Tag Archives: Chinook salmon

The Broad Institute gives us another reason to love CRISPR

More and more, this resembles a public relations campaign. First, CRISPR (clustered regularly interspersed short palindromic repeats) gene editing is going to be helpful with COVID-19 and now it can help us to deal with conservation issues. (See my May 26, 2020 posting about the latest CRISPR doings as of May 7, 2020; included is a brief description of the patent dispute between Broad Institute and UC Berkeley and musings about a public relations campaign.)

A May 21, 2020 news item on ScienceDaily announces how CRISPR could be useful for conservation,

The gene-editing technology CRISPR has been used for a variety of agricultural and public health purposes — from growing disease-resistant crops to, more recently, a diagnostic test for the virus that causes COVID-19. Now a study involving fish that look nearly identical to the endangered Delta smelt finds that CRISPR can be a conservation and resource management tool, as well. The researchers think its ability to rapidly detect and differentiate among species could revolutionize environmental monitoring.

Caption: Longfin smelt can be difficult to differentiate from endangered Delta smelt. Here, a longfin smelt is swabbed for genetic identification through a CRISPR tool called SHERLOCK. Credit: Alisha Goodbla/UC Davis

A May 21, 2020 University of California at Davis (UC Davis) news release (also on EurekAlert) by Kat Kerlin, which originated the news item, provides more detail (Note: A link has been removed),

The study, published in the journal Molecular Ecology Resources, was led by scientists at the University of California, Davis, and the California Department of Water Resources in collaboration with MIT Broad Institute [emphasis mine].

As a proof of concept, it found that the CRISPR-based detection platform SHERLOCK (Specific High-sensitivity Enzymatic Reporter Unlocking) [emphasis mine] was able to genetically distinguish threatened fish species from similar-looking nonnative species in nearly real time, with no need to extract DNA.

“CRISPR can do a lot more than edit genomes,” said co-author Andrea Schreier, an adjunct assistant professor in the UC Davis animal science department. “It can be used for some really cool ecological applications, and we’re just now exploring that.”

WHEN GETTING IT WRONG IS A BIG DEAL

The scientists focused on three fish species of management concern in the San Francisco Estuary: the U.S. threatened and California endangered Delta smelt, the California threatened longfin smelt and the nonnative wakasagi. These three species are notoriously difficult to visually identify, particularly in their younger stages.

Hundreds of thousands of Delta smelt once lived in the Sacramento-San Joaquin Delta before the population crashed in the 1980s. Only a few thousand are estimated to remain in the wild.

“When you’re trying to identify an endangered species, getting it wrong is a big deal,” said lead author Melinda Baerwald, a project scientist at UC Davis at the time the study was conceived and currently an environmental program manager with California Department of Water Resources.

For example, state and federal water pumping projects have to reduce water exports if enough endangered species, like Delta smelt or winter-run chinook salmon, get sucked into the pumps. Rapid identification makes real-time decision making about water operations feasible.

FROM HOURS TO MINUTES

Typically to accurately identify the species, researchers rub a swab over the fish to collect a mucus sample or take a fin clip for a tissue sample. Then they drive or ship it to a lab for a genetic identification test and await the results. Not counting travel time, that can take, at best, about four hours.

SHERLOCK shortens this process from hours to minutes. Researchers can identify the species within about 20 minutes, at remote locations, noninvasively, with no specialized lab equipment. Instead, they use either a handheld fluorescence reader or a flow strip that works much like a pregnancy test — a band on the strip shows if the target species is present.

“Anyone working anywhere could use this tool to quickly come up with a species identification,” Schreier said.

OTHER CRYPTIC CRITTERS

While the three fish species were the only animals tested for this study, the researchers expect the method could be used for other species, though more research is needed to confirm. If so, this sort of onsite, real-time capability may be useful for confirming species at crime scenes, in the animal trade at border crossings, for monitoring poaching, and for other animal and human health applications.

“There are a lot of cryptic species we can’t accurately identify with our naked eye,” Baerwald said. “Our partners at MIT are really interested in pathogen detection for humans. We’re interested in pathogen detection for animals as well as using the tool for other conservation issues.”

Here’s a link to and a citation for the paper,

Rapid and accurate species identification for ecological studies and monitoring using CRISPR‐based SHERLOCK by Melinda R. Baerwald, Alisha M. Goodbla, Raman P. Nagarajan, Jonathan S. Gootenberg, Omar O. Abudayyeh, Feng Zhang, Andrea D. Schreier. Molecular Ecology Resources https://doi.org/10.1111/1755-0998.13186 First published: 12 May 2020

This paper is behind a paywall.

The business of CRISPR

SHERLOCK™, is a trademark for what Sherlock Biosciences calls one of its engineering biology platforms. From the Sherlock Biosciences Technology webpage,

What is SHERLOCK™?

SHERLOCK is an evolution of CRISPR technology, which others use to make precise edits in genetic code. SHERLOCK can detect the unique genetic fingerprints of virtually any DNA or RNA sequence in any organism or pathogen. Developed by our founders and licensed exclusively from the Broad Institute, SHERLOCK is a method for single molecule detection of nucleic acid targets and stands for Specific High Sensitivity Enzymatic Reporter unLOCKing. It works by amplifying genetic sequences and programming a CRISPR molecule to detect the presence of a specific genetic signature in a sample, which can also be quantified. When it finds those signatures, the CRISPR enzyme is activated and releases a robust signal. This signal can be adapted to work on a simple paper strip test, in laboratory equipment, or to provide an electrochemical readout that can be read with a mobile phone.

However, things get a little more confusing when you look at the Broad Institute’s Developing Diagnostics and Treatments webpage,

Ensuring the SHERLOCK diagnostic platform is easily accessible, especially in the developing world, where the need for inexpensive, reliable, field-based diagnostics is the most urgent

SHERLOCK (Specific High-sensitivity Enzymatic Reporter unLOCKing) is a CRISPR-based diagnostic tool that is rapid, inexpensive, and highly sensitive, with the potential to have a transformative effect on research and global public health. The SHERLOCK platform can detect viruses, bacteria, or other targets in clinical samples such as urine or blood, and reveal results on a paper strip — without the need for extensive specialized equipment. This technology could potentially be used to aid the response to infectious disease outbreaks, monitor antibiotic resistance, detect cancer, and more. SHERLOCK tools are freely available [emphasis mine] for academic research worldwide, and the Broad Institute’s licensing framework [emphasis mine] ensures that the SHERLOCK diagnostic platform is easily accessible in the developing world, where inexpensive, reliable, field-based diagnostics are urgently needed.

