President replacing Sir Peter Gluckman (2014 – 2021) and the creation of three new Vice President roles.

These results will be announced at 13h15 on Wednesday, 1st September during a special conference plenary and awards ceremony. While noting the election results below, media are asked to respect this embargo.

Professor Rémi Quirion, Chief Scientist of Québec (Canada), replaces Sir Peter Gluckman (New Zealand) as President of INGSA.
 

Professor Claire Craig (United Kingdom), CBE, Provost of Queen’s College Oxford and a member of the UK government’s AI Council, has been elected by members as the inaugural Vice President for Evidence.
 

Professor Binyam Sisay Mendisu (Egypt), PhD, Lecture at the University of Addis Ababa and Programme Advisor, UNESCO Institute for Building Capacity in Africa, has been elected by members as the inaugural Vice President for Capacity Building.
 

Professor Soledad Quiroz Valenzuela (Chile), Science Advisor on Climate Change to the Ministry of Science, Technology, Knowledge and Innovation of the government of Chile, has been elected by members as the Vice President for Policy.

Satellite Events: From 7 – 9 September, as part of INGSA2021, the conference is partnering with local,  national and international organisations to ignite further conversations about the science/policy/society interface. Six satellite events are planned to cover everything from climate science advice and energy policy, open science and publishing during a crisis, to the politicisation of science and pre-school scientific education. International delegates are equally encouraged to join in online. 

About INGSA: Founded in 2014 with regional chapters in Africa, Asia and Latin America and the Caribbean, INGSA has quicky established an important reputation as aa collaborative platform for policy exchange, capacity building and research across diverse global science advisory organisations and national systems. Currently, over 5000 individuals and institutions are listed as members. Science communicators and members of the media are warmly welcomed to join.

As the body of work detailed on its website shows (www.ingsa.org) through workshops, conferences and a growing catalogue of tools and guidance, the network aims to enhance the global science-policy interface to improve the potential for evidence-informed policy formation at sub-national, national and transnational levels. INGSA operates as an affiliated body of the International Science Council which acts as trustee of INGSA funds and hosts its governance committee. INGSA’s secretariat is based in Koi Tū: The Centre for Informed Futures at the University of Auckland in New Zealand.

Conference Programme: 4th International Conference on Science Advice to Government (ingsa2021.org)

Newly released compendium of Speaker Viewpoints: Download Essays From The Cutting Edge Of Science Advice – Viewpoints

[1] Argentina, Australia, Austria, Barbados, Belgium, Benin, Brazil, Burkina Faso, Cameroon, Canada, Chad, Colombia, Costa Rica, Côte D’Ivoire, Denmark, Estonia, Finland, France, Germany, Hong Kong, Indonesia, Ireland, Japan, Lebanon, Luxembourg, Malaysia, Mexico, Morocco, Netherlands, New Zealand, Pakistan, Papua New Guinea, Rwanda, Senegal, Singapore, Slovakia, South Africa, Spain, Sri Lanka, Sweden, Switzerland, Thailand, UK, USA. 

Society for Canadian Women in Science and Technology (SCWIST)

As noted earlier this year in my January 28, 2021 posting, it’s SCWIST’s 40th anniversary and the organization is celebrating with a number of initiatives, here are some of the latest including as talk on science policy (from the August 2021 newsletter received via email),

SCWIST “STEM Forward Project”
Receives Federal Funding

SCWIST’s “STEM Forward for Economic Prosperity” project proposal was among 237 projects across the country to receive funding from the $100 million Feminist Response Recovery Fund of the Government of Canada through the Women and Gender Equality Canada (WAGE) federal department.

Read more. 

iWIST and SCWIST Ink Affiliate MOU [memorandum of understanding]

Years in planning, the Island Women in Science and Technology (iWIST) of Victoria, British Columbia and SCWIST finally signed an Affiliate MOU (memorandum of understanding) on Aug 11, 2021.

The MOU strengthens our commitment to collaborate on advocacy (e.g. grants, policy and program changes at the Provincial and Federal level), events (networking, workshops, conferences), cross promotion ( event/ program promotion via digital media), and membership growth (discounts for iWIST members to join SCWIST and vice versa).

Dr. Khristine Carino, SCWIST President, travelled to Victoria to sign the MOU in person. She was invited as an honoured guest to the iWIST annual summer picnic by Claire Skillen, iWIST President. Khristine’s travel expenses were paid from her own personal funds.

Discovery Foundation x SBN x SCWIST Business Mentorship Program: Enhancing Diversity in today’s Biotechnology Landscape

The Discovery Foundation, Student Biotechnology Network, and Society for Canadian Women in Science and Technology are proud to bring you the first-ever “Business Mentorship Program: Enhancing Diversity in today’s Biotechnology Landscape”. 

The Business Mentorship Program aims to support historically underrepresented communities (BIPOC, Women, LGBTQIAS+ and more) in navigating the growth of the biotechnology industry. The program aims to foster relationships between individuals and professionals through networking and mentorship, providing education and training through workshops and seminars, and providing 1:1 consultation with industry leaders. Participants will be paired with mentors throughout the week and have the opportunity to deliver a pitch for the chance to win prizes at the annual Building Biotechnology Expo. 

This is a one week intensive program running from September 27th – October 1st, 2021 and is limited to 10 participants. Please apply early. 

Events

September 10

Art of Science and Policy-Making Go Together

Science and policy-making go together. Acuitas’ [emphasis mine] Molly Sung shares her journey and how more scientists need to engage in this important area.

September 23

Au-delà de l’apparence :

des femmes de courage et de résilience en STIM

Dans le cadre de la semaine de l’égalité des sexes au Canada, ce forum de la division québécoise de la Société pour les femmes canadiennes en science et technologie (la SCWIST) mettra en vedette quatre panélistes inspirantes avec des parcours variés qui étudient ou travaillent en science, technologie, ingénierie et mathématiques (STIM) au Québec. Ces femmes immigrantes ont laissé leurs proches et leurs pays d’origine pour venir au Québec et contribuer activement à la recherche scientifique québécoise. 

