Tag Archives: fish

Coral reefs, beauty, citizen science, and surveys

I received this May 23, 2023 email invitation to participate in a citizen science project,

Dear all,

We need your valuable input to advance our research on the aesthetic value of tropical coral reefs! As a part of the Marine Science Department of the IPB University [Indonesia], the Lancaster Environment Centre [at Lancaster University, UK], the MARBEC laboratory [Marine Biodiversity Exploitation and Conservation (MARBEC)] research unit is one of the Unité mixte de recherche (UMR) partially funded by the CNRS], and the National Research and Innovation Agency of Indonesia [Badan Riset dan Inovasi Nasional, BRIN], we are conducting a survey to analyze human perspectives on the beauty of coral reefs.

By participating in this survey, you will play a vital role in the development of predictive computer models that can estimate the aesthetic value of different coral reefs. Your contribution will directly contribute to our ongoing research efforts. Estimated completion time is approximately 5 minutes.

Your participation is greatly appreciated, and together, we can make a significant impact on coral reef preservation and conservation. Please click the link below to start the survey:

https://www.biodiful.org/#/beautifulcorals

Thank you also for sharing this survey within your network (professional and personal). Actually we are really counting on you to trigger a snow ball effect and get out of our community (academia and divers). You can also retweet & like on twitter here : https://twitter.com/NicolasMouquet/status/1658020475107266563?s=20 or tweet yourself (if you do, please tag @NicolasMouquet so we will like your tweet and get it up in the threads; also add an image on your own (or copy the one used in the above mentioned tweet) as pasting only the link to the survey shows up a generic image which is not related to the Beauty of Coral Reefs survey). Hear a simple text that could be used on other social media « Help shape future coral reef restoration! Take our 5-minute survey and pick the most beautiful coral reef images. Your input will fuels research on these natural wonders! https://www.biodiful.org/#/beautifulcorals»

Thank you for your time and support. Let’s work together to celebrate the beauty of coral reefs!

Sincerely,

Nicolas Mouquet, CNRS [Centre national de la recherche scientifique], MARBEC, University of Montpellier. 
https://twitter.com/NicolasMouquet
http://nicolasmouquet.free.fr/ 

In late April 2023, I received a link to a paper by Mouquet as a thank you for participating in another of his projects. (I looked at two side-by-side pictures of fishes and selected the one I found most attractive.) As you can see from the image below, I was one of 13,000 respondents.

Fig 1. Evaluation and prediction of fish aesthetic values. (1) Pairs of images were presented to the public during the online survey and scored using the Elo algorithm (see Methods). Left Parma bicolor and right Abudefduf luridus. (2) Once the 345 new images were evaluated online, the values of the 157 images previously evaluated [16] were corrected using the 21 images shared between the 2 surveys. (3) The resulting 481 images with evaluated aesthetic values were used to train a ResNet50 algorithm (see Text E and Fig L in S1 File). Illustration inspired from the PlotNeuralNet [31]. (b) Left: The r2 of the linear relationship between the predicted values averaged across the 5 validation sets and the evaluated values is 0.79 ± SD 0.04 (the color of points indicates the 5 sets used to perform the cross validation). This algorithm was used to predict the aesthetic values of the 4,400 unevaluated images of our dataset. Right: Distribution of the 481 evaluated values in light blue and of the 4,400 predicted aesthetic values in dark blue. The dots at the bottom of the plot indicate the predicted aesthetic values of the images shown in panel (c). Data and code required to generate this Figure can be found in https://github.com/nmouquet/RLS_AESTHE. (c) Examples of fishes representative of the range of predicted aesthetic values. Decreasing aesthetic value from left to right and top to bottom: Holacanthus ciliaris, Aracana aurita, Amphiprion ephippium, Ctenochaetus marginatus, Scarus spinus, Amphiprion bicinctus, Epinephelides armatus, Fusigobius signipinnis, Diplodus annularis, Odontoscion dentex, Nemadactylus bergi, Mendosoma lineatum. See S1 Data for image copyright. https://doi.org/10.1371/journal.pbio.3001640.g001 [Downloaded from https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3001640#pbio.3001640.s002]

Given how many people participated, I’m thrilled he got in touch,

Hello to all,

Finally some news about the internet campaign to measure the aesthetic value of reef fishes in which you participated in 2020. The time of research can sometimes be long and we were like you a little disturbed by the Covid episode, but here is where we are :We have published our results in an international scientific journal (Plos Biology) 😀 : Langlois J, Guilhaumon F, Baletaud F, Casajus N, De Almeida Braga C, Fleure V, Kulbicki K, Loiseau N, Mouillot D, Renoult JP, Stahl A, Stuart Smith RD, Tribot AS & N, Mouquet (2022) The aesthetic value of reef fishes is globally mismatched to their conservation priorities. PLoS Biol 20(6): e3001640. doi:10.1371/journal.pbio.3001640

You can download the article here: http://nicolasmouquet.free.fr/pdf/Langlois_et_al_2022_Plos_Biology.htm

Here is a summary: Reef fishes are closely connected to many human populations, yet their contributions to society are mostly considered through their economic and ecological values. Cultural and intrinsic values of reef fishes to the public can be critical drivers of conservation investment and success, but remain challenging to quantify. Aesthetic value represents one of the most immediate and direct means by which human societies engage with biodiversity, and can be evaluated from species to ecosystems. Here, we provide the aesthetic value of 2,417 ray-finned reef fish species by combining intensive evaluation of photographs of fishes by humans with predicted values from machine learning. We identified important biases in species’ aesthetic value relating to evolutionary history, ecological traits, and International Union for Conservation of Nature (IUCN) threat status. The most beautiful fishes are tightly packed into small parts of both the phylogenetic tree and the ecological trait space. In contrast, the less attractive fishes are the most ecologically and evolutionary distinct species and those recognized as threatened. Our study highlights likely important mismatches between potential public support for conservation and the species most in need of this support. It also provides a pathway for scaling-up our understanding of what are both an important nonmaterial facet of biodiversity and a key component of nature’s contribution to people, which could help better anticipate consequences of species loss and assist in developing appropriate communication strategies.

