Category Archives: movies

TRIUMF (Canada’s national particle accelerator centre) welcomes Nigel Smith as its new Chief Executive Officer (CEO) on May 17, 2021and some Hollywood news

I have two bits of news as noted in the headline. There’s news about TRIUMF located on the University of British Columbia (UBC) endowment lands and news about Dr. Suzanne Simard (UBC Forestry) and her memoir, Finding the Mother Tree: Discovering the Wisdom of the Fores.

Nigel Smith and TRIUMF (Canada’s national particle accelerator centre)

As soon as I saw his first name, Nigel, I bet myself he’d be from the UK (more about that later in this posting). This is TRIUMF’s third CEO since I started science blogging in May 2008. When I first started it was called TRIUMF (Canada’s National Laboratory for Particle and Nuclear Physics) but these days it’s TRIUMF (Canada’s national particle accelerator centre).

As for the organization’s latest CEO, here’s more from a TRIUMF February 12, 2021 announcement page ( the text is identical to TRIUMF’s February 12, 2021 press release),

Dr. Nigel Smith, Executive Director of SNOLAB, has been selected to serve as the next Director of TRIUMF.  

Succeeding Dr. Jonathan Bagger, who departed TRIUMF in January 2021 to become CEO of the American Physical Society, Dr. Smith’s appointment comes as the result of a highly competitive, six-month international search. Dr. Smith will begin his 5-year term as TRIUMF Director on May 17, 2021. 

“I am truly honoured to have been selected as the next Director of TRIUMF”, said Dr. Smith. “I have long been engaged with TRIUMF’s vibrant community and have been really impressed with the excellence of its science, capabilities and people. TRIUMF plays a unique and vital role in Canada’s research ecosystem and I look forward to help continue the legacy of excellence upheld by Dr. Jonathan Bagger and the previous TRIUMF Directors”.  

Describing what interested him in the position, Smith spoke to the breadth and impact of TRIUMF’s diverse science programs, stating “TRIUMF has an amazing portfolio of research covering fundamental and applied science that also delivers tangible societal impact through its range of medical and commercialisation initiatives. I am extremely excited to have the opportunity to lead a laboratory with such a broad and world-leading science program.” 

“Nigel brings all the necessary skills and background to the role of Director,” said Dr. Digvir Jayas, Interim Director of TRIUMF, Chair of the TRIUMF Board of Management, and Vice-President, Research and International at the University of Manitoba. “As Executive Director of SNOLAB, Dr. Smith is both a renowned researcher and experienced laboratory leader who offers a tremendous track record of success spanning the local, national, and international spheres. The Board of Management is thrilled to bring Nigel’s expertise to TRIUMF so he may help guide the laboratory through many of the exciting developments on the horizon.  

Dr. Smith joins TRIUMF at an important period in the laboratory’s history, moving into the second year of our current Five-Year Plan (2020-2025) and preparing to usher in a new era of science and innovation that will include the completion of the Advance Rare Isotope Laboratory (ARIEL) and the Institute for Advanced Medical Isotopes (IAMI) [not to be confused with Amii {Alberta Machine Intelligence Institute}]. This new infrastructure, alongside TRIUMF’s existing facilities and world-class research programs, will solidify Canada’s position as a global leader in both fundamental and applied research. 

Dr. Smith expressed his optimism for TRIUMF, saying “I am delighted to have this opportunity, and it will be a pleasure to lead the laboratory through this next exciting phase of our growth and evolution.” 

Smith is leaving what is probably one of the more unusual laboratories, at a depth of 2km, SNOLAB is the deepest, cleanest laboratory in the world. (more information either at SNOLAB or its Wikipedia entry.)

Is Smith from the UK? Some clues

I found my subsequent clues on SNOLAB’s ‘bio’ page for Dr. Nigel Smith,

Nigel Smith joined SNOLAB as Director during July 2009. He currently holds a full Professorship at Laurentian University, adjunct Professor status at Queen’s University, and a visiting Professorial chair at Imperial College, London. He received his Bachelor of Science in physics from Leeds University in the U.K. in 1985 and his Ph. D. in astrophysics from Leeds in 1991. He has served as a lecturer at Leeds University, a research associate at Imperial College London, group leader (dark matter) and deputy division head at the STFC Rutherford Appleton Laboratory, before relocating to Canada to oversee the SNOLAB deep underground facility.

The answer would seem to be yes, Nigel James Telfer Smith is originally from the UK.

I don’t know if this is going to be a trend but this is the second ‘Nigel” to lead TRIUMF. (The Nigels are now tied with the Johns and the Alans. Of course, the letter ‘j’ seems the most popular with four names, John, John, Jack, and Jonathan.) Here’s a list of TRIUMF’s previous CEOs (from the TRIUMF Wikipedia entry),

Since its inception, TRIUMF has had eight directors [now nine] overseeing its operations.

The first Nigel (Lockyer) is described as an American in his Wikipedia entry. He was born in Scotland and raised in Canada. However, he has spent the majority of his adult life in the US, other than the five or six years at TRIUMF. So, previous Nigel also started life in the UK.

Good luck to the new Nigel.

UBC forestry professor, Suzanne Simard’s memoir going to the movies?

Given that Simard’s memoir, Finding the Mother Tree: Discovering the Wisdom of the Forest, was published last week on May 4, 2021, this is very heady news,. From a May 12, 2021 article by Cassandra Gill for the Daily Hive (Note: Links have been removed),

Jake Gyllenhaal is bringing the story of a UBC professor to the big screen.

The Oscar nominee’s production company, Nine Stories, is producing a film based on Suzanne Simard’s memoir, Finding the Mother Tree.

Amy Adams is set to play Simard, who is a forest ecology expert renowned for her research on plants and fungi.

Adams is also co-producing the film with Gyllenhaal through her own company, Bond Group Entertainment.

The BC native [Simard] developed an interest in trees and the outdoors through her close relationship with her grandfather, who was a horse logger.

Her 30 year career and early life is documented in the memoir, which was released last week on May 4 [2021]. Simard explores how trees have evolved, have memories, and are the foundation of our planet’s ecosystem — along with her own personal experiences with grief.

The scientists’ [sic] influence has had influence in popular culture, notably in James Cameron’s 2009 film Avatar. The giant willow-like “Tree of Souls” was specifically inspired by Simard’s work.

No mention of a script and no mention of financing, so, it could be a while before we see the movie on Netflix, Apple+, HBO, or maybe a movie house (if they’re open by then).

I think the script may prove to the more challenging aspect of this project. Here’s the description of Simard’s memoir (from the Finding the Mother Tree webpage on suzannesimard.com)

From the world’s leading forest ecologist who forever changed how people view trees and their connections to one another and to other living things in the forest–a moving, deeply personal journey of discovery.

About the Book

In her first book, Simard brings us into her world, the intimate world of the trees, in which she brilliantly illuminates the fascinating and vital truths – that trees are not simply the source of timber or pulp, but are a complex, interdependent circle of life; that forests are social, cooperative creatures connected through underground networks by which trees communicate their vitality and vulnerabilities with communal lives not that different from our own.

Simard writes – in inspiring, illuminating, and accessible ways – how trees, living side by side for hundreds of years, have evolved, how they perceive one another, learn and adapt their behaviors, recognize neighbors, and remember the past; how they have agency about the future; elicit warnings and mount defenses, compete and cooperate with one another with sophistication, characteristics ascribed to human intelligence, traits that are the essence of civil societies – and at the center of it all, the Mother Trees: the mysterious, powerful forces that connect and sustain the others that surround them.

How does Simard’s process of understanding trees and conceptualizing a ‘mother tree’ get put into a script for a movie that’s not a documentary or an animation?

Movies are moving pictures, yes? How do you introduce movement and action in a script heavily focused on trees, which operate on a timescale that’s vastly different.

It’s an interesting problem and I look forward to seeing how it’s resolved. I wish them good luck.

A 3D spider web, a VR (virtual reality) setup, and sonification (music)

Markus Buehler and his musical spider webs are making news again.

Caption: Cross-sectional images (shown in different colors) of a spider web were combined into this 3D image and translated into music. Credit: Isabelle Su and Markus Buehler

The image (so pretty) you see in the above comes from a Markus Buehler presentation that was made at the American Chemical Society (ACS) meeting. ACS Spring 2021 being held online April 5-30, 2021. The image was also shown during a press conference which the ACS has made available for public viewing. More about that later in this posting.

The ACS issued an April 12, 2021 news release (also on EurekAlert), which provides details about Buehler’s latest work on spider webs and music,

Spiders are master builders, expertly weaving strands of silk into intricate 3D webs that serve as the spider’s home and hunting ground. If humans could enter the spider’s world, they could learn about web construction, arachnid behavior and more. Today, scientists report that they have translated the structure of a web into music, which could have applications ranging from better 3D printers to cross-species communication and otherworldly musical compositions.

The researchers will present their results today at the spring meeting of the American Chemical Society (ACS). ACS Spring 2021 is being held online April 5-30 [2021]. Live sessions will be hosted April 5-16, and on-demand and networking content will continue through April 30 [2021]. The meeting features nearly 9,000 presentations on a wide range of science topics.

“The spider lives in an environment of vibrating strings,” says Markus Buehler, Ph.D., the project’s principal investigator, who is presenting the work. “They don’t see very well, so they sense their world through vibrations, which have different frequencies.” Such vibrations occur, for example, when the spider stretches a silk strand during construction, or when the wind or a trapped fly moves the web.