Here’s what I suspect. as stated, the Broad Institute has free SHERLOCK licenses for academic institutions and not-for-profit organizations but Sherlock Biosciences, a Broad Institute spinoff company, is for-profit and has trademarked SHERLOCK for commercial purposes.

Final thoughts

This looks like a relatively subtle campaign to influence public perceptions. Genetic modification or genetic engineering as exemplified by the CRISPR gene editing technique is a force for the good of all. It will help us in our hour of need (COVID-19 pandemic) and it can help us save various species and better manage our resources.

This contrasts greatly with the publicity generated by the CRISPR twins situation where a scientist claimed to have successfully edited the germline for twins, Lulu and Nana. This was done despite a voluntary, worldwide moratorium on germline editing of viable embryos. (Search the terms [either here or on a standard search engine] ‘CRISPR twins’, ‘Lulu and Nana’, and/or ‘He Jiankui’ for details about the scandal.

In addition to presenting CRISPR as beneficial in the short term rather than the distant future, this publicity also subtly positions the Broad Institute as CRISPR’s owner.

Or, maybe I’m wrong. Regardless, I’m watching.

The decade that was (2010-19) and the decade to come (2020-29): Science culture in Canada (5 of 5)

At long last, the end is in sight! This last part is mostly a collection of items that don’t fit elsewhere or could have fit elsewhere but that particular part was already overstuffed.

Podcasting science for the people

March 2009 was the birth date for a podcast, then called Skeptically Speaking and now known as Science for the People (Wikipedia entry). Here’s more from the Science for the People About webpage,

Science for the People is a long-format interview podcast that explores the connections between science, popular culture, history, and public policy, to help listeners understand the evidence and arguments behind what’s in the news and on the shelves.

Every week, our hosts sit down with science researchers, writers, authors, journalists, and experts to discuss science from the past, the science that affects our lives today, and how science might change our future.

THE TEAM

Rachelle Saunders: Producer & Host

I love to learn new things, and say the word “fascinating” way too much. I like to talk about intersections and how science and critical thinking intersect with everyday life, politics, history, and culture. By day I’m a web developer, and I definitely listen to way too many podcasts.

….

H/t to GeekWrapped’s 20 Best Science Podcasts.

Science: human contexts and cosmopolitanism

situating science: Science in Human Contexts was a seven-year project ending in 2014 and funded by the Social Sciences and Humanities Research Council of Canada (SSHRC). Here’s more from their Project Summary webpage,

Created in 2007 with the generous funding of the Social Sciences and Humanities Research Council of Canada Strategic Knowledge Cluster grant, Situating Science is a seven-year project promoting communication and collaboration among humanists and social scientists that are engaged in the study of science and technology.

You can find out more about Situating Science’s final days in my August 16, 2013 posting where I included a lot of information about one of their last events titled, “Science and Society 2013 Symposium; Emerging Agendas for Citizens and the Sciences.”

The “think-tank” will dovetail nicely with a special symposium in Ottawa on Science and Society Oct. 21-23. For this symposium, the Cluster is partnering with the Institute for Science, Society and Policy to bring together scholars from various disciplines, public servants and policy workers to discuss key issues at the intersection of science and society. [emphasis mine]  The discussions will be compiled in a document to be shared with stakeholders and the wider public.

The team will continue to seek support and partnerships for projects within the scope of its objectives. Among our top priorities are a partnership to explore sciences, technologies and their publics as well as new partnerships to build upon exchanges between scholars and institutions in India, Singapore and Canada.

The Situating Science folks did attempt to carry on the organization’s work by rebranding the organization to call it the Canadian Consortium for Situating Science and Technology (CCSST). It seems to have been a short-lived volunteer effort.

Meanwhile, the special symposium held in October 2013 appears to have been the springboard for another SSHRC funded multi-year initiative, this time focused on science collaborations between Canada, India, and Singapore, Cosmopolitanism and the Local in Science and Nature from 2014 – 2017. Despite their sunset year having been in 2017, their homepage boasts news about a 2020 Congress and their Twitter feed is still active. Harking back, here’s what the project was designed to do, from the About Us page,

Welcome to our three year project that will establish a research network on “Cosmopolitanism” in science. It closely examines the actual types of negotiations that go into the making of science and its culture within an increasingly globalized landscape. This partnership is both about “cosmopolitanism and the local” and is, at the same time, cosmopolitan and local.

Anyone who reads this blog with any frequency will know that I often comment on the fact that when organizations such as the Council of Canadian Academies bring in experts from other parts of the world, they are almost always from the US or Europe. So, I was delighted to discover the Cosmopolitanism project and featured it in a February 19, 2015 posting.

Here’s more from Cosmopolitanism’s About Us page

Specifically, the project will:

  1. Expose a hitherto largely Eurocentric scholarly community in Canada to widening international perspectives and methods,
  2. Build on past successes at border-crossings and exchanges between the participants,
  3. Facilitate a much needed nation-wide organization and exchange amongst Indian and South East Asian scholars, in concert with their Canadian counterparts, by integrating into an international network,
  4. Open up new perspectives on the genesis and place of globalized science, and thereby
  5. Offer alternative ways to conceptualize and engage globalization itself, and especially the globalization of knowledge and science.
  6. Bring the managerial team together for joint discussion, research exchange, leveraging and planning – all in the aid of laying the grounds of a sustainable partnership

Eco Art (also known as ecological art or environmental art)

I’m of two minds as to whether I should have tried to stuff this into the art/sci subsection in part 2. On balance, I decided that this merited its own section and that part 2 was already overstuffed.

Let’s start in Newfoundland and Labrador with Marlene Creates (pronounced Kreets), here’s more about her from her website’s bio webpage,

Marlene Creates (pronounced “Kreets”) is an environmental artist and poet who works with photography, video, scientific and vernacular knowledge, walking and collaborative site-specific performance in the six-acre patch of boreal forest in Portugal Cove, Newfoundland and Labrador, Canada, where she lives.

For almost 40 years her work has been an exploration of the relationship between human experience, memory, language and the land, and the impact they have on each other. …

Currently her work is focused on the six acres of boreal forest where she lives in a ‘relational aesthetic’ to the land. This oeuvre includes Water Flowing to the Sea Captured at the Speed of Light, Blast Hole Pond River, Newfoundland 2002–2003, and several ongoing projects:

Marlene Creates received a Governor General’s Award in Visual and Media Arts for “Lifetime Artistic Achievement” in 2019. …

As mentioned in her bio, Creates has a ‘forest’ project. The Boreal Poetry Garden,
Portugal Cove, Newfoundland 2005– (ongoing)
. If you are interested in exploring it, she has created a virtual walk here. Just click on one of the index items on the right side of the screen to activate a video.

