Category Archives: agriculture

Everlasting dirt-powered sensors for agriculture?

Caption: The fuel cell’s 3D printed cap peeks above the ground. The cap keeps debris out of the device while enabling air flow. Credit: Bill Yen/Northwestern University

A January 12, 2024 Northwestern University news release (also received via email and also on EurekAlert both published January 15, 2024) describes this dirt-powered research from the US, Note: Links have been removed,

*New fuel cell harnesses naturally occurring microbes to generate electricity

*Soil-powered sensors to successfully monitor soil moisture and detect touch

*New tech was robust enough to withstand drier soil conditions and flooding

*Fuel cell could replace batteries in sensors used for precision agriculture

EVANSTON, Ill. — A Northwestern University-led team of researchers has developed a new fuel cell that harvests energy from microbes living in dirt. 

About the size of a standard paperback book, the completely soil-powered technology could fuel underground sensors used in precision agriculture and green infrastructure. This potentially could offer a sustainable, renewable alternative to batteries, which hold toxic, flammable chemicals that leach into the ground, are fraught with conflict-filled supply chains and contribute to the ever-growing problem of electronic waste.

To test the new fuel cell, the researchers used it to power sensors measuring soil moisture and detecting touch, a capability that could be valuable for tracking passing animals. To enable wireless communications, the researchers also equipped the soil-powered sensor with a tiny antenna to transmit data to a neighboring base station by reflecting existing radio frequency signals.

Not only did the fuel cell work in both wet and dry conditions, but its power also outlasted similar technologies by 120%.

The research will be published today (Jan. 12 [2024]) in the Proceedings of the Association for Computing Machinery on Interactive, Mobile, Wearable and Ubiquitous Technologies. The study authors also are releasing all designs, tutorials and simulation tools to the public, so others may use and build upon the research.

“The number of devices in the Internet of Things (IoT) is constantly growing,” said Northwestern alumnus Bill Yen, who led the work. “If we imagine a future with trillions of these devices, we cannot build every one of them out of lithium, heavy metals and toxins that are dangerous to the environment. We need to find alternatives that can provide low amounts of energy to power a decentralized network of devices. In a search for solutions, we looked to soil microbial fuel cells, which use special microbes to break down soil and use that low amount of energy to power sensors. As long as there is organic carbon in the soil for the microbes to break down, the fuel cell can potentially last forever.”

“These microbes are ubiquitous; they already live in soil everywhere,” said Northwestern’s George Wells, a senior author on the study. “We can use very simple engineered systems to capture their electricity. We’re not going to power entire cities with this energy. But we can capture minute amounts of energy to fuel practical, low-power applications.”

Wells is an associate professor of civil and environmental engineering at Northwestern’s McCormick School of Engineering. Now a Ph.D. student at Stanford University, Yen started this project when he was an undergraduate researcher in Wells’ laboratory.

Solutions for a dirty job

In recent years, farmers worldwide increasingly have adopted precision agriculture as a strategy to improve crop yields. The tech-driven approach relies on measuring precise levels of moisture, nutrients and contaminants in soil to make decisions that enhance crop health. This requires a widespread, dispersed network of electronic devices to continuously collect environmental data.

“If you want to put a sensor out in the wild, in a farm or in a wetland, you are constrained to putting a battery in it or harvesting solar energy,” Yen said. “Solar panels don’t work well in dirty environments because they get covered with dirt, do not work when the sun isn’t out and take up a lot of space. Batteries also are challenging because they run out of power. Farmers are not going to go around a 100-acre farm to regularly swap out batteries or dust off solar panels.”

To overcome these challenges, Wells, Yen and their collaborators wondered if they could instead harvest energy from the existing environment. “We could harvest energy from the soil that farmers are monitoring anyway,” Yen said.

‘Stymied efforts’

Making their first appearance in 1911, soil-based microbial fuel cells (MFCs) operate like a battery — with an anode, cathode and electrolyte. But instead of using chemicals to generate electricity, MFCs harvest electricity from bacteria that naturally donate electrons to nearby conductors. When these electrons flow from the anode to the cathode, it creates an electric circuit.

But in order for microbial fuel cells to operate without disruption, they need to stay hydrated and oxygenated — which is tricky when buried underground within dry dirt.

“Although MFCs have existed as a concept for more than a century, their unreliable performance and low output power have stymied efforts to make practical use of them, especially in low-moisture conditions,” Yen said.

Winning geometry

With these challenges in mind, Yen and his team embarked on a two-year journey to develop a practical, reliable soil-based MFC. His expedition included creating — and comparing — four different versions. First, the researchers collected a combined nine months of data on the performance of each design. Then, they tested their final version in an outdoor garden.

The best-performing prototype worked well in dry conditions as well as within a water-logged environment. The secret behind its success: Its geometry. Instead of using a traditional design, in which the anode and cathode are parallel to one another, the winning fuel cell leveraged a perpendicular design.

Made of carbon felt (an inexpensive, abundant conductor to capture the microbes’ electrons), the anode is horizontal to the ground’s surface. Made of an inert, conductive metal, the cathode sits vertically atop the anode. 

Although the entire device is buried, the vertical design ensures that the top end is flush with the ground’s surface. A 3D-printed cap rests on top of the device to prevent debris from falling inside. And a hole on top and an empty air chamber running alongside the cathode enable consistent airflow.  

The lower end of the cathode remains nestled deep beneath the surface, ensuring that it stays hydrated from the moist, surrounding soil — even when the surface soil dries out in the sunlight. The researchers also coated part of the cathode with waterproofing material to allow it to breathe during a flood. And, after a potential flood, the vertical design enables the cathode to dry out gradually rather than all at once.

On average, the resulting fuel cell generated 68 times more power than needed to operate its sensors. It also was robust enough to withstand large changes in soil moisture — from somewhat dry (41% water by volume) to completely underwater.

Making computing accessible

The researchers say all components for their soil-based MFC can be purchased at a local hardware store. Next, they plan to develop a soil-based MFC made from fully biodegradable materials. Both designs bypass complicated supply chains and avoid using conflict minerals.

“With the COVID-19 pandemic, we all became familiar with how a crisis can disrupt the global supply chain for electronics,” said study co-author Josiah Hester, a former Northwestern faculty member who is now at the Georgia Institute of Technology. “We want to build devices that use local supply chains and low-cost materials so that computing is accessible for all communities.”

The study, “Soil-powered computing: The engineer’s guide to practical soil microbial fuel cell design,” was supported by the National Science Foundation (award number CNS-2038853), the Agricultural and Food Research Initiative (award number 2023-67021-40628) from the USDA National Institute of Food and Agriculture, the Alfred P. Sloan Foundation, VMware Research and 3M.

Here’s a link to and a citation for the paper,

Soil-Powered Computing: The Engineer’s Guide to Practical Soil Microbial Fuel Cell Design by Bill Yen, Laura Jaliff, Louis Gutierrez, Philothei Sahinidis, Sadie Bernstein, John Madden, Stephen Taylor, Colleen Josephson, Pat Pannuto, Weitao Shuai, George Wells, Nivedita Arora, Josiah Hester. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies Volume 7 Issue 4 Article No.: 196 pp 1–40 DOI: https://doi.org/10.1145/3631410 Published: 12 January 2024

This paper is open access.

Better vaccines for park producers?

From a February 27, 2024 Canadian Light Source (CLS) news release (also received via email) by Erin Matthews,

A long-term, international collaboration between researchers at the University of Manitoba and the Leiden University Medical Centre in the Netherlands has uncovered vital information about the porcine reproductive and respiratory syndrome virus (PRRSV). This pathogen causes severe disease in pigs, leading to significant economic losses for pork producers across the globe.

“This disease in pigs is important worldwide and is economically fairly significant,” says Marjolein Kikkert, Associate Professor of Virology at Leiden University Medical Centre. “The aim of the project was to improve vaccines for this disease, and it turned out that it was very difficult.” It’s estimated that PRRS costs the Canadian pork industry $130M annually.