….

The ‘Art and Science Policy-Making Go Together’ talk seems to be aimed at persuasion and is not likely to offer any insider information as to how the BC life sciences effort is progressing. For a somewhat less rosy view of science and policy efforts, you can check out my August 23, 2021 posting, Who’s running the life science companies’ public relations campaign in British Columbia (Vancouver, Canada)?; scroll down to ‘The BC biotech gorillas’ subhead for more about Acuitas and some of the other life sciences companies in British Columbia (BC).

For some insight into how competitive the scene is here in BC, you can see my August 20, 2021 posting (Getting erased from the mRNA/COVID-19 story) about Ian MacLachlan.

You can check out more at the SCWIST website and I’m not sure when the August issue will be placed there but they do have a Newsletter Archive.

Help scientists identify why dead frogs are unexpectedly turning up across eastern Australia

Australian scientists are calling on citizen scientists to help them understand why frogs in eastern Australia are dying in what seems to be record numbers.

Here’s more from a July 28, 2021 essay by Jodi Rowley (curator, Amphibian & Reptile Conservation Biology, Australian Museum at the University of New South Wales [UNSW]), and Karrie Rose (Australian Registry of Wildlife Health – Taronga Conservation Society, University of Sydney) for The Conversation (can also be found as a July 28, 2021 news item on phys.org), Note: Links have been removed,

Over the past few weeks, we’ve received a flurry of emails from concerned people who’ve seen sick and dead frogs across eastern Victoria, New South Wales and Queensland.

One person wrote:

“About a month ago, I noticed the Green Tree Frogs living around our home showing signs of lethargy & ill health. I was devastated to find about 7 of them dead.”

In most circumstances, it’s rare to see a dead frog. Most frogs are secretive in nature and, when they die, they decompose rapidly. So the growing reports of dead and dying frogs from across eastern Australia over the last few months are surprising, to say the least.

While the first cold snap of each year can be accompanied by a few localised frog deaths, this outbreak has affected more animals over a greater range than previously encountered.

This is truly an unusual amphibian mass mortality event.

In this outbreak, frogs appear to be either darker or lighter than normal, slow, out in the daytime (they’re usually nocturnal), and are thin. Some frogs have red bellies, red feet, and excessive sloughed skin.

The iconic green tree frog (Litoria caeulea) seems hardest hit in this event, with the often apple-green and plump frogs turning brown and shrivelled.

This frog is widespread and generally rather common. [emphasis mine] In fact, it’s the ninth most commonly recorded frog in the national citizen science project, FrogID. But it has disappeared from parts of its former range. [emphasis mine]

We simply don’t know the true impacts of this event on Australia’s frog species, particularly those that are rare, cryptic or living in remote places. Well over 100 species of frog live within the geographic range of this outbreak. Dozens of these are considered threatened, including the booroolong Frog (Litoria booroolongensis) and the giant barred frog (Mixophyes iteratus).

Here’s more about the Australian agencies investigating the mass mortality event and some information about how you can help, from the July 28, 2021 essay by Rowley and Rose,

… the Australian Registry of Wildlife Health is working with the Australian Museum, government biosecurity and environment agencies as part of the investigation.

While we suspect a combination of the amphibian chytrid fungus and the chilly temperatures, we simply don’t know what factors may be contributing to the outbreak.

We also aren’t sure how widespread it is, what impact it will have on our frog populations, or how long it will last.

While the temperatures stay low, we suspect our frogs will continue to succumb. If we don’t investigate quickly, we will lose the opportunity to achieve a diagnosis and understand what has transpired.

We need your help to solve this mystery.

Please send any reports of sick or dead frogs (and if possible, photos) to us, via the national citizen science project FrogID, or email calls@frogid.net.au.

You can find FrogID here. At this writing (Monday, Aug. 2, 2021), there doesn’t seem to be a specific link to the current investigation on the FrogID homepage, which is devoted to reporting frog sounds. However, at the bottom of the homepage there is a ‘Contact us’ section with a ‘Research Enquiries’ option.

For any Canadians who are reading this and are unable to participate but would still like to contribute to frog welfare, there’s a Canadian effort, frogwatch. For anyone in the UK, there’s Froglife. Both of which, like FrogID, are citizen science projects.

A fully implantable wireless medical device for patients with severe paralysis

There have been only two people who have tested the device from Australia but the research raises hope, from an Oct, 28, 2020 news item on ScienceDaily,

A tiny device the size of a small paperclip has been shown to help patients with upper limb paralysis to text, email and even shop online in the first human trial.

The device, Stentrode™, has been implanted successfully in two patients, who both suffer from severe paralysis due to amyotrophic lateral sclerosis (ALS) — also known as motor neuron disease (MND) — and neither had the ability to move their upper limbs.

Published in the Journal of NeuroInterventional Surgery, the results found the Stentrode™ was able to wirelessly restore the transmission of brain impulses out of the body. This enabled the patients to successfully complete daily tasks such as online banking, shopping and texting, which previously had not been available to them.

An Oct. 28, 2020 University of Melbourne press release (also on EurekAlert), which originated the news item, fills in some of the detail,

The Royal Melbourne Hospital’s Professor Peter Mitchell, Neurointervention Service Director and principal investigator on the trial, said the findings were promising and demonstrate the device can be safely implanted and used within the patients.

“This is the first time an operation of this kind has been done, so we couldn’t guarantee there wouldn’t be problems, but in both cases the surgery has gone better than we had hoped,” Professor Mitchell said.

Professor Mitchell implanted the device on the study participants through their blood vessels, next to the brain’s motor cortex, in a procedure involving a small ‘keyhole’ incision in the neck.

“The procedure isn’t easy, in each surgery there were differences depending on the patient’s anatomy, however in both cases the patients were able to leave the hospital only a few days later, which also demonstrates the quick recovery from the surgery,” Professor Mitchell said.