An October 1, 2018 article by Yasmin Nurming-Por for Canadian Art magazine features 10 artists who focus on environmental and/or land art themes,

As part of her 2016 master’s thesis exhibition, Fredericton [New Brunswick] artist Gillian Dykeman presented the video Dispatches from the Feminist Utopian Future within a larger installation that imagined various canonical earthworks from the perspective of the future. It’s a project that addresses the inherent sense of timelessness in these massive interventions on the natural landscape from the perspective of contemporary land politics. … she proposes a kind of interaction with the invasive and often colonial gestures of modernist Land art, one that imagines a different future for these earthworks, where they are treated as alien in a landscape and as beacons from a feminist future.

A video trailer featuring “DISPATCHES FROM THE FEMINIST UTOPIAN FUTURE” (from Dykeman’s website archive page featuring the show,

If you have the time, I recommend reading the article in its entirety.

Oddly, I did not expect Vancouver to have such an active eco arts focus. The City of Vancouver Parks Board maintains an Environmental Art webpage on its site listing a number of current and past projects.

I cannot find the date for when this Parks Board initiative started but I did find a document produced prior to a Spring 2006 Arts & Ecology think tank held in Vancouver under the auspices of the Canada Council for the Arts, the Canadian Commission for UNESCO, the Vancouver Foundation, and the Royal Society for the Encouragement of the Arts, Manufactures and Commerce (London UK).

In all likelihood, Vancouver Park Board’s Environmental Art webpage was produced after 2006.

I imagine the document and the think tank session helped to anchor any then current eco art projects and encouraged more projects.

The document (MAPPING THE TERRAIN OF CONTEMPORARY ECOART PRACTICE AND COLLABORATION) while almost 14 years old offers a fascinating overview of what was happening internationally and in Canada.

While its early days were in 2008, EartHand Gleaners (Vancouver-based) wasn’t formally founded as an arts non-for-profit organization until 2013. You can find out more about them and their projects here.

Eco Art has been around for decades according to the eco art think tank document but it does seemed to have gained momentum here in Canada over the last decade.

Photography and the Natural Sciences and Engineering Research Council of Canada (NSERC)

Exploring the jack pine tight knit family tree. Credit: Dana Harris Brock University (2018)

Pictured are developing phloem, cambial, and xylem cells (blue), and mature xylem cells (red), in the outermost portion of a jack pine tree. This research aims to identify the influences of climate on the cellular development of the species at its northern limit in Yellowknife, NT. The differences in these cell formations is what creates the annual tree ring boundary.

Science Exposed is a photography contest for scientists which has been run since 2016 (assuming the Past Winners archive is a good indicator for the programme’s starting year).

The 2020 competition recently closed but public voting should start soon. It’s nice to see that NSERC is now making efforts to engage members of the general public rather than focusing its efforts solely on children. The UK’s ASPIRES project seems to support the idea that adults need to be more fully engaged with STEM (science, technology, engineering, and mathematics) efforts as it found that children’s attitudes toward science are strongly influenced by their parents’ and relatives’ attitudes.(See my January 31, 2012 posting.)

Ingenious, the book and Ingenium, the science museums

To celebrate Canada’s 150th anniversary in 2017, then Governor General David Johnston and Tom Jenkins (Chair of the board for Open Text and former Chair of the federal committee overseeing the ‘Review of Federal Support to R&’D [see my October 21, 2011 posting about the resulting report]) wrote a boo about Canada’s inventors and inventions.

Johnston and Jenkins jaunted around the country launching their book (I have more about their June 1, 2017 Vancouver visit in a May 30, 2017 posting; scroll down about 60% of the way]).

The book’s full title, “Ingenious: How Canadian Innovators Made the World Smarter, Smaller, Kinder, Safer, Healthier, Wealthier and Happier ” outlines their thesis neatly.

Not all that long after the book was launched, there was a name change (thankfully) for the Canada Science and Technology Museums Corporation (CSTMC). It is now known as Ingenium (covered in my August 10, 2017 posting).

The reason that name change was such a relief (for those who don’t know) is that the corporation included three national science museums: Canada Aviation and Space Museum, Canada Agriculture and Food Museum, and (wait for it) Canada Science and Technology Museum. On the list of confusing names, this ranks very high for me. Again, I give thanks for the change from CSTMC to Ingenium, leaving the name for the museum alone.

2017 was also the year that the newly refurbished Canada Science and Technology Museum was reopened after more than three years (see my June 23, 2017 posting about the November 2017 reopening and my June 12, 2015 posting for more information about the situation that led to the closure).

A Saskatchewan lab, Convergence, Order of Canada, Year of Science, Animated Mathematics, a graphic novel, and new media

Since this section is jampacked, I’m using subheads.

Saskatchewan

Dr. Brian Eames hosts an artist-in-residence, Jean-Sebastien (JS) Gauthier at the University of Saskatchewan’s College of Medicine Eames Lab. A February 16, 2018 posting here featured their first collaboration together. It covered evolutionary biology, the synchrotron (Canadian Light Source [CLS]) in Saskatoon, and the ‘ins and outs’ of a collaboration between a scientist an artist. Presumably the art-in-residence position indicates that first collaboration went very well.

In January 2020, Brian kindly gave me an update on their current projects. Jean-Sebastin successfully coded an interactive piece for an exhibit at the 2019 Nuit Blanche Saskatoon event using Connect (Xbox). More recently, he got a VR [virtual reality] helmet for an upcoming project or two.

After much clicking on the Nuit Blanche Saskatoon 2019 interactive map, I found this,

Our Glass is a work of interactive SciArt co-created by artist JS Gauthier and biologist Dr Brian F. Eames. It uses cutting-edge 3D microscopic images produced for artistic purposes at the Canadian Light Source, Canada’s only synchrotron facility. Our Glass engages viewers of all ages to peer within an hourglass showing how embryonic development compares among animals with whom we share a close genetic heritage.

Eames also mentioned they were hoping to hold an international SciArt Symposium at the University of Saskatchewan in 2021.