This work has received a significant echo in the scientific community as well as in the international press and we are now busy using these data to assess the aesthetic value of entire fish communities on reefs globally.

Again, a huge thank you for your help, without you we could not have done this work! And I apologize for being so late in getting back to you. 🙏

Our work on assessing the aesthetic value of biodiversity does not stop of course! And we may be calling on you soon for new adventures!

In the meantime you can also have a look at a twitter account we just opened dedicated to the presentation of beautiful or repulsive species, but always amazing and especially essential for the functioning of ecosystems ! https://twitter.com/Biodi_ful

With kind regards,

Nicolas Mouquet

—————————–

Nicolas Mouquet, CNRS

Scientific director of the Centre for the Synthesis and Analysis of Biodiversity (CESAB)
5 Rue de l’École de Médecine
34000, Montpellier

Chercheur à MARBEC
Université de Montpellier
Place Eugène Bataillon, CC093
34095 Montpellier Cedex 05

You can sign up to get updates regarding the research once you’ve finished the survey.

In the meantime, here’s a link to and a citation (in my usual style) for the paper on the aesthetics of reef fishes,

The aesthetic value of reef fishes is globally mismatched to their conservation priorities by Juliette Langlois, François Guilhaumon, Florian Baletaud, Nicolas Casajus, Cédric De Almeida Braga, Valentine Fleuré, Michel Kulbicki, Nicolas Loiseau, David Mouillot, Julien P. Renoult, Aliénor Stahl, Rick D. Stuart Smith, Anne-Sophie Tribot, Nicolas Mouquet. PLOS Biology DOI: https://doi.org/10.1371/journal.pbio.3001640 Published: June 7, 2022

This paper is open access.

You can find Nicolas Mouquet’s eponymous website here and you can start the coral reef survey here: https://www.biodiful.org/#/beautifulcorals.

Fish DJ makes discoveries about fish hearing

A March 2, 2021 University of Queensland press release (also on EurekAlert) announces research into how fish brains develop and how baby fish hear,

A DJ-turned-researcher at The University of Queensland has used her knowledge of cool beats to understand brain networks and hearing in baby fish

The ‘Fish DJ’ used her acoustic experience to design a speaker system for zebrafish larvae and discovered that their hearing is considerably better than originally thought.

This video clip features zebrafish larvae listening to music, MC Hammer’s ‘U Can’t Touch This’ (1990),

Here’s the rest of the March 2, 2021 University of Queensland press release,

PhD candidate Rebecca Poulsen from the Queensland Brain Institute said that combining this new speaker system with whole-brain imaging showed how larvae can hear a range of different sounds they would encounter in the wild.

“For many years my music career has been in music production and DJ-ing — I’ve found underwater acoustics to be a lot more complicated than air frequencies,” Ms Poulsen said.

“It is very rewarding to be using the acoustic skills I learnt in my undergraduate degree, and in my music career, to overcome the challenge of delivering sounds to our zebrafish in the lab.

“I designed the speaker to adhere to the chamber the larvae are in, so all the sound I play is accurately received by the larvae, with no loss through the air.”

Ms Poulsen said people did not often think about underwater hearing, but it was crucial for fish survival – to escape predators, find food and communicate with each other.

Ms Poulsen worked with Associate Professor Ethan Scott, who specialises in the neural circuits and behaviour of sensory processing, to study the zebrafish and find out how their neurons work together to process sounds.

The tiny size of the zebrafish larvae allows researchers to study their entire brain under a microscope and see the activity of each brain cell individually.

“Using this new speaker system combined with whole brain imaging, we can see which brain cells and regions are active when the fish hear different types of sounds,” Dr Scott said.

The researchers are testing different sounds to see if the fish can discriminate between single frequencies, white noise, short sharp sounds and sound with a gradual crescendo of volume.

These sounds include components of what a fish would hear in the wild, like running water, other fish swimming past, objects hitting the surface of the water and predators approaching.

“Conventional thinking is that fish larvae have rudimentary hearing, and only hear low-frequency sounds, but we have shown they can hear relatively high-frequency sounds and that they respond to several specific properties of diverse sounds,” Dr Scott said.

“This raises a host of questions about how their brains interpret these sounds and how hearing contributes to their behaviour.”

Ms Poulsen has played many types of sounds to the larvae to see which parts of their brains light up, but also some music – including MC Hammer’s “U Can’t Touch This”– that even MC Hammer himself enjoyed.

The March 3, 3021 story by Graham Readfearn originally published by The Guardian (also found on MSN News), has more details about the work and the researcher,

As Australia’s first female dance music producer and DJ, Rebecca Poulsen – aka BeXta – is a pioneer, with scores of tracks, mixes and hundreds of gigs around the globe under her belt.

But between DJ gigs, the 46-year-old is now back at university studying neuroscience at Queensland Brain Institute at the University of Queensland in Brisbane.

And part of this involves gently securing baby zebrafish inside a chamber and then playing them sounds while scanning their brains with a laser and looking at what happens through a microscope.

The analysis for the study doesn’t look at how the fish larvae react during Hammer [MC Hammer] time, but how their brain cells react to simple single-frequency sounds.

“It told us their hearing range was broader than we thought it was before,” she says.

Poulsen also tried more complex sounds, like white noise and “frequency sweeps”, which she describes as “like the sound when Wile E Coyote falls off a cliff” in the Road Runner cartoons.

“When you look at the neurons that light up at each sound, they’re unique. The fish can tell the difference between complex and different sounds.”

This is, happily, where MC Hammer comes in.

Out of professional and scientific curiosity – and also presumably just because she could – Poulsen played music to the fish.

She composed her own piece of dance music and that did seem to light things up.

But what about U Can’t Touch This?

“You can see when the vocal goes ‘ohhh-oh’, specific neurons light up and you can see it pulses to the beat. To me it looks like neurons responding to different parts of the music.

“I do like the track. I was pretty little when it came out and I loved it. I didn’t have the harem pants, though, but I did used to do the dance.”

