Category Archives: intellectual property

Effective treatment for citrus-destroying disease?

Citrus greening is a worldwide problem. A particularly virulent disease that destroys citrus fruit, it’s a problem that is worsening. Before getting to the research from the University of California at Riverside (UCR), here’s more about the disease and how it’s developing from the UCR Huanglongbing, (HLB, Citrus Greening webpage,

The Situation: Citrus huanglongbing (HLB), previously called citrus greening disease, is one of the most destructive diseases of citrus worldwide.  Originally thought to be caused by a virus, it is now known to be caused by unculturable phloem-limited bacteria.  There are three forms of greening that have been described.  The African form produces symptoms only under cool conditions and is transmitted by the African citrus psyllid Trioza erytreae, while the Asian form prefers warmer conditions and is transmitted by the Asian citrus psyllid Diaphorina citri.  Recently a third American form transmitted by the Asian citrus psyllid was discovered in Brazil.  This American form of the disease apparently originated in China.  In North America, the psyllid vector, Diaphorina citri, of HLB is found in Florida, Louisiana, Georgia, South Carolina, Texas and Hawaii, and recently arrived in Southern California from Mexico. HLB is known to occur in Florida Lousiana, South Carolina, Georgia, Cuba, Belize and the Eastern Yucatan of Mexico.  A federal quarantine restricts all movement of citrus and other plants in the family Rutaceae from Asian Citrus Psyllid or HLB-infested areas into California in order to prevent introduction of the disease.

 Damage:  The HLB bacteria can infect most citrus cultivars, species and hybrids and even some citrus relatives.  Leaves of newly infected trees develop a blotchy mottle appearance.  On chronically infected trees, the leaves are small and exhibit asymmetrical blotchy mottling (in contrast to Zinc deficiency that causes symmetrical blotching).  Fruit from HLB-infected trees are small, lopsided, poorly colored, and contain aborted seeds. The juice from affected fruit is low in soluble solids, high in acids and abnormally bitter.  The fruit retains its green color at the navel end when mature, which is the reason for the common name “citrus greening disease.”  This fruit is of no value because of poor size and quality.  There is no cure for the disease and rapid tree removal is critical for prevention of spread.

Economic Impact: HLB is one of the most devastating diseases of citrus and since its discovery in Florida in 2005, citrus acreage in that state has declined significantly.  If the disease were to establish in California, the nursery industry would be required to move all of their production under screenhouses, pesticide treatments for the vector would be instituted resulting in greatly increased pesticide costs (3-6 treatments per year) and indirect costs due to pesticide-induced disruption of integrated pest management programs for other citrus pests.  A costly eradication program would need to be instituted to remove infected trees in order to protect the citrus industry.

Distribution of HLB: In April 2012, after about a week of testing, the California Department of Food and Agriculture (CDFA) removed a pumelo tree with a lemon graft from Hacienda Heights in Los Angeles County after the tree and an Asian citrus psyllid found on the tree both tested positive for Huanglongbing. In 2005, HLB was also found in Florida and it is now known to occur in Louisiana, Georgia, South Carolina, Cuba, Belze and Eastern Mexico.  Worldwide, HLB is also present in China, eastern and southern Africa, the Indian subcontinent, Mauritius, Reunion, the Saudi Arabian peninsula, and southeast Asia.

Research:  Research is focusing on characterization of the bacteria, development of detection methods, and control of the disease and the psyllid.  To date, control of the disease is based on planting HLB-free citrus germplasm, eradication of infected citrus plants, and control of the vector with systemic insecticides.  Countries with HLB learn to manage the disease so that they can still produce citrus.  In California, the best strategy is to keep this disease out. This goal is supported by both federal and state quarantine regulations and the University of California’s Citrus Clonal Protection Program, which provides a mechanism for the safe introduction of citrus germplasm into California.

A July 7, 2020 news item on phys.org announces what researchers hope can be used commercially as a new treatment for citrus greening disease from researchers University of California at Riverside (UCR), Note: Links have been removed,

UC Riverside scientists have found the first substance capable of controlling Citrus Greening Disease, which has devastated citrus farms in Florida and also threatens California.

The new treatment effectively kills the bacterium causing the disease with a naturally occurring molecule found in wild citrus relatives. This molecule, an antimicrobial peptide, offers numerous advantages over the antibiotics currently used to treat the disease.

UCR geneticist Hailing Jin, who discovered the cure after a five-year search, explained that unlike antibiotic sprays, the peptide is stable even when used outdoors in high heat, easy to manufacture, and safe for humans.

A July 7, 2020 UCR news release (also on EurekAlert) by Jules Bernstein, which originated the news item, provides technical detail and information about plans to commercialize the product,

“This peptide is found in the fruit of Australian finger limes, which can naturally tolerate Citrus Greening bacteria and has been consumed for hundreds of years,” Jin said. “It is much safer to use this natural plant product on agricultural crops than other synthetic chemicals.”

Currently, some growers in Florida are spraying antibiotics and pesticides in an attempt to save trees from the CLas bacterium that causes citrus greening, also known as Huanglongbing or HLB.