Neurointerventionalist and CEO of Synchron – the research commercial partner – Associate Professor Thomas Oxley, said this was a breakthrough moment for the field of brain-computer interfaces.

“We are excited to report that we have delivered a fully implantable, take home, wireless technology that does not require open brain surgery, which functions to restore freedoms for people with severe disability,” Associate Professor Oxley, who is also co-head of the Vascular Bionics Laboratory at the University of Melbourne, said.

The two patients used the Stentrode™ to control the computer-based operating system, in combination with an eye-tracker for cursor navigation. This meant they did not need a mouse or keyboard.

They also undertook machine learning-assisted training to control multiple mouse click actions, including zoom and left click. The first two patients achieved an average click accuracy of 92 per cent and 93 per cent, respectively, and typing speeds of 14 and 20 characters per minute with predictive text disabled.

University of Melbourne Associate Professor Nicholas Opie, co-head of the Vascular Bionics Laboratory at the University and founding chief technology officer of Synchron said the developments were exciting and the patients involved had a level of freedom restored in their lives.

“Observing the participants use the system to communicate and control a computer with their minds, independently and at home, is truly amazing,” Associate Professor Opie said.

“We are thankful to work with such fantastic participants, and my colleagues and I are honoured to make a difference in their lives. I hope others are inspired by their success.

“Over the last eight years we have drawn on some of the world’s leading medical and engineering minds to create an implant that enables people with paralysis to control external equipment with the power of thought. We are pleased to report that we have achieved this.”

The researchers caution that while it is some years away before the technology, capable of returning independence to complete everyday tasks is publicly available, the global, multidisciplinary team is working tirelessly to make this a reality.

The trial recently received a $AU1.48 million grant from the Australian commonwealth government to expand the trial to hospitals in New South Wales and Queensland, with hopes to enrol more patients.

###

About Stentrode™

Stentrode™ was developed by researchers from the University of Melbourne, the Royal Melbourne Hospital, the Florey Institute of Neuroscience and Mental Health, Monash University and the company Synchron Australia – the corporate vehicle established by Associate Professors Thomas Oxley (CEO) and Nicholas Opie (CTO) that aims to develop and commercialise neural bionics technology and products. It draws on some of the world’s leading medical and engineering minds

There’s a little more detail and information in an Oct. 28, 2020 Society of NeuroInterventional Surgery news release on EurekAlert,

Researchers demonstrated the success of a fully implantable wireless medical device, the Stentrode™ brain-computer interface (BCI), designed to allow patients with severe paralysis to resume daily tasks — including texting, emailing, shopping and banking online — without the need for open brain surgery. The first-in-human study was published in the Journal of NeuroInterventional Surgery™, the leading international peer-reviewed journal for the clinical field of neurointerventional surgery.

The patients enrolled in the study utilized the Stentrode neuroprosthesis to control the Microsoft Windows 10 operating system in combination with an eye-tracker for cursor navigation, without a mouse or keyboard. The subjects undertook machine learning-assisted training to control multiple mouse-click actions, including zoom and left click.

“This is a breakthrough moment for the field of brain-computer interfaces. We are excited to report that we have delivered a fully implantable, take home, wireless technology that does not require open brain surgery, which functions to restore freedoms for people with severe disability,” said Thomas Oxley, MD, PhD, and CEO of Synchron, a neurovascular bioelectronics medicine company that conducted the research. “Seeing these first heroic patients resume important daily tasks that had become impossible, such as using personal devices to connect with loved ones, confirms our belief that the Stentrode will one day be able to help millions of people with paralysis.”[1]

Graham Felstead, a 75-year-old man living at home with his wife, has experienced severe paralysis due to amyotrophic lateral sclerosis (ALS). He was the first patient enrolled in the first Stentrode clinical study and the first person to have any BCI implanted via the blood vessels. He received the Stentrode implant in August 2019. With the Stentrode, Felstead was able to remotely contact his spouse, increasing his autonomy and reducing her burden of care. Philip O’Keefe, a 60-year-old man with ALS who works part time, was able to control computer devices to conduct work-related tasks and other independent activities after receiving the Stentrode in April 2020. Functional impairment to his fingers, elbows and shoulders had previously inhibited his ability to engage in these efforts.

The Stentrode device is small and flexible enough to safely pass through curving blood vessels, so the implantation procedure is similar to that of a pacemaker and does not require open brain surgery. Entry through the blood vessels may reduce risk of brain tissue inflammation and rejection of the device, which has been an issue for techniques that require direct brain penetration. Implantation is conducted using well-established neurointerventional techniques that do not require any novel automated robotic assistance.

Here’s a link to and a citation for the paper,

Motor neuroprosthesis implanted with neurointerventional surgery improves capacity for activities of daily living tasks in severe paralysis: first in-human experience by Thomas J Oxley, Peter E Yoo, Gil S Rind, Stephen M Ronayne, C M Sarah Lee, Christin Bird, Victoria Hampshire, Rahul P Sharma, Andrew Morokoff, Daryl L Williams, Christopher MacIsaac, Mark E Howard, Lou Irving, Ivan Vrljic, Cameron Williams, Sam E John, Frank Weissenborn, Madeleine Dazenko, Anna H Balabanski, David Friedenberg, Anthony N Burkitt, Yan T Wong, Katharine J Drummond, Patricia Desmond, Douglas Weber, Timothy Denison, Leigh R Hochberg, Susan Mathers, Terence J O’Brien, Clive N May, J Mocco, David B Grayden, Bruce C V Campbell, Peter Mitchell, Nicholas L Opie. Journal of Neurointerventional Surgery, DOI: http://dx.doi.org/10.1136/neurintsurg-2020-016862 Published Online First: 28 October 2020

This paper is open access.