How do you stop the fish from swimming away while you play them sounds? And how do you get a speaker small enough to deliver different volumes and frequencies without startling the fish?

For the first problem, the baby zebrafish – just 3mm long – are contained in a jelly-like substance that lets them breathe “but stops them from swimming away and keeps them nice and still so we can image them”.

For the second problem, Poulsen and colleagues used a speaker just 1cm wide and stuck it to the glass of the 2cm-cubed chamber the fish was contained in.

Using fish larvae has its advantages. “They’re so tiny we can see their whole brain … we can see the whole brain live in real time.”

If you have the time, I recommend reading Readfearn’s March 3, 3021 story in its entirety.

Poulsen as Bexta has a Wikipedia entry and I gather from Readfearn’s story that she is still active professionally.

Here’s a link to and a citation for the published paper,

Broad frequency sensitivity and complex neural coding in the larval zebrafish auditory system by Rebecca E. Poulsen, Leandro A. Scholz, Lena Constantin, Itia Favre-Bulle, Gilles C. Vanwalleghem, Ethan K. Scott. Current Biology DOI:https://doi.org/10.1016/j.cub.2021.01.103 Published: March 02, 2021

This paper appears to be open access.

There is an earlier version of the paper on bioRxiv made available for open peer review. Oddly, I don’t see any comments but perhaps I need to login.

Related research but not the same

I was surprised when a friend of mine in early January 2021 needed to be persuaded that noise in aquatic environments is a problem. If you should have any questions or doubts, perhaps this March 4, 2021 article by Amy Noise (that is her name) on the Research2Reality website can answer them,

Ever had builders working next door? Or a neighbour leaf blowing while you’re trying to make a phone call? Unwanted background noise isn’t just stressful, it also has tangible health impacts – for both humans and our marine cousins.

Sound travels faster and farther in water than in air. For marine creatures who rely heavily on sound, crowded ocean soundscapes could be more harmful than previously thought.

Marine animals use sound to navigate, communicate, find food and mates, spot predators, and socialize. But since the Industrial Revolution, humans have made the planet, and the oceans in particular, exponentially noisier.

From shipping and fishing, to mining and sonar, underwater anthropogenic noise is becoming louder and more prevalent. While parts of the ocean’s chorus are being drowned out, others are being permanently muted through hunting and habitat loss.

[An] international team, including University of Victoria biologist Francis Juanes, reviewed over 10,000 papers from the past 40 years. They found overwhelming evidence that anthropogenic noise is negatively impacting marine animals.

Getting back to Poulsen and Queensland, her focus is on brain development not noise although I imagine some of her work may be of use to researchers investigating anthropogenic noise and its impact on aquatic life.

Nanoparticles and the gut health of major living species of animals

A July 27, 2020 news item on Nanowerk announces research into gut health described as seminal (Note: A link has been removed),

An international team of scientists has completed the first ever study into the potential impact of naturally occurring and man-made nanoparticles on the health of all types of the major living species of animals.

Conceived by researchers at the University of Plymouth, as part of the EU [European Union] Nanofase project, the study assessed how the guts of species from honey bees to humans could protect against the bioaccumulation and toxicological effects of engineered nanomaterials (ENMs) found within the environment.

A July 27, 2020 University of Plymouth press release, which originated the news item, provides more detail,

It showed that the digestive systems of many species have evolved to act as a barrier guarding against the absorption of potentially damaging particles.

However, invertebrates such as earthworms also have roving cells within their guts, which can take up ENMs and transfer them to the gut wall.

This represents an additional risk for many invertebrate species where the particles can be absorbed via these roving cells, with consequent effects on internal organs having the potential to cause lasting damage.

Fortunately, this process is not replicated in humans and other vertebrate animals, however there is still the potential for nanomaterials to have a negative impact through the food chain.

The study, published in the July [2020] edition of Environmental Science: Nano, involved scientists from the UK, the Netherlands, Slovenia and Portugal and focused on particles measuring up to 100 nanometres (around 1/10 millionth of a metre).

It combined existing and new research into species including insects and other invertebrates, fish, birds, and mammals, as well as identifying knowledge gaps on reptiles and amphibians. The study provides the first comprehensive overview of how differences in gut structure can affect the impact of ENMs across the animal kingdom.

Richard Handy, Professor of Environmental Toxicology at the University of Plymouth and the study’s senior author, said:

“This is a seminal piece work that combines nearly 100 years of zoology research with our current understanding of nanotechnology.

“The threats posed by engineered nanomaterials are becoming better known, but this study provides the first comprehensive and species-level assessment of how they might pose current and future threats. It should set the foundations for understanding the dietary hazard in the animal kingdom.”

Nanomaterials come in three forms – naturally occurring, incidentally occurring from human activities, and deliberately manufactured – and their use has increased exponentially in the last decade.

They have consistently found new applications in a wide variety of industrial sectors, including electrical appliances, medicines, cleaning products and textiles.

Professor Handy, who has advised organisations including the Organisation for Economic Co-operation and Development and the United States National Nanotechnology Initiative, added:

“Nanoparticles are far too small for the human eye to see but that doesn’t mean they cannot cause harm to living species. The review element of this study has shown they have actually been written about for many decades, but it is only recently that we have begun to understand the various ways they occur and now the extent to which they can be taken up. Our new EU project, NanoHarmony, looks to build on that knowledge and we are currently working with Public Health England and others to expand our method for detecting nanomaterials in tissues for food safety and other public health matters.”

Here’s a link to and a citation for the paper,

The gut barrier and the fate of engineered nanomaterials: a view from comparative physiology by Meike van der Zande, Anita Jemec Kokalj, David J. Spurgeon, Susana Loureiro, Patrícia V. Silva, Zahra Khodaparast, Damjana Drobne, Nathaniel J. Clark, Nico W. van den Brink, Marta Baccaro, Cornelis A. M. van Gestel, Hans Bouwmeester and Richard D. Handy. Environmental Science: Nano, Issue 7 (July 2020) DOI: 10.1039/D0EN00174K First published 27 Apr 2020

This article is open access.

If you’re curious about Nanofase (Nanomaterial FAte and Speciation in the Environment), there’s more here and there’s more about NanoHarmony here.