Buehler, who has long been interested in music, wondered if he could extract rhythms and melodies of non-human origin from natural materials, such as spider webs. “Webs could be a new source for musical inspiration that is very different from the usual human experience,” he says. In addition, by experiencing a web through hearing as well as vision, Buehler and colleagues at the Massachusetts Institute of Technology (MIT), together with collaborator Tomás Saraceno at Studio Tomás Saraceno, hoped to gain new insights into the 3D architecture and construction of webs.

With these goals in mind, the researchers scanned a natural spider web with a laser to capture 2D cross-sections and then used computer algorithms to reconstruct the web’s 3D network. The team assigned different frequencies of sound to strands of the web, creating “notes” that they combined in patterns based on the web’s 3D structure to generate melodies. The researchers then created a harp-like instrument and played the spider web music in several live performances around the world.

The team also made a virtual reality setup that allowed people to visually and audibly “enter” the web. “The virtual reality environment is really intriguing because your ears are going to pick up structural features that you might see but not immediately recognize,” Buehler says. “By hearing it and seeing it at the same time, you can really start to understand the environment the spider lives in.”

To gain insights into how spiders build webs, the researchers scanned a web during the construction process, transforming each stage into music with different sounds. “The sounds our harp-like instrument makes change during the process, reflecting the way the spider builds the web,” Buehler says. “So, we can explore the temporal sequence of how the web is being constructed in audible form.” This step-by-step knowledge of how a spider builds a web could help in devising “spider-mimicking” 3D printers that build complex microelectronics. “The spider’s way of ‘printing’ the web is remarkable because no support material is used, as is often needed in current 3D printing methods,” he says.

In other experiments, the researchers explored how the sound of a web changes as it’s exposed to different mechanical forces, such as stretching. “In the virtual reality environment, we can begin to pull the web apart, and when we do that, the tension of the strings and the sound they produce change. At some point, the strands break, and they make a snapping sound,” Buehler says.

The team is also interested in learning how to communicate with spiders in their own language. They recorded web vibrations produced when spiders performed different activities, such as building a web, communicating with other spiders or sending courtship signals. Although the frequencies sounded similar to the human ear, a machine learning algorithm correctly classified the sounds into the different activities. “Now we’re trying to generate synthetic signals to basically speak the language of the spider,” Buehler says. “If we expose them to certain patterns of rhythms or vibrations, can we affect what they do, and can we begin to communicate with them? Those are really exciting ideas.”

You can go here for the April 12, 2021 ‘Making music from spider webs’ ACS press conference’ it runs about 30 mins. and you will hear some ‘spider music’ played.

Getting back to the image and spider webs in general, we are most familiar with orb webs (in the part of Canada where I from if nowhere else), which look like spirals and are 2D. There are several other types of webs some of which are 3D, like tangle webs, also known as cobwebs, funnel webs and more. See this March 18, 2020 article “9 Types of Spider Webs: Identification + Pictures & Spiders” by Zach David on Beyond the Treat for more about spiders and their webs. If you have the time, I recommend reading it.

I’ve been following Buehler’s spider web/music work for close to ten years now; the latest previous posting is an October 23, 2019 posting where you’ll find a link to an application that makes music from proteins (spider webs are made up of proteins; scroll down about 30% of the way; it’s in the 2nd to last line of the quoted text about the embedded video).

Here is a video (2 mins. 17 secs.) of a spider web music performance that Buehler placed on YouTube,

Feb 3, 2021

Markus J. Buehler

Spider’s Canvas/Arachonodrone show excerpt at Palais de Tokyo, Paris, on November 2018. Video by MIT CAST. More videos can be found on www.arachnodrone.com. The performance was commissioned by Studio Tomás Saraceno (STS), in the context of Saraceno’s carte blanche exhibition, ON AIR. Spider’s Canvas/Arachnodrone was performed by Isabelle Su and Ian Hattwick on the spider web instrument, Evan Ziporyn on the EWI (Electronic Wind Instrument), and Christine Southworth on the guitar and EBow (Electronic Bow)

You can find more about the spider web music and Buehler’s collaborators on http://www.arachnodrone.com/,

Spider’s Canvas / Arachnodrone is inspired by the multifaceted work of artist Tomas Saraceno, specifically his work using multiple species of spiders to make sculptural webs. Different species make very different types of webs, ranging not just in size but in design and functionality. Tomas’ own web sculptures are in essence collaborations with the spiders themselves, placing them sequentially over time in the same space, so that the complex, 3-dimensional sculptural web that results is in fact built by several spiders, working together.

Meanwhile, back among the humans at MIT, Isabelle Su, a Course 1 doctoral student in civil engineering, has been focusing on analyzing the structure of single-species spider webs, specifically the ‘tent webs’ of the cyrtophora citricola, a tropical spider of particular interest to her, Tomas, and Professor Markus Buehler. Tomas gave the department a cyrtophora spider, the department gave the spider a space (a small terrarium without glass), and she in turn built a beautiful and complex web. Isabelle then scanned it in 3D and made a virtual model. At the suggestion of Evan Ziporyn and Eran Egozy, she then ported the model into Unity, a VR/game making program, where a ‘player’ can move through it in numerous ways. Evan & Christine Southworth then worked with her on ‘sonifying’ the web and turning it into an interactive virtual instrument, effectively turning the web into a 1700-string resonating instrument, based on the proportional length of each individual piece of silk and their proximity to one another. As we move through the web (currently just with a computer trackpad, but eventually in a VR environment), we create a ‘sonic biome’: complex ‘just intonation’ chords that come in and out of earshot according to which of her strings we are closest to. That part was all done in MAX/MSP, a very flexible high level audio programming environment, which was connected with the virtual environment in Unity. Our new colleague Ian Hattwick joined the team focusing on sound design and spatialization, building an interface that allowed him the sonically ‘sculpt’ the sculpture in real time, changing amplitude, resonance, and other factors. During this performance at Palais de Tokyo, Isabelle toured the web – that’s what the viewer sees – while Ian adjusted sounds, so in essence they were together “playing the web.” Isabelle provides a space (the virtual web) and a specific location within it (by driving through), which is what the viewer sees, from multiple angles, on the 3 scrims. The location has certain acoustic potentialities, and Ian occupies them sonically, just as a real human performer does in a real acoustic space. A rough analogy might be something like wandering through a gothic cathedral or a resonant cave, using your voice or an instrument at different volumes and on different pitches to find sonorous resonances, echoes, etc. Meanwhile, Evan and Christine are improvising with the web instrument, building on Ian’s sound, with Evan on EWI (Electronic Wind Instrument) and Christine on electric guitar with EBow.

For the visuals, Southworth wanted to create the illusion that the performers were actually inside the web. We built a structure covered in sharkstooth scrim, with 3 projectors projecting in and through from 3 sides. Southworth created images using her photographs of local Lexington, MA spider webs mixed with slides of the scan of the web at MIT, and then mixed those images with the projection of the game, creating an interactive replica of Saraceno’s multi-species webs.

If you listen to the press conference, you will hear Buehler talk about practical applications for this work in materials science.

3-D underwater acoustic carpet cloak

Who can resist a ‘Black Panther’ reference (Wikipedia Black Panther film entry)? Certainly not me. Scientists from the Chinese Academy of Sciences made this June 4, 2018 announcement (also on EurekAlert),

Cloaking is one of the most eye-catching technologies in sci-fi movies. In two 2018 Marvel films, Black Panther and Avengers: Infinity War, Black Panther conceals his country Wakanda, a technologically advanced African nation, from the outside world using the metal vibranium.

However, in the real world, if you want to hide something, you need to deceive not only the eyes, but also the ears, especially in the underwater environment.

Recently, a research team led by Prof. YANG Jun from the Institute of Acoustics (IOA) of the Chinese Academy of Sciences designed and fabricated a 3D underwater acoustic carpet cloak (UACC) using transformation acoustics.

The research was published online in Applied Physics Letters on June 1 [2018].

Like a shield, the carpet cloak is a material shell that can reflect waves as if the waves were reflecting off a planar surface. Hence, the cloaked target becomes undetectable to underwater detection instruments like sonar.

Using transformation acoustics, the research team first finished the 2D underwater acoustic carpet cloak with metamaterial last year (Scientific Reports, April 6, 2017). However, this structure works only in two dimensions, and becomes immediately detectable when a third dimension is introduced.

To solve this problem, YANG Jun and his IOA team combined transformation acoustics with a reasonable scaling factor, worked out the parameters, and redesigned the unit cell of the 2D cloak. They designed the 3D underwater acoustic carpet cloak and then proposed a fabrication and assembly method to manufacture it. The 3D cloak can hide an object from top to bottom and deal with complex situations, such as acoustic detection in all directions.

The 3D underwater acoustic carpet cloak is a pyramid comprising eight triangular pyramids; each triangular pyramid is composed of 92 steel strips using a rectangle lattice, similar to a wafer biscuit. More vividly, if we remove the core from a big solid pyramid, we can hide something safely in the hollow space left.

“To make a 3D underwater acoustic carpet cloak, researchers needed to construct the structure with 2D period, survey the influence of the unit cell’s resonance, examine the camouflage effect at the ridge of the sample, and other problems. In addition, the fabrication and assembly of the 3D device required more elaborate design. The extension of the UACC from 2D to 3D represents important progress in applied physics,” said YANG.