Kikkert and collaborator Brian Mark, Dean of the Faculty of Science at the University of Manitoba, looked at targeting a type of protein called a protease. PRRSV uses these proteins to suppress a host’s immune system, causing severe illness. By changing the structure, researchers can design altered viruses upon which to base new vaccines.

With the help of the Canadian Light Source (CLS) at the University of Saskatchewan (USask), Mark and Kikkert were able to visualize the unique structure of the PRRSV protease. What they learned in their study is valuable for developing new vaccines against PRRSV and also helps inform development of vaccines against emerging human viruses.

The team has conducted similar research on coronaviruses —which also use proteases to suppress human and animal immune systems — and has successfully designed new vaccines.

“The trick and hypothesis we had for improving the PRRSV vaccine didn’t quite work.” Says Kikkert. “However, we did learn a lot about how these viruses work. And it may certainly be a basis for further work into possibilities for improving vaccines against these viruses and coronaviruses.”

The team’s findings also unlock new doors to understanding how viruses like PRRSV use proteins to replicate, making this a significant academic discovery.

“The Canadian Light Source provided the technology we needed to determine the structures of these proteases, and this knowledge has provided tremendous insight into the biochemistry of these viruses, which is the cornerstone of modern vaccine development,” says Mark.

Here’s a link to and a citation for the paper,

Demonstrating the importance of porcine reproductive and respiratory syndrome virus papain-like protease 2 deubiquitinating activity in viral replication by structure-guided mutagenesis by Ben A. Bailey-Elkin, Robert C. M. Knaap, Anuradha De Silva, Ilse M. Boekhoud, Sandra Mous, Niek van Vught, Mazdak Khajehpour, Erwin van den Born, Marjolein Kikkert, Brian L. Mark. PLOS DOI: https://doi.org/10.1371/journal.ppat.1011872 Published: December 14, 2023

This paper is open access.

A nanozyme that is organic, non-toxic, environmentally friendly, cost effective, and can detect the presence of glyphosate

An October 16, 2023 University of Illinois news release (also on EurekAlert), describes research into developing a tool to detect the presence of the agricultural herbicide, glyphosate, Note: Links have been removed,

Nanozymes are synthetic materials that mimic the properties of natural enzymes for applications in biomedicine and chemical engineering. They are generally considered too toxic and expensive for use in agriculture and food science. Now, researchers from the University of Illinois Urbana-Champaign have developed a nanozyme that is organic, non-toxic, environmentally friendly, and cost effective. In a newly published paper, they describe its features and its capacity to detect the presence of glyphosate, a common agricultural herbicide. Their goal is to eventually create a user-friendly test kit for consumers and agricultural producers.

“The word nanozyme is derived from nanomaterial and enzyme. Nanozymes were first developed about 15 years ago, when researchers found that iron oxide nanoparticles may perform catalytic activity similar to natural enzymes (peroxidase),” explained Dong Hoon Lee, a doctoral student in the Department of Agricultural and Biological Engineering (ABE), part of the College of Agricultural, Consumer and Environmental Sciences (ACES) and The Grainger College of Engineering at U. of I.

These nanozymes mimic the activity of peroxidase, an enzyme that catalyzes the oxidation of a substrate by using hydrogen peroxide as an oxidizing agent. They provide higher stability and lower cost than natural peroxidase, and they are widely used in biomedical research, including biosensors for detection of target molecules in disease diagnostics.

“Traditional nanozymes are created from inorganic, metal-based materials, making them too toxic and expensive to be directly applied on food and agriculture,” Lee said.

“Our research group is pioneering the development of fully organic compound-based nanozymes (OC nanozymes) which exhibit peroxidase-like activities. The OC nanozyme follows the catalytic activity of the natural enzyme but is predominantly based on agriculture-friendly organic compounds, such as urea acting as a chelating-like agent and polyvinyl alcohol as a particle stabilizer.”

The researchers also implemented a colorimetric sensing system integrated with the OC nanozyme for target molecule detection. Colorimetric assays, an optical sensing method, use color intensity to provide an estimated concentration of the presence of specific molecules in a substance, such that darker or lighter color indicates lower or higher quantity of target molecules. The organic-compound nanozyme performed on par with nanozymes typically used in biosensing applications within their kinetic profile with molecule detection performance.

“Traditional nanozymes come with a host of issues: toxicity, lengthy degradation, and a complex production process. In contrast, our nanozyme is quicker to produce, cost-effective, non-toxic, and environmentally friendly,” said Mohammed Kamruzzaman, assistant professor in ABE and co-author on the study.

Lee and Kamruzzaman applied the OC nanozyme-based, colorimetric sensing platform to detect the presence of glyphosate, a widely used herbicide in the agricultural industry. They performed colorimetric assays in solutions containing varying concentrations of glyphosate, finding the organic nanozyme was able to successfully detect glyphosate with adequate accuracy.

“There is an increasing demand for testing pesticide or herbicide presence in agricultural products to protect human and crop health. We want to develop an OC nanozyme-based, point-of-use testing platform for farmers or consumers that they can apply in the field or at home,” Kamruzzaman stated. “People would obtain a test kit with a substance to mix with their sample, then take a picture and use an app on their phone to identify the color intensity and interpret if there is any glyphosate present. The ultimate goal is to make the test portable and applicable anywhere.”

The researchers are also working on developing additional nanozymes, envisioning these environmental-friendly materials hold great potential for a wide range of applications.

Here’s a link to and a citation for the paper,

Organic compound-based nanozymes for agricultural herbicide detection by Dong Hoon Lee and Mohammed Kamruzzaman. Nanoscale, 2023,15, 12954-12960 First published July 28, 2023

This paper is open access once you have created your free account.

Gene editing to identify and change parts of chicken DNA and limit the spread of bird flu virus

This news comes from the University of Edinburgh (Scotland). From an October 10, 2023 news item on phys.org, Note: A link has been removed,

Scientists have used gene editing techniques to identify and change parts of chicken DNA that could limit the spread of the bird flu virus in the animals.

Researchers were able to restrict—but not completely block—the virus from infecting chickens by altering a small section of their DNA.

The birds showed no signs that the change in their DNA had any impact on their health or well-being.

The findings are an encouraging step forward, but experts highlight that further gene edits would be needed to produce a chicken population which cannot be infected by bird flu—one of the world’s most costly animal diseases.

An October 10, 2023 University of Edinburgh press release, which originated the news item, provides more detail about this research,

Gene editing

Scientists from University of Edinburgh, Imperial College London and the Pirbright Institute bred the chickens using gene editing techniques to alter the section of DNA responsible for producing the protein ANP32A. During an infection, flu viruses hijack this molecule to help replicate themselves.

When the ANP32A gene-edited chickens were exposed to a normal dose of the H9N2-UDL strain of avian influenza virus – commonly known as bird flu – 9 out of 10 birds remained uninfected and there was no spread to other chickens.

Partial protection

The research team then exposed the gene-edited birds to an artificially high dose of avian influenza virus to further test their resilience.

When exposed to the high dose, half of the group – 5 out of 10 birds – became infected. However, the gene edit did provide some protection, with the amount of virus in the infected gene-edited chickens much lower than the level typically seen during infection in non-gene-edited chickens.

The gene edit also helped to limit onward spread of the virus to just one of four non-gene-edited chickens placed in the same incubator. There was no transmission to gene-edited birds.

Viral evolution

Scientists found that in the ANP32A gene-edited birds, the virus had adapted to enlist the support of two related proteins – ANP32B and ANP32E – to replicate.

Following lab tests, scientists found that some of the mutations enabled the virus to utilise the human version of ANP32, but its replication remained low in cell cultures from the human airway.

Experts say that additional genetic changes would be needed for the virus to infect and spread effectively in humans.

However, the findings demonstrate that the single ANP32A gene edit is not robust enough for application in the production of chickens, according to the team.

Gene editing

Scientists from University of Edinburgh, Imperial College London and the Pirbright Institute bred the chickens using gene editing techniques to alter the section of DNA responsible for producing the protein ANP32A. During an infection, flu viruses hijack this molecule to help replicate themselves.