The Broad Institute gives us another reason to love CRISPR

More and more, this resembles a public relations campaign. First, CRISPR (clustered regularly interspersed short palindromic repeats) gene editing is going to be helpful with COVID-19 and now it can help us to deal with conservation issues. (See my May 26, 2020 posting about the latest CRISPR doings as of May 7, 2020; included is a brief description of the patent dispute between Broad Institute and UC Berkeley and musings about a public relations campaign.)

A May 21, 2020 news item on ScienceDaily announces how CRISPR could be useful for conservation,

The gene-editing technology CRISPR has been used for a variety of agricultural and public health purposes — from growing disease-resistant crops to, more recently, a diagnostic test for the virus that causes COVID-19. Now a study involving fish that look nearly identical to the endangered Delta smelt finds that CRISPR can be a conservation and resource management tool, as well. The researchers think its ability to rapidly detect and differentiate among species could revolutionize environmental monitoring.

Caption: Longfin smelt can be difficult to differentiate from endangered Delta smelt. Here, a longfin smelt is swabbed for genetic identification through a CRISPR tool called SHERLOCK. Credit: Alisha Goodbla/UC Davis

A May 21, 2020 University of California at Davis (UC Davis) news release (also on EurekAlert) by Kat Kerlin, which originated the news item, provides more detail (Note: A link has been removed),

The study, published in the journal Molecular Ecology Resources, was led by scientists at the University of California, Davis, and the California Department of Water Resources in collaboration with MIT Broad Institute [emphasis mine].

As a proof of concept, it found that the CRISPR-based detection platform SHERLOCK (Specific High-sensitivity Enzymatic Reporter Unlocking) [emphasis mine] was able to genetically distinguish threatened fish species from similar-looking nonnative species in nearly real time, with no need to extract DNA.

“CRISPR can do a lot more than edit genomes,” said co-author Andrea Schreier, an adjunct assistant professor in the UC Davis animal science department. “It can be used for some really cool ecological applications, and we’re just now exploring that.”

WHEN GETTING IT WRONG IS A BIG DEAL

The scientists focused on three fish species of management concern in the San Francisco Estuary: the U.S. threatened and California endangered Delta smelt, the California threatened longfin smelt and the nonnative wakasagi. These three species are notoriously difficult to visually identify, particularly in their younger stages.

Hundreds of thousands of Delta smelt once lived in the Sacramento-San Joaquin Delta before the population crashed in the 1980s. Only a few thousand are estimated to remain in the wild.

“When you’re trying to identify an endangered species, getting it wrong is a big deal,” said lead author Melinda Baerwald, a project scientist at UC Davis at the time the study was conceived and currently an environmental program manager with California Department of Water Resources.

For example, state and federal water pumping projects have to reduce water exports if enough endangered species, like Delta smelt or winter-run chinook salmon, get sucked into the pumps. Rapid identification makes real-time decision making about water operations feasible.

FROM HOURS TO MINUTES

Typically to accurately identify the species, researchers rub a swab over the fish to collect a mucus sample or take a fin clip for a tissue sample. Then they drive or ship it to a lab for a genetic identification test and await the results. Not counting travel time, that can take, at best, about four hours.

SHERLOCK shortens this process from hours to minutes. Researchers can identify the species within about 20 minutes, at remote locations, noninvasively, with no specialized lab equipment. Instead, they use either a handheld fluorescence reader or a flow strip that works much like a pregnancy test — a band on the strip shows if the target species is present.

“Anyone working anywhere could use this tool to quickly come up with a species identification,” Schreier said.

OTHER CRYPTIC CRITTERS

While the three fish species were the only animals tested for this study, the researchers expect the method could be used for other species, though more research is needed to confirm. If so, this sort of onsite, real-time capability may be useful for confirming species at crime scenes, in the animal trade at border crossings, for monitoring poaching, and for other animal and human health applications.

“There are a lot of cryptic species we can’t accurately identify with our naked eye,” Baerwald said. “Our partners at MIT are really interested in pathogen detection for humans. We’re interested in pathogen detection for animals as well as using the tool for other conservation issues.”

Here’s a link to and a citation for the paper,

Rapid and accurate species identification for ecological studies and monitoring using CRISPR‐based SHERLOCK by Melinda R. Baerwald, Alisha M. Goodbla, Raman P. Nagarajan, Jonathan S. Gootenberg, Omar O. Abudayyeh, Feng Zhang, Andrea D. Schreier. Molecular Ecology Resources https://doi.org/10.1111/1755-0998.13186 First published: 12 May 2020

This paper is behind a paywall.

The business of CRISPR

SHERLOCK™, is a trademark for what Sherlock Biosciences calls one of its engineering biology platforms. From the Sherlock Biosciences Technology webpage,

What is SHERLOCK™?

SHERLOCK is an evolution of CRISPR technology, which others use to make precise edits in genetic code. SHERLOCK can detect the unique genetic fingerprints of virtually any DNA or RNA sequence in any organism or pathogen. Developed by our founders and licensed exclusively from the Broad Institute, SHERLOCK is a method for single molecule detection of nucleic acid targets and stands for Specific High Sensitivity Enzymatic Reporter unLOCKing. It works by amplifying genetic sequences and programming a CRISPR molecule to detect the presence of a specific genetic signature in a sample, which can also be quantified. When it finds those signatures, the CRISPR enzyme is activated and releases a robust signal. This signal can be adapted to work on a simple paper strip test, in laboratory equipment, or to provide an electrochemical readout that can be read with a mobile phone.

