Tag Archives: genetically modified organism (GMO)

Gene-edited food: better tasting and/or allergen-free?

I have two items about gene-edited food. One is from the Canadian Broadcasting Corporation (CBC) and the other is from Hiroshima University (Japan).

Better tasting food?

Cherries without pits do not fit my definition of better tasting food but it’s just one of the touted ‘improvements’.

https://i.cbc.ca/1.6513602.1684353993!/fileImage/httpImage/image.jpg_gen/derivatives/16x9_780/a-little-dirt-never-hurt-01.jpg
Can you imagine eating cherries without having to deal with its pits? That could be a reality thanks to gene-editing tools like CRISPR. (Ben Nelms/CBC)

A May 18, 2023 article by Mouhamad Rachini for CBC’s radio programme, The Current, features information from a radio segment on gene-edited food,

When Michael Wolf tried a new type of mustard green that had been gene-edited to taste less bitter, he came away impressed.

“I don’t necessarily like my food very bitter, so I appreciated it,” Wolf, founder of the food tech publication The Spoon, told The Current’s Matt Galloway.

Food scientists are starting to use gene-editing technology, called CRISPR [clustered regularly interspaced short palindromic repeats], to change certain features of some Canadians’ favourite fruits and vegetables. For example, scientists told Wolf that the technology could be used to create cherries without a pit.

Pairwise, a North Carolina-based gene-editing startup, recently rolled out a mustard green engineered to be less bitter than the original plant. It’s the first CRISPR-edited food to hit the U.S. market. 

Although the gene-edited mustard greens haven’t appeared in Canada yet, the process could find a home here very soon.

Earlier this month, Minister of Agriculture and Agri-Food Marie-Claude Bibeau announced that the Canadian Food Inspection Agency (CFIA) seed guidelines now allow for some modified plants.

The updated rules now allow seeds created through gene-editing without an independent safety assessment by the government, as long as they aren’t spliced with DNA from other types of fruits or vegetables, or altered to make them pesticide-resistant. [emphasis mine]

Wolf explained further that gene-editing with CRISPR has some key differences from other types of genetic modification for food, which has been around for some time.

“[With genetic modification], you’re maybe inserting a foreign DNA into a molecule. But with CRISPR, what it’s essentially doing is just cutting out undesirable traits,” he said. [emphasis mine]

“So you’re not really inserting something that might be foreign to the organism. So it’s something that is a bit, I guess, less concerning for a lot of people who are worried about GMO because that takes away that concern.” [emphasis mine]

“Removing bitterness in a vegetable, I believe, is doing a disservice to our palate,” Dionisia Roman-Osicki of Virden, Man., wrote to The Current. “You can’t be a foodie without recognizing the value of bitterness in food.”

Organic farmer Antony John said there are already “cultural methods” to sweeten the taste and nutritional values of certain foods without genetic modification, such as carrots.

“The cold temperatures causes the carrots to provide an antifreeze, and that antifreeze is sugar,” said John, co-owner of the Soiled Reputation farm in Sebringville, Ont. “So they convert the starch in their roots into sugars. So letting your carrots grow when it’s cold and when there’s subzero temperatures will enhance the sugar in it.”

The radio segment embedded in Rachini’s May 18, 2023 article is 13 mins. 14 secs.

Allergen-free eggs

Over at Hiroshima University, a May 17, 2023 press release (also on EurekAlert but published May 16, 2023) announces research into making eggs safer for people who have allergies, Note 1: The researchers have used a different kind of gene-editing (or genome-editing) technique Note 2: Links have been removed,

Researchers have developed a chicken egg that may be safe for people with egg white allergies. Chicken egg allergies are one of the most common allergies in children. Though most children outgrow this allergy by age 16, some will still have an egg allergy into adulthood. Egg white allergies can cause a variety of symptoms, including vomiting, stomach cramps, breathing problems, hives, and swelling and some people with egg white allergies are unable to receive certain flu vaccines.

Using genome editing technology, researchers have produced an egg without the protein that causes egg white allergies. This protein, called ovomucoid, accounts for approximately 11% of all the protein in egg whites.

Research detailing the food safety profile of this modified egg, called the OVM-knockout, was detailed in a paper published in Food and Chemical Toxicology in April 2023.

“To use OVM-knockout chicken eggs as food, it is important to evaluate its safety as food. In this study, we examined the presence or absence of mutant protein expression, vector sequence insertion, and off-target effects in chickens knocked out with OVM by platinum transcription activator-like effector nucleases (TALENs),” said Ryo Ezaki, an assistant professor at the Graduate School of Integrated Sciences for Life at Hiroshima University in Hiroshima, Japan. TALENs are restriction enzymes that recognize specific DNA sequences and break or cut them.

In order to develop the OVM-knockout eggs, researchers needed to detect and eliminate the ovomucoid protein in the egg whites. TALENs were engineered to target a piece of RNA called exon 1, which codes for specific proteins. The eggs produced from this technique were then tested to ensure there was no ovomucoid protein, mutant ovomucoid protein, or other off-target effects. The eggs had the desired frameshift mutation, which is a mutation created by inserting or deleting nucleotide bases in a gene, and none of them expressed mature ovomucoid proteins. Anti-ovomucoid and anti-mutant ovomucoid antibodies were used to detect any traces of the protein, but there was no evidence of ovomucoid in the eggs. This means that mutant ovomucoids could not create new allergens. This is an important step in determining the safety profile of the eggs.

Other gene editing tools, such as CRISPR, tend to have off-target mutagenesis effects. This means that new mutations are prompted by the gene editing process. However, whole genome sequencing of the altered egg whites showed mutations, which were possibly off-target effects, were not localized to the protein-coding regions.

“The eggs laid by homozygous OVM-knockout hens showed no evident abnormalities. The albumen contained neither the mature OVM nor the OVM-truncated variant,” said Ezaki. “The potential TALEN-induced off-target effects in OVM-knockout chickens were localized in the intergenic and intron regions. Plasmid vectors used for genome editing were only transiently present and did not integrate into the genome of edited chickens. These results indicate the importance of safety evaluations and reveal that the eggs laid by this OVM knockout chicken solve the allergy problem in food and vaccines.”

Looking ahead, researchers will continue to verify the safety profile of the OVM-knockout eggs. Because some people are highly allergic to this specific protein, even small amounts of ovomucoid can cause a reaction. Researchers will need to perform additional immunological and clinical studies to determine the safety of the OVM-knockout eggs. At this time, researchers have determined that OVM-knockout eggs are less allergenic than standard eggs and can be safely used in heat-processed foods that patients with egg allergies can eat. “The next phase of research will be to evaluate the physical properties and processing suitability of OVM-knockout eggs, and to confirm their efficacy through clinical trials,” said Ezaki. “We will continue to conduct further research toward the practical application of allergy-reduced eggs.”

Here’s a link to and a citation for the paper,

Transcription activator-like effector nuclease-mediated deletion safely eliminates the major egg allergen ovomucoid in chickens by Ryo Ezaki, Tetsushi Sakuma, Daisuke Kodama, Ryou Sasahara, Taichi Shiraogawa, Kennosuke Ichikawa, Mei Matsuzaki, Akihiro Handa, Takashi Yamamoto & Hiroyuki Horiuchi. Food and Chemical Toxicology Volume 175, May 2023, 113703 DOI: https://doi.org/10.1016/j.fct.2023.113703

This paper is open access.