When the ANP32A gene-edited chickens were exposed to a normal dose of the H9N2-UDL strain of avian influenza virus – commonly known as bird flu – 9 out of 10 birds remained uninfected and there was no spread to other chickens.

Partial protection

The research team then exposed the gene-edited birds to an artificially high dose of avian influenza virus to further test their resilience.

When exposed to the high dose, half of the group – 5 out of 10 birds – became infected. However, the gene edit did provide some protection, with the amount of virus in the infected gene-edited chickens much lower than the level typically seen during infection in non-gene-edited chickens.

The gene edit also helped to limit onward spread of the virus to just one of four non-gene-edited chickens placed in the same incubator. There was no transmission to gene-edited birds.

Viral evolution

Scientists found that in the ANP32A gene-edited birds, the virus had adapted to enlist the support of two related proteins – ANP32B and ANP32E – to replicate.

Following lab tests, scientists found that some of the mutations enabled the virus to utilise the human version of ANP32, but its replication remained low in cell cultures from the human airway.

Experts say that additional genetic changes would be needed for the virus to infect and spread effectively in humans.

However, the findings demonstrate that the single ANP32A gene edit is not robust enough for application in the production of chickens, according to the team.

Further edits

To prevent the emergence of escape viruses – viruses that adapt to evade the gene edit and cause infection – the research team next targeted additional sections of DNA responsible for producing all three proteins – ANP32A, ANP32B and ANP32E – inside lab-grown chicken cells.

In cell cultures in the lab, growth of the virus was successfully blocked in cells with the three gene edits.

The next step will be to try to develop chickens with edits to all three genes. No birds have been produced yet.

The study highlights the importance of responsible gene editing and the need to be alert to the risks of driving viral evolution in unwanted directions if complete resistance is not achieved, experts say.

Bird flu is a major global threat, with a devastating impact in both farmed and wild bird populations. In the UK alone, the current outbreak of H5N1 bird flu has decimated seabird populations and cost the poultry industry more than £100 million in losses.

In rare instances, mutations in the bird flu virus allow it to infect people and cause serious illness. Efforts to control the spread of the disease are urgently needed.

“Bird flu is a great threat to bird populations. Vaccination against the virus poses a number of challenges, with significant practical and cost issues associated with vaccine deployment. Gene-editing offers a promising route towards permanent disease resistance, which could be passed down through generations, protecting poultry and reducing the risks to humans and wild birds. Our work shows that stopping the spread of avian influenza in chickens will need several simultaneous genetic changes.” Professor Mike McGrew, The study’s principal investigator, from the University of Edinburgh’s Roslin Institute

“This work is an exciting collaboration that fuses our expertise in virology with the world-leading genetic capability at the Roslin Institute. Although we haven’t yet got the perfect combination of gene edits to take this approach into the field, the results have told us a lot about how influenza virus functions inside the infected cell and how to slow its replication.” Professor Wendy Barclay, Imperial College London

The research was funded by UKRI-BBSRC, which also provides strategic funding to The Roslin Institute, and was supported by Edinburgh Innovations, the University’s commercialisation service.

Ryan O’Hare’s October 10, 2023 Imperial College London (ICL) press release offers a slightly different perspective on the same work, Note: A link has been removed,

Scientists have successfully used gene editing techniques to limit the spread of bird flu in chickens.

In a UK first, researchers have been able to restrict, but not completely block, the avian influenza virus from infecting the birds by precisely altering a small section of their DNA.

The modified birds showed no signs that the change had any impact on the animals’ health or well-being.

But the researchers say that while the findings are encouraging, further gene edits would be needed to produce chickens which cannot be infected by bird flu.

The study, carried out by researchers from the University of Edinburgh, Imperial College London and the Pirbright Institute, is published in the journal Nature Communications.

Professor Wendy Barclay, Head of the Department of Infectious Disease at Imperial College London, said: “This work is an exciting collaboration that fuses our expertise in virology with the world world-leading genetic capability at the Roslin Institute.

“Although we haven’t yet got the perfect combination of gene edits to take this approach into the field, the results have told us a lot about how influenza virus functions inside the infected cell and how to slow its replication.”

Global Threat

Bird flu is a major global threat, with a devastating impact in both farmed and wild bird populations. In the UK alone, the current outbreak of H5N1 bird flu has decimated seabird populations and cost the poultry industry more than £100 million in losses.

In the latest study, researchers aimed to test whether precise edits to the chicken’s genome could potentially generate birds which are resistant to the virus.

The team bred chickens with small edits to a gene called ANP32A. During an infection, influenza viruses hijack the ANP32A protein to help replicate themselves.

But when the gene-edited birds were exposed to a normal dose of virus (the H9N2 strain of avian influenza), 9 out of 10 birds remained uninfected and there was no spread to other chickens.

When the birds were exposed to an artificially high dose of virus, only half of them became infected. The single gene edit also provided some protection against transmission, with a much lower amount of virus in infected gene-edited birds compared to non-edited birds.

In addition, the edit also helped to limit onward spread of the virus to just one of four non-edited chickens placed in the same incubator. There was no transmission to gene-edited birds.

Triple edits

Analysis revealed that in the edited birds, the virus adapted to enlist the support of two related proteins to replicate – ANP32B and ANP32E.

Following lab tests, the researchers found some of the mutations may enable the virus to utilise the human version of ANP32, but replication remained low in cell cultures from the human airway. The researchers stress that additional genetic changes would be needed for the virus to have the potential to infect and spread effectively in humans.

According to the team, the findings demonstrate that a single gene edit is not robust enough to produce resistant chickens. To prevent the emergence of viruses able to adapt to the single edit, the team next used a triple edit to target additional proteins (ANP32A, ANP32B and ANP32E) in lab-grown chicken cells.

In cell cultures in the lab, growth of the virus was successfully blocked in cells with edits to all three genes. In future, researchers hope to develop chickens with this triple edit, but no birds have been produced at this stage.

According to the researchers, the study highlights the importance of responsible gene editing and the need to be alert to the risks of driving viral evolution in unwanted directions if complete resistance is not achieved, experts say.

Professor Mike McGrew, from the University of Edinburgh’s Roslin Institute and principal investigator of the study, said: “Bird flu is a great threat to bird populations. Vaccination against the virus poses a number of challenges, with significant practical and cost issues associated with vaccine deployment.

“Gene-editing offers a promising route towards permanent disease resistance, which could be passed down through generations, protecting poultry and reducing the risks to humans and wild birds. Our work shows that stopping the spread of avian influenza in chickens will need several simultaneous genetic changes.”

A non-gene-edited chicken (left) pictured next to an ANP32A gene-edited chicken (right). Image credit: Norrie Russell Courtesy: University of Edinburgh

There’s also an October 10, 2023 article by Jon Cohen for Science.org, which gives some idea of how much work it took to get to this point, Note: Links have been removed,

For 3 decades, Helen Sang has tinkered with the genomes of chickens to try to make the birds resistant to the flu viruses that periodically devastate flocks and raise fears of a human pandemic. Now, as an especially virulent strain of avian influenza sweeps through poultry and wild birds around the world, the geneticist at the University of Edinburgh’s Roslin Institute has her first solid success. Using the CRISPR gene editor and recent findings about what makes poultry vulnerable to flu, Sang and colleagues from three other institutions have created chickens that can resist real-life doses of avian flu viruses. “Sticking to it gets you somewhere in the end,” she says.

The result, published today [October 5, 2023] in Nature Communications, is “a long-awaited achievement,” says Jiří Hejnar, a virologist at the Czech Academy of Sciences’s Institute of Molecular Genetics whose group showed in 2020 that CRISPR-edited chickens could resist a cancer-causing virus. But farmers won’t be raising flu-proof chickens anytime soon. The edited birds still became infected when exposed to larger amounts of the flu virus. And the strategy raises a safety concern: chickens edited this way could, in theory, drive the evolution of flu variants better at infecting people. “What this showed is a proof of concept,” says Wendy Barclay, a virologist at Imperial College London who worked on the new study. “But we’re not there yet.”