Science communication: perspectives from 39 countries

Bravo to the team behind “Communicating Science: A Global Perspective” published in September 2020 by the Australian National University Press!

Two of the editors, Toss Gascoigne (Visiting fellow, Centre for the Public Awareness of Science, Australian National University) and Joan Leach (Professor, Australian National University) have written November 8, 2020 essay featuring their book for The Conversation,

It’s a challenging time to be a science communicator. The current pandemic, climate crisis, and concerns over new technologies from artificial intelligence to genetic modification by CRISPR demand public accountability, clear discussion and the ability to disagree in public.

Since the Second World War, there have been many efforts to negotiate a social contract between science and civil society. In the West, part of that negotiation has emphasised the distribution of scientific knowledge. But how is the relationship between science and society formulated around the globe?

We collected stories from 39 countries together into a book. …

The term “science communication” is not universal. For 50 years, what is called “science communication” in Australia has had different names in other countries: “science popularisation”, “public understanding”, “vulgarisation”, “public understanding of science”, and the cultivation of a “scientific temper”.

Colombia uses the term “the social appropriation of science and technology”. This definition underscores that scientific knowledge is transformed through social interaction.

Each definition delivers insights into how science and society are positioned. Is science imagined as part of society? Is science held in high esteem? Does association with social issues lessen or strengthen the perception of science?

Governments play a variety of roles in the stories we collected. The 1970s German government stood back, perhaps recalling the unsavoury relationship between Nazi propaganda and science. Private foundations filled the gap by funding ambitious programs to train science journalists. In the United States, the absence of a strong central agency encouraged diversity in a field described variously as “vibrant”, “jostling” or “cacophonous”.

Russia saw a state-driven focus on science through the communist years, to modernise and industrialise. In 1990 the Knowledge Society’s weekly science newspaper Argumenty i Fakty had the highest weekly circulation of any newspaper in the world: 33.5 million copies. But the collapse of the Soviet Union showed how fragile these scientific views were, as people turned to mysticism.

Eighteen countries contributing to the book have a recent colonial history, and many are from the Global South. They saw the end of colonial rule as an opportunity to embrace science. …

Science in these countries focused mainly on health, the environment and agriculture. Nigeria’s polio vaccine campaign was almost derailed in 2003 when two influential groups, the Supreme Council for Shari’ah in Nigeria and the Kaduna State Council of Imams and Ulamas, declared the vaccine contained anti-fertility substances and was part of a Western conspiracy to sterilise children. Only after five Muslim leaders witnessed a successful vaccine program in Egypt was it recognised as being compatible with the Qur’an.

If you have time, I recommend reading the entire essay, which can be found here in November 8, 2020 essay on The Conversation or in a Nov. 9, 2020 news item on phys.org.

I found more information about the book on the Australian National University Press’s Communicating Science: A Global Perspective webpage,

This collection charts the emergence of modern science communication across the world. This is the first volume to map investment around the globe in science centres, university courses and research, publications and conferences as well as tell the national stories of science communication.

Communicating Science describes the pathways followed by 39 different countries. All continents and many cultures are represented. For some countries, this is the first time that their science communication story has been told. [emphasis mine]

Here’s a link to and a citation for the book,

Communicating Science; A Global Perspective. Edited by Toss Gascoigne, Bernard Schiele, Joan Leach, Michelle Riedlinger, Bruce V. Lewenstein, Luisa Massarani, Peter Broks. DOI: http://doi.org/10.22459/CS.2020 ISBN (print): 9781760463656 ISBN (online): 9781760463663 Imprint [Publisher]: ANU Press Publication date: Sep 2020

The paper copy is $150 and I assume those are Australian dollars. There are free online and e-versions but they do ask you to: Please read Conditions of use before downloading the formats.

A commentary on the Canadian chapter, mostly

Before launching into the commentary, Here’s a bit about words.

Terminology

Terminology, whether it’s within one language or across two or more languages, is almost always an issue and science communication is no exception as is noted in the Introduction (Subsection 4, page 11),

In the course of compiling the chapters, we found that the term ‘science communication’ has many definitions and not all researchers or practitioners agree on its goals and boundaries. It has been variously described as an objective, goals, a process, a result and an outcome. This confusion over a definition is reflected in the terminology used internationally for the field. From the second half of the 20th century, what we have chosen to call ‘science communication’ for this book has flown under different headings: ‘science popularisation, ‘public understanding’, ‘vulgarisation’, ‘social appropriation of science and technology’, ‘public understanding of science’ and ‘scientific temper’ for example. In all, the chapters mention 24 separate terms for the expression ‘science communication’ that we chose. We have taken note of that variety.

Very few of the chapters which are organized by country name attempt to establish a definition. The chapter on Canada written by Michelle Riedlinger, Alexandre Schiele and Germana Barata is one of the many not offering any definitions for ‘science communication’. Although, it does offer a few other terms used as synonyms or closely allied concepts (also without definitions). They include ‘science or scientific culture’, which (according to a Nov.13.20 email from Toss Gascoigne in response to my question about science culture being a term unique to Canada) has French roots and is used in France and Canada.

Scope

The scope for both the book and the chapter on Canada is substantive and everyone involved is to be lauded for their efforts. Here’s how the book is described on the publisher’s ‘Communicating Science; A Global Perspective’ webpage (Note: more about the emphases in the ‘I love you; we need to talk’ subsection below),

This collection charts the emergence of modern science communication across the world. This is the first volume to map investment around the globe in science centres, university courses and research, publications and conferences as well as tell the national stories of science communication. [emphases mine]

The authors of the Canada chapter managed to squeeze a lot of Canadian science communication history into 21 pp. of text.

Quite an accomplishment. I am particularly admiring as earlier this year I decided to produce a 10 year overview (2010 – 19) of science culture in Canada and got carried away proceeded to write a 25,000 word, multi-part series.

Given the November 8, 2020 essay and its storytelling style, I wasn’t expecting the largely historical review I found in both the Canada and France chapters. I advise reading the Introduction to the book first as that will set expectations more accurately.