In experimental tests, a short Gaussian pulse propagated towards the target covered with the carpet cloak, and the waves backscattered toward their origin. The cloaked object successfully mimicked the reflecting surface and was undetectable by sound detection. Meanwhile, the measured acoustic pressure fields from the vertical view demonstrated the effectiveness of the designed 3D structure in every direction.

“As the next step, we will try to make the 3D underwater acoustic carpet cloak smaller and lighter,” said YANG.

Funding for this research came from the National Natural Science Foundation of China (Grant No.11304351, 1177021304), the Youth Innovation Promotion Association of CAS (Grant No. 2017029), and the IACAS Young Elite Researcher Project (Grant No. QNYC201719).

Prof. YANG Jun and Dr. JIA Han led the research team from the Institute of Acoustics (IOA) of the Chinese Academy of Sciences. Prof. YANG Jun engages in research on sound, vibration and signal processing, and especially sound field control and array signal processing. They also work on other devices based on metamaterial in order to manipulate the propagation of sound waves.

A model of the device,

Caption: This is a model and photograph of the 3D underwater acoustic carpet cloak composed of over 700 steel strips. Credit: IOA

Here’s a link to and a citation for the paper,

Experimental demonstration of three-dimensional broadband underwater acoustic carpet cloak by Yafeng Bi, Han Jia, Zhaoyong Sun, Yuzhen Yang, Han Zhao, and Jun Yang.
Appl. Phys. Lett. 112, 223502 (2018); https://doi.org/10.1063/1.5026199 Published Online: June 2018

This paper is open access.

I found it at the movies: a commentary on/review of “Films from the Future”

Kudos to anyone who recognized the reference to Pauline Kael (she changed film criticism forever) and her book “I Lost it at the Movies.” Of course, her book title was a bit of sexual innuendo, quite risqué for an important film critic in 1965 but appropriate for a period (the 1960s) associated with a sexual revolution. (There’s more about the 1960’s sexual revolution in the US along with mention of a prior sexual revolution in the 1920s in this Wikipedia entry.)

The title for this commentary is based on an anecdote from Dr. Andrew Maynard’s (director of the Arizona State University [ASU] Risk Innovation Lab) popular science and technology book, “Films from the Future: The Technology and Morality of Sci-Fi Movies.”

The ‘title-inspiring’ anecdote concerns Maynard’s first viewing of ‘2001: A Space Odyssey, when as a rather “bratty” 16-year-old who preferred to read science fiction, he discovered new ways of seeing and imaging the world. Maynard isn’t explicit about when he became a ‘techno nerd’ or how movies gave him an experience books couldn’t but presumably at 16 he was already gearing up for a career in the sciences. That ‘movie’ revelation received in front of a black and white television on January 1,1982 eventually led him to write, “Films from the Future.” (He has a PhD in physics which he is now applying to the field of risk innovation. For a more detailed description of Dr. Maynard and his work, there’s his ASU profile webpage and, of course, the introduction to his book.)

The book is quite timely. I don’t know how many people have noticed but science and scientific innovation is being covered more frequently in the media than it has been in many years. Science fairs and festivals are being founded on what seems to be a daily basis and you can now find science in art galleries. (Not to mention the movies and television where science topics are covered in comic book adaptations, in comedy, and in standard science fiction style.) Much of this activity is centered on what’s called ’emerging technologies’. These technologies are why people argue for what’s known as ‘blue sky’ or ‘basic’ or ‘fundamental’ science for without that science there would be no emerging technology.

Films from the Future

Isn’t reading the Table of Contents (ToC) the best way to approach a book? (From Films from the Future; Note: The formatting has been altered),

Table of Contents
Chapter One
In the Beginning 14
Beginnings 14
Welcome to the Future 16
The Power of Convergence 18
Socially Responsible Innovation 21
A Common Point of Focus 25
Spoiler Alert 26
Chapter Two
Jurassic Park: The Rise of Resurrection Biology 27
When Dinosaurs Ruled the World 27
De-Extinction 31
Could We, Should We? 36
The Butterfly Effect 39
Visions of Power 43
Chapter Three
Never Let Me Go: A Cautionary Tale of Human Cloning 46
Sins of Futures Past 46
Cloning 51
Genuinely Human? 56
Too Valuable to Fail? 62
Chapter Four
Minority Report: Predicting Criminal Intent 64
Criminal Intent 64
The “Science” of Predicting Bad Behavior 69
Criminal Brain Scans 74
Machine Learning-Based Precognition 77
Big Brother, Meet Big Data 79
Chapter Five
Limitless: Pharmaceutically-enhanced Intelligence 86
A Pill for Everything 86
The Seduction of Self-Enhancement 89
Nootropics 91
If You Could, Would You? 97
Privileged Technology 101
Our Obsession with Intelligence 105
Chapter Six
Elysium: Social Inequity in an Age of Technological
Extremes 110
The Poor Shall Inherit the Earth 110
Bioprinting Our Future Bodies 115
The Disposable Workforce 119
Living in an Automated Future 124
Chapter Seven
Ghost in the Shell: Being Human in an
Augmented Future 129
Through a Glass Darkly 129
Body Hacking 135
More than “Human”? 137
Plugged In, Hacked Out 142
Your Corporate Body 147
Chapter Eight
Ex Machina: AI and the Art of Manipulation 154
Plato’s Cave 154
The Lure of Permissionless Innovation 160
Technologies of Hubris 164
Superintelligence 169
Defining Artificial Intelligence 172
Artificial Manipulation 175
Chapter Nine
Transcendence: Welcome to the Singularity 180
Visions of the Future 180
Technological Convergence 184
Enter the Neo-Luddites 190
Techno-Terrorism 194
Exponential Extrapolation 200
Make-Believe in the Age of the Singularity 203
Chapter Ten
The Man in the White Suit: Living in a Material World 208
There’s Plenty of Room at the Bottom 208
Mastering the Material World 213
Myopically Benevolent Science 220
Never Underestimate the Status Quo 224
It’s Good to Talk 227
Chapter Eleven
Inferno: Immoral Logic in an Age of
Genetic Manipulation 231
Decoding Make-Believe 231
Weaponizing the Genome 234
Immoral Logic? 238
The Honest Broker 242
Dictating the Future 248
Chapter Twelve
The Day After Tomorrow: Riding the Wave of
Climate Change 251
Our Changing Climate 251
Fragile States 255
A Planetary “Microbiome” 258
The Rise of the Anthropocene 260
Building Resiliency 262
Geoengineering the Future 266
Chapter Thirteen
Contact: Living by More than Science Alone 272
An Awful Waste of Space 272
More than Science Alone 277
Occam’s Razor 280
What If We’re Not Alone? 283
Chapter Fourteen
Looking to the Future 288
Acknowledgments 293

The ToC gives the reader a pretty clue as to where the author is going with their book and Maynard explains how he chose his movies in his introductory chapter (from Films from the Future),

“There are some quite wonderful science fiction movies that didn’t make the cut because they didn’t fit the overarching narrative (Blade Runner and its sequel Blade Runner 2049, for instance, and the first of the Matrix trilogy). There are also movies that bombed with the critics, but were included because they ably fill a gap in the bigger story around emerging and converging technologies. Ultimately, the movies that made the cut were chosen because, together, they create an overarching narrative around emerging trends in biotechnologies, cybertechnologies, and materials-based technologies, and they illuminate a broader landscape around our evolving relationship with science and technology. And, to be honest, they are all movies that I get a kick out of watching.” (p. 17)

Jurassic Park (Chapter Two)

Dinosaurs do not interest me—they never have. Despite my profound indifference I did see the movie, Jurassic Park, when it was first released (someone talked me into going). And, I am still profoundly indifferent. Thankfully, Dr. Maynard finds meaning and a connection to current trends in biotechnology,

Jurassic Park is unabashedly a movie about dinosaurs. But it’s also a movie about greed, ambition, genetic engineering, and human folly—all rich pickings for thinking about the future, and what could possibly go wrong. (p. 28)

What really stands out with Jurassic Park, over twenty-five years later, is how it reveals a very human side of science and technology. This comes out in questions around when we should tinker with technology and when we should leave well enough alone. But there is also a narrative here that appears time and time again with the movies in this book, and that is how we get our heads around the sometimes oversized roles mega-entrepreneurs play in dictating how new tech is used, and possibly abused. These are all issues that are just as relevant now as they were in 1993, and are front and center of ensuring that the technologyenabled future we’re building is one where we want to live, and not one where we’re constantly fighting for our lives.  (pp. 30-1)

He also describes a connection to current trends in biotechnology,

De-Extinction

In a far corner of Siberia, two Russians—Sergey Zimov and his son Nikita—are attempting to recreate the Ice Age. More precisely, their vision is to reconstruct the landscape and ecosystem of northern Siberia in the Pleistocene, a period in Earth’s history that stretches from around two and a half million years ago to eleven thousand years ago. This was a time when the environment was much colder than now, with huge glaciers and ice sheets flowing over much of the Earth’s northern hemisphere. It was also a time when humans
coexisted with animals that are long extinct, including saber-tooth cats, giant ground sloths, and woolly mammoths.

The Zimovs’ ambitions are an extreme example of “Pleistocene rewilding,” a movement to reintroduce relatively recently extinct large animals, or their close modern-day equivalents, to regions where they were once common. In the case of the Zimovs, the
father-and-son team believe that, by reconstructing the Pleistocene ecosystem in the Siberian steppes and elsewhere, they can slow down the impacts of climate change on these regions. These areas are dominated by permafrost, ground that never thaws through
the year. Permafrost ecosystems have developed and survived over millennia, but a warming global climate (a theme we’ll come back to in chapter twelve and the movie The Day After Tomorrow) threatens to catastrophically disrupt them, and as this happens, the impacts
on biodiversity could be devastating. But what gets climate scientists even more worried is potentially massive releases of trapped methane as the permafrost disappears.