Here’s a link to and a citation for the paper,

Creating resistance to avian influenza infection through genome editing of the ANP32 gene family by Alewo Idoko-Akoh, Daniel H. Goldhill, Carol M. Sheppard, Dagmara Bialy, Jessica L. Quantrill, Ksenia Sukhova, Jonathan C. Brown, Samuel Richardson, Ciara Campbell, Lorna Taylor, Adrian Sherman, Salik Nazki, Jason S. Long, Michael A. Skinner, Holly Shelton, Helen M. Sang, Wendy S. Barclay & Mike J. McGrew. Nature Communications volume 14, Article number: 6136 (2023) DOI: https://doi.org/10.1038/s41467-023-41476-3 Published: 10 October 2023

This paper is open access.

The University of British Columbia and its November 28, 2023 Great UBC Bug Bake Off

Last week, I received (via email) this enticing November 27, 2023 University of British Columbia media advisory,

Welcome, baking enthusiasts and insect epicureans, to the Great UBC Bug
Bake Off!

On Nov. 28 [2023], media are invited as four teams of faculty of land and food
systems students engage in a six-legged culinary showdown. Students will
showcase insect-laden dishes that are delicious, nutritious and
environmentally friendly. Esteemed judges, including UBC executive chef
David Speight, will weigh in on the taste, texture and insect ingenuity
of the creations.

We spoke to course instructor and sessional lecturer Dr. Yasmin Akhtar
about the competition, and why she advocates for entomophagy – eating
insects and bugs.

WHY DO YOU HOST THIS INSECT DISH COMPETITION?

This competition is the culmination of my applied biology course
“Insects as Food and Feed” where we spent the semester learning
about the benefits and risks of eating and using insects. One of my
goals is to reduce the negative perceptions people may have of eating
bugs. This competition is a fun way to raise awareness among students
about the nutritional value of insects, their role in sustainable food
systems and the importance of considering alternative protein sources.

WHAT ARE THE BENEFITS OF EATING INSECTS?

In addition to being really tasty, there are two main benefits of eating
insects.

Many insects are incredibly nutritious: They are high in protein,
calcium, good fatty acids and vitamins. For example, a species of
grasshoppers commonly eaten in Mexico, Sphenarium purpurascens,
contain 48 grams of protein per 100 grams, compared to 27 grams of
protein per 100 grams of beef. Insect protein is also easily absorbed by
humans and some insects contain all the essential amino acids that
humans need.

The other benefit is environmental. Rearing insects requires much less
space, fewer resources like water and much less feed. They produce much
lower greenhouse gas emissions than cattle or pigs, for example. It also
encourages the sustainable use of diverse insect species, rather than
relying on a small number of traditional livestock species to meet the
world’s needs.

It is also relatively cheap to rear insects, which means that
small-scale farmers can benefit.

WHAT ARE SOME EASY WAYS TO INCORPORATE BUGS INTO YOUR DIET?

Insect flours and insect powders are an easy way to incorporate bugs
into your diet – especially if you are wary of eating insects whole.
You can purchase insect flour online and simply replace wheat flour in
any recipe with the insect flour for tasty, high-protein baked products
like muffins or as filling in samosas.

Barbecuing insects is another great option: they absorb flavour really
well, and dry out to become very crunchy. Barbecued crickets are my
favourite! I also really like chocolate-covered ants, and adding insect
powder to green tea.

WHAT ARE SOME RISKS OF EATING INSECTS THAT PEOPLE SHOULD BE AWARE OF?

Insects live in a lot of different environments, including soil, and can
be infested with microorganisms like bacteria, fungi and other viruses.
Just like other animal proteins, insects should be treated before they
are consumed – using heat to boil or cook them, for example.

If capturing insects from the wild, you need to be aware that they may
be contaminated with pesticides that were used to spray fruits and
vegetables. A better option would be purchase them from insect farms,
where they are safely raised to be used as food.

Lastly, if you’re allergic to seafood, then you’ll likely also be
allergic to insects because they share similar protein allergens.

EVENT: GREAT UBC BUG BAKE OFF

Date/time: Tuesday, Nov. 28, 11:15 a.m. – 1 p.m.

Contest will begin promptly at 11:30 a.m. so please arrive early to set
up.

Location: Vij’s Kitchen, Room 130, 2205 East Mall

As you might have expected, the media attended. From a November 28, 2023 article by Stefan Labbé for vancouverisawesome.com

Inside a culinary lab at the University of British Columbia, nine students took turns offering a menu of insect-infused recipes to a panel of judges. 

Beef tacos wrapped in cricket flour-laced tortillas. Mealworm ginger sugar cookies “to add a little protein during the holidays.” And cheesecake with a layer of crushed cricket fudge. Judge and UBC executive chef David Speight snapped off a piece of ginger cookie in his mouth. 

“It doesn’t really taste like mealworm,” he said with a smile. “That’s good.”

The competition, billed as the Great UBC Bug Bake Off, pit the students against each other to see who could come up with the tastiest, and perhaps least offensive dish. But for students who had just spent months learning about insects as food and feed, the stakes of eating bugs was much larger. 

“We’re going hungry globally,” said UBC student Rozy Etaghene, after presenting her cheesecake.

By 2050, the global population is expected to hit nine million people [sic; the UN projection is for 9.8 billion]. To feed all those mouths, agricultural production will have to double, according to the UN’s Food and Agricultural Organization. But agriculture already takes up 30 per cent of the planet’s land, with up to 70 per cent of that reserved for livestock like cattle, pigs and chickens.

But substituting chicken wings for fried crickets is not always an easy sell. A decade ago, Vancouver chef Vikram Vij donated $250,000 to renovate UBC’s culinary lab. At the time, the co-owner of Vij’s restaurants, Meeru Dhalwala, was in the midst of experimentation, first putting insects on the menu in 2008.

It all started with roasted crickets, an insect that requires only two kilograms of feed for every one kilogram of body weight gain. Spiced with cayenne, cumin and coriander, Dhalwala said she would treat them like ground almonds. 

“I made a cricket paratha, like a flatbread,” she said. “It was a really big deal at the time.”

Back at the UBC culinary lab, the judges had come to a decision: Etaghene’s cheesecake had lost out to a pound cake and plate of cranberry short-bread cookies — both baked with cricket flour.

dhalwala-cricket-parantha
A cricket paratha served at Meeru Dhalwala’s restaurant in Seattle sold four times better than in Vancouver, says the restaurateur. Stefan Labbé/Glacier Media

Labbé’s November 28, 2023 article offers a lot of information on insects as food in Canada and in the world, as well as, more about the bake off.

Another November 28, 2023 article this time written by Cosmin Dzsurdzsa for True North (I have more about True North after the excerpt) highlights other aspects of the event, Note: Links have been removed,

Canadian journalists were so eager to attend the University of British Columbia’s Bug Bake Off on Tuesday [November 28, 2023] to get a taste of edible insect creations that the event was booked to capacity the night before.

Former CBC producer and UBC media relations specialist Sachintha Wickramasinghe told True North on Monday that the event was at capacity.

“There’s been significant interest since this morning and we are already at capacity for media,” said Wicramansinghe. 

There has been growing interest by governments and the private sector to warm consumers up to the idea of edible insects. The Liberal government has lavished edible insect cricket farming companies with hundreds of thousands of dollars worth of subsidies [emphasis mine]. 

For anyone curious about True North, there’s this from the True North Centre for Public Policy Wikipedia entry, Note: Links have been removed,

The True North Centre for Public Policy is a Canadian media outlet that simultaneously describes itself as a “media company”, an “advocacy organization” and as a “registered charity with the government of Canada.”[1][2] It operates a digital media arm known simply as True North [emphasis mine].[3][4]

In 1994, the Independent Immigration Aid Association was started with the goal of helping immigrants from the United Kingdom settle in British Columbia.[2][5] According to Daniel Brown, a former director of the charity, a new board of directors took control of the charity in 2017 and renamed it the True North Centre for Public Policy.[2] Control was handed off to three people:[2]

  • Kaz Nejatian, a former staffer for United Conservative Party leader Jason Kenney, and current COO of Shopify.[6]
  • William McBeath, the director of Training and Marketing for the right-wing Manning Centre for Building Democracy.
  • Erynne Schuster, an Edmonton-based lawyer.