I love you; we need to talk

I learned a lot about the history of science communication in Canada. It’s the first time I’ve seen a document that pulls together so much material ranging from 19th century efforts to relatively contemporaneous efforts, i.e., 2018 or thereabouts.

There’s something quite exciting about recognizing the deep roots that science communication has in Canada.

I just wish the authors hadn’t taken ‘the two cultures’ (French and English) route. By doing so, they managed to write a history that ignores a lot of other influences including that of Canada’s Indigenous peoples and their impact on Canadian science, science culture, and, increasingly, science communication. (Confession, I too missed the impact from Indigenous peoples in my series.)

Plus, ‘two cultures’ seems a dated (1970s?) view of Canadian society and, by extension, its science culture and communication.

This was not the only element that seemed out of date. The authors mentioned Canada’s National Science and Technology Week without noting that the effort was rebranded in 2016 as ‘Science Odyssey’ (plus, its dates moved from Oct. to May of each year).

No surprise, the professional and institutional nature of science communication was heavily emphasized. So, it was delightful to find a section (2.10 on page 11) titled, “Citizen involvement in science communication.” Perhaps, they were constrained for space as they didn’t include the astronomy community, which I believe is amongst our oldest citizen science groups with roots that can be traced back to the 19th century (1868).

There are some other omissions (unless noted otherwise, I managed to include something on the topic in my series):

  • the Canadian Arctic and/or The North (I tried but did not succeed)
  • art/science (also known as sciart) communities
  • the maker and do-it-yourself (DIY) communities
  • open science, specifically, the open science initiative at McGill University’s Neuro (Montreal Neurological Institute-Hospital) (can’t remember but I probably missed this too)
  • the immigrant communities and their impact (especially obvious in light of the January 2020 downed PS752 Flight from Iran to the Ukraine; many of the passengers were Canadians and/or students coming to study and a stunning percentage of those people were in science and/or technology) (I didn’t do as good as job as I should have)
  • women or gender issues (I missed it too)
  • BIPOC representation (yes, I missed it)
  • LGBTQ+ representation (yes, me too)
  • social sciences (yes, me too)
  • etc.

The bits I emphasized in the publisher’s description of the book “science centres, university courses and research, publications and conferences as well as tell the national stories of science communication” set up tension between a ‘national story of science communication’ and a ‘national story of institutionalized and/or academic science communication’.

Clearly, the authors had an almost impossible task and by including citizen science and social media and some independent actors they made an attempt to recognize the totality. Still, I wish they had managed even a sentence or two mentioning some of these other communities of interest and/or noting the omissions.

Here’s more about the difficulties I think the authors encountered.

It’s all about central Canada

As noted with other problems, this one happened to me too (in my 2010 – 19 Canadian science culture overview). It’s as if the provinces of Ontario and Québec exert a centrifugal force throughout every aspect of our nationhood including our science and science communication. Almost everything tracks back to those provinces.

The authors have mentioned most of the provinces, although none of the three Northern territories, in their chapter, evidence they made an attempt. What confounds me is the 7 pp. of 21 pp. of text dedicated to Québec alone, in addition to the Québec mentions in the other 14 pp. If there was a problem with word count, couldn’t they have shaved off a paragraph or two to include some or all of the omissions I noted earlier? Or added a paragraph or two to the chapter?

Framing and authors

By framing the discussion about Canada within the ‘two culture’ paradigm, the authors made things difficult for themselves. Take a look at the title and first sentence for the chapter,

CANADA
One country, two cultures: Two routes to science communication

This chapter provides an account of modern science communication in Canada, including historical factors influencing its development, and the development of the distinct Province of Quebec. …

The title and discussion frame the article so tightly that anything outside the frame is an outlier, i.e., they ‘baked’ in the bias. It’s very similar to the problem in scientific research where you have to be careful about your research question because asking the wrong question or framing it poorly will result in problematic research.

Authors

It’s not unusual for family members to work in the same field and even work together (Marie and Pierre Curie spring to mind). I believe the failure to acknowledge (I checked the introduction, the acknowledgements, and the Canada chapter) the relationship between one of the authors (Alexandre Schiele, son) of the Canada chapter to one of the book’s editors (Bernard Schiele, father) was an oversight. (Both also have some sort of affiliation with the Université du Québec à Montréal [UQAM]).

Anyway, I hope subsequent editions of the book will include an acknowledgement. These days, transparency is important, eh?

Having gotten that out of the way, I was curious about the ‘Canada’ authors and found this on p. 204,

Contributors

Dr Michelle Riedlinger is an associate professor at the University of the Fraser Valley, British Columbia, Canada, and secretary of the PCST Network [Public Communication of Science and Technology Network] and her career spans the practical and theoretical sides of science communication.

Dr Alexandre Schiele holds a PhD in communication science (Sorbonne) and another in political science (University of Quebec). He is working on a project ‘Mapping the New Science Communication Landscape in Canada’.

Dr Germana Barata is a science communication researcher at the Laboratory of Advanced Studies in Journalism (Labjor) at the State University of Campinas, Brazil, and a member of the Scientific Committee of the PCST Network.

Outsiders often provide perceptive and thoughtful commentary. I did not find any discernible trace of that perspective n the chapter despite all three authors having extensive experience in other countries.

Riedlinger is more strongly associated with Australia than Canada (source: Riedlinger’s biography on the Public Communication of Science and Technology Network). As of July 2020, she is a senior lecturer at Australia’s Queensland University of Technology (QUT).

Interestingly, she is also a Board member of the Science Writers and Communicators of Canada (SWCC) (source: her QUT biography). I’ll get back to this membership later.

Barata is (or was?) a research associate at Simon Fraser University’s Canada Scholar Communications Lab (ScholCommLab) (source: Barata’s SFU biography) in addition to her work in Brazil.

Those two would seem to cover the southern hemisphere. The third gives us the northern hemisphere.