Methane is a powerful greenhouse gas—some eighty times more effective at exacerbating global warming than carbon dioxide— and large-scale releases from warming permafrost could trigger catastrophic changes in climate. As a result, finding ways to keep it in the ground is important. And here the Zimovs came up with a rather unusual idea: maintaining the stability of the environment by reintroducing long-extinct species that could help prevent its destruction, even in a warmer world. It’s a wild idea, but one that has some merit.8 As a proof of concept, though, the Zimovs needed somewhere to start. And so they set out to create a park for deextinct Siberian animals: Pleistocene Park.9

Pleistocene Park is by no stretch of the imagination a modern-day Jurassic Park. The dinosaurs in Hammond’s park date back to the Mesozoic period, from around 250 million years ago to sixty-five million years ago. By comparison, the Pleistocene is relatively modern history, ending a mere eleven and a half thousand years ago. And the vision behind Pleistocene Park is not thrills, spills, and profit, but the serious use of science and technology to stabilize an increasingly unstable environment. Yet there is one thread that ties them together, and that’s using genetic engineering to reintroduce extinct species. In this case, the species in question is warm-blooded and furry: the woolly mammoth.

The idea of de-extinction, or bringing back species from extinction (it’s even called “resurrection biology” in some circles), has been around for a while. It’s a controversial idea, and it raises a lot of tough ethical questions. But proponents of de-extinction argue
that we’re losing species and ecosystems at such a rate that we can’t afford not to explore technological interventions to help stem the flow.

Early approaches to bringing species back from the dead have involved selective breeding. The idea was simple—if you have modern ancestors of a recently extinct species, selectively breeding specimens that have a higher genetic similarity to their forebears can potentially help reconstruct their genome in living animals. This approach is being used in attempts to bring back the aurochs, an ancestor of modern cattle.10 But it’s slow, and it depends on
the fragmented genome of the extinct species still surviving in its modern-day equivalents.

An alternative to selective breeding is cloning. This involves finding a viable cell, or cell nucleus, in an extinct but well-preserved animal and growing a new living clone from it. It’s definitely a more appealing route for impatient resurrection biologists, but it does mean getting your hands on intact cells from long-dead animals and devising ways to “resurrect” these, which is no mean feat. Cloning has potential when it comes to recently extinct species whose cells have been well preserved—for instance, where the whole animal has become frozen in ice. But it’s still a slow and extremely limited option.

Which is where advances in genetic engineering come in.

The technological premise of Jurassic Park is that scientists can reconstruct the genome of long-dead animals from preserved DNA fragments. It’s a compelling idea, if you think of DNA as a massively long and complex instruction set that tells a group of biological molecules how to build an animal. In principle, if we could reconstruct the genome of an extinct species, we would have the basic instruction set—the biological software—to reconstruct
individual members of it.

The bad news is that DNA-reconstruction-based de-extinction is far more complex than this. First you need intact fragments of DNA, which is not easy, as DNA degrades easily (and is pretty much impossible to obtain, as far as we know, for dinosaurs). Then you
need to be able to stitch all of your fragments together, which is akin to completing a billion-piece jigsaw puzzle without knowing what the final picture looks like. This is a Herculean task, although with breakthroughs in data manipulation and machine learning,
scientists are getting better at it. But even when you have your reconstructed genome, you need the biological “wetware”—all the stuff that’s needed to create, incubate, and nurture a new living thing, like eggs, nutrients, a safe space to grow and mature, and so on. Within all this complexity, it turns out that getting your DNA sequence right is just the beginning of translating that genetic code into a living, breathing entity. But in some cases, it might be possible.

In 2013, Sergey Zimov was introduced to the geneticist George Church at a conference on de-extinction. Church is an accomplished scientist in the field of DNA analysis and reconstruction, and a thought leader in the field of synthetic biology (which we’ll come
back to in chapter nine). It was a match made in resurrection biology heaven. Zimov wanted to populate his Pleistocene Park with mammoths, and Church thought he could see a way of
achieving this.

What resulted was an ambitious project to de-extinct the woolly mammoth. Church and others who are working on this have faced plenty of hurdles. But the technology has been advancing so fast that, as of 2017, scientists were predicting they would be able to reproduce the woolly mammoth within the next two years.

One of those hurdles was the lack of solid DNA sequences to work from. Frustratingly, although there are many instances of well preserved woolly mammoths, their DNA rarely survives being frozen for tens of thousands of years. To overcome this, Church and others
have taken a different tack: Take a modern, living relative of the mammoth, and engineer into it traits that would allow it to live on the Siberian tundra, just like its woolly ancestors.

Church’s team’s starting point has been the Asian elephant. This is their source of base DNA for their “woolly mammoth 2.0”—their starting source code, if you like. So far, they’ve identified fifty plus gene sequences they think they can play with to give their modern-day woolly mammoth the traits it would need to thrive in Pleistocene Park, including a coat of hair, smaller ears, and a constitution adapted to cold.

The next hurdle they face is how to translate the code embedded in their new woolly mammoth genome into a living, breathing animal. The most obvious route would be to impregnate a female Asian elephant with a fertilized egg containing the new code. But Asian elephants are endangered, and no one’s likely to allow such cutting edge experimentation on the precious few that are still around, so scientists are working on an artificial womb for their reinvented woolly mammoth. They’re making progress with mice and hope to crack the motherless mammoth challenge relatively soon.

It’s perhaps a stretch to call this creative approach to recreating a species (or “reanimation” as Church refers to it) “de-extinction,” as what is being formed is a new species. … (pp. 31-4)

This selection illustrates what Maynard does so very well throughout the book where he uses each film as a launching pad for a clear, readable description of relevant bits of science so you understand why the premise was likely, unlikely, or pure fantasy while linking it to contemporary practices, efforts, and issues. In the context of Jurassic Park, Maynard goes on to raise some fascinating questions such as: Should we revive animals rendered extinct (due to obsolescence or inability to adapt to new conditions) when we could develop new animals?

General thoughts

‘Films for the Future’ offers readable (to non-scientific types) science, lively writing, and the occasional ‘memorish’ anecdote. As well, Dr. Maynard raises the curtain on aspects of the scientific enterprise that most of us do not get to see.  For example, the meeting  between Sergey Zimov and George Church and how it led to new ‘de-extinction’ work’. He also describes the problems that the scientists encountered and are encountering. This is in direct contrast to how scientific work is usually presented in the news media as one glorious breakthrough after the next.

Maynard does discuss the issues of social inequality and power and ownership. For example, who owns your transplant or data? Puzzlingly, he doesn’t touch on the current environment where scientists in the US and elsewhere are encouraged/pressured to start up companies commercializing their work.

Nor is there any mention of how universities are participating in this grand business experiment often called ‘innovation’. (My March 15, 2017 posting describes an outcome for the CRISPR [gene editing system] patent fight taking place between Harvard University’s & MIT’s [Massachusetts Institute of Technology] Broad Institute vs the University of California at Berkeley and my Sept. 11, 2018 posting about an art/science exhibit in Vancouver [Canada] provides an update for round 2 of the Broad Institute vs. UC Berkeley patent fight [scroll down about 65% of the way.) *To read about how my ‘cultural blindness’ shows up here scroll down to the single asterisk at the end.*

There’s a foray through machine-learning and big data as applied to predictive policing in Maynard’s ‘Minority Report’ chapter (my November 23, 2017 posting describes Vancouver’s predictive policing initiative [no psychics involved], the first such in Canada). There’s no mention of surveillance technology, which if I recall properly was part of the future environment, both by the state and by corporations. (Mia Armstrong’s November 15, 2018 article for Slate on Chinese surveillance being exported to Venezuela provides interesting insight.)

The gaps are interesting and various. This of course points to a problem all science writers have when attempting an overview of science. (Carl Zimmer’s latest, ‘She Has Her Mother’s Laugh: The Powers, Perversions, and Potential of Heredity’] a doorstopping 574 pages, also has some gaps despite his focus on heredity,)

Maynard has worked hard to give an comprehensive overview in a remarkably compact 279 pages while developing his theme about science and the human element. In other words, science is not monolithic; it’s created by human beings and subject to all the flaws and benefits that humanity’s efforts are always subject to—scientists are people too.

The readership for ‘Films from the Future’ spans from the mildly interested science reader to someone like me who’s been writing/blogging about these topics (more or less) for about 10 years. I learned a lot reading this book.

Next time, I’m hopeful there’ll be a next time, Maynard might want to describe the parameters he’s set for his book in more detail that is possible in his chapter headings. He could have mentioned that he’s not a cinéaste so his descriptions of the movies are very much focused on the story as conveyed through words. He doesn’t mention colour palates, camera angles, or, even, cultural lenses.

Take for example, his chapter on ‘Ghost in the Shell’. Focused on the Japanese animation film and not the live action Hollywood version he talks about human enhancement and cyborgs. The Japanese have a different take on robots, inanimate objects, and, I assume, cyborgs than is found in Canada or the US or Great Britain, for that matter (according to a colleague of mine, an Englishwoman who lived in Japan for ten or more years). There’s also the chapter on the Ealing comedy, The Man in The White Suit, an English film from the 1950’s. That too has a cultural (as well as, historical) flavour but since Maynard is from England, he may take that cultural flavour for granted. ‘Never let me go’ in Chapter Two was also a UK production, albeit far more recent than the Ealing comedy and it’s interesting to consider how a UK production about cloning might differ from a US or Chinese or … production on the topic. I am hearkening back to Maynard’s anecdote about movies giving him new ways of seeing and imagining the world.