Nejatian’s wife, Candice Malcolm, describes herself as the “founder and Editor-In-Chief” of True North.[7][8]

The political leanings of the people in charge of True North in its various manifestations don’t seem to have influenced Dzsurdzsa’s November 28, 2023 article unduly. however, I’m a little surprised by the stated size of the industry subsidies made by the Liberal government. I found an $8.5 million dollar investment (isn’t that similar to a subsidy?) for one project alone in a June 29, 2022 article by Nicole Kerwin for Pet Food Processing, Note: A link has been removed,

Agriculture and Agri-Food Canada revealed June 27 [2022] an $8.5 million investment to Aspire, an insect agricultural company, to build a new production facility in Canada. The facility will process cricket-based protein, helping to advance the use of insect proteins in human and pet food products.

According to Agriculture and Agri-Food Canada, food-grade processing of insects is relatively new in Canada, however insect-based proteins create an opportunity for the country’s agri-food industry to develop more sustainable products.

“The strength of Canadian agriculture has always been its openness to new ideas and new approaches,” said Peter Fragiskatos, parliamentary secretary to the Minister of National Revenue and member of Parliament for London North Center. “Aspire [Food Group] is helping to re-shape how we think about agriculture and opening the door to new product and market opportunities.”

Founded in 2013, Aspire strives to tackle worldwide food scarcity with a focus on edible insect production, therefore developing highly nutritious foods and lowering its environmental impact. Currently, the company has production facilities in London, Ontario, and Austin, Texas. In 2020, Aspire purchased 12 acres of land in Ontario to construct what it expects to be the largest automated, food-grade cricket processing facility in the world.

“Aspire is re-imagining what it means to sustainably produce food, and how smart technology can turn that vision into a reality,” said Francious Drouin, parliamentary secretary to the Minister of Agriculture and Agri-food Canada. “Aspire’s innovative facility will help further establish London’s reputation as a hub for cutting-edge technology, strongly contributing to Ontario and Canada’s position as an innovator in agriculture and agri-food.”

Apsire [sic] plans to use the investment, as well as smart technology, to build its first commercial insect production facility in Ontario. The facility will boost Aspire’s insect farming capabilities, providing it with the ability to grow and monitor billions of crickets, which will be used to create nutrient-rich protein ingredients for use in the human and pet food industries.

Getting back to the Bake Off, there’s a Canadian Broadcasting Corporation (CBC) video (runtime: 3 mins. 34 secs.),

UBC Bug Bake Off serves up insect dishes

Students at the University of British Columbia have whipped up some protein-rich dishes made with a special ingredient: bugs. Our Science and Climate Specialist Darius Mahdavi tried the insect-laden dishes and brought some for our Dan Burritt as well.

Sadly, you will have to endure a couple of commercials before getting to the ‘main course’.

Nanocellulose and food waste, an Australian perspective

A trio of Australian academics (Alan Labas, Benjamin Matthew Long, and Dylan Liu, all from Federation University Australia) have written a September 26, 2023 essay about nanocellulose derived from food waste for The Conversation, Note: Links have been removed,

Food waste is a global problem with approximately 1.3 billion tonnes of food wasted each year throughout the food lifecycle – from the farm to food manufacturers and households.

Across the food supply chain, Australians waste around 7.6 million tonnes of food each year. This costs our economy approximately A$36.6 billion annually.

In a recent study published in Bioresource Technology Reports, we have found a way to use food waste for making a versatile material known as nanocellulose. In particular, we used acid whey – a significant dairy production waste material that it usually difficult to dispose of.

For those who may not be familiar with nanocellulose, a lot of research was done here in Canada with a focus on using forest and agricultural waste products to produce nanocellulose. (See the CelluForce and Blue Goose Biorefineries websites for more about nanocellulose production, which in both their cases results in a specific material known as cellulose nanocrystals [CNC].) There’s more about the different kinds of nanocellulose later in this post.

The September 26, 2023 essay offers a good description of nanocellulose,

Nanocellulose is a biopolymer, which means it’s a naturally produced long chain of sugars. It has remarkable properties – bacterial nanocellulose is strong, chemically stable and biocompatible, meaning it’s not harmful to human cells. This makes it a highly marketable product with applications in packaging, wound treatments, drug delivery or food production.

Then, there’s this about the production process, from the September 26, 2023 essay, Note: A link has been removed,

The traditional approach for making nanocellulose can be expensive, uses large amounts of energy and takes a long time. Some types of nanocellulose production [emphasis mine] also use a chemical process that produces unwanted waste byproducts.

By contrast, our new approach uses just food waste and a symbiotic culture of bacteria and yeasts (SCOBY) – something you may be familiar with as a kombucha starter. Our process is low cost, consumes little energy and produces no waste.

… Lovers of home-brewed kombucha may actually be familiar with the raw nanocellulose material – it forms as a floating off-white structure called a pellicle. Some people already use this kombucha by-product as vegan leather.) A similar pellicle formed on our acid whey mixture.

I’m not sure if the “types of nanocellulose production” the writers are referring to are different types of nanocellose materials or different types of nanocellulose extraction.

A little more about nanocellulose

The Nanocellulose Wikipedia entry highlights the different materials that can be derived from nanocellulose, Note: Links have been removed,

Nanocellulose is a term referring to nano-structured cellulose. This may be either cellulose nanocrystal (CNC or NCC [nanocellulose crystal]), cellulose nanofibers (CNF) also called nanofibrillated cellulose (NFC), or bacterial nanocellulose, which refers to nano-structured cellulose produced by bacteria.

CNF is a material composed of nanosized cellulose fibrils with a high aspect ratio (length to width ratio). Typical fibril widths are 5–20 nanometers with a wide range of lengths, typically several micrometers. It is pseudo-plastic and exhibits thixotropy, the property of certain gels or fluids that are thick (viscous) under normal conditions, but become less viscous when shaken or agitated. When the shearing forces are removed the gel regains much of its original state. The fibrils are isolated from any cellulose containing source including wood-based fibers (pulp fibers) through high-pressure, high temperature and high velocity impact homogenization, grinding or microfluidization (see manufacture below).[1][2][3]

Nanocellulose can also be obtained from native fibers by an acid hydrolysis, giving rise to highly crystalline and rigid nanoparticles which are shorter (100s to 1000 nanometers) than the cellulose nanofibrils (CNF) obtained through homogenization, microfluiodization or grinding routes. The resulting material is known as cellulose nanocrystal (CNC).[4]

Nanochitin is similar in its nanostructure to nanocellulose.

Interestingly, Canadian development efforts are not mentioned in the essay until the very end, where we are lost in a plethora of other mentions, Note 1: Links have been removed; Note 2: All emphases mine,

A lthough wood-driven nanocellulose was first produced in 1983 by Herrick[7] and Turbak,[6] its commercial production postponed till 2010, mainly due to the high production energy consumption and high production cost. Innventia AB (Sweden) established the first nanocellulose pilot production plant 2010.[109] Companies and research institutes actively producing micro and nano fibrillated cellulose include: American Process (US), Borregaard (Norway), CelluComp (UK), Chuetsu Pulp and Paper (Japan), CTP/FCBA (France), Daicel (Japan), Dai-ichi Kyogo (Japan), Empa (Switzerland), FiberLean Technologies (UK), InoFib (France), Nano Novin Polymer Co. (Iran), Nippon Paper (Japan), Norske Skog (Norway), Oji Paper (Japan), RISE (Sweden), SAPPI (Netherlands), Seiko PMC (Japan), Stora Enso (Finland), Sugino Machine (Japan), Suzano (Brazil), Tianjin Haojia Cellulose Co. Ltd (China), University of Maine (US), UPM (Finland), US Forest Products Lab (US), VTT (Finland), and Weidmann Fiber Technology (Switzerland).[110] Companies and research institutes actively producing cellulose nanocrystals include: Alberta Innovates (Canada), American Process (US), Blue Goose Biorefineries (Canada), CelluForce (Canada), FPInnovations (Canada), Hangzhou Yeuha Technology Co. (China), Melodea (Israel/Sweden), Sweetwater Energy (US), Tianjin Haojia Cellulose Co. Ltd (China), and US Forest Products Lab (US).[110] Companies and research institutes actively producing cellulose filaments include: Kruger (Canada), Performance BioFilaments (Canada), and Tianjin Haojia Cellulose Co. Ltd (China).[110] Cellucomp (Scotland) produces Curran, a root-vegetable based nanocellulose.[111]

This leaves me with a couple of questions: Is my understanding of the nanocellulose story insular or Is the Wikipedia entry a little US-centric? It’s entirely possible the answer to both questions could be yes.