However, things get a little more confusing when you look at the Broad Institute’s Developing Diagnostics and Treatments webpage,

Ensuring the SHERLOCK diagnostic platform is easily accessible, especially in the developing world, where the need for inexpensive, reliable, field-based diagnostics is the most urgent

SHERLOCK (Specific High-sensitivity Enzymatic Reporter unLOCKing) is a CRISPR-based diagnostic tool that is rapid, inexpensive, and highly sensitive, with the potential to have a transformative effect on research and global public health. The SHERLOCK platform can detect viruses, bacteria, or other targets in clinical samples such as urine or blood, and reveal results on a paper strip — without the need for extensive specialized equipment. This technology could potentially be used to aid the response to infectious disease outbreaks, monitor antibiotic resistance, detect cancer, and more. SHERLOCK tools are freely available [emphasis mine] for academic research worldwide, and the Broad Institute’s licensing framework [emphasis mine] ensures that the SHERLOCK diagnostic platform is easily accessible in the developing world, where inexpensive, reliable, field-based diagnostics are urgently needed.

Here’s what I suspect. as stated, the Broad Institute has free SHERLOCK licenses for academic institutions and not-for-profit organizations but Sherlock Biosciences, a Broad Institute spinoff company, is for-profit and has trademarked SHERLOCK for commercial purposes.

Final thoughts

This looks like a relatively subtle campaign to influence public perceptions. Genetic modification or genetic engineering as exemplified by the CRISPR gene editing technique is a force for the good of all. It will help us in our hour of need (COVID-19 pandemic) and it can help us save various species and better manage our resources.

This contrasts greatly with the publicity generated by the CRISPR twins situation where a scientist claimed to have successfully edited the germline for twins, Lulu and Nana. This was done despite a voluntary, worldwide moratorium on germline editing of viable embryos. (Search the terms [either here or on a standard search engine] ‘CRISPR twins’, ‘Lulu and Nana’, and/or ‘He Jiankui’ for details about the scandal.

In addition to presenting CRISPR as beneficial in the short term rather than the distant future, this publicity also subtly positions the Broad Institute as CRISPR’s owner.

Or, maybe I’m wrong. Regardless, I’m watching.

Nanofibrous fish skins for wrinkle-free skin (New Zealand’s biggest seafood company moves into skincare)

I am utterly enchanted by this venture employing fish skins and nanotechnology-based processes for a new line of skin care products and, they hope, medical applications,


For those who like text (from a May 21, 2018 Sanford media advisory),

Nanofibre magic turns fish skins into wrinkle busting skin care

Sanford partners with kiwi nanotech experts to help develop a wrinkle-busting skincare product made from Hoki skins.

New Zealand’s biggest and oldest seafood company is moving into the future of skincare and medicine by becoming supporting partner to West Auckland nanofibre producer Revolution Fibres, which is launching a potentially game-changing nanotech face mask.

The actiVLayr face masks use collagen extracted from fish skins as a base ingredient which is then combined with elements such as fruit extracts and hyaluronic acid to make a 100 percent natural and sustainably sourced product.

They have achieved stunning results in third party tests which show that the nanofiber masks can reduce wrinkles by up to 31.5%.*

Revolution Fibres CEO Iain Hosie says it is no exaggeration to say the masks could be revolutionary.

“The wayactiVLayr is produced, and the unique application method of placing it onto wet skin like a mask, means ingredients are absorbed quickly and efficiently into the skin to maximise the repair and protection of the skin.”

Sanford is delighted to support the work that Revolution Fibres is doing by supplying hoki fish skins. Hoki is a sustainably caught fish and its skin has some unique properties.

Sanford’s General Manager of Innovation, Andrew Stanley, says these properties make it ideal for the actiVLayr technology. “Hoki skins are rich in collagen, which is an essential part of our bodies. But their marine collagen is unique – it has a very low melt point, so when placed on the skin, it can dissolve completely and be absorbed in a way that collagen f rom other animals cannot.”

Sanford’s Chief Customer Officer, Andre Gargiulo, says working with the team at Revolution Fibres is a natural fit, because both company’s think about innovation and sustainability in the same way.

“We hope actiVLayr gets the global attention it deserves, and we’re delighted that our sustainably caught Hoki is part of this fantastic New Zealand product. It’s exactly what we’re all about at Sanford – making the most of the precious resources from the sea, working in a sustainable way and getting the most value out of the goodness we harvest from nature.”

Sanford’s Business Development Manager Adrian Grey says the focus on sustainability and value creation are so important for the seafood company.

“Previously we have been making use of these hoki skins, which is great, but they were being used only for fish meal or pet food products. Being able to supply and support a high tech company that is going to earn increased export revenue for New Zealand is just fantastic. And the product created is completely natural, harvested from a globally certified sustainable fishery.”

Sanford provides the hoki skins and then turns these skins into pure collagen using the science and skills of the team at Plant and Food in Nelson [New Zealand for those of us who associate Nelson with British Columbia]. Revolution Fibres transforms the Sanford product into nanofibre using a technique called electrospinning of which Revolution Fibres are the New Zealand pioneers.

During the electrospinning process natural ingredients known as “bioactives” (such as kiwifruit and grapes) and hyaluronic acid (an ingredient to help the skin retain moisture) are bonded to the nanofibres to create sheets of actiVLayr. When it is exposed to wet skin the nanofibres dissolve rapidly and release the bioactives deep into the skin.

The product is being launched at the China Beauty Fair in Shanghai on May 22 [2018] and will go on sale in China this month followed by Hong Kong and New Zealand later in the year.   Revolution Fibres CEO Iain Hosie says there is big demand for unique delivery systems of natural skin and beauty products such as actiVLayr in Asia, which was the key reason to launch the product in China. But his view of the future is even bigger.

“There are endless uses for actiVLayr and the one we’re most proud of is in the medical area with the ability for drug compounds or medicines to be added to the actiVLayr formula. It will enable a controlled dose to be delivered to a patient with skin lesions, burns or acne.”

Revolution Fibres is presenting at Techweek NZ as part of The Fourth Revolution event on May 25 [2018] in Christchurch which introduces high tech engineers who are building a better place.