Convergence

Dr. Cristian Zaelzer-Perez, an instructor at Concordia University (Montreal; read this November 20, 2019 Concordia news release by Kelsey Rolfe for more about his work and awards), in 2016 founded the Convergence Initiative, a not-for-profit organization that encourages interdisciplinary neuroscience and art collaborations.

Cat Lau’s December 23, 2019 posting for the Science Borealis blog provides insight into Zaelzer-Perez’s relationship to science and art,

Cristian: I have had a relationship with art and science ever since I have had memory. As a child, I loved to do classifications, from grouping different flowers to collecting leaves by their shapes. At the same time, I really loved to draw them and for me, both things never looked different; they (art and science) have always worked together.

I started as a graphic designer, but the pursuit to learn about nature was never dead. At some point, I knew I wanted to go back to school to do research, to explore and learn new things. I started studying medical technologies, then molecular biology and then jumped into a PhD. At that point, my life as a graphic designer slipped down, because of the focus you have to give to the discipline. It seemed like every time I tried to dedicate myself to one thing, I would find myself doing the other thing a couple years later.

I came to Montreal to do my post-doc, but I had trouble publishing, which became problematic in getting a career. I was still loving what I was doing, but not seeing a future in that. Once again, art came back into my life and at the same time I saw that science was becoming really hard to understand and scientists were not doing much to bridge the gap.

The Convergence Initiative has an impressive array of programmes. Do check it out.

Order of Canada and ‘The Science Lady’

For a writer of children’s science books, an appointment to the Order of Canada is a singular honour. I cannot recall a children’s science book writer previous to Shar Levine being appointed as a Member of the Order of Canada. Known as ‘The Science Lady‘, Levine was appointed in 2016. Here’s more from her Wikipedia entry, Note: Links have been removed,

Shar Levine (born 1953) is an award-winning, best selling Canadian children’s author, and designer.

Shar has written over 70 books and book/kits, primarily on hands-on science for children. For her work in Science literacy and Science promotion, Shar has been appointed to the 2016 Order of Canada. In 2015, she was recognized by the University of Alberta and received their Alumni Honour Award. Levine, and her co-author, Leslie Johnstone, were co-recipients of the Eve Savory Award for Science Communication from the BC Innovation Council (2006) and their book, Backyard Science, was a finalist for the Subaru Award, (hands on activity) from the American Association for the Advancement of Science, Science Books and Films (2005). The Ultimate Guide to Your Microscope was a finalist-2008 American Association for the Advancement of Science/Subaru Science Books and Films Prize Hands -On Science/Activity Books.

To get a sense of what an appointment to the Order of Canada means, here’s a description from the government of Canada website,

The Order of Canada is how our country honours people who make extraordinary contributions to the nation.

Since its creation in 1967—Canada’s centennial year—more than 7 000 people from all sectors of society have been invested into the Order. The contributions of these trailblazers are varied, yet they have all enriched the lives of others and made a difference to this country. Their grit and passion inspire us, teach us and show us the way forward. They exemplify the Order’s motto: DESIDERANTES MELIOREM PATRIAM (“They desire a better country”).

Year of Science in British Columbia

In the Fall of 2010, the British Columbia provincial government announced a Year of Science (coinciding with the school year) . Originally, it was supposed to be a provincial government-wide initiative but the idea percolated through any number of processes and emerged as a year dedicated to science education for youth (according to the idea’s originator, Moira Stilwell who was then a Member of the Legislative Assembly [MLA]’ I spoke with her sometime in 2010 or 2011).

As the ‘year’ drew to a close, there was a finale ($1.1M in funding), which was featured here in a July 6, 2011 posting.

The larger portion of the money ($1M) was awarded to Science World while $100,000 ($0.1 M) was given to the Pacific Institute of Mathematical Sciences To my knowledge there have been no followup announcements about how the money was used.

Animation and mathematics

In Toronto, mathematician Dr. Karan Singh enjoyed a flurry of interest due to his association with animator Chris Landreth and their Academy Award (Oscar) Winning 2004 animated film, Ryan. They have continued to work together as members of the Dynamic Graphics Project (DGP) Lab at the University of Toronto. Theirs is not the only Oscar winning work to emerge from one or more of the members of the lab. Jos Stam, DGP graduate and adjunct professor won his third in 2019.

A graphic novel and medical promise

An academic at Simon Fraser University since 2015, Coleman Nye worked with three other women to produce a graphic novel about medical dilemmas in a genre described as’ ethno-fiction’.

Lissa: A Story about Medical Promise, Friendship, and Revolution (2017) by Sherine Hamdy and Coleman Nye, two anthropologists and Art by Sarula Bao and Caroline Brewer, two artists.

Here’s a description of the book from the University of Toronto Press website,

As young girls in Cairo, Anna and Layla strike up an unlikely friendship that crosses class, cultural, and religious divides. Years later, Anna learns that she may carry the hereditary cancer gene responsible for her mother’s death. Meanwhile, Layla’s family is faced with a difficult decision about kidney transplantation. Their friendship is put to the test when these medical crises reveal stark differences in their perspectives…until revolutionary unrest in Egypt changes their lives forever.

The first book in a new series [ethnoGRAPIC; a series of graphic novels from the University of Toronto Press], Lissa brings anthropological research to life in comic form, combining scholarly insights and accessible, visually-rich storytelling to foster greater understanding of global politics, inequalities, and solidarity.

I hope to write more about this graphic novel in a future posting.

New Media

I don’t know if this could be described as a movement yet but it’s certainly an interesting minor development. Two new media centres have hosted, in the last four years, art/sci projects and/or workshops. It’s unexpected given this definition from the Wikipedia entry for New Media (Note: Links have been removed),

New media are forms of media that are computational and rely on computers for redistribution. Some examples of new media are computer animations, computer games, human-computer interfaces, interactive computer installations, websites, and virtual worlds.[1][2]

In Manitoba, the Video Pool Media Arts Centre hosted a February 2016 workshop Biology as a New Art Medium: Workshop with Marta De Menezes. De Menezes, an artist from Portugal, gave workshops and talks in both Winnipeg (Manitoba) and Toronto (Ontario). Here’s a description for the one in Winnipeg,

This workshop aims to explore the multiple possibilities of artistic approaches that can be developed in relation to Art and Microbiology in a DIY situation. A special emphasis will be placed on the development of collaborative art and microbiology projects where the artist has to learn some biological research skills in order to create the artwork. The course will consist of a series of intense experimental sessions that will give raise to discussions on the artistic, aesthetic and ethical issues raised by the art and the science involved. Handling these materials and organisms will provoke a reflection on the theoretical issues involved and the course will provide background information on the current diversity of artistic discourses centred on biological sciences, as well a forum for debate.