Why so much interest in nanocellulose? Money

From the September 26, 2023 essay, Note: A link has been removed,

Demand for nanocellulose is growing worldwide. The global market was valued at US$0.4 billion in 2022 (A$0.6bn) and is expected to grow to US$2 billion by 2030 (A$3.1bn). Bacterial nanocellulose produced from food waste can help to satisfy this demand.

This growth is in part due to how we can use nanocellulose instead of petroleum-based and other non-renewable materials in things like packaging. Among its desirable properties, nanocellulose is also fully biodegradable.

If you have time, do read the September 26, 2023 essay in its entirety.

H/t to September 27, 2023 news item on phys.org

Agricultural pest control with nanoparticles derived from plant viruses

As with many of these ‘nanoparticle solutions’ to a problem, it seems the nanoparticles are the delivery system. A September 21, 2023 news item on ScienceDaily announces the research,

A new form of agricultural pest control could one day take root — one that treats crop infestations deep under the ground in a targeted manner with less pesticide.

Engineers at the University of California San Diego have developed nanoparticles, fashioned from plant viruses, that can deliver pesticide molecules to soil depths that were previously unreachable. This advance could potentially help farmers effectively combat parasitic nematodes that plague the root zones of crops, all while minimizing costs, pesticide use and environmental toxicity.

A September 21, 2023 University of California at San Diego news release (also on EurekAlert) by Liezel Labios, which originated the news item, provides more information about the problems along with a nod to nanomedicine as the inspiration for the proposed solution, Note: Links have been removed,

Controlling infestations caused by root-damaging nematodes has long been a challenge in agriculture. One reason is that the types of pesticides used against nematodes tend to cling to the top layers of soil, making it tough to reach the root level where nematodes wreak havoc. As a result, farmers often resort to applying excessive amounts of pesticide, as well as water to wash pesticides down to the root zone. This can lead to contamination of soil and groundwater.

To find a more sustainable and effective solution, a team led by Nicole Steinmetz, a professor of nanoengineering at the UC San Diego Jacobs School of Engineering and founding director of the Center for Nano-ImmunoEngineering, developed plant virus nanoparticles that can transport pesticide molecules deep into the soil, precisely where they are needed. The work is detailed in a paper published in Nano Letters.

Steinmetz’s team drew inspiration from nanomedicine [emphasis mine], where nanoparticles are being created for targeted drug delivery, and adapted this concept to agriculture. This idea of repurposing and redesigning biological materials for different applications is also a focus area of the UC San Diego Materials Research Science and Engineering Center (MRSEC), of which Steinmetz is a co-lead. 

“We’re developing a precision farming approach where we’re creating nanoparticles for targeted pesticide delivery,” said Steinmetz, who is the study’s senior author. “This technology holds the promise of enhancing treatment effectiveness in the field without the need to increase pesticide dosage.”

The star of this approach is the tobacco mild green mosaic virus, a plant virus that has the ability to move through soil with ease. Researchers modified these virus nanoparticles, rendering them noninfectious to crops by removing their RNA. They then mixed these nanoparticles with pesticide solutions in water and heated them, creating spherical virus-like nanoparticles packed with pesticides through a simple one-pot synthesis.

This one-pot synthesis offers several advantages. First, it is cost-effective, with just a few steps and a straightforward purification process. The result is a more scalable method, paving the way toward a more affordable product for farmers, noted Steinmetz. Second, by simply packaging the pesticide inside the nanoparticles, rather than chemically binding it to the surface, this method preserves the original chemical structure of the pesticide.

“If we had used a traditional synthetic method where we link the pesticide molecules to the nanoparticles, we would have essentially created a new compound, which will need to go through a whole new registration and regulatory approval process,” said study first author Adam Caparco, a postdoctoral researcher in Steinmetz’s lab. “But since we’re just encapsulating the pesticide within the nanoparticles, we’re not changing the active ingredient, so we won’t need to get new approval for it. That could help expedite the translation of this technology to the market.”

Moreover, the tobacco mild green mosaic virus is already approved by the Environmental Protection Agency (EPA) for use as an herbicide to control an invasive plant called the tropical soda apple. This existing approval could further streamline the path from lab to market.

The researchers conducted experiments in the lab to demonstrate the efficacy of their pesticide-packed nanoparticles. The nanoparticles were watered through columns of soil and successfully transported the pesticides to depths of at least 10 centimeters. The solutions were collected from the bottom of the soil columns and were found to contain the pesticide-packed nanoparticles. When the researchers treated nematodes with these solutions, they eliminated at least half of the population in a petri dish.

While the researchers have not yet tested the nanoparticles on nematodes lurking beneath the soil, they note that this study marks a significant step forward.

“Our technology enables pesticides meant to combat nematodes to be used in the soil,” said Caparco. “These pesticides alone cannot penetrate the soil. But with our nanoparticles, they now have soil mobility, can reach the root level, and potentially kill the nematodes.”

Future research will involve testing the nanoparticles on actual infested plants to assess their effectiveness in real-world agricultural scenarios. Steinmetz’s lab will perform these follow-up studies in collaboration with the U.S. Horticultural Research Laboratory. Her team has also established plans for an industry partnership aimed at advancing the nanoparticles into a commercial product.

Here’s a link to and a citation for the paper,

Delivery of Nematicides Using TMGMV-Derived Spherical Nanoparticles by Adam A. Caparco, Ivonne González-Gamboa, Samuel S. Hays, Jonathan K. Pokorski, and Nicole F. Steinmetz. Nano Lett. 2023, 23, 12, 5785–5793 DOI: https://doi.org/10.1021/acs.nanolett.3c01684 Publication Date:June 16, 2023 Copyright © 2023 American Chemical Society

This paper is behind a paywall.

Silk micro or nanoparticles for tracking seeds

I hadn’t heard of counterfeit seeds before but this March 22, 2023 news item on phys.org describes the problem and announces an approach to prevention,

Average crop yields in Africa are consistently far below expected, and one significant reason is the prevalence of counterfeit seeds whose germination rates are far lower than those of the genuine ones. The World Bank estimates that as much as half of all seeds sold in some African countries are fake, which could help to account for crop production that is far below potential.

There have been many attempts to prevent this counterfeiting through tracking labels, but none have proved effective; among other issues, such labels have been vulnerable to hacking because of the deterministic nature of their encoding systems. But now, a team of MIT [Massachusetts Institute of Technology] researchers has come up with a kind of tiny, biodegradable tag that can be applied directly to the seeds themselves, and that provides a unique randomly created code that cannot be duplicated.

I found this picture helped me to understand how ‘tracking’ these seeds could be useful,

As a way to reduce seed counterfeiting, MIT researchers developed a silk-based tag that, when applied to seeds, provides a unique code that cannot be duplicated. Credits: Credit: Photograph courtesy of the researchers. Edited by Jose-Luis Olivares, MIT

A March 22, 2023 Massachusetts Institute of Technology (MIT) news release by David Chandler (also on EurekAlert), which originated the news item, describes the work in more detail (Note: I’m glad to see David Chandler is getting bylines again even if it’s on the EurekAlert version only),

The new system, which uses minuscule dots of silk-based material, each containing a unique combination of different chemical signatures, is described today in the journal Science Advances in a paper by MIT’s dean of engineering Anantha Chandrakasan, professor of civil and environmental engineering Benedetto Marelli, postdoc Hui Sun, and graduate student Saurav Maji.