“Most antibiotics are temperature sensitive, so their effects are largely reduced when applied in the hot weather,” Jin said. “By contrast, this peptide is stable even when used in 130-degree heat.”

Jin found the peptide by examining plants such as the Australian finger lime known to possess natural tolerance for the bacteria that causes Citrus Greening Disease, and she isolated the genes that contribute to this innate immunity. One of these genes produces the peptide, which she then tested over the course of two years. Improvement was soon visible.

“You can see the bacteria drastically reduced, and the leaves appear healthy again only a few months after treatment,” Jin said.

Because the peptide only needs to be reapplied a few times per year, it is highly cost effective for growers. This peptide can also be developed into a vaccine to protect young healthy plants from infection, as it is able to induce the plant’s innate immunity to the bacteria.

Jin’s peptide can be applied by injection or foliage spray, and it moves systemically through plants and remains stable, which makes the effect of the treatment stronger.

The treatment will be further enhanced with proprietary injection technology made by Invaio Sciences. UC Riverside has entered into an exclusive, worldwide license agreement with Invaio, ensuring this new treatment goes exactly where it’s needed in plants.

“Invaio is enthusiastic to partner with UC Riverside and advance this innovative technology for combating the disease known as Citrus Greening or Huanglongbing,” said Invaio Chief Science Officer Gerardo Ramos. “The prospect of addressing this previously incurable and devastating crop disease, helping agricultural communities and improving the environmental impact of production is exciting and rewarding,” he said. “This is crop protection in harmony with nature.”

The need for an HLB cure is a global problem, but hits especially close to home as California produces 80 percent of all the fresh citrus in the United States, said Brian Suh, director of technology commercialization in UCR’s Office of Technology Partnerships, which helps bring university technology to market for the benefit of society through licenses, partnerships, and startup companies.

“This license to Invaio opens up the opportunity for a product to get to market faster,” Suh said. “Cutting edge research from UCR, like the peptide identified by Dr. Jin, has a tremendous amount of commercial potential and can transform the trajectory of real-world problems with these innovative solutions.”

You can find out more about Invaio Sciences here.

Citrus greening has been featured here before in an April 7, 2015 posting titled, Citrus canker, Florida, and Zinkicide. There doesn’t seem to have been much progress made with this Florida solution for citrus greening. This 2018 document on nano.gov was the most recent I could find, ZinkicideTM- a systemic nano-ZnO based bactericide/fungicide for crop protection by Swadeshmukul Santra.

Suit up with nanofiber for protection against explosions and high temperatures

Where explosions are concerned you might expect to see some army research and you would be right. A June 29, 2020 news item on ScienceDaily breaks the news,

Since World War I, the vast majority of American combat casualties has come not from gunshot wounds but from explosions. Today, most soldiers wear a heavy, bullet-proof vest to protect their torso but much of their body remains exposed to the indiscriminate aim of explosive fragments and shrapnel.

Designing equipment to protect extremities against the extreme temperatures and deadly projectiles that accompany an explosion has been difficult because of a fundamental property of materials. Materials that are strong enough to protect against ballistic threats can’t protect against extreme temperatures and vice versa. As a result, much of today’s protective equipment is composed of multiple layers of different materials, leading to bulky, heavy gear that, if worn on the arms and legs, would severely limit a soldier’s mobility.

Now, Harvard University researchers, in collaboration with the U.S. Army Combat Capabilities Development Command Soldier Center (CCDC SC) and West Point, have developed a lightweight, multifunctional nanofiber material that can protect wearers from both extreme temperatures and ballistic threats.

A June 29, 2020 Harvard University news release (also on EurekAlert) by Leah Burrows, which originated the news item, expands on the theme,

“When I was in combat in Afghanistan, I saw firsthand how body armor could save lives,” said senior author Kit Parker, the Tarr Family Professor of Bioengineering and Applied Physics at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) and a lieutenant colonel in the United States Army Reserve. “I also saw how heavy body armor could limit mobility. As soldiers on the battlefield, the three primary tasks are to move, shoot, and communicate. If you limit one of those, you decrease survivability and you endanger mission success.”

“Our goal was to design a multifunctional material that could protect someone working in an extreme environment, such as an astronaut, firefighter or soldier, from the many different threats they face,” said Grant M. Gonzalez, a postdoctoral fellow at SEAS and first author of the paper.

In order to achieve this practical goal, the researchers needed to explore the tradeoff between mechanical protection and thermal insulation, properties rooted in a material’s molecular structure and orientation.

Materials with strong mechanical protection, such as metals and ceramics, have a highly ordered and aligned molecular structure. This structure allows them to withstand and distribute the energy of a direct blow. Insulating materials, on the other hand, have a much less ordered structure, which prevents the transmission of heat through the material.

Kevlar and Twaron are commercial products used extensively in protective equipment and can provide either ballistic or thermal protection, depending on how they are manufactured. Woven Kevlar, for example, has a highly aligned crystalline structure and is used in protective bulletproof vests. Porous Kevlar aerogels, on the other hand, have been shown to have high thermal insulation.

