Part 1 featured my commentary on both Calestous Juma’s 2016 book, ”Innovation and Its Enemies; Why People Resist New Technologies” and Meanie Keene’s 2015 book, “Science in Wonderland; The scientific fairy tales of Victorian Britain.” Now for an emerging technology; genetically modified fish (AquAdvantage salmon) and my final comments on the books and the contrasting ways the adoption of new technologies and science is presented.
Fish
AquAdvanage salmon features as one of Calestous Juma’s contemporary emerging technologies. I mentioned the fish here in a May 20, 2016 posting when the fish was approved for consumption in Canada; this followed an earlier mention in a Dec. 4, 2015 posting when the US Food and Drug Administration (FDA) approved the salmon for consumption in the US (from the 2015 posting),
…
For the final excerpt from the December 2015 issue, there’s this about genetically engineered salmon,
Genetically Modified Salmon: Coming to a River Near You?
After nearly 20 years of effort, the Food and Drug Administration has approved genetically engineered salmon produced by AquaBounty Technologies, as fit for consumption and will not have to be labeled as genetically engineered. This salmon is capable of growing twice as fast as a non-engineered farmed salmon in as little as half of the time, however, it’s still likely to be at least two years before these salmon reach supermarkets. Some groups are concerned about the environmental implications should these salmon accidentally get released, or escape, into the wild, even though AquaBounty says its salmon will be all female and sterile.
AquaBounty’s salmon (background) has been genetically modified to grow bigger and faster than a conventional Atlantic salmon of the same age (foreground.) Courtesy of AquaBounty Technologies, Inc. [downloaded from http://www.npr.org/sections/thesalt/2015/06/24/413755699/genetically-modified-salmon-coming-to-a-river-near-you]
The link from the newsletter points to a June 24, 2015 article by Jessie Rack for US National Public Radio’s Salt on the Table program (Note: Links have been removed),
One concern repeatedly raised by critics who don’t want the FDA to give the transgenic fish the green light: What would happen if these fish got out of the land-based facilities where they’re grown and escaped into the wild? Would genetically modified salmon push out their wild counterparts or permanently alter habitat? In a review paper published this month in the journal BioScience, scientists tackle that very question.
Robert H. Devlin, a scientist at Fisheries and Oceans Canada, led a team that reviewed more than 80 studies analyzing growth, behavior and other trait differences between genetically modified and unaltered fish. The scientists used this to predict what might happen if fish with modified traits were unleashed in nature.
Genetically modified salmon contain the growth hormone gene from one fish, combined with the promoter of an antifreeze gene from another. This combination both increases and speeds up growth, so the salmon grow faster.
Altering a fish’s genes also changes other traits, the review found. Genetically modified salmon eat more food, spend more time near the surface of the water, and don’t tend to associate in groups. They develop at a dramatically faster rate, and their immune function is reduced.
But would these altered traits help genetically modified salmon outcompete wild salmon, while at the same time making them less likely to thrive in nature? It’s unclear, says Fredrik Sundström, one of the study authors and an ecologist at Uppsala University in Sweden.
You may note the lead researcher for the literature review, a Canadian scientist was not quoted. This is likely due to the muzzle the Conservative government (still in power in June 2015 ) had applied to government scientists.
One last thing about AquAdvantage salmon, there is a very good Dec. 3, 2015 posting by Meredith Hamel focusing on their Canadian connections on her BiologyBizarre blog/magazine (Note: A link has been removed),
“For the first time anywhere in the world, a genetically engineered animal has been approved for human consumption” announced Peter Mansbridge on CBC [Canadian Broadcasting Corporation] news on November 20 [2015]. Members of society do not agree on how genetically modified fruits and vegetables should be labelled, if at all, but we are already moving on to genetically modified animals for human consumption. The AquAdvantage salmon by the US company AquaBounty can grow quicker and go to market twice as fast as regular farmed salmon using less feed. This genetically engineered salmon, whose fertilized eggs are produced at an inland facility in P.E.I [Prince Edward Island], Canada [emphasis mine] and raised at a facility in Panama, has been approved by the FDA after a long 20 year wait. AquAdvantage salmon could be the first genetically engineered meat we eat but opposition to approving it in Canada shows this salmon is not yet finished swimming against the current.