A. Schiele (source: his CV on ResearchGate) is (or was?) a researcher at the UQAM (Université du Québec à Montréa) East Asia Observatory and is (or was?) at (source: profile on Academia.edu) The Hebrew University of Jerusalem’s Louis Frieberg Center for East Asian Studies.

After looking at their biographies and CV, the Canada book chapter is even more disappointing. Yes, the authors were constrained by the book’s raison d’être and the way they framed their chapter but , perhaps, there’s something more to the story?

The future of science communication and the ‘elephant in the room’

At the conclusion of the Canada chapter (pp. 194-6), there’s this,

4. The future for modern science communication in Canada

Recent surveys of Canadian science communicators identified though Twitter and Instagram show that, compared to traditional science communication professionals, social media communicators are younger, paid less (or not at all) for their science communication activities, and have been communicating for fewer years than other kinds of science communicators (Riedlinger, Barata and Schiele [A], 2019). They are more likely to have a science background (rather than communication, journalism or education background) and are less likely to be members of professional associations. These communicators tend to be based in Ontario, Quebec and British Columbia, and communicate with each other through their own informal networks. Canadian social media science communicators are primarily located in the provinces identified by Schiele [B] and Landry (2012) as the most prolific regions for science communication in Canada, where Canada’s most prestigious and traditional universities are located, and where the bulk of Canada’s population is concentrated. While some science journalists and communicators in Canada mourn the perceived loss of control over science communication as a loss of quality and accuracy, others welcome digital technology for the public engagement potential it offers. For example, Canadian science Instagram communicator Samantha Yammine [emphasis mine] was recently criticised in a Sciencemagazine op-ed piece for trivialising scientific endeavours on social media (Wright, 2018). However, supporters of Yammine argued that she was successfully responding to the Instagram medium in her communication (see, for example, Lougheed, 2018 [emphasis mine]; Marks, 2018). Science has subsequently published an article by Yammine and other social media communicators on the benefits of social media for science communication (Yammine, Liu, Jarreau and Coe, 2018). Social media platforms are allowing space for sociopolitically motivated communicators in Canada to work productively. The impact of these social media science communication efforts is difficult to assess; yet open science for consensus building and support for science in society efforts are needed in Canada now more than ever.

Canada has seen increased investments in science as described by the Naylor Report and the Global Young Academy, but science communication and outreach efforts are still needed to support science culture nationally (Boon, 2017a) [emphasis mine]. Funding for activities happens at the federal level through agency funding; however, Canadian scientists, science communicators and science policymakers have criticised some recent initiatives for being primarily aimed at youth rather than adults, supporting mainly traditional and established organisations rather than innovative science communication initiatives, and having limited connection with the current and broader community of science communicators in Canada. While some science communicators are actively advocating for greater institutional support for a wider range of science communication initiatives (see Boon, 2017b) [emphasis mine], governments and scientific communities have been slow to respond.

Austerity continues to dominate public policy in Quebec, and science culture has ceased to be a priority. The Society for the Promotion of Science and Technology dissolved in 2010 and State-sponsored PCST in Quebec has come to an end. PCST actors and networks in Quebec persevere although they face difficulties in achieving an online presence in a global, yet overwhelmingly Anglophone, social media environment. However, the European Union program Horizon 2020 may very well encourage a new period of renewed government interest in science communication.

As a preface to the next subsection, I want to note that the relationships and networks I’m describing are not problematic or evil or sinister in and of themselves. We all work with friends and acquaintances and, even, family when we can. If not, we find other ways to establish affiliations such as professional and informal networks.

The advantages include confidence in the work quality, knowing deadlines will be met and that you’ll be treated fairly and acknowledged, getting a fast start, etc. There are many advantages and one of the biggest disadvantages (in my opinion) is ‘group think’, i.e., the tendency for a group to unconsciously reinforce each other’s biases.

Weirdly, outsiders such as myself have a similar problem. While people within networks tend to get reinforcing feedback, ‘group think’, outsiders don’t get much, if any. Without feedback you’re at the mercy of your search techniques and you tend to reinforce your own biases and shortsightedness (you’re inside your own echo chamber). In the end research needs to take those shortcomings, biases, and beliefs into account.

Networks and research can be a trap

All three authors are in one fashion or another closely associated with the PCST Network. Two (Riedlinger and Barata) are board or executive members of the PCST Network and one (A. Schiele) has familial relationship with a book editor (B. Schiele) who is himself an executive member of the PCST Network. (Keep tuned, there’s one more network of relationships coming up.)

Barata, Riedlinger, and A. Schiele were the research team for the ‘Mapping the New Science Communication Landscape in Canada’ project as you can see here. (Note: Oops! There’s a typo in the project title on the webpage, which, unexpectedly, is hosted by Brazil’s Laboratory of Advanced Studies in Journalism [Labjor] where Barata is a researcher.)

My points about ‘Mapping …’ and the Canada book chapter,

  1. The Canada book chapter’s ‘The impact of new and emerging technology …’ has roots that can be traced back to the ‘Mapping’ project, which focused on social media (specifically, Instagram and Twitter).
  2. The ‘Mapping’ project is heavily dependent on one network (not PCST).
  3. The Canada chapter is listed as one of the ‘Mapping’ project’s publications. (Source: Project’s Publications page).
  4. The ‘Impact’ subsection sets the tone for a big chunk of the final subsection, ‘The future …’ both heavily dependent on the ‘Mapping’ project.
  5. The ‘Mapping’ project has a few problems, which I describe in the following.

In the end, two sections of the Canada chapter are heavily dependent on one research project that the authors themselves conducted.

Rather than using an authoritative style, perhaps the authors could have included a sentence indicating that more research is needed before making definitive statements about Canadian science communication and its use of new and emerging technologies and about its future.