“Our idea was to use this Kevlar polymer to combine the woven, ordered structure of fibers with the porosity of aerogels to make long, continuous fibers with porous spacing in between,” said Gonzalez. “In this system, the long fibers could resist a mechanical impact while the pores would limit heat diffusion.”

The research team used immersion Rotary Jet-Spinning (iRJS), a technique developed by Parker’s Disease Biophysics Group, to manufacture the fibers. In this technique, a liquid polymer solution is loaded into a reservoir and pushed out through a tiny opening by centrifugal force as the device spins. When the polymer solution shoots out of the reservoir, it first passes through an area of open air, where the polymers elongate and the chains align. Then the solution hits a liquid bath that removes the solvent and precipitates the polymers to form solid fibers. Since the bath is also spinning — like water in a salad spinner — the nanofibers follow the stream of the vortex and wrap around a rotating collector at the base of the device.

By tuning the viscosity of the liquid polymer solution, the researchers were able to spin long, aligned nanofibers into porous sheets — providing enough order to protect against projectiles but enough disorder to protect against heat. In about 10 minutes, the team could spin sheets about 10 by 30 centimeters in size.

To test the sheets, the Harvard team turned to their collaborators to perform ballistic tests. Researchers at CCDC SC in Natick, Massachusetts simulated shrapnel impact by shooting large, BB-like projectiles at the sample. The team performed tests by sandwiching the nanofiber sheets between sheets of woven Twaron. They observed little difference in protection between a stack of all woven Twaron sheets and a combined stack of woven Twaron and spun nanofibers.

“The capabilities of the CCDC SC allow us to quantify the successes of our fibers from the perspective of protective equipment for warfighters, specifically,” said Gonzalez.

“Academic collaborations, especially those with distinguished local universities such as Harvard, provide CCDC SC the opportunity to leverage cutting-edge expertise and facilities to augment our own R&D capabilities,” said Kathleen Swana, a researcher at CCDC SC and one of the paper’s authors. “CCDC SC, in return, provides valuable scientific and soldier-centric expertise and testing capabilities to help drive the research forward.”

In testing for thermal protection, the researchers found that the nanofibers provided 20 times the heat insulation capability of commercial Twaron and Kevlar.

“While there are improvements that could be made, we have pushed the boundaries of what’s possible and started moving the field towards this kind of multifunctional material,” said Gonzalez.

“We’ve shown that you can develop highly protective textiles for people that work in harm’s way,” said Parker. “Our challenge now is to evolve the scientific advances to innovative products for my brothers and sisters in arms.”

Harvard’s Office of Technology Development has filed a patent application for the technology and is actively seeking commercialization opportunities.

Here’s a link to and a citation for the paper,

para-Aramid Fiber Sheets for Simultaneous Mechanical and Thermal Protection in Extreme Environments by Grant M. Gonzalez, Janet Ward, John Song, Kathleen Swana, Stephen A. Fossey, Jesse L. Palmer, Felita W. Zhang, Veronica M. Lucian, Luca Cera, John F. Zimmerman, F. John Burpo, Kevin Kit Parker. Matter DOI: https://doi.org/10.1016/j.matt.2020.06.001 Published:June 29, 2020

This paper is behind a paywall.

While this is the first time I’ve featured clothing/armour that’s protective against explosions I have on at least two occasions featured bulletproof clothing in a Canadian context. A November 4, 2013 posting had a story about a Toronto-based tailoring establishment, Garrison Bespoke, that was going to publicly test a bulletproof business suit. Should you be interested, it is possible to order the suit here. There’s also a February 11, 2020 posting announcing research into “Comfortable, bulletproof clothing for Canada’s Department of National Defence.”

The Broad Institute gives us another reason to love CRISPR

More and more, this resembles a public relations campaign. First, CRISPR (clustered regularly interspersed short palindromic repeats) gene editing is going to be helpful with COVID-19 and now it can help us to deal with conservation issues. (See my May 26, 2020 posting about the latest CRISPR doings as of May 7, 2020; included is a brief description of the patent dispute between Broad Institute and UC Berkeley and musings about a public relations campaign.)

A May 21, 2020 news item on ScienceDaily announces how CRISPR could be useful for conservation,

The gene-editing technology CRISPR has been used for a variety of agricultural and public health purposes — from growing disease-resistant crops to, more recently, a diagnostic test for the virus that causes COVID-19. Now a study involving fish that look nearly identical to the endangered Delta smelt finds that CRISPR can be a conservation and resource management tool, as well. The researchers think its ability to rapidly detect and differentiate among species could revolutionize environmental monitoring.

Caption: Longfin smelt can be difficult to differentiate from endangered Delta smelt. Here, a longfin smelt is swabbed for genetic identification through a CRISPR tool called SHERLOCK. Credit: Alisha Goodbla/UC Davis

A May 21, 2020 University of California at Davis (UC Davis) news release (also on EurekAlert) by