She goes on to describe in detail how these salmon are created (not excerpted here) and pinpoints another Canadian connection and political ramifications (Note: Links have been removed),
Head of Ocean Sciences Department at Memorial University [province of Newfoundland and Labrador], Garth Fletcher told The Star he was happy to see his creation get approved as he didn’t think approval would happen in his lifetime. Fletcher is no longer involved with AquaBounty but began working on this growth improved transgenic fish with other scientists back in 1982. On CBC news he said “the risk is as minimal as you could ever expect to get with any product.”
While the salmon is not approved in Canada for human consumption, some grocery store chains have already boycotted AquAdvantage salmon. The first step, the production of eggs in P.E.I has been approved by the federal government. Now there is a court battle with British Columbia’s Living Oceans Society and Nova Scotia’s Ecology Action Centre together challenging the federal government’s approval. They are concerned AquAdvantage salmon would be toxic to the environment as an invasive species if they were to escape and that this was not adequately assessed. Secondly they argue that Environment Canada had a duty to inform the public but failed to do so.
Natalie Huneault at Environment Canada told the National Oberver, “there were no concerns identified to the environment or to the indirect health of Canadians due to the contained production of these GM fish eggs for export.”
Anastasia Bodnar over on Biology Fortified does an excellent job of going through the risks and mitigation of AquAdvantage salmon (here and here) both with respect to safety of eating this meat product as well as in preventing escapee transgenic fish from contaminating wild salmon populations. The Fisheries and Oceans Canada document containing assessment of risks to the environment and health are found here. Due to the containment facility and procedures there is extremely low likelihood that any fertile genetically modified salmon would escape to an area where it could survive and reproduce.
The failure of Environment Canada to properly inform and have a discussion with the public before approving the P.E.I fertilized egg production facility will certainly have increased public mistrust and fear of this genetically engineered salmon. I think that if the public feel that this step has already taken place behind their back, future discussion about approving genetically engineered salmon as safe to eat, is only going to be met with suspicion.
…
Since the 2016 approval, AquAdvantage salmon, 4.5M tonnes has been sold in Canada according to an Aug. 8, 2017 article by Sima Shakeri for Huffington Post (Note: Links have been removed),
After decades of trying to get approval by in North America, genetically modified Atlantic salmon has been sold to consumers in Canada.
AquaBounty Technologies, an American company that produces the Atlantic salmon, confirmed it had sold 4.5 tonnes of the modified fish on August 4 [2017], the Scientific American reported.
The fish have been engineered with a growth hormone gene from Chinook salmon to grow faster than regular salmon and require less food. They take about 18 months to reach market size, which is much quicker than the 30 months or so for conventional salmon.
The Washington Post wrote AquaBounty’s salmon also contains a gene from the ocean pout that makes the salmon produce the growth hormone gene all-year-round.
The company produces the eggs in a facility in P.E.I., which is currently being expanded, and then they’re shipped to Panama where the fish are raised.
Health Canada assessed the AquAdvantage salmon and concluded it “did not pose a greater risk to human health than salmon currently available on the Canadian market,” and that it would have no impact on allergies nor a difference in nutritional value compared to other farmed salmon.
Because of that, the AquAdvantage product is not required to be specially labelled as genetically modified, and is up to the discretion of retailers.
Scientific American has reproduced a piece by Emily Waltz (originally published August 4, 2017, the date Canadian consumers discovered the fish was being sold, in Nature). From the Aug. 7, 2017 Scientific American republication (Note: A link has been removed),
AquaBounty’s gruelling path from scientific discovery to market terrified others working in animal biotechnology, and almost put the company out of business on several occasions. Scientists first demonstrated the fast-growing fish in 1989. They gave it a growth-hormone gene from Chinook salmon (Oncorhynchus tshawytscha), along with genetic regulatory elements from a third species, the ocean pout (Zoarces americanus). The genetic modifications enable the salmon to produce a continuous low level of growth hormone.