VIVO Media Arts Centre in Vancouver hosted the Invasive Systems in 2019. From the exhibition page,

Picture this – a world where AI invades human creativity, bacteria invade our brains, and invisible technological signals penetrate all natural environments. Where invasive species from plants to humans transform spaces where they don’t belong, technology infiltrates every aspect of our daily lives, and the waste of human inventions ravages our natural environments.

This weekend festival includes an art-science exhibition [emphasis mine], a hands-on workshop (Sat, separate registration required), and guided discussions and tours by the curator (Sat/Sun). It will showcase collaborative works by three artist/scientist pairs, and independent works by six artists. Opening reception will be on Friday, November 8 starting at 7pm; curator’s remarks and performance by Edzi’u at 7:30pm and 9pm. 

New Westminster’s (British Columbia) New Media Gallery recently hosted an exhibition, ‘winds‘ from June 20 – September 29, 2019 that could be described as an art/sci exhibition,

Landscape and weather have long shared an intimate connection with the arts.  Each of the works here is a landscape: captured, interpreted and presented through a range of technologies. The four artists in this exhibition have taken, as their material process, the movement of wind through physical space & time. They explore how our perception and understanding of landscape can be interpreted through technology. 

These works have been created by what might be understood as a sort of scientific method or process that involves collecting data, acute observation, controlled experiments and the incorporation of measurements and technologies that control or collect motion, pressure, sound, pattern and the like. …

Council of Canadian Academies, Publishing, and Open Access

Established in 2005, the Council of Canadian Academies (CCA) (Wikipedia entry) is tasked by various departments and agencies to answer their queries about science issues that could affect the populace and/or the government. In 2014, the CCA published a report titled, Science Culture: Where Canada Stands. It was in response to the Canada Science and Technology Museums Corporation (now called Ingenium), Industry Canada, and Natural Resources Canada and their joint request that the CCA conduct an in-depth, independent assessment to investigate the state of Canada’s science culture.

I gave a pretty extensive analysis of the report, which I delivered in four parts: Part 1, Part 2 (a), Part 2 (b), and Part 3. In brief, the term ‘science culture’ seems to be specifically, i.e., it’s not used elsewhere in the world (that we know of), Canadian. We have lots to be proud of. I was a little disappointed by the lack of culture (arts) producers on the expert panel and, as usual, I bemoaned the fact that the international community included as reviewers, members of the panel, and as points for comparison were drawn from the usual suspects (US, UK, or somewhere in northern Europe).

Science publishing in Canada took a bit of a turn in 2010, when the country’s largest science publisher, NRC (National Research Council) Research Publisher was cut loose from the government and spun out into the private, *not-for-profit publisher*, Canadian Science Publishing (CSP). From the CSP Wikipedia entry,

Since 2010, Canadian Science Publishing has acquired five new journals:

Since 2010, Canadian Science Publishing has also launched four new journals

Canadian Science Publishing offers researchers options to make their published papers freely available (open access) in their standard journals and in their open access journal, (from the CSP Wikipedia entry)

Arctic Science aims to provide a collaborative approach to Arctic research for a diverse group of users including government, policy makers, the general public, and researchers across all scientific fields

FACETS is Canada’s first open access multidisciplinary science journal, aiming to advance science by publishing research that the multi-faceted global community of research. FACETS is the official journal of the Royal Society of Canada’s Academy of Science.

Anthropocene Coasts aims to understand and predict the effects of human activity, including climate change, on coastal regions.

In addition, Canadian Science Publishing strives to make their content accessible through the CSP blog that includes plain language summaries of featured research. The open-access journal FACETS similarly publishes plain language summaries.

*comment removed*

CSP announced (on Twitter) a new annual contest in 2016,

Canadian Science Publishing@cdnsciencepub

New CONTEST! Announcing Visualizing Science! Share your science images & win great prizes! Full details on the blog http://cdnsciencepub.com/blog/2016-csp-image-contest-visualizing-science.aspx1:45 PM · Sep 19, 2016·TweetDeck

The 2016 blog posting is no longer accessible. Oddly for a contest of this type, I can’t find an image archive for previous contests. Regardless, a 2020 competition has been announced for Summer 2020. There are some details on the VISUALIZING SCIENCE 2020 webpage but some are missing, e.g., no opening date, no deadline. They are encouraging you to sign up for notices.

Back to open access, in a January 22, 2016 posting I featured news about Montreal Neuro (Montreal Neurological Institute [MNI] in Québec, Canada) and its then new policy giving researchers world wide access to its research and made a pledge that it would not seek patents for its work.

Fish, Newfoundland & Labrador, and Prince Edward Island

AquAdvantage’s genetically modified salmon was approved for consumption in Canada according to my May 20, 2016 posting. The salmon are produced/farmed by a US company (AquaBounty) but the the work of genetically modifying Atlantic salmon with genetic material from the Chinook (a Pacific ocean salmon) was mostly undertaken at Memorial University in Newfoundland & Labrador.

The process by which work done in Newfoundland & Labrador becomes the property of a US company is one that’s well known here in Canada. The preliminary work and technology is developed here and then purchased by a US company, which files patents, markets, and profits from it. Interestingly, the fish farms for the AquAdvantage salmon are mostly (two out of three) located on Prince Edward Island.

Intriguingly, 4.5 tonnes of the modified fish were sold for consumption in Canada without consumers being informed (see my Sept. 13, 2017 posting, scroll down about 45% of the way).

It’s not all sunshine and roses where science culture in Canada is concerned. Incidents where Canadians are not informed let alone consulted about major changes in the food supply and other areas are not unusual. Too many times, scientists, politicians, and government policy experts want to spread news about science without any response from the recipients who are in effect viewed as a ‘tabula rasa’ or a blank page.

Tying it all up

This series has been my best attempt to document in some fashion or another the extraordinary range of science culture in Canada from roughly 2010-19. Thank you! This series represents a huge amount of work and effort to develop science culture in Canada and I am deeply thankful that people give so much to this effort.

I have inevitably missed people and organizations and events. For that I am very sorry. (There is an addendum to the series as it’s been hard to stop but I don’t expect to add anything or anyone more.)

I want to mention but can’t expand upon,the Pan-Canadian Artificial Intelligence Strategy, which was established in the 2017 federal budget (see a March 31, 2017 posting about the Vector Institute and Canada’s artificial intelligence sector).