There’s a corrective. A couple of sentences in Maynard’s introductory chapter cautioning that in depth exploration of ‘cultural lenses’ was not possible without expanding the book to an unreadable size followed by a sentence in each of the two chapters that there are cultural differences.

One area where I had a significant problem was with regard to being “programmed” and having  “instinctual” behaviour,

As a species, we are embarrassingly programmed to see “different” as “threatening,” and to take instinctive action against it. It’s a trait that’s exploited in many science fiction novels and movies, including those in this book. If we want to see the rise of increasingly augmented individuals, we need to be prepared for some social strife. (p. 136)

These concepts are much debated in the social sciences and there are arguments for and against ‘instincts regarding strangers and their possible differences’. I gather Dr. Maynard hies to the ‘instinct to defend/attack’ school of thought.

One final quandary, there was no sex and I was expecting it in the Ex Machina chapter, especially now that sexbots are about to take over the world (I exaggerate). Certainly, if you’re talking about “social strife,” then sexbots would seem to be fruitful line of inquiry, especially when there’s talk of how they could benefit families (my August 29, 2018 posting). Again, there could have been a sentence explaining why Maynard focused almost exclusively in this chapter on the discussions about artificial intelligence and superintelligence.

Taken in the context of the book, these are trifling issues and shouldn’t stop you from reading Films from the Future. What Maynard has accomplished here is impressive and I hope it’s just the beginning.

Final note

Bravo Andrew! (Note: We’ve been ‘internet acquaintances/friends since the first year I started blogging. When I’m referring to him in his professional capacity, he’s Dr. Maynard and when it’s not strictly in his professional capacity, it’s Andrew. For this commentary/review I wanted to emphasize his professional status.)

If you need to see a few more samples of Andrew’s writing, there’s a Nov. 15, 2018 essay on The Conversation, Sci-fi movies are the secret weapon that could help Silicon Valley grow up and a Nov. 21, 2018 article on slate.com, The True Cost of Stain-Resistant Pants; The 1951 British comedy The Man in the White Suit anticipated our fears about nanotechnology. Enjoy.

****Added at 1700 hours on Nov. 22, 2018: You can purchase Films from the Future here.

*Nov. 23, 2018: I should have been more specific and said ‘academic scientists’. In Canada, the great percentage of scientists are academic. It’s to the point where the OECD (Organization for Economic Cooperation and Development) has noted that amongst industrialized countries, Canada has very few industrial scientists in comparison to the others.

Xenotransplantation—organs for transplantation in human patients—it’s a business and a science

The last time (June 18, 2018 post) I mentioned xenotransplantation (transplanting organs from one species into another species; see more here), it was in the context of an art/sci (or sciart) event coming to Vancouver (Canada).,

Patricia Piccinini’s Curious Imaginings Courtesy: Vancouver Biennale [downloaded from http://dailyhive.com/vancouver/vancouver-biennale-unsual-public-art-2018/]

The latest edition of the Vancouver Biennale was featured in a June 6, 2018 news item on the Daily Hive (Vancouver),

Melbourne artist Patricia Piccinini’s Curious Imaginings is expected to be one of the most talked about installations of the exhibit. Her style of “oddly captivating, somewhat grotesque, human-animal hybrid creature” is meant to be shocking and thought-provoking.

Piccinini’s interactive [emphasis mine] experience will “challenge us to explore the social impacts of emerging biotechnology and our ethical limits in an age where genetic engineering and digital technologies are already pushing the boundaries of humanity.”

Piccinini’s work will be displayed in the 105-year-old Patricia Hotel in Vancouver’s Strathcona neighbourhood. The 90-day ticketed exhibition [emphasis mine] is scheduled to open this September [2018].

(The show opens on Sept. 14, 2018.)

At the time, I had yet to stumble across Ingfei Chen’s thoughtful dive into the topic in her May 9, 2018 article for Slate.com,

In the United States, the clock is ticking for more than 114,700 adults and children waiting for a donated kidney or other lifesaving organ, and each day, nearly 20 of them die. Researchers are devising a new way to grow human organs inside other animals, but the method raises potentially thorny ethical issues. Other conceivable futuristic techniques sound like dystopian science fiction. As we envision an era of regenerative medicine decades from now, how far is society willing to go to solve the organ shortage crisis?

I found myself pondering this question after a discussion about the promises of stem cell technologies veered from the intriguing into the bizarre. I was interviewing bioengineer Zev Gartner, co-director and research coordinator of the Center for Cellular Construction at the University of California, San Francisco, about so-called organoids, tiny clumps of organlike tissue that can self-assemble from human stem cells in a Petri dish. These tissue bits are lending new insights into how our organs form and diseases take root. Some researchers even hope they can nurture organoids into full-size human kidneys, pancreases, and other organs for transplantation.

Certain organoid experiments have recently set off alarm bells, but when I asked Gartner about it, his radar for moral concerns was focused elsewhere. For him, the “really, really thought-provoking” scenarios involve other emerging stem cell–based techniques for engineering replacement organs for people, he told me. “Like blastocyst complementation,” he said.

Never heard of it? Neither had I. Turns out it’s a powerful new genetic engineering trick that researchers hope to use for growing human organs inside pigs or sheep—organs that could be genetically personalized for transplant patients, in theory avoiding immune-system rejection problems. The science still has many years to go, but if it pans out, it could be one solution to the organ shortage crisis. However, the prospect of creating hybrid animals with human parts and killing them to harvest organs has already raised a slew of ethical questions. In 2015, the National Institutes of Health placed a moratorium on federal funding of this nascent research area while it evaluated and discussed the issues.

As Gartner sees it, the debate over blastocyst complementation research—work that he finds promising—is just one of many conversations that society needs to have about the ethical and social costs and benefits of future technologies for making lifesaving transplant organs. “There’s all these weird ways that we could go about doing this,” he said, with a spectrum of imaginable approaches that includes organoids, interspecies organ farming, and building organs from scratch using 3D bioprinters. But even if it turns out we can produce human organs in these novel ways, the bigger issue, in each technological instance, may be whether we should.

Gartner crystallized things with a downright creepy example: “We know that the best bioreactor for tissues and organs for humans are human beings,” he said. Hypothetically, “the best way to get you a new heart would be to clone you, grow up a copy of yourself, and take the heart out.” [emphasis mine] Scientists could probably produce a cloned person with the technologies we already have, if money and ethics were of no concern. “But we don’t want to go there, right?” he added in the next breath. “The ethics involved in doing it are not compatible with who we want to be as a society.”

This sounds like Gartner may have been reading some science fiction, specifically, Lois McMaster Bujold and her Barrayar series where she often explored the ethics and possibilities of bioengineering. At this point, some of her work seems eerily prescient.

As for Chen’s article, I strongly encourage you to read it in its entirety if you have the time.

Medicine, healing, and big money

At about the same time, there was a May 31, 2018 news item on phys.org offering a perspective from some of the leaders in the science and the business (Note: Links have been removed),

Over the past few years, researchers led by George Church have made important strides toward engineering the genomes of pigs to make their cells compatible with the human body. So many think that it’s possible that, with the help of CRISPR technology, a healthy heart for a patient in desperate need might one day come from a pig.

“It’s relatively feasible to change one gene in a pig, but to change many dozens—which is quite clear is the minimum here—benefits from CRISPR,” an acronym for clustered regularly interspaced short palindromic repeats, said Church, the Robert Winthrop Professor of Genetics at Harvard Medical School (HMS) and a core faculty member of Harvard’s Wyss Institute for Biologically Inspired Engineering. Xenotransplantation is “one of few” big challenges (along with gene drives and de-extinction, he said) “that really requires the ‘oomph’ of CRISPR.”

To facilitate the development of safe and effective cells, tissues, and organs for future medical transplantation into human patients, Harvard’s Office of Technology Development has granted a technology license to the Cambridge biotech startup eGenesis.

Co-founded by Church and former HMS doctoral student Luhan Yang in 2015, eGenesis announced last year that it had raised $38 million to advance its research and development work. At least eight former members of the Church lab—interns, doctoral students, postdocs, and visiting researchers—have continued their scientific careers as employees there.

“The Church Lab is well known for its relentless pursuit of scientific achievements so ambitious they seem improbable—and, indeed, [for] its track record of success,” said Isaac Kohlberg, Harvard’s chief technology development officer and senior associate provost. “George deserves recognition too for his ability to inspire passion and cultivate a strong entrepreneurial drive among his talented research team.”

The license from Harvard OTD covers a powerful set of genome-engineering technologies developed at HMS and the Wyss Institute, including access to foundational intellectual property relating to the Church Lab’s 2012 breakthrough use of CRISPR, led by Yang and Prashant Mali, to edit the genome of human cells. Subsequent innovations that enabled efficient and accurate editing of numerous genes simultaneously are also included. The license is exclusive to eGenesis but limited to the field of xenotransplantation.