AquaBounty formed around the technology in the early 1990s and approached regulators in the United States soon after. It then spent almost 25 years in regulatory limbo. The US Food and Drug Administration (FDA) approved the salmon for consumption in November 2015, and Canadian authorities came to the same decision six months later. Neither country requires the salmon to be labelled as genetically engineered.
But unlike in Canada, political battles in the United States have stalled the salmon’s entry into the marketplace. …
Activists in both the United States and Canada have demanded that regulators reconsider their decisions, and some have filed lawsuits. …
Waltz includes this quote from an interested party,
The sale of the fish follows a long, hard-fought battle to navigate regulatory systems and win consumer acceptance. “Somebody’s got to be first and I’m glad it was them and not me,” says James West, a geneticist at Vanderbilt University in Nashville, Tennessee, who co-founded AgGenetics, a start-up company in Nashville that is engineering cattle for the dairy and beef industries. “If they had failed, it might have killed the engineered livestock industry for a generation,” he says.
Canadians don’t necessarily respond in the same way that Americans do. The stem cell controversies to the south of us never reached the same fury and pitch although there were some significant impacts felt by the research community. Similarly the GMO (genetically modified organisms) controversies were felt here but in nowhere near the same degree as Europe. That doesn’t mean there won’t be problems this time but trying to determine how Canadians are likely to respond can be tricky especially when most of us don’t know much about GMO foods as Meham Abedi notes in her August 9, 2017 article for Global TV news (Note: Link have been removed),
On Wednesday [Aug. 9, 2017], an Angus Reid survey revealed that most Canadians admit they don’t know much about genetically modified organisms, but still want more transparency.
Of the 1,512 respondents, 24 per cent said they had “never heard of them” or only heard the term, 60 per cent said they “know a little bit about” GMO food, while only 16 per cent were “very familiar” with what it entails.
However, 83 per cent of Canadians surveyed said at least some GMO food labelling should [be] mandatory in grocery stores.
The report echos 2016 Health Canada findings that Canadians’ opinions on the products were defined by “confusion, misinformation, and generally low awareness/understanding.”
…
The Angus Reid survey was conducted between June 8-13, 2017 [emphasis mine], by 1,512 Canadian adults. It is considered accurate +/- 2.5 percentage points, 19 times out of 20.
It’s hard to know how “confusion, misinformation, and generally low awareness/understanding,” is going to play out but it doesn’t seem a good idea to just sneak GMO salmon into the Canadian marketplace. Notably, Juma argues for more public education in his book and while it might not smooth the path as much as he and other innovation enthusiasts might prefer, it certainly couldn’t hurt.
It might also be useful to consider the idea that not all resistance is bad and to be avoided. Tess Doezema in her April 26, 2017 article (Skepticism About Biotechnology Isn’t Anti-Science) presents a persuasive argument suggesting that public concerns don’t deserve to be dismissed (Note: Links have been removed),
…
To many in bioscience and biotechnology circles, this [AquAdvantage salmon] is a case of politics contaminating science. In an open letter to President Obama in 2014, a group of “concerned international scientists and global technology company executives” argue this point:
The American people, and indeed all people everywhere, are best served by a trusted objective regulatory process truly based on sound science, a system which can be counted upon to evaluate and act on the applications it receives without fear of political interference.
These scientists and others offer a picture of a Manichean world divided into those who are for scientific and technological progress and those who are against it—a representation of the world that we have been seeing more and more of lately in reports of a “war on science.” But drawing this line is dangerous. The real problem here is the regulatory process itself, which forces dissent to take the narrow form of challenges to scientific data and methodology and ignores other questions about what’s at stake.
The FDA approval process for the AquAdvantage salmon took longer and included more opportunities for public comment than most products the FDA reviews. This unique openness to public input was balanced by a careful parsing of what counts as scientifically and contextually relevant and what does not. The agency received 38,000 comments in response to its draft assessment alone, but it determined that just 90 were worth considering [emphases mine]. The remaining comments were discounted as irrelevant because they did not directly address the details of the regulation process, or they raised issues beyond the mandate of the agency. These disregarded comments focused on a wide range of concerns, including patenting and ownership regimes of seed and crops; how deploying genetically modified corn and soy would affect the United States’ image around the world; continuing failures of existing market configurations to address inequality and food distribution; and the long history of multinational corporations central to the commercialization of biotechnologies, such as Monsanto, intentionally obscuring the negative impacts of their chemical products and byproducts while undermining human health.