*Testing conducted by Easy Care using VISIA Complexion Analysis

The media advisory also includes some ‘fascinating ‘facts’,

1kg of hoki skin produces 400 square meters of nanofibre material

Nanofibres are 1/500th the width of a human hair

Revolution Fibres is the only nanofibre producer in the world to meet aerospace industry standards with its AS9100d quality assurance certification

The marine collagen found in hoki skins is unique because of its relatively low melt point, meaning it can dissolve at a lower temperature which makes it perfect for human use

Revolution Fibres is based in West Auckland and employs 12 people, of which 4 have P hDs in science related to nanotechnology. There are also a number of employees with strong engineering backgrounds to complement the company’s Research & Development expertise

Sanford is New Zealand’s oldest and biggest seafood company. It was founded by Albert Sanford in Auckland in 1904

New Zealand’s hoki fishery is certified as sustainable by the London-based Marine Stewardship Council, which audits fisheries all over the world

You can find Sanford here and Revolution Fibres here.

For some perspective on the business side of things, there’s a May 21, 2018 article by Nikki Mandow for newsroom.co.nz,

Revolution Fibres first started talking about the possibility of a collagen nanofibre made from hoki almost a decade ago, as part of a project with Plant & Food’s Seafood Research Centre in Nelson, Hosie [Revolution Fibres CEO Iain Hosie] said, and the company got serious about making a product in 2013.

Previously, the hoki waste skins were used for fish meal and pet food, said Sanford business development manager Adrian Grey.

“Being able to supply and support a high tech company that is going to earn increased export revenue for New Zealand is just fantastic.”

Revolution Fibres also manufactures nanofibres for a number of other uses. These include anti-dust mite pillow coverings, anti-pollution protective face masks, filters for pumps for HRV’s home ventilation systems, and reinforcing material for carbon fibre for fishing rods. The latter product is made from recycled fishing nets collected from South America.

He [Revolution Fibres CEO Iain Hosie] said the company could be profitable, but instead has chosen to continue to invest heavily in research and development.

About 75 percent of revenue comes from selling proprietary products, but increasingly Hosie said the company is working on “co-innovation” projects, where Revolution Fibres manufactures bespoke materials for outside companies.

Revolution Fibres completed its first external funding round last year, raising $1.5 million from the US, and it has just completed another round worth approximately $1million. Hosie, one of the founders, still holds around 20 percent of the company.

He said he hopes to keep the intellectual property in New Zealand, although manufacturing of some products is likely to move closer to their markets – China and the US potentially. However, he said actiVLayr manufacture will remain in New Zealand, because that’s where the raw hoki comes from.

I wonder if we’ll see this product in Canada.

One other thing,  I was curious about this ” … the nanofiber masks can reduce wrinkles by up to 31.5%”  and Visia Complexion Analysis, which is a product from Canfield Scientific, a company specializing in imaging.  Here’s some of what Visia can do (from the Visia product page),

Percentile Scores

Percentile Scores

VISIA’s patented comparison to norms analysis uses the world’s largest skin feature database to grade your patient’s skin relative to others of the same age and skin type. Measure spots, wrinkles, texture, pores, UV spots, brown spots, red areas, and porphyrins.

Meaningful Comparisons

Meaningful Comparisons

Compare results side by side for any combination of views, features or time points, including graphs and numerical data. Zoom and pan images in tandem for clear and easy comparisons.

And, there’s my personal favourite (although it has nothing to do with the topic of this posting0,

Eyelash Analysis

Eyelash Analysis

Evaluates the results of lash improvement treatments with numerical assessments and graphic visualizations.

For anyone who wondered about why the press release has both ‘nanofibre’ and ‘nanofiber’, It’s the difference between US and UK spelling. Perhaps the complexion analysis information came from a US company or one that uses US spellings.

Cryopreserving and reviving fish embryos

Cryopreservation and the promise of animal revivification is not one of my favourite topics, from a July 13, 2017 news item on Nanowerk (Note: A link has been removed),

Scientists report for the first time the ability to both deep freeze and reanimate zebrafish embryos. The method, appearing in the journal ACS Nano (“Gold Nanorod Induced Warming of Embryos from the Cryogenic State Enhances Viability”), could potentially be used to bank larger aquatic and other vertebrate oocytes and embryos, too, for a life in the future.

It seems the science is more advanced than I’d realized. A July 13, 2017 American Chemical Society news release on EurekAlert, which originated the news item, describes cryopreservation and the technique the scientists used,

Cryopreservation has been used to save sperm, oocytes and even embryos of many species, including humans, cattle and lab animals. Preserving the embryos of most fishes, however, has remained an elusive goal. The embryos are relatively large with big yolks and are divided by multiple compartments. These traits make the embryos difficult to cool and warm uniformly without damage and ice formation. A few techniques, including microinjection of cryoprotectants and laser irradiation for re-warming, have shown promise toward achieving this long-sought goal. John Bischof and colleagues wanted to tweak the methods to see if they could finally make cryopreserving fish a reality.

The researchers injected a cryoprotectant, along with plasmonic gold nanoparticles to serve as a laser absorber, directly into zebrafish embryos. Plunging the embryos in liquid nitrogen rapidly cooled them to a cryogenically stable state in less than a second, according to modeling results. The researchers then used laser irradiation to heat up the nanoparticles, which were uniformly distributed inside the embryos, at an ultra-fast rate (1.4 x 107 degrees Celsius per minute). Not all of the embryos made it, but many were revived –a feat that is currently not possible by other techniques. Their hearts, eyes and nervous systems developed through at least the next 28 hours — and they started to wiggle. As more fish populations shrink and become threatened, the researchers say the cryopreservation method could help establish banks of frozen fish germ cells and embryos that could one day help replenish the oceans’ biodiversity. The technique could also be applied to amphibian, reptile and bird species with similar embryonic sizes and structures.

Here’s a video describing the work,

After watching that a video, I feel that I should revise my opinion of cryopreservation,

Here’s a link to and a citation for the paper,

Gold Nanorod Induced Warming of Embryos from the Cryogenic State Enhances Viability by Kanav Khosla, Yiru Wang, Mary Hagedorn, Zhenpeng Qin, and John Bischof. ACS Nano, Article ASAP DOI: 10.1021/acsnano.7b02216 Publication Date (Web): July 13, 2017

Copyright © 2017 American Chemical Society

This paper is behind a paywall.