A May 30, 2018 Harvard University news release by Caroline Petty, which originated the news item, explores some of the issues associated with incubating humans organs in other species,

The prospect of using living, nonhuman organs, and concerns over the infectiousness of pathogens either present in the tissues or possibly formed in combination with human genetic material, have prompted the Food and Drug Administration to issue detailed guidance on xenotransplantation research and development since the mid-1990s. In pigs, a primary concern has been that porcine endogenous retroviruses (PERVs), strands of potentially pathogenic DNA in the animals’ genomes, might infect human patients and eventually cause disease. [emphases mine]

That’s where the Church lab’s CRISPR expertise has enabled significant advances. In 2015, the lab published important results in the journal Science, successfully demonstrating the use of genome engineering to eliminate all 62 PERVs in porcine cells. Science later called it “the most widespread CRISPR editing feat to date.”

In 2017, with collaborators at Harvard, other universities, and eGenesis, Church and Yang went further. Publishing again in Science, they first confirmed earlier researchers’ fears: Porcine cells can, in fact, transmit PERVs into human cells, and those human cells can pass them on to other, unexposed human cells. (It is still unknown under what circumstances those PERVs might cause disease.) In the same paper, they corrected the problem, announcing the embryogenesis and birth of 37 PERV-free pigs. [Note: My July 17, 2018 post features research which suggests CRISPR-Cas9 gene editing may cause greater genetic damage than had been thought.]

“Taken together, those innovations were stunning,” said Vivian Berlin, director of business development in OTD, who manages the commercialization strategy for much of Harvard’s intellectual property in the life sciences. “That was the foundation they needed, to convince both the scientific community and the investment community that xenotransplantation might become a reality.”

“After hundreds of tests, this was a critical milestone for eGenesis — and the entire field — and represented a key step toward safe organ transplantation from pigs,” said Julie Sunderland, interim CEO of eGenesis. “Building on this study, we hope to continue to advance the science and potential of making xenotransplantation a safe and routine medical procedure.”

Genetic engineering may undercut human diseases, but also could help restore extinct species, researcher says. [Shades of the Jurassic Park movies!]

It’s not, however, the end of the story: An immunological challenge remains, which eGenesis will need to address. The potential for a patient’s body to outright reject transplanted tissue has stymied many previous attempts at xenotransplantation. Church said numerous genetic changes must be achieved to make porcine organs fully compatible with human patients. Among these are edits to several immune functions, coagulation functions, complements, and sugars, as well as the PERVs.

“Trying the straight transplant failed almost immediately, within hours, because there’s a huge mismatch in the carbohydrates on the surface of the cells, in particular alpha-1-3-galactose, and so that was a showstopper,” Church explained. “When you delete that gene, which you can do with conventional methods, you still get pretty fast rejection, because there are a lot of other aspects that are incompatible. You have to take care of each of them, and not all of them are just about removing things — some of them you have to humanize. There’s a great deal of subtlety involved so that you get normal pig embryogenesis but not rejection.

“Putting it all together into one package is challenging,” he concluded.

In short, it’s the next big challenge for CRISPR.

Not unexpectedly, there is no mention of the CRISPR patent fight between Harvard/MIT’s (Massachusetts Institute of Technology) Broad Institute and the University of California at Berkeley (UC Berkeley). My March 15, 2017 posting featured an outcome where the Broad Institute won the first round of the fight. As I recall, it was a decision based on the principles associated with King Solomon, i.e., the US Patent Office, divided the baby and UCBerkeley got the less important part of the baby. As you might expect the decision has been appealed. In an April 30, 2018 piece, Scientific American reprinted an article about the latest round in the fight written by Sharon Begley for STAT (Note: Links have been removed),

All You Need to Know for Round 2 of the CRISPR Patent Fight

It’s baaaaack, that reputation-shredding, stock-moving fight to the death over key CRISPR patents. On Monday morning in Washington, D.C., the U.S. Court of Appeals for the Federal Circuit will hear oral arguments in University of California v. Broad Institute. Questions?

How did we get here? The patent office ruled in February 2017 that the Broad’s 2014 CRISPR patent on using CRISPR-Cas9 to edit genomes, based on discoveries by Feng Zhang, did not “interfere” with a patent application by UC based on the work of UC Berkeley’s Jennifer Doudna. In plain English, that meant the Broad’s patent, on using CRISPR-Cas9 to edit genomes in eukaryotic cells (all animals and plants, but not bacteria), was different from UC’s, which described Doudna’s experiments using CRISPR-Cas9 to edit DNA in a test tube—and it was therefore valid. The Patent Trial and Appeal Board concluded that when Zhang got CRISPR-Cas9 to work in human and mouse cells in 2012, it was not an obvious extension of Doudna’s earlier research, and that he had no “reasonable expectation of success.” UC appealed, and here we are.

For anyone who may not realize what the stakes are for these institutions, Linda Williams in a March 16, 1999 article for the LA Times had this to say about universities, patents, and money,

The University of Florida made about $2 million last year in royalties on a patent for Gatorade Thirst Quencher, a sports drink that generates some $500 million to $600 million a year in revenue for Quaker Oats Co.

The payments place the university among the top five in the nation in income from patent royalties.

Oh, but if some people on the Gainesville, Fla., campus could just turn back the clock. “If we had done Gatorade right, we would be getting $5 or $6 million (a year),” laments Donald Price, director of the university’s office of corporate programs. “It is a classic example of how not to handle a patent idea,” he added.

Gatorade was developed in 1965 when many universities were ill equipped to judge the commercial potential of ideas emerging from their research labs. Officials blew the university’s chance to control the Gatorade royalties when they declined to develop a professor’s idea.

The Gatorade story does not stop there and, even though it’s almost 20 years old, this article stands the test of time. I strongly encourage you to read it if the business end of patents and academia interest you or if you would like to develop more insight into the Broad Institute/UC Berkeley situation.

Getting back to the science, there is that pesky matter of diseases crossing over from one species to another. While, Harvard and eGenesis claim a victory in this area, it seems more work needs to be done.

Infections from pigs

An August 29, 2018 University of Alabama at Birmingham news release (also on EurekAlert) by Jeff Hansen, describes the latest chapter in the quest to provide more organs for transplantion,

A shortage of organs for transplantation — including kidneys and hearts — means that many patients die while still on waiting lists. So, research at the University of Alabama at Birmingham and other sites has turned to pig organs as an alternative. [emphasis mine]

Using gene-editing, researchers have modified such organs to prevent rejection, and research with primates shows the modified pig organs are well-tolerated.

An added step is needed to ensure the safety of these inter-species transplants — sensitive, quantitative assays for viruses and other infectious microorganisms in donor pigs that potentially could gain access to humans during transplantation.

The U.S. Food and Drug Administration requires such testing, prior to implantation, of tissues used for xenotransplantation from animals to humans. It is possible — though very unlikely — that an infectious agent in transplanted tissues could become an emerging infectious disease in humans.

In a paper published in Xenotransplantation, Mark Prichard, Ph.D., and colleagues at UAB have described the development and testing of 30 quantitative assays for pig infectious agents. These assays had sensitivities similar to clinical lab assays for viral loads in human patients. After validation, the UAB team also used the assays on nine sows and 22 piglets delivered from the sows through caesarian section.

“Going forward, ensuring the safety of these organs is of paramount importance,” Prichard said. “The use of highly sensitive techniques to detect potential pathogens will help to minimize adverse events in xenotransplantation.”

“The assays hold promise as part of the screening program to identify suitable donor animals, validate and release transplantable organs for research purposes, and monitor transplant recipients,” said Prichard, a professor in the UAB Department of Pediatrics and director of the Department of Pediatrics Molecular Diagnostics Laboratory.

The UAB researchers developed quantitative polymerase chain reaction, or qPCR, assays for 28 viruses sometimes found in pigs and two groups of mycoplasmas. They established reproducibility, sensitivity, specificity and lower limit of detection for each assay. All but three showed features of good quantitative assays, and the lower limit of detection values ranged between one and 16 copies of the viral or bacterial genetic material.

Also, the pig virus assays did not give false positives for some closely related human viruses.

As a start to understanding the infectious disease load in normal healthy animals and ensuring the safety of pig tissues used in xenotransplantation research, the researchers then screened blood, nasal swab and stool specimens from nine adult sows and 22 of their piglets delivered by caesarian section.

Mycoplasma species and two distinct herpesviruses were the most commonly detected microorganisms. Yet 14 piglets that were delivered from three sows infected with either or both herpesviruses were not infected with the herpesviruses, showing that transmission of these viruses from sow to the caesarian-delivery piglet was inefficient.

Prichard says the assays promise to enhance the safety of pig tissues for xenotransplantation, and they will also aid evaluation of human specimens after xenotransplantation.

The UAB researchers say they subsequently have evaluated more than 300 additional specimens, and that resulted in the detection of most of the targets. “The detection of these targets in pig specimens provides reassurance that the analytical methods are functioning as designed,” said Prichard, “and there is no a priori reason some targets might be more difficult to detect than others with the methods described here.”

As is my custom, here’s a link to and a citation for the paper,

Xenotransplantation panel for the detection of infectious agents in pigs by Caroll B. Hartline, Ra’Shun L. Conner, Scott H. James, Jennifer Potter, Edward Gray, Jose Estrada, Mathew Tector, A. Joseph Tector, Mark N. Prichard. Xenotransplantaion Volume 25, Issue 4 July/August 2018 e12427 DOI: https://doi.org/10.1111/xen.12427 First published: 18 August 2018

This paper is open access.