The problem of counterfeiting is an enormous one globally, the researchers point out, affecting everything from drugs to luxury goods, and many different systems have been developed to try to combat this. But there has been less attention to the problem in the area of agriculture, even though the consequences can be severe. In sub-Saharan Africa, for example, the World Bank estimates that counterfeit seeds are a significant factor in crop yields that average less than one-fifth of the potential for maize, and less than one-third for rice. 

Marelli explains that a key to the new system is creating a randomly-produced physical object whose exact composition is virtually impossible to duplicate. The labels they create “leverage randomness and uncertainty in the process of application, to generate unique signature features that can be read, and that cannot be replicated,” he says.

What they’re dealing with, Sun adds, “is the very old job of trying, basically, not to get your stuff stolen. And you can try as much as you can, but eventually somebody is always smart enough to figure out how to do it, so nothing is really unbreakable. But the idea is, it’s almost impossible, if not impossible, to replicate it, or it takes so much effort that it’s not worth it anymore.”

The idea of an “unclonable” code was originally developed as a way of protecting the authenticity of computer chips, explains Chandrakasan, who is the Vannevar Bush Professor of Electrical Engineering and Computer Science. “In integrated circuits, individual transistors have slightly different properties coined device variations,” he explains, “and you could then use that variability and combine that variability with higher-level circuits to create a unique ID for the device. And once you have that, then you can use that unique ID as a part of a security protocol. Something like transistor variability is hard to replicate from device to device, so that’s what gives it its uniqueness, versus storing a particular fixed ID.” The concept is based on what are known as physically unclonable functions, or PUFs.

The team decided to try to apply that PUF principle to the problem of fake seeds, and the use of silk proteins was a natural choice because the material is not only harmless to the environment but also classified by the Food and Drug Administration in the “generally recognized as safe” category, so it requires no special approval for use on food products.

“You could coat it on top of seeds,” Maji says, “and if you synthesize silk in a certain way, it will also have natural random variations. So that’s the idea, that every seed or every bag could have a unique signature.”

Developing effective secure system solutions have long been one of Chandrakasan’s specialties, while Marelli has spent many years developing systems for applying silk coatings to a variety of fruits, vegetables, and seeds, so their collaboration was a natural for developing such a silk-based coding system towards enhanced security. 

“The challenge was what type of form factor to give to silk,” Sun says, “so that it can be fabricated very easily.” They developed a simple drop-casting approach that produces tags that are less than one-tenth of an inch in diameter. The second challenge was to develop “a way where we can read the uniqueness, in also a very high throughput and easy way.”

For the unique silk-based codes, Marelli says, “eventually we found a way to add a color to these microparticles [emphasis mine] so that they assemble in random structures.” The resulting unique patterns can be read out not only by a spectrograph or a portable microscope, but even by an ordinary cellphone camera with a macro lens. This image can be processed locally to generate the PUF code and then sent to the cloud and compared with a secure database to ensure the authenticity of the product. “It’s random so that people cannot easily replicate it,” says Sun. “People cannot predict it without measuring it.”

And the number of possible permutations that could result from the way they mix four basic types of colored silk nanoparticles [emphasis mine] is astronomical. “We were able to show that with a minimal amount of silk, we were able to generate 128 random bits of security,” Maji says. “So this gives rise to 2 to the power 128 possible combinations, which is extremely difficult to crack given the computational capabilities of the state-of-the-art computing systems.”

Marelli says that “for us, it’s a good test bed in order to think out-of-the-box, and how we can have a path that somehow is more democratic.” In this case, that means “something that you can literally read with your phone, and you can fabricate by simply drop casting a solution, without using any advanced manufacturing technique, without going in a clean room.”

Some additional work will be needed to make this a practical commercial product, Chandrakasan says. “There will have to be a development for at-scale reading” via smartphones. “So. that’s clearly a future opportunity.” But the principle now shows a clear path to the day when “a farmer could at least, maybe not every seed, but could maybe take some random seeds in a particular batch and verify them,” he says.

I’ve looked at the paper (very quickly) and haven’t spotted any mention of silk nanoparticles. It’s all silk microparticles.

Here’s a link to and a citation for the paper,

Integrating biopolymer design with physical unclonable functions for anticounterfeiting and product traceability in agriculture by Hui Sun, Saurav Maji, Anantha P. Chandrakasan, and Benedetto Marelli. Science Advances 22 Mar 2023 Vol 9, Issue 12 DOI: 10.1126/sciadv.adf1978

This paper is open access.

Gene-edited food: better tasting and/or allergen-free?

I have two items about gene-edited food. One is from the Canadian Broadcasting Corporation (CBC) and the other is from Hiroshima University (Japan).

Better tasting food?

Cherries without pits do not fit my definition of better tasting food but it’s just one of the touted ‘improvements’.

https://i.cbc.ca/1.6513602.1684353993!/fileImage/httpImage/image.jpg_gen/derivatives/16x9_780/a-little-dirt-never-hurt-01.jpg
Can you imagine eating cherries without having to deal with its pits? That could be a reality thanks to gene-editing tools like CRISPR. (Ben Nelms/CBC)

A May 18, 2023 article by Mouhamad Rachini for CBC’s radio programme, The Current, features information from a radio segment on gene-edited food,

When Michael Wolf tried a new type of mustard green that had been gene-edited to taste less bitter, he came away impressed.

“I don’t necessarily like my food very bitter, so I appreciated it,” Wolf, founder of the food tech publication The Spoon, told The Current’s Matt Galloway.

Food scientists are starting to use gene-editing technology, called CRISPR [clustered regularly interspaced short palindromic repeats], to change certain features of some Canadians’ favourite fruits and vegetables. For example, scientists told Wolf that the technology could be used to create cherries without a pit.

Pairwise, a North Carolina-based gene-editing startup, recently rolled out a mustard green engineered to be less bitter than the original plant. It’s the first CRISPR-edited food to hit the U.S. market. 

Although the gene-edited mustard greens haven’t appeared in Canada yet, the process could find a home here very soon.

Earlier this month, Minister of Agriculture and Agri-Food Marie-Claude Bibeau announced that the Canadian Food Inspection Agency (CFIA) seed guidelines now allow for some modified plants.

The updated rules now allow seeds created through gene-editing without an independent safety assessment by the government, as long as they aren’t spliced with DNA from other types of fruits or vegetables, or altered to make them pesticide-resistant. [emphasis mine]

Wolf explained further that gene-editing with CRISPR has some key differences from other types of genetic modification for food, which has been around for some time.

“[With genetic modification], you’re maybe inserting a foreign DNA into a molecule. But with CRISPR, what it’s essentially doing is just cutting out undesirable traits,” he said. [emphasis mine]

“So you’re not really inserting something that might be foreign to the organism. So it’s something that is a bit, I guess, less concerning for a lot of people who are worried about GMO because that takes away that concern.” [emphasis mine]

“Removing bitterness in a vegetable, I believe, is doing a disservice to our palate,” Dionisia Roman-Osicki of Virden, Man., wrote to The Current. “You can’t be a foodie without recognizing the value of bitterness in food.”

Organic farmer Antony John said there are already “cultural methods” to sweeten the taste and nutritional values of certain foods without genetic modification, such as carrots.

“The cold temperatures causes the carrots to provide an antifreeze, and that antifreeze is sugar,” said John, co-owner of the Soiled Reputation farm in Sebringville, Ont. “So they convert the starch in their roots into sugars. So letting your carrots grow when it’s cold and when there’s subzero temperatures will enhance the sugar in it.”

The radio segment embedded in Rachini’s May 18, 2023 article is 13 mins. 14 secs.

Allergen-free eggs

Over at Hiroshima University, a May 17, 2023 press release (also on EurekAlert but published May 16, 2023) announces research into making eggs safer for people who have allergies, Note 1: The researchers have used a different kind of gene-editing (or genome-editing) technique Note 2: Links have been removed,

Researchers have developed a chicken egg that may be safe for people with egg white allergies. Chicken egg allergies are one of the most common allergies in children. Though most children outgrow this allergy by age 16, some will still have an egg allergy into adulthood. Egg white allergies can cause a variety of symptoms, including vomiting, stomach cramps, breathing problems, hives, and swelling and some people with egg white allergies are unable to receive certain flu vaccines.