Preserving heritage smells (scents)

Preserving a smell? It’s an intriguing idea and forms the research focus for scientists at the University College London’s (UCL) Institute for Sustainable Heritage according to an April 6, 2017 Biomed Central news release on EurekAlert,

A ‘Historic Book Odour Wheel’ which has been developed to document and archive the aroma associated with old books, is being presented in a study in the open access journal Heritage Science. Researchers at UCL Institute for Sustainable Heritage created the wheel as part of an experiment in which they asked visitors to St Paul’s Cathedral’s Dean and Chapter library in London to characterize its smell.

The visitors most frequently described the aroma of the library as ‘woody’ (selected by 100% of the visitors who were asked), followed by ‘smoky’ (86%), ‘earthy'(71%) and ‘vanilla’ (41%). The intensity of the smells was assessed as between ‘strong odor’ and ‘very strong odor’. Over 70% of the visitors described the smell as pleasant, 14% as ‘mildly pleasant’ and 14% as ‘neutral’.

In a separate experiment, the researchers presented visitors to the Birmingham Museum and Art Gallery with an unlabelled historic book smell – sampled from a 1928 book they obtained from a second-hand bookshop in London – and collected the terms used to describe the smell. The word ‘chocolate’ – or variations such as ‘cocoa’ or ‘chocolatey’ – was used most often, followed by ‘coffee’, ‘old’, ‘wood’ and ‘burnt’. Participants also mentioned smells including ‘fish’, ‘body odour’, ‘rotten socks’ and ‘mothballs’.

Cecilia Bembibre, heritage scientist at UCL and corresponding author of the study said: “Our odour wheel provides an example of how scientists and historians could begin to identify, analyze and document smells that have cultural significance, such as the aroma of old books in historic libraries. The role of smells in how we perceive heritage has not been systematically explored until now.”

Attempting to answer the question of whether certain smells could be considered part of our cultural heritage and if so how they could be identified, protected and conserved, the researchers also conducted a chemical analysis of volatile organic compounds (VOCs) which they sampled from books in the library. VOCs are chemicals that evaporate at low temperatures, many of which can be perceived as scents or odors.

Combining their findings from the VOC analysis with the visitors’ characterizations, the authors created their Historic Book Odour wheel, which shows the chemical description of a smell (such as acetic acid) together with the sensory descriptions provided by the visitors (such as ‘vinegar’).

Cecilia Bembibre said: “By documenting the words used by the visitors to describe a heritage smell, our study opens a discussion about developing a vocabulary to identify aromas that have cultural meaning and significance.”

She added: “The Historic Book Odour Wheel also has the potential to be used as a diagnostic tool by conservators, informing on the condition of an object, for example its state of decay, through its olfactory profile.”

The authors suggest that, in addition to its use for the identification and conservation of smells, the Historic Book Odour Wheel could potentially be used to recreate smells and aid the design of olfactory experiences in museums, allowing visitors to form a personal connection with exhibits by allowing them to understand what the past smelled like.

Before this can be done, further research is needed to build on the preliminary findings in this study to allow them to inform and benefit heritage management, conservation, visitor experience design and heritage policy making.

Here’s what the Historic Book Odour Wheel looks like,

Odour wheel of historic book containing general aroma categories, sensory descriptors and chemical information on the smells as sampled (colours are arbitrary) Courtesy: Heritage Science [downloaded from https://heritagesciencejournal.springeropen.com/articles/10.1186/s40494-016-0114-1

Here’s a link to and a citation for the paper,

Smell of heritage: a framework for the identification, analysis and archival of historic odours by Cecilia Bembibre and Matija Strlič. Heritage Science20175:2 DOI: 10.1186/s40494-016-0114-1 Published: 7 April 2017

©  The Author(s) 2017

This paper is open access.

Using a sponge to remove mercury from lake water

I’ve heard of Lake Como in Italy but Como Lake in Minnesota is a new one for me. The Minnesota lake is featured in a March 22, 2017 news item about water and sponges on phys.org,

Mercury is very toxic and can cause long-term health damage, but removing it from water is challenging. To address this growing problem, University of Minnesota College of Food, Agricultural and Natural Sciences (CFANS) Professor Abdennour Abbas and his lab team created a sponge that can absorb mercury from a polluted water source within seconds. Thanks to the application of nanotechnology, the team developed a sponge with outstanding mercury adsorption properties where mercury contaminations can be removed from tap, lake and industrial wastewater to below detectable limits in less than 5 seconds (or around 5 minutes for industrial wastewater). The sponge converts the contamination into a non-toxic complex so it can be disposed of in a landfill after use. The sponge also kills bacterial and fungal microbes.

Think of it this way: If Como Lake in St. Paul was contaminated with mercury at the EPA limit, the sponge needed to remove all of the mercury would be the size of a basketball.

A March 16, 2017 University of Minnesota news release, which originated the news item, explains why this discovery is important for water supplies in the state of Minnesota,

This is an important advancement for the state of Minnesota, as more than two thirds of the waters on Minnesota’s 2004 Impaired Waters List are impaired because of mercury contamination that ranges from 0.27 to 12.43 ng/L (the EPA limit is 2 ng/L). Mercury contamination of lake waters results in mercury accumulation in fish, leading the Minnesota Department of Health to establish fish consumption guidelines. A number of fish species store-bought or caught in Minnesota lakes are not advised for consumption more than once a week or even once a month. In Minnesota’s North Shore, 10 percent of tested newborns had mercury concentrations above the EPA reference dose for methylmercury (the form of mercury found in fish). This means that some pregnant women in the Lake Superior region, and in Minnesota, have mercury exposures that need to be reduced.  In addition, a reduced deposition of mercury is projected to have economic benefits reflected by an annual state willingness-to-pay of $212 million in Minnesota alone.

According to the US-EPA, cutting mercury emissions to the latest established effluent limit standards would result in 130,000 fewer asthma attacks, 4,700 fewer heart attacks, and 11,000 fewer premature deaths each year. That adds up to at least $37 billion to $90 billion in annual monetized benefits annually.