Science Borealis, the Canadian science blog aggregator, owes its existence to Canadian Science Publishing for the support (programming and financial) needed to establish itself and, I believe, that support is still ongoing. I think thanks are also due to Jenny Ryan who was working for CSP and championed the initiative. Jenny now works for Canadian Blood Services. Interestingly, that agency added a new programme, a ‘Lay Science Writing Competition’ in 2018. It’s offered n partnership with two other groups, the Centre for Blood Research at the University of British Columbia and Science Borealis

While the Royal Astronomical Society of Canada does not fit into my time frame as it lists as its founding date December 1, 1868 (18 months after confederation), the organization did celebrate its 150th anniversary in 2018.

Vancouver’s Electric Company often produces theatrical experiences that cover science topics such as the one featured in my June 7, 2013 posting, You are very star—an immersive transmedia experience.

Let’s Talk Science (Wikipedia entry) has been heavily involved with offering STEM (science, technology, engineering, and mathematics) programming both as part of curricular and extra-curricular across Canada since 1993.

This organization predates confederation having been founded in 1849 by Sir Sandford Fleming and Kivas Tully in Toronto. for surveyors, civil engineers, and architects. It is the Royal Canadian Institute of Science (Wikipedia entry)_. With almost no interruption, they have been delivering a regular series of lectures on the University of Toronto campus since 1913.

The Perimeter Institute for Theoretical Physics is a more recent beast. In 1999 Mike Lazirides, founder of Research In Motion (now known as Blackberry Limited), acted as both founder and major benefactor for this institute in Waterloo, Ontario. They offer a substantive and imaginative outreach programmes such as Arts and Culture: “Event Horizons is a series of unique and extraordinary events that aim to stimulate and enthral. It is a showcase of innovative work of the highest international standard, an emotional, intellectual, and creative experience. And perhaps most importantly, it is a social space, where ideas collide and curious minds meet.”

While gene-editing hasn’t seemed to be top-of-mind for anyone other than those in the art/sci community that may change. My April 26, 2019 posting focused on what appears to be a campaign to reverse Canada’s criminal ban on human gene-editing of inheritable cells (germline). With less potential for controversy, there is a discussion about somatic gene therapies and engineered cell therapies. A report from the Council of Canadian is due in the Fall of 2020. (The therapies being discussed do not involve germline editing.)

French language science media and podcasting

Agence Science-Presse is unique as it is the only press agency in Canada devoted to science news. Founded in 1978, it has been active in print, radio, television, online blogs, and podcasts (Baladodiffusion). You can find their Twitter feed here.

I recently stumbled across ‘un balados’ (podcast), titled, 20%. Started in January 2019 by the magazine, Québec Science, the podcast is devoted to women in science and technology. 20%, the podcast’s name, is the statistic representing the number of women in those fields. “Dans les domaines de la science et de la technologie, les femmes ne forment que 20% de la main-d’oeuvre.” (from the podcast webpage) The podcast is a co-production between “Québec Science [founded in 1962] et l’Acfas [formerly, l’Association Canadienne-Française pour l’Avancement des Sciences, now, Association francophone pour le savoir], en collaboration avec la Commission canadienne pour l’UNESCO, L’Oréal Canada et la radio Choq.ca.” (also from the podcast webpage)

Does it mean anything?

There have been many developments since I started writing this series in late December 2019. In January 2020, Iran shot down one of its own planes. That error killed some 176 people , many of them (136 Canadians and students) bound for Canada. The number of people who were involved in the sciences, technology, and medicine was striking.

It was a shocking loss and will reverberate for quite some time. There is a memorial posting here (January 13, 2020), which includes links to another memorial posting and an essay.

As I write this we are dealing with a pandemic, COVID-19, which has us all practicing physical and social distancing. Congregations of large numbers are expressly forbidden. All of this is being done in a bid to lessen the passage of the virus, SARS-CoV-2 which causes COVID-19.

In the short term at least, it seems that much of what I’ve described in these five parts (and the addendum) will undergo significant changes or simply fade away.

As for the long term, with this last 10 years having hosted the most lively science culture scene I can ever recall, I’m hopeful that science culture in Canada will do more than survive but thrive.

For anyone who missed them:

Part 1 covers science communication, science media (mainstream and others such as blogging) and arts as exemplified by music and dance: The decade that was (2010-19) and the decade to come (2020-29): Science culture in Canada (1 of 5).

Part 2 covers art/science (or art/sci or sciart) efforts, science festivals both national and local, international art and technology conferences held in Canada, and various bar/pub/café events: The decade that was (2010-19) and the decade to come (2020-29): Science culture in Canada (2 of 5).

Part 3 covers comedy, do-it-yourself (DIY) biology, chief science advisor, science policy, mathematicians, and more: The decade that was (2010-19) and the decade to come (2020-29): Science culture in Canada (3 of 5)

Part 4 covers citizen science, birds, climate change, indigenous knowledge (science), and the IISD Experimental Lakes Area: The decade that was (2010-19) and the decade to come (2020-29): Science culture in Canada (4 of 5)

*”for-profit publisher, Canadian Science Publishing (CSP)” corrected to “not-for-profit publisher, Canadian Science Publishing (CSP)” and this comment “Not bad for a for-profit business, eh?” removed on April 29, 2020 as per Twitter comments,

Canadian Science Publishing @cdnsciencepub

Hi Maryse, thank you for alerting us to your blog. To clarify, Canadian Science Publishing is a not-for-profit publisher. Thank you as well for sharing our image contest. We’ve updated the contest page to indicate that the contest opens July 2020!

10:01am · 29 Apr 2020 · Twitter Web App

Agriculture and gene editing … shades of the AquAdvantage salmon

Salmon are not the only food animals being genetically altered (more about that later in this post) we can now add cows, pigs, and more.

This November 15, 2018 article by Candice Choi on the Huffington Post website illustrates some of the excitement and terror associated with gene editing farm animals,

A company wants to alter farm animals by adding and subtracting genetic traits in a lab. It sounds like science fiction, but Recombinetics sees opportunity for its technology in the livestock industry.

But first, it needs to convince regulators that gene-edited animals are no different than conventionally bred ones. To make the technology appealing and to ease any fears that it may be creating Franken-animals, [emphasis mine] Recombinetics isn’t starting with productivity. Instead, it’s introducing gene-edited traits as a way to ease animal suffering.

“It’s a better story to tell,” said Tammy Lee, CEO of the St. Paul, Minnesota-based company.