Using genome editing technology, researchers have produced an egg without the protein that causes egg white allergies. This protein, called ovomucoid, accounts for approximately 11% of all the protein in egg whites.

Research detailing the food safety profile of this modified egg, called the OVM-knockout, was detailed in a paper published in Food and Chemical Toxicology in April 2023.

“To use OVM-knockout chicken eggs as food, it is important to evaluate its safety as food. In this study, we examined the presence or absence of mutant protein expression, vector sequence insertion, and off-target effects in chickens knocked out with OVM by platinum transcription activator-like effector nucleases (TALENs),” said Ryo Ezaki, an assistant professor at the Graduate School of Integrated Sciences for Life at Hiroshima University in Hiroshima, Japan. TALENs are restriction enzymes that recognize specific DNA sequences and break or cut them.

In order to develop the OVM-knockout eggs, researchers needed to detect and eliminate the ovomucoid protein in the egg whites. TALENs were engineered to target a piece of RNA called exon 1, which codes for specific proteins. The eggs produced from this technique were then tested to ensure there was no ovomucoid protein, mutant ovomucoid protein, or other off-target effects. The eggs had the desired frameshift mutation, which is a mutation created by inserting or deleting nucleotide bases in a gene, and none of them expressed mature ovomucoid proteins. Anti-ovomucoid and anti-mutant ovomucoid antibodies were used to detect any traces of the protein, but there was no evidence of ovomucoid in the eggs. This means that mutant ovomucoids could not create new allergens. This is an important step in determining the safety profile of the eggs.

Other gene editing tools, such as CRISPR, tend to have off-target mutagenesis effects. This means that new mutations are prompted by the gene editing process. However, whole genome sequencing of the altered egg whites showed mutations, which were possibly off-target effects, were not localized to the protein-coding regions.

“The eggs laid by homozygous OVM-knockout hens showed no evident abnormalities. The albumen contained neither the mature OVM nor the OVM-truncated variant,” said Ezaki. “The potential TALEN-induced off-target effects in OVM-knockout chickens were localized in the intergenic and intron regions. Plasmid vectors used for genome editing were only transiently present and did not integrate into the genome of edited chickens. These results indicate the importance of safety evaluations and reveal that the eggs laid by this OVM knockout chicken solve the allergy problem in food and vaccines.”

Looking ahead, researchers will continue to verify the safety profile of the OVM-knockout eggs. Because some people are highly allergic to this specific protein, even small amounts of ovomucoid can cause a reaction. Researchers will need to perform additional immunological and clinical studies to determine the safety of the OVM-knockout eggs. At this time, researchers have determined that OVM-knockout eggs are less allergenic than standard eggs and can be safely used in heat-processed foods that patients with egg allergies can eat. “The next phase of research will be to evaluate the physical properties and processing suitability of OVM-knockout eggs, and to confirm their efficacy through clinical trials,” said Ezaki. “We will continue to conduct further research toward the practical application of allergy-reduced eggs.”

Here’s a link to and a citation for the paper,

Transcription activator-like effector nuclease-mediated deletion safely eliminates the major egg allergen ovomucoid in chickens by Ryo Ezaki, Tetsushi Sakuma, Daisuke Kodama, Ryou Sasahara, Taichi Shiraogawa, Kennosuke Ichikawa, Mei Matsuzaki, Akihiro Handa, Takashi Yamamoto & Hiroyuki Horiuchi. Food and Chemical Toxicology Volume 175, May 2023, 113703 DOI: https://doi.org/10.1016/j.fct.2023.113703

This paper is open access.

Discussing Nano-Yield’s fertilizer delivery systems on the Ag Tech Talk podcast

I was hoping for some technical information in the Ag Tech Talk podcast (which is produced by AgriBusiness Global [AGB]) or on the interview subject’s Nano-Yield website but—no. The Ag Tech Talk host, Daniel Jacobs, provides a little information about size when discussing the nanoscale; offering a blade of grass as an example, Unfortunately, Jacobs is unable to get more technical information from Clark Bell, the company’s CEO (Chief Executive Officer) but there is ample discussion of the company’s business.

An excerpt from the transcript below the May 19, 2023 Ag tech Talk podcast should give you a sense of how the discussion went,

With fertilizer (and other input costs) rising, getting the most for your money has never been more critical. Nano-Yield offers a nanotechnology solution to deliver product at the molecular level. We talked with Clark Bell, CEO for Nano-Yield, to learn more about this technology, what innovations are on the horizon, how biologicals fit into the picture, and much more.

ABG [AgribBusiness Globa]: How many different countries are you in right now?

CB [Clark Bell]: We are in 10. We actually just inked a deal with Bangladesh, which we should talk about.

ABG: You wouldn’t define it as something that would cure citrus greening. You had a solution that helped that process. What else is it that your products, your solutions, offer folks?

CB: I think the claims are first and foremost fertilizers, and chemistries have some inefficiencies, and they can be corrected by different compounds by adding 4 ounces of nanoliquid technology into a spray tank, we can improve the uptake, or the absorption of different fertilizer molecules, synthetic chemistry uptake or even biologicals. And so that’s where we fit into the industry. People are trying to get more out of their tank. And so, they add nanoliquid technology to improve with uptake and better absorption to improve quality yields.

There are opportunities where people can use less material applied due to nanoliquid technology. So, in some areas like Bangladesh, for instance, where supply is a major issue — they don’t manufacture any of it domestically. It’s all brought in. So, we’re answering a problem for them or other countries that have access to. We are addressing things like corn and soybeans on broad acres in the U.S. where the grains trading, it’s very profitable that if they can get more yield and more quality, they’ll spend $5 on nanoliquid technology an acre, and they can see a minimum of a four-times return on investment by throwing that in there. So, we kind of essentially just make it so that we improve the performance of whatever they’ve already been using on their farm to get better output.

ABG: We’ve been hearing a lot about the fertilizer prices just shooting through the roof. And obviously anything that would increase yield, and not cost them an arm and a leg, or better use what they already have on their field would certainly be appreciated.

CB: Yes, certainly. We’ve been doing this for nine years, but essentially, since the pandemic. That’s really where things took off. It just takes some of the marketplace to prove your science, right? And they have a lot of data. And so that was kind of an inflection point for us. We’re up to like 800 trials now that we can showcase ROI and efficiency now.

But second to that is also the timing of the market, which is oftentimes the number one iteration of how technology is adopted is if you time the market right. And when we first came up with this concept in 2014, urea hadn’t increased by three times year over year. And so, when we go into 2021 and 2022, when those issues with MAP (Monoammonium phosphate) and DAP (Diammonium phosphate) and urea and essentially all the commodity fertilizers are just so darn expensive, we’ve been able to answer that problem for people. And again, one of one of the benefits. What we do is we can either improve the performance of what you’re already using, or in some instances there can be reductions and less material applied by using Nano-Liquid technology.

ABG: Can you give me the elevator speech version of exactly what your technology does for someone for a layman who doesn’t really, understand the technical points of the of how it works.

CB: Yeah, we were at a start of a board this last weekend. And so, I was talking to a group of tech and software people that don’t understand ag. And so, in simple terms Nano-Yield sells a sustainable fertilizer technology that improves the absorption of fertilizers and chemicals from what apply into crops.

ABG: How does it do that?

CB: The way that takes place is by adding nano particles into a tank that helps the different molecules and chemicals that are in that tank where oftentimes they don’t have a good delivery system to be delivered to those tissues, or leaves, or into the root systems. And by using the Nanoliquid technology, those nano particles now encapsulate and deliver those chemicals and fertilizers, so that there’s a better uptake. And there’s an efficiency the way that all comes into place.

The May 19, 2023 Ag tech Talk podcast runs for about 30 mins. and the transcript is included after the audio file. You can find the Nano-Yield website here.