In addition to improving air and water quality, aquatic life and public health, the new technology would have an impact on inspiring new regulations. Technology shapes regulations, which in turn determine the value of the market. The 2015 EPA Mercury and Air Toxics Standards regulation was estimated to cost the industry around of $9.6 billion annually in 2020. The new U of M technology has a potential of bringing this cost down and make it easy for the industry to meet regulatory requirements.

Research by Abbas and his team was funded by the MnDRIVE Global Food Venture, MnDRIVE Environment, and USDA-NIFA. They currently have three patents on this technology. To learn more, visit www.abbaslab.com.

Here’s a link to and a citation for the paper,

A Nanoselenium Sponge for Instantaneous Mercury Removal to Undetectable Levels by Snober Ahmed, John Brockgreitens, Ke Xu, and Abdennour Abbas. Advanced Functional Materials DOI: 10.1002/adfm.201606572 Version of Record online: 6 MAR 2017

© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This paper is behind a paywall.

Using fish ‘biowaste’ for self-powered electronics

Researchers in India have found a way to make use of fish ‘biowaste’ according to a Sept. 6, 2016 news item on Nanowerk,

Large quantities of fish are consumed in India on a daily basis, which generates a huge amount of fish “biowaste” materials. In an attempt to do something positive with this biowaste, a team of researchers at Jadavpur University in Koltata, India explored recycling the fish byproducts into an energy harvester for self-powered electronics.

Caption: Waste fish scales (upper left corner) are used to fabricate flexible nanogenerator (lower left) that power up more than 50 blue LEDs (lower right). An enlarged microscopic view of a fish scale shows the well-aligned collagen fibrils (upper right). The possibility of making a fish scale transparent (middle) and rollable (extreme left lower corner) is also illustrated. Credit: Sujoy Kuman Ghosh and Dipankar Mandal/Jadavpur University

Caption: Waste fish scales (upper left corner) are used to fabricate flexible nanogenerator (lower left) that power up more than 50 blue LEDs (lower right). An enlarged microscopic view of a fish scale shows the well-aligned collagen fibrils (upper right). The possibility of making a fish scale transparent (middle) and rollable (extreme left lower corner) is also illustrated. Credit: Sujoy Kuman Ghosh and Dipankar Mandal/Jadavpur University

A Sept. 6, 2016 American Institute of Physics news release on EurekAlert, which originated the news item, describes the research in more detail,

The basic premise behind the researchers’ work is simple: Fish scales contain collagen fibers that possess a piezoelectric property, which means that an electric charge is generated in response to applying a mechanical stress. As the team reports this week in Applied Physics Letters, from AIP Publishing, they were able to harness this property to fabricate a bio-piezoelectric nanogenerator.

To do this, the researchers first “collected biowaste in the form of hard, raw fish scales from a fish processing market, and then used a demineralization process to make them transparent and flexible,” explained Dipankar Mandal, assistant professor, Organic Nano-Piezoelectric Device Laboratory, Department of Physics, at Jadavpur University.

The collagens within the processed fish scales serve as an active piezoelectric element.

“We were able to make a bio-piezoelectric nanogenerator — a.k.a. energy harvester — with electrodes on both sides, and then laminated it,” Mandal said.

While it’s well known that a single collagen nanofiber exhibits piezoelectricity, until now no one had attempted to focus on hierarchically organizing the collagen nanofibrils within the natural fish scales.

“We wanted to explore what happens to the piezoelectric yield when a bunch of collagen nanofibrils are hierarchically well aligned and self-assembled in the fish scales,” he added. “And we discovered that the piezoelectricity of the fish scale collagen is quite large (~5 pC/N), which we were able to confirm via direct measurement.”

Beyond that, the polarization-electric field hysteresis loop and resulting strain-electric field hysteresis loop — proof of a converse piezoelectric effect — caused by the “nonlinear” electrostriction effect backed up their findings.

The team’s work is the first known demonstration of the direct piezoelectric effect of fish scales from electricity generated by a bio-piezoelectric nanogenerator under mechanical stimuli — without the need for any post-electrical poling treatments.

“We’re well aware of the disadvantages of the post-processing treatments of piezoelectric materials,” Mandal noted.

To explore the fish scale collagen’s self-alignment phenomena, the researchers used near-edge X-ray absorption fine-structure spectroscopy, measured at the Raja Ramanna Centre for Advanced Technology in Indore, India.

Experimental and theoretical tests helped them clarify the energy scavenging performance of the bio-piezoelectric nanogenerator. It’s capable of scavenging several types of ambient mechanical energies — including body movements, machine and sound vibrations, and wind flow. Even repeatedly touching the bio-piezoelectric nanogenerator with a finger can turn on more than 50 blue LEDs.

“We expect our work to greatly impact the field of self-powered flexible electronics,” Mandal said. “To date, despite several extraordinary efforts, no one else has been able to make a biodegradable energy harvester in a cost-effective, single-step process.”

The group’s work could potentially be for use in transparent electronics, biocompatible and biodegradable electronics, edible electronics, self-powered implantable medical devices, surgeries, e-healthcare monitoring, as well as in vitro and in vivo diagnostics, apart from its myriad uses for portable electronics.

“In the future, our goal is to implant a bio-piezoelectric nanogenerator into a heart for pacemaker devices, where it will continuously generate power from heartbeats for the device’s operation,” Mandal said. “Then it will degrade when no longer needed. Since heart tissue is also composed of collagen, our bio-piezoelectric nanogenerator is expected to be very compatible with the heart.”

The group’s bio-piezoelectric nanogenerator may also help with targeted drug delivery, which is currently generating interest as a way of recovering in vivo cancer cells and also to stimulate different types of damaged tissues.

“So we expect our work to have enormous importance for next-generation implantable medical devices,” he added.

“Our end goal is to design and engineer sophisticated ingestible electronics composed of nontoxic materials that are useful for a wide range of diagnostic and therapeutic applications,” said Mandal.

Here’s a link to and a citation for the paper,

High-performance bio-piezoelectric nanogenerator made with fish scale by Sujoy Kumar Ghosh and Dipankar Mandal. Appl. Phys. Lett. 109, 103701 (2016); http://dx.doi.org/10.1063/1.4961623

This paper appears to be open access.