…
Some might read the vast public preoccupation with a broad set of social, political, and economic issues as the contamination of science with politics. But I would suggest that this is actually a case of the reverse problem: seemingly endless conflict around the AquAdvantage salmon reflects the limitation of using narrow scientific terms to address questions of broad social, political, and economic significance. As things stand, the only legitimate way to engage in debates about the entry of the AquAdvantage salmon and other genetically modified organisms into our environments, meals, intellectual property regimes, and beyond is to contest its approval at the level of regulatory science. When the system asks the public to limit objections to narrow technical concerns, it undermines regulatory legitimacy and stultifies democratic debate—and perhaps most importantly, it contributes to the problematic discourse around science itself. When our modes of public deliberation strictly define what counts as a legitimate view on these issues, we end up portraying a good portion of the population as “against science,” when that in fact could not be further from the truth.
…
To position science on one side of these debates is not only patently false but detrimental to public discourse.
… Synthetic biology is billed as having the potential to transform the world in a way that will disrupt prevailing economic and geopolitical paradigms and “reshape the very fabric of life.” The one thing both sides of the fishy debate seem to agree on is that the AquAdvantage salmon is a “pioneer” technology, and what happens to this fish could set the stage for the role that biotechnology will play in our food system in the century to come. As one commentator opined for the New York Times:
We should all be rooting for the agency to do the right thing and approve the AquAdvantage salmon. It’s a healthy and relatively cheap food source that, as global demand for fish increases, can take some pressure off our wild fish stocks. But most important, a rejection will have a chilling effect on biotechnological innovation in this country. …
This framing suggests that biotechnological innovation is a necessary and unmitigated good. But for many, the prospect of a world radically altered by biotechnology conjures past experiences in which scientific “progress” didn’t go as planned—like the devastation and political instability ushered in by nuclear weapons. Similarly, to some, a dam looks like progress, development, and economic prosperity. But to others, it looks like the violent end of a way of life, heralded by the destruction of ecosystems and entire species.
…
Characterizing legitimate concerns about what kinds of technologies enter and help shape our world as “anti-science” is more likely to alienate than inspire “everyday Americans to identify with this vision of what science can do, and to believe in it.”
… perhaps we can make it productive in one way. Understanding the limitations of the process can help us think critically about how decision-making about synthetic biology going forward might be more open to a broader set of concerns and voices much earlier in the innovation process. The way forward is not drawing battle lines between those who are “for” or “against” science and closing down regulatory processes to all but the narrowest risk-based considerations. Rather, we should be forming and expanding spaces for a wide range of participants in creatively considering how to solve society’s biggest challenges. We need new ways of thinking and talking about technological promise and possibility in the world that we live in. [emphasis mine]
While Doersma is appealing to a US audience, her argument could be used internationally.
Final comments
Juma’s “Enemies of Innovation” and Keene’s “Science in Wonderland” are both worthwhile reads but it should be noted that Juma’s is the more ambitious. Keene is looking back and expanding the perspective in an area of previously mined children’s literature which hints at possible implications for our own time period..
For example, I think contemporary audiences might want to consider how much science, technology, and mathematics finds its way into our ‘fairy tales’ or super hero, space adventure, cartoons,, and other popular stories of today. Iron Man and his colleagues in one of the Avengers’ movies faced off with a robot/artificial intelligence entity, Ultron, suggesting potential existential risk; Star Trek’s impact on today’s technologies is widely acknowledged, and The Simpsons , a US animated programme, regularly embeds mathematics in its stories.
Juma examines history while attempting to extrapolate lessons for the future.It’s a courageous and worthwhile effort. While I’m not entirely comfortable with his top-down approach he knits together a comprehensive programme for policy makers and makes two point that I believe are too often overlooked, more agility is needed and these are global issues.