For instance, animal welfare advocates have long criticized the way farmers use caustic paste or hot irons to dehorn dairy cows so the animals don’t harm each other. Recombinetics snips out the gene for growing horns so the procedure is unnecessary. [emphases mine]

Last year, a bull gene-edited by Recombinetics to have the dominant hornless trait sired several offspring. All were born hornless as expected, and are being raised at the University of California, Davis. Once the female offspring starts lactating, its milk will be tested for any abnormalities.

Another Recombinetics project: castration-free pigs.

When male piglets go through puberty, their meat can take on an unpleasant odour, something known as “boar taint.” To combat it, farmers castrate pigs, a procedure animal welfare advocates say is commonly performed without painkillers. Editing genes so that pigs never go through puberty would make castration unnecessary.

Also in development are dairy cows that could withstand higher temperatures, so the animals don’t suffer in hotter climates. [emphasis mine]

..

Before food from gene-edited animals can land on dinner tables, however, Recombinetics has to overcome any public unease about the technology.

Beyond worries about “playing God,” it may be an uncomfortable reminder of how modern food production already treats animals, said Paul Thompson, a professor of agriculture at Michigan State University.

“There’s an ethical question that’s been debated for at least the last 20 years, of whether you need to change the animal or change the system,” Thompson said.

Support for gene editing will also likely depend on how the technology is used: whether it’s for animal welfare, productivity or disease resistance. In August, a Pew study found 43 per cent of Americans supported genetically engineered animals for more nutritious meat.

Choi has written an interesting article, which includes a picture of the hornless cows embedded in the piece. One note: Choi makes reference to a milk glut. As far as I’m aware that’s not the case in Canada (at this time) but it is a problem in the US where in 2015 (?) farmers dumped some 43  million gallons of milk (October 12, 2016 article by Martha C. White for Money magazine).

As for the salmon, I’ve covered that story a few times during its journey to being approved for human consumption i Canada (my May 20, 2016 posting) to the discovery in 2017 that the genetically modified product, AquAdvantage salmon, had been introduced into the market, (from my Sept. 13, 2017 posting; scroll down about 40R of the way),

“Since the 2016 approval, AquAdvantage salmon, 4.5M tonnes has been sold in Canada according to an Aug. 8, 2017 article by Sima Shakeri for Huffington Post …”

After decades of trying to get approval by in North America, genetically modified Atlantic salmon has been sold to consumers in Canada.

AquaBounty Technologies, an American company that produces the Atlantic salmon, confirmed it had sold 4.5 tonnes of the modified fish on August 4 [2017], the Scientific American reported.

The fish have been engineered with a growth hormone gene from Chinook salmon to grow faster than regular salmon and require less food. They take about 18 months to reach market size, which is much quicker than the 30 months or so for conventional salmon.

The Washington Post wrote AquaBounty’s salmon also contains a gene from the ocean pout that makes the salmon produce the growth hormone gene all-year-round.

The company produces the eggs in a facility in P.E.I. [Prince Edward Island; a province in Canada], which is currently being expanded, and then they’re shipped to Panama where the fish are raised.

….

There was a bit of a kerfuffle about the whole affair but it seems Canadians have gone on to embrace the genetically modified product. At least that’s Christine Blank’s perspective in her Sept. 13, 2018 article (Canada, US embrace AquAdvantage GMO salmon, Brazil and China may be next) for the Genetic Literacy Project website,

Genetically modified salmon firm AquaBounty has found “very enthusiastic” buyers in Canada, according to president and CEO Ronald Stotish.

The first sale of the Maynard, Massachusetts, U.S.A.-based firm’s AquAdvantage salmon was made last June [2017], when unnamed buyers in Canada bought five metric tons at the going rate of traditional farmed Atlantic salmon, according to the company. Since then, AquaBounty has sold 10 additional metric tons of its AquAdvantage salmon to buyers in Canada

Meanwhile, Stotish revealed that AquAdvantage will be sold in the U.S. through established distributors.

“Once [AquaBounty salmon] is established in the market, the option for branding as a ‘sustainably produced’ food item can be considered,” he told investors.

Alex Gillis’ June 5, 2018 article for Macleans magazine suggests that Canadians may be a bit more doubtful about GM (genetically modified) salmon than Stotish seems to be believe,

An Ipsos Reid poll conducted for the Canadian Biotechnology Action Network in 2015 suggested that Canadians are concerned about GM foods, in spite of government assurances that they’re safe. About 60 per cent of respondents opposed genetically modifying crops and animals for food; nearly half supported a ban on all GM food. More than 20 years of surveys indicate that the vast majority of Canadians want to know when they’re eating GMOs. Fully 88 per cent of those polled in the 2015 survey said they want mandatory labelling.

Their concern hasn’t escaped the notice of those who raise and sell much of the salmon consumed in this country. Five years ago, Marine Harvest, one of the world’s largest producers of farmed salmon, called for labelling of GMOs. Today, it says that it doesn’t grow, sell or research GM salmon, a policy it shares with major salmon producers in Canada. And most big grocery retailers have stated they don’t want GM salmon. When contacted by Maclean’s for this story, Metro, Sobeys, Wal-Mart and Loblaws—four of Canada’s five largest food retailers—declared that none of AquaBounty’s GM salmon from 2017 was sold in their stores, saying neither Sea Delight Canada nor Montreal Fish Co. supplied them with Atlantic salmon at the time.

“I’m happy to report that we don’t source salmon from these two companies,” says Geneviève Grégoire, communications adviser with Metro Richelieu Inc., which operates or supplies 948 food stores in Quebec and Ontario, including Metro, Super C, Food Basics, Adonis and Première Moisson. “As we said before, we didn’t and will not sell GM Atlantic salmon.”

If you’re looking for a more comprehensive and critical examination of the issue, read Lucy Sharratt’s Sept. 1, 2018 article for the Canadian Centre for Policy Alternatives (CCPA).

June 4, 2018 talk in Vancouver (Canada): Genetically-Engineered Food: Facts, Ethical Considerations and World Hunger

ARPICO (Society of Italian Researchers and Professionals in Western Canada) is hosting a talk on the topic of genetically modified food. Here’s more from their May 20, 2018 announcement (received via email),

Our third speaking event of the year has been scheduled for Monday, June 4th, 2018 at the Italian Cultural Centre – Museum & Art Gallery. Marie-Claude Fortin’s talk will discuss food systems derived from biotechnology (often referred to as GMO) and their comparison with traditional farming processes, both technical and ethical. You can read a summary of Marie-Claude Fortin’s lecture as well as her short professional biography at the bottom of this message.