The second network and other issues

Counterintuitively, I’m starting with the acknowledgements in the materials produced by the three authors for their ‘Mapping’ project and then examining the Canada chapter’s ‘Impact of new emerging and technologies …’ subsection before getting back to the Canada chapter’s final subsection ‘The future …’.

The authors’ 2019 paper is interesting. You can access the title, “The landscape of science communication in contemporary Canada: A focus on anglophone actors and networks” here on Academia.edu and you can access the author’s 2018 paper “Using social media metrics to identify science communicators in Canada” for the 2018 Science & You conference in Beijing, China here on ResearchGate. Both appear to be open access. That is wonderful and much appreciated.

The 2019 and 2018 papers’ Acknowledgements have something interesting (excerpt from 2019 paper),

This study was supported by the Social Sciences and Humanities Research Council of Canada through Grant (892-2017-2019) to Juan Pablo Alperin [there’s a bit more info. about the grant on Alperin’s CV in the Grants subsection] and Michelle Riedlinger. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. We would like to thank the Science Writers and Communicators of Canada (SWCC) for their partnership in this project. [emphasis mine] In particular, we are grateful for the continued support and assistance of Shelley McIvor, Janice Benthin and Tim Lougheed [emphasis mine] from SWCC, and Stéphanie Thibault from l’Association des communicateurs scientifiques du Québec (ACS).

It seems the partnership with SWCC very heavily influenced the text found in the Canada chapter’s subsection ‘The impact of new and emerging technologies on science communication (p. 187),

2.12. The impact of new and emerging technologies on science communication

Coupled with government ambivalence towards science communication over the last decade, Canada has experienced the impact of new and emerging technologies and changing economic conditions. These changes have reshaped the mainstream media landscape in many parts of the world, including Canada, and the effects have been exacerbated by neoliberal agendas. The changes and their impacts on Canadian journalism were captured in the Canadian survey report The Shattered Mirror (2017). The survey found that Canadians prefer to be informed through the media but on their own timelines and with little or no cost to themselves.

Canada’s science media have responded to new media in many ways. For example, in 2005, CBC’s Quirks and Quarks became the first major CBC radio show to be made available as a free podcast. Canada’s very active blogging community has been developing from the early 2000s, and recent digital initiatives are helping redefine what independent science communication looks like. These initiatives include Science Borealis, launched in 2013 [emphasis mine] (Science Borealis, 2018), Hakai Magazine [emphasis mine] launched in 2015 (Hakai Magazine, n.d.), and The Conversation Canada launched in 2017 (The Conversation Canada, 2018). Twitter, Instagram and YouTube are also supporting a growing number of science communicators engaging a diverse range of publics in digital spaces. …

[assume my emphasis for this paragraph; I didn’t have the heart to make any readers struggle through that much bolding] In 2016, the Canadian Science Writers Association changed its name to the Science Writers and Communicators of Canada Association (SWCC) to reflect the new diversity of its membership as well as the declining number of full-time journalists in mass media organisations. SWCC now describes itself as a national alliance of professional science communicators in all media, to reflect the blurring boundaries between journalism, science communication and public relations activities (SWCC, 2017). In 2017, SWCC launched the People’s Choice Awards for Canada’s favourite science site and Canada’s favourite blog to reflect the inclusion of new media.

Given that so much of the relatively brief text in this three paragraph subsection is devoted to SWCC and the examples of new media science practitioners (Science Borealis, Hakai Magazine, and Samantha Yammine) are either associated with or members of SWCC, it might have been good idea to make the relationship between the organization and the three authors a little more transparent.

We’re all in this together: PCST, SWCC, Science Borealis, Hakai Magazine, etc.

Here’s a brief recapitulation of the relationships so far: Riedlinger and Barata, both co-authors of the Canada chapter, are executive/board/committee members of the Public Communication of Science and Technology (PCST) network. As well, Bernard Schiele one of the co-editors of the book is also a committee member of PCST (source: PCST webpage) and, as noted earlier, he’s related to the third co-author of the Canada chapter, Alexandre Schiele.

Plus, Riedlinger is one of the book’s editors.

Interestingly, four of the seven editors for the book are members of the PCST network.

More connections:

  • Remember Riedlinger is also a board member of the Science Writers and Communicators of Canada (SWCC)?
  • One of the founding members* of Science Borealis (a Canadian science blog aggregator), Sarah Boon is the managing editor for Science Borealis (source: Boon’s LinkedIn profile) and also a member of the SWCC (source: About me webpage on Watershed Notes). *Full disclosure: I too am a co-founding member of Science Borealis.*
    • Boon’s works and works from other SWCC members (e.g., Tim Lougheed) are cited in the conclusion for the Canada chapter.
  • Hakai Magazine and Science Borealis both cited as “… recent digital initiatives … helping redefine what independent science communication looks like.”
    • Hakai’s founding and current editor-in-chief is Jude Isabella, a past board member of the *SWCC’s predecessor organization Canadian Science Writers Association (source: Dec. 11, 2020 communication from Ms. Isabella)*

In short, there are many interlaced relationships.

The looking glass and a lack of self-criticism

Reviewing this work put some shortcomings of and biases in my own work into high relief. It’s one of the eternal problems, blindness, whether it’s a consequence of ‘group think’ or a failure to get out of your own personal bubble. Canadian science communication/culture is a big topic and it’s easy to get trapped in your own bubble or your group’s bubble.

As far as I can tell from reading the conference paper (2018) and the paper published in Cultures of Science (2019), there is no indication in the text that the researchers critiqued their own methodology.

Specifically,. most of the respondents to their survey were from one of two professional science communication organizations (SWCC and ACS [Association des communicateurs scientifiques du Québec]). As for the folks the authors found on Twitter and Instagram, those people had to self-identify as science communicators or use scicomm, commsci, vulgarisation and sciart as hashtags. If you didn’t use one of those hashtags, you weren’t seen. Also, ‘sciart’ can be called ‘artsci’ so, why wasn’t that hashtag also used?