All this leads to questions about chimeras. If a pig is incubating organs with human cells it’s a chimera but then means the human receiving the organ becomes a chimera too. (For an example, see my Dec. 22, 2013 posting where there’s mention of a woman who received a trachea from a pig. Scroll down about 30% of the way.)

What is it to be human?

A question much beloved of philosophers and others, the question seems particularly timely with xenotransplantion and other developments such neuroprosthetics (cyborgs) and neuromorphic computing (brainlike computing).

As I’ve noted before, although not recently, popular culture offers a discourse on these issues. Take a look at the superhero movies and the way in which enhanced humans and aliens are presented. For example, X-Men comics and movies present mutants (humans with enhanced abilities) as despised and rejected. Video games (not really my thing but there is the Deus Ex series which has as its hero, a cyborg also offer insight into these issues.

Other than popular culture and in the ‘bleeding edge’ arts community, I can’t recall any public discussion on these matters arising from the extraordinary set of technologies which are being deployed or prepared for deployment in the foreseeable future.

(If you’re in Vancouver (Canada) from September 14 – December 15, 2018, you may want to check out Piccinini’s work. Also, there’s ” NCSU [North Carolina State University] Libraries, NC State’s Genetic Engineering and Society (GES) Center, and the Gregg Museum of Art & Design have issued a public call for art for the upcoming exhibition Art’s Work in the Age of Biotechnology: Shaping our Genetic Futures.” from my Sept. 6, 2018 posting. Deadline: Oct. 1, 2018.)

At a guess, there will be pushback from people who have no interest in debating what it is to be human as they already know, and will find these developments, when they learn about them, to be horrifying and unnatural.

Hedy Lamarr documentary

It was the tech community which brought Hedy Lamarr’s scientific and technical accomplishments to light in the 1990s. The movie actress was better known for other aspects of her work and life.

She was the first actress to portray an orgasm on screen, the movie was Ecstasy (in English), the year was 1933; and, Hedy Lamarr was 18 years-old. Shortly after the film was released, Lamarr, of Jewish descent, married Friedrich Mandl, a wealthy Austrian with ties to fascist regimes led by Adolph Hitler and Benito Mussolini. A controlling and jealous man, she eventually escaped Mandl in the middle of the night with all the jewels she could pack on her person.

That’s just the prelude for a documentary celebrating the extraordinary Lamarr. ‘Bombshell: The Hedy Lamarr Story’ (directed and written by Alexandra Dean) has been making its way around the festival circuit for the last several months. I saw it at the Vancouver International Film Festival (VIFF) in October 2017 and the house was packed.

(If you missed it on the festival circuit, don’t worry. It’s being broadcast by most, if not all PBS stations, on May 18, 2018 as part of the American Masters series.)

*ETA video clips May 18, 2018 at 0945 hours PDT*

Over the last few decades there’s been a major reevaluation of Lamarr’s place in history. She was dangerous not just for her beauty (bombshell) but also in the way that people who aren’t easily categorized are always dangerous.

Before she did her ground-breaking work as an inventor and after her dramatic middle-of-the-night escape, Lamarr made her way to London* where she sought out Louis B. Mayer in 1937 and turned down his offer of a contract at MGM. Not enough money. Instead, she booked passage n a ship bound for New York City which was also carrying Louis B. Mayer and his wife. By the time they landed, Lamarr had gotten a contract that she was happy with and a brand-new name. Hedwig Eva Maria Kiesler effectively became Hedy Lamarr for the rest of her life.

Lamarr’s famous quote: “Any girl can be glamorous. All you have to do is stand still and look stupid,” provides an interesting juxtaposition with her role (along with avant-garde musician and composer George Antheil) in developing a technology that laid the basis for secure Wi-Fi, GPS (global positioning system), and Bluetooth. Or as some of us think of it, life in the 21st century.

She claimed to have advised Howard Hughes on the design for the of his airplanes; she was inspired by the wings on birds and fins on fish. She created a tablet that when reconstituted with water became a carbonated drink (according to Lamarr, it was not very tasty). There was also her influence in the field of plastic surgery. Those incisions that are in hard-to-see places? That was at Hedy Lamarr’s suggestion.

Her inventions spanned electrical engineering (telecommunications), bio-inspired engineering and physics (airplane wings), chemistry (the drink tablets), and plastic surgery. That’s an extraordinary range and there’s more. She created her own movie production company in 1945/46* (it was a failure) and was instrumental in designing a resort (she was never fairly recompensed for that).

She suffered throughout her life in various ways.The US government shafted her and George Antheil by politely refusing their invention in 1942. To be fair, it would have been difficult to use with the technology available at the time but somebody must have recognized its potential. At some point in the 1950s the US Navy developed the technology (without informing either inventor or compensating them as had been their deal).

There was more, her achievements were ignored or, worse, attributed to anyone except her the better part of her life; the Hollywood factory is not kind to older actresses, especially those of Lamarr’s generation; and she made serious mistakes.

Ironically, one of those mistakes involved plastic surgery. It’s hard to know what the effect will be on television but in the movie house, there was a big gasp when some footage from her last years was shown. She’s not monstrous but after an hour or more of footage from her ‘glamorous’ years, it’s a bit of a shock. If you can see past the effects of some ‘bad’ plastic surgery, you’ll find a woman who despite everything kept on. She never gave up and there’s a kind of beauty in that act which is indelible in a way that her physical beauty could never hope to be.

The documentary is fascinating not only for what it includes but for what it doesn’t. You’d think she’d never had a woman friend in her life but according to J. E. Smyth’s 2018 book ‘Nobody’s Girl Friday; The Women Who Ran Hollywood’, she and Bette Davis were good friends. There’s also mention of her poverty but none of her late life litigiousness and the $3M estate she left when she died in 2000.*** At a guess, having learned from the debacle with the US Navy (she could have sued but didn’t realize she had the right), she litigated her way into some financial health. As for the ‘Time’s Up’ and ‘Me Too’ movements which have formed since the Hollywood sex scandals of 2017 – ????, one can only imagine what Lamarr’s stories might have been.

If you have the time, see the documentary. Lamarr was a helluva dame.

*’Paris’ corrected to ‘London’ and ‘1945’ changed to 1945/46′ on on May 21, 2018 after watching the PBS broadcast of the documentary on May 18, 2018.

.***ETA May 21, 2018: See the Hedy Lamarr Wikipedia entry for more about her estate and other details of her life.***

Art influences science

It’s not often you see research that combines biologically inspired engineering and a molecular biophysicist with a professional animator who worked at Peter Jackson’s (Lord of the Rings film trilogy, etc.) Park Road Post film studio. An Oct. 18, 2017 news item on ScienceDaily describes the project,

Like many other scientists, Don Ingber, M.D., Ph.D., the Founding Director of the Wyss Institute, is concerned that non-scientists have become skeptical and even fearful of his field at a time when technology can offer solutions to many of the world’s greatest problems. “I feel that there’s a huge disconnect between science and the public because it’s depicted as rote memorization in schools, when by definition, if you can memorize it, it’s not science,” says Ingber, who is also the Judah Folkman Professor of Vascular Biology at Harvard Medical School and the Vascular Biology Program at Boston Children’s Hospital, and Professor of Bioengineering at the Harvard Paulson School of Engineering and Applied Sciences (SEAS). “Science is the pursuit of the unknown. We have a responsibility to reach out to the public and convey that excitement of exploration and discovery, and fortunately, the film industry is already great at doing that.”

An October 18, 2017 Wyss Institute at Harvard University news release (also on EurekAlert) by Lindsay Brownell, which originated the news item, details the work,

To see if entertainment could offer a solution to this challenge, Ingber teamed up with Charles Reilly, Ph.D., a molecular biophysicist, professional animator, and Staff Scientist at the Wyss Institute who previously worked at movie director Peter Jackson’s Park Road Post film studio, to create a film that would capture viewers’ imaginations by telling the story of a biological process that was accurate down to the atomic level. “Don and I quickly found that we have a lot of things in common, especially that we’re both systems thinkers,” says Reilly. “Applying an artistic process to science frees you from the typically reductionist approach of analyzing one particular hypothesis and teaches you a different way of observing things. As a result, we not only created an entertaining tool for public outreach, we conducted robust theoretical biology research that led to new scientific insight into molecular-scale processes.” The research is now published in ACS Nano and the film can be found here.

Wyss researchers created a model of an axoneme that displays how different segments of the microtubules bend and flex relative to each other to create movement. Credit: Wyss Institute at Harvard University

Any good movie needs characters and drama, and a “hook” to get the audience invested in watching. The scientists decided to make a parody of a trailer for a Star Wars® movie, but instead of showing starship cruisers hurtling through space towards the Death Star, they chose a biological process with its own built-in narrative: the fertilization of an egg by a sperm, in which millions of sperm race to be the one that succeeds and creates the next generation of life. The patterns and mechanics of sperm swimming have been studied and described in scientific literature, but visually showing the accurate movement of a sperm tail required tackling one of the toughest challenges facing science today: how to create a multi-scale biological model that maintains accuracy at different sizes, from cells all the way down to atoms. That would be like starting with the Empire State Building and then zooming in close enough to see every individual screw, nut and bolt that holds it together, as well as how individual water molecules flow inside its pipes, while maintaining crystal-clear resolution – not an easy task.