Ahead of the speaking event, ARPICO will be holding its 2018 Annual General Meeting in the same location. We encourage everyone to participate in the AGM, have their say on ARPICO’s matters and possibly volunteer for the Board of Directors.

We look forward to seeing everyone there.

Please register for the event by visiting the EventBrite link or RSVPing to info@arpico.ca.

The evening agenda is as follows:

6:00pm to 6:45pm – Annual General Meeting
7:00 pm – Lecture by Marie-Claude Fortin
~8:00 pm – Q & A Period
Mingling & Refreshments until about 9:45 pm

If you have not yet RSVP’d, please do so on our EventBrite page.

Further details are also available at arpico.ca, our facebook page, and Eventbrite.

Genetically-Engineered Food: Facts, Ethical Considerations and World Hunger

In this lecture we will explore a part of our food system, which has received much press, but which consumers still misunderstand: food derived from biotechnology often referred to as genetically modified organisms. We will be learning about the types of plants and animals which are genetically engineered and part of our everyday food system and the reasons for which they have been transformed genetically. We will be looking at the issue from several different angles. You are encouraged to approach the topic with an open mind, and learn how the technology is being used. We will start by understanding the differences between traditional plant breeding, conventional plant breeding, transgenic technology and genome editing. The latter two processes are considered genetic engineering technologies but all of them constitute a continuum of techniques employed to improve domestic plants and animals. We will then go over the ethical paradigms related to genetically engineered food represented by the European and North American points of view. Finally, we will discuss the strengths and weaknesses associated with genetic engineering as a tool to solve world hunger.

Marie-Claude Fortin is a former Research Scientist with Agriculture and Agri-Food Canada, Associate Editor with Crop Science Society of America, Board Member of the Soil and Water Conservation Society and Adjunct Professor at the University of British Columbia (UBC) and currently responsible for the shared research infrastructure portfolio at the UBC Vice-President Research & Innovation Office. Her main areas of research expertise are crop and soil sciences with special interests in measuring and modeling crop development and various processes on agricultural land: water and nitrogen fertilizer flow through the soil profile, emissions of greenhouse gases and soil physical properties. Her research shows that sustainable crop management practices result in soil environments, which are conducive to resilient crop production and organic matter buildup, which is the process of storing carbon in soils, a most important process in this era of climate change. For the past 18 years, Marie-Claude has been teaching food systems courses at UBC [University of British Columbia], emphasizing impacts of decisions made at the corporate, national and local levels on the economic, environmental and social sustainability of the food system, including impacts of organic and industrial agriculture and adoption of genetically engineered crops and animals, on farmers and consumers.

WHEN (AGM): Monday, June 4th, 2018 at 6:00pm (doors open at 5:50pm)

WHEN (EVENT): Monday, June 4th, 2018 at 7:00pm (doors open at 6:45pm)

WHERE: Italian Cultural Centre – Museum & Art Gallery – 3075 Slocan St, Vancouver, BC, V5M 3E4

RSVP: Please RSVP at EventBrite (https://gmofoods.eventbrite.ca/) or email info@arpico.ca

Tickets are Needed

Tickets are FREE, but all individuals are requested to obtain “free-admission” tickets on EventBrite site due to limited seating at the venue. Organizers need accurate registration numbers to manage wait lists and prepare name tags.

All ARPICO events are 100% staffed by volunteer organizers and helpers, however, room rental, stationery, and guest refreshments are costs incurred and underwritten by members of ARPICO. Therefore to be fair, all audience participants are asked to donate to the best of their ability at the door or via EventBrite to “help” defray costs of the event.

FAQs

Where can I contact the organizer with any questions? info@arpico.ca

Do I have to bring my printed ticket to the event? No, you do not. Your name will be on our Registration List at the Check-in Desk.

Is my registration/ticket transferrable? If you are unable to attend, another person may use your ticket. Please send us an email at info@arpico.ca of this substitution to correct our audience Registration List and to prepare guest name tags.

Can I update my registration information? Yes. If you have any questions, contact us at info@arpico.ca

I am having trouble using EventBrite and cannot reserve my ticket(s). Can someone at ARPICO help me with my ticket reservation? Of course, simply send your ticket request to us at info@arpico.ca so we help you.

We look forward to seeing you there.
www.arpico.ca

I wonder if they’re going to be discussing AquAdvantage salmon, which was first mentioned here in a Dec. 4, 2015 post (scroll down about 40% of the way), again, in a May 20, 2016 posting (AquAdvantage salmon (genetically modified) approved for consumption in Canada), and, most recently, in a Sept. 13, 2017 posting where I was critiquing a couple of books (scroll down to the ‘Fish’ subtitle). Allegedly the fish were allegedly sold in the Canadian market,

Since the 2016 approval, AquAdvantage salmon, 4.5M tonnes has been sold in Canada according to an Aug. 8, 2017 article by Sima Shakeri for Huffington Post (Note: Links have been removed),

After decades of trying to get approval by in North America, genetically modified Atlantic salmon has been sold to consumers in Canada.

AquaBounty Technologies, an American company that produces the Atlantic salmon, confirmed it had sold 4.5 tonnes of the modified fish on August 4 [2017], the Scientific American reported.

The fish have been engineered with a growth hormone gene from Chinook salmon to grow faster than regular salmon and require less food. They take about 18 months to reach market size, which is much quicker than the 30 months or so for conventional salmon.

The Washington Post wrote AquaBounty’s salmon also contains a gene from the ocean pout that makes the salmon produce the growth hormone gene all-year-round.

The company produces the eggs in a facility in P.E.I., which is currently being expanded, and then they’re shipped to Panama where the fish are raised.

Health Canada assessed the AquAdvantage salmon and concluded it “did not pose a greater risk to human health than salmon currently available on the Canadian market,” and that it would have no impact on allergies nor a difference in nutritional value compared to other farmed salmon.

Because of that, the AquAdvantage product is not required to be specially labelled as genetically modified, and is up to the discretion of retailers.

As for gene editing, I don’t follow everything in that area of endeavour but I have (more or less) kept track of CRISPR ((clustered regularly interspaced short palindromic repeat). Just use CRISPR as the search term for the blog search function to find what’s here.

This looks to be a very interesting talk and good for ARPICO for tackling a ‘difficult’ topic. I hope they have a lively, convivial, and open discussion.