In short, the research seems to have a rather narrow dataset, which is not a problem in and of itself, as long as it’s noted in your paper. Unfortunately, the authors didn’t and that problem/weakness followed the researchers into the book.

Remember the subsection: ‘2.12. The impact of new and emerging technologies on science communication’? As noted, it was heavily influenced by the co-authors own research and in this book, those words attain great authority as they are writing about Canada’s science communication and the ‘The future for modern science communication in Canada‘.

Getting back briefly to connections or, in this case, a lack of. There seems to have been one ‘outside’ editor/reviewer (source: Acknowledgements] for the book, Ranjan Chaudhuri, Associate Professor at National Institute of Industrial Engineering Mumbai (source: Chaudhuri’s LinkedIn profile). He’s the only person amongst the authors and the editors for whom I could find no connection to PCST.

(Book editors who weren’t previously mentioned: Joan Leach and Bruce V. Lewenstein were both invited speakers at the 2016 PCST Talk in Istanbul, Turkey and Peter Broks presented in 2004 at the PCST conference in Barcelona, Spain and his work was presented at a 2018 PCST conference in Dunedin, New Zealand.)

Chaudhuri doesn’t seem to have any connection and the other three seem to have, at best, a weak connection to PCST. That leaves four ‘outsiders’ to critically review and edit chapters from 39 countries. It’s an impossible job.

So, what is the future of science communication in Canada?

In the end, I have love for and two big problems with the Canada chapter.

What were they thinking?

Maybe someone could help me understand why the final paragraph of the Canada chapter is about Québec, the PCST, and the European Union’s Horizon 2020 science funding initiative.

Ending the chapter with the focus, largely, on one province, **an international organization (PCST) incorporated in Australia**, and a European science funding initiative that sunsets in 2020 to be replaced by Horizon Europe 2021-27 confounds me.

Please, someone out there, please help me. How do these impact or set the future for science communication in Canada?

Aside: the authors never mention Québec’s Agence Science-Presse. It’s an independent media outlet founded in 1978 and devoted, as you can see from the name, entirely to science. It seems like an odd omission.

Now, I have another question.

What about other realities, artificial intelligence, and more?

Why didn’t the authors mention virtual reality (VR)/augmented reality (AR)/mixed reality (MR)/cross reality (XR) and others? What about artificial intelligence (AI) and automated writing, i.e., will we need writers and communicators? (For anyone not familiar with the move to automate more of the writing process, see my July 16, 2014 posting “Writing and AI or is a robot writing this blog?” when Associated Press (AP) had made a deal with Automated Insights and my Sept. 16, 2019 posting “Automated science writing?” about some work at the Massachusetts Institute of Technology [MIT].)

It’s not exactly new but what impact are games of the virtual and real life types having?

All of these technologies and others on the horizon are certain to have an effect on the future of science communication in Canada.

Confession: I too missed these new and emerging technologies when pointing to the future in my own series. (sigh) Blindness affects all of us.

The future

I wish the authors had applied a little more imagination to the ‘future’ because I think it has major possibilities grounded in both new and emerging technologies and in hopes for greater inclusiveness (Indigenous communities, citizen scientists, elders, artists, and more) in the Canadian science communication effort. As for the possible impact these groups and technologies will have on institutionalized and noninstitutionalized science communication, I would dearly like to have seen mention of the possibility if not outright speculation.

The end

There is a lot to admire in the Canada chapter. Given the amount of history they were covering, the authors were admirably succinct and disciplined. There’s a lot to be learned in this chapter.

As for the flaws, as noted many times, I am subject to many of the same ones. I have often longed for a critical reader who can see what I can’t. In some ways, it’s the same problem academics face.

Thank you to the authors and the editors for an unexpected treat. Examining their work made it possible for me to cast a jaundiced eye on some of my own, becoming my own critical reader. Again, thank you to the authors and editors of this book. I just hope this critique proves useful to someone else too.

Links

For anyone who is curious, here’s a link to the authors’ interactive map of the new landscape (Twitter and Instagram) of science communication in Canada. BTW, I was charmed by and it looks like they’re still adding to the map.

My multipart series,

Part 1 covers science communication, science media (mainstream and others such as blogging) and arts as exemplified by music and dance: The decade that was (2010-19) and the decade to come (2020-29): Science culture in Canada (1 of 5).

Part 2 covers art/science (or art/sci or sciart) efforts, science festivals both national and local, international art and technology conferences held in Canada, and various bar/pub/café events: The decade that was (2010-19) and the decade to come (2020-29): Science culture in Canada (2 of 5).

Part 3 covers comedy, do-it-yourself (DIY) biology, chief science advisor, science policy, mathematicians, and more: The decade that was (2010-19) and the decade to come (2020-29): Science culture in Canada (3 of 5).

Part 4 covers citizen science, birds, climate change, indigenous knowledge (science), and the IISD Experimental Lakes Area: The decade that was (2010-19) and the decade to come (2020-29): Science culture in Canada (4 of 5).

Part 5: includes science podcasting, eco art, a Saskatchewan lab with an artist-in-residence, the Order of Canada and children’s science literature, animation and mathematics, publishing science, *French language science media,* and more: The decade that was (2010-19) and the decade to come (2020-29): Science culture in Canada (5 of 5).

Plus,

An addendum: where I make some corrections and include a reference to some ‘biopoetry’: The decade that was (2010-19) and the decade to come (2020-29): Science culture in Canada (an addendum).

There you have it, science communication in Canada, more or less, as a book chapter and as a multipart series warts and all.

*Original: “a past board member of the SWCC’ (source: homepage of Isabella’s eponymous website)” changed on Dec. 11, 2020 to”past board member of SWCC’s predecessor organization Canadian Science Writers Association (source: Dec. 11, 2020 communication from Ms. Isabella)”

**Original:”an Australian organization (PCST)” changed on Dec. 11, 2020 to “an international organization (PCST) incorporated in Australia”