“It turns out that creating an accurate biological model and creating a believable computer-generated depiction of life in film are very similar, in that you’re constantly troubleshooting and modifying your virtual object until it fits the way things actually look and move,” says Reilly. “However, for biology, the simulations also have to align with recorded scientific data and theoretical models that have previously been experimentally validated.” The scientists created a design-based animation pipeline that integrates physics-based film animation software with molecular dynamics simulation software to create a model of how a sperm tail moves based on scientific data, with the criterion that the model had to work across all size scales. “This is really a design thinking approach, where you have to be willing to throw out your model if it doesn’t work correctly when you integrate it with data from another scale,” Reilly says. “A lot of scientific investigations use a reductionist approach, focusing on one molecule or one biological system with higher and higher resolution without placing it in context, which makes it difficult to converge on a picture of the larger whole.”

This video shows dynein’s two different shapes as determined from scientific observations, and how the Wyss researchers’ molecular model of dynein’s movement fits those conformations. Credit: Wyss Institute at Harvard University

The core of a sperm’s whip-like tail is the axoneme, a long tube consisting of nine pairs of microtubules arranged in a column around a central pair, all of which extend the entire length of the tail. The axoneme’s rhythmic bending and stretching is the source of the tail’s movement, and the scientists knew they needed to realistically depict that process in order to show the film’s viewers how a sperm moves. Rather than construct a model in a linear fashion by “zooming in” or “zooming out” to add more information to a single starting structure, they built the model at different scales simultaneously, repeatedly checking it against scientific data to ensure it was accurate and modifying it until the pieces fit together.

The axoneme’s movement is accomplished via rows of motor proteins called dyneins that are attached along the microtubules and exert force on them so the microtubules “slide” past each other, which then causes the entire axoneme and sperm tail to bend and move. The dynein protein has a long “arm” portion that grabs onto the neighboring microtubule and, when the protein changes from one shape to another, pulls the microtubule along with it. Dynein switches between these different conformations as a result of the conversion of a molecule of ATP to ADP at a specific binding site on the protein, which releases energy as a chemical bond is broken. To model this molecular motor, the scientists created a molecular dynamics simulation of a dynein protein and applied energy at the ATP binding site to approximate the transfer of energy from ATP. They found that this caused atoms in the entire protein to move in random directions when they performed their simulation of dynein floating in solution, as most conventional scientific simulations do. However, when they then “fixed” a specific hinge region of the dynein molecule that is known to connect dynein to its microtubule, they discovered that the dynein spontaneously moved in its characteristic direction when force was applied at the ATP binding site, matching the way it moves in nature.

This video shows rows of dynein proteins along the microtubules of an axoneme moving in sync to cause the axoneme’s motion, like rowers pulling synchronously in a boat. Credit: Wyss Institute at Harvard University

“Not only is our physics-based simulation and animation system as good as other data-based modeling systems, it led to the new scientific insight that the limited motion of the dynein hinge focuses the energy released by ATP hydrolysis, which causes dynein’s shape change and drives microtubule sliding and axoneme motion,” says Ingber. “Additionally, while previous studies of dynein have revealed the molecule’s two different static conformations, our animation visually depicts one plausible way that the protein can transition between those shapes at atomic resolution, which is something that other simulations can’t do. The animation approach also allows us to visualize how rows of dyneins work in unison, like rowers pulling together in a boat, which is difficult using conventional scientific simulation approaches.”

Using this biologically accurate model of how dynein moves the microtubules within the axoneme, Ingber and Reilly created a short film called “The Beginning,” which draws parallels between sperm swimming toward an egg and spaceships flying toward a planet in space, giving an artistic bent to a scientific topic. The film depicts several sperm attempting to fertilize the egg, “zooms in” on one sperm’s tail to show how the dynein proteins move in sync to cause the tail to bend and flex, and ends with the sperm’s successful journey into the egg and the initiation of cell division that will ultimately create a new organism. The scientists submitted the film along with the paper to several academic journals, and it took a long time before they found an open-minded editor who recognized that the paper and film together were a powerful demonstration of how starting with an artistic goal can end up generating new scientific discoveries along with a tool for public outreach.

*Due to distortion images deleted March 9, 2018.*

“Both science and art are about observation, interpretation, and communication. Our goal is that presenting science to the public in an entertaining, system-based way, rather than bogging them down with a series of scattered facts, will help more people understand it and feel that they can contribute to the scientific conversation. The more people engage with science, the more likely humanity is to solve the world’s big problems,” says Reilly. “I also hope that this paper and video encourage more scientists to take an artistic approach when they start a new project, not necessarily to create a narrative-based story, but to explore their idea the way an artist explores a canvas, because that makes the mind open to a different form of serendipity that can lead to unexpected results.”

“The Wyss Institute is driven by biological design. In this project, we used design tools and approaches borrowed from the art world to solve problems related to motion, form, and complexity to create something entertaining, which ultimately led to new scientific insights and, hopefully, new ways to excite the public about science,” says Ingber. “We’ve demonstrated that art and science can benefit each other in a truly reciprocal way, and we hope that this project spurs future collaborations with the entertainment industry so that both art and science can get even closer to depicting reality in ways that anyone can appreciate and enjoy.”

*Due to distortion images deleted on March 9, 2018.*

The film,

Here’s a link to and a citation for the paper,

Art Advancing Science: Filmmaking Leads to Molecular Insights at the Nanoscale by Charles Reilly and Donald E. Ingber. ACS Nano, Article ASAP DOI: 10.1021/acsnano.7b05266 Publication Date (Web): October 18, 2017

Copyright © 2017 American Chemical Society

This paper appears to be open access.

Please, don’t kill my hive! (a Science Rap Academy production)

In celebration of an upcoming event in Vancouver (Canada), “Honey, Hives, and Poetry,” I’m including this April 17, 2015 news from David Bruggeman (on his Pasco Phronesis blog),

Tom McFadden has debuted the first video of this year’s Science Rap Academy.  Seventh and eighth grade students at the Nueva School prepare a music video based on a science concept, usually reworking a rap or hip-hop song.

Here’s the first installment in this year’s Science Rap Academy series, Please Don’t Kill My Hive,

There are many posts on this blog about Tom McFadden and his various science rap projects (many of them courtesy of David Bruggeman/Pasco Phronesis). Here’s one of the more recent ones, a May 30, 2014 posting.

Getting back to David’s April 17, 2015 news, he also mentions the latest installment of  “Science goes to the movies” which features three movies (Kingsman: The Secret Service, The Lazarus Effect, and Them!) and has Neil deGrasse Tyson as a guest. David has embedded the episode on his blog. One brief comment, it’s hard to tell how familiar Tyson or the hosts, Faith Salie and Dr. Heather Berlin are with the history of the novel or science. But the first few minutes of the conversation suggest that Mary Shelley’s Frankenstein is the first novel to demonize scientists. (I had the advantage of not getting caught up in their moment and access to search engines.) Well, novels were still pretty new in Europe and I don’t believe that there were any other novels featuring scientists prior to Mary Shelley’s work.

A brief history of novels: Japan can lay claim to the first novel, The Tale of Genji, in the 11th century CE, (The plot concerned itself with aristocratic life and romance.) Europe and its experience with the novel is a little more confusing. From the City University of New York, Brooklyn site, The Novel webpage,

The term for the novel in most European languages is roman, which suggests its closeness to the medieval romance. The English name is derived from the Italian novella, meaning “a little new thing.” Romances and novelle, short tales in prose, were predecessors of the novel, as were picaresque narratives. Picaro is Spanish for “rogue,” and the typical picaresque story is of the escapades of a rascal who lives by his wits. The development of the realistic novel owes much to such works, which were written to deflate romantic or idealized fictional forms. Cervantes’ Don Quixote (1605-15), the story of an engaging madman who tries to live by the ideals of chivalric romance, explores the role of illusion and reality in life and was the single most important progenitor of the modern novel.

The novel broke from those narrative predecessors that used timeless stories to mirror unchanging moral truths. It was a product of an intellectual milieu shaped by the great seventeenth-century philosophers, Descartes and Locke, who insisted upon the importance of individual experience. They believed that reality could be discovered by the individual through the senses. Thus, the novel emphasized specific, observed details. It individualized its characters by locating them precisely in time and space. And its subjects reflected the popular eighteenth-century concern with the social structures of everyday life.

The novel is often said to have emerged with the appearance of Daniel Defoe’s Robinson Crusoe (1719) and Moll Flanders (1722). Both are picaresque stories, in that each is a sequence of episodes held together largely because they happen to one person. But the central character in both novels is so convincing and set in so solid and specific a world that Defoe is often credited with being the first writer of “realistic” fiction. The first “novel of character” or psychological novel is Samuel Richardson’s Pamela (1740-41), an epistolary novel (or novel in which the narrative is conveyed entirely by an exchange of letters). It is a work characterized by the careful plotting of emotional states. Even more significant in this vein is Richardson’s masterpiece Clarissa (1747-48). Defoe and Richardson were the first great writers in our literature who did not take their plots from mythology, history, legend, or previous literature. They established the novel’s claim as an authentic account of the actual experience of individuals.

As far as I’m aware none of these novels are concerned with science or scientists for that matter. After all, science was still emerging from a period where alchemy reined supreme. One of the great European scientists, Isaac Newton (1642-1726/7), practiced alchemy along with his science. And that practice did not die with Newton.

With those provisos in mind, or not, do enjoy the movie reviews embedded in David’s April 17, 2015 news.  One final note,David in his weekly roundup of science on late night tv noted that Neil deGrasse Tyson’s late night tv talk show, Star Talks, debuted April 20, 2015, the episode can be seen again later this week while deGrasse Tyson continues to make the rounds of other talk shows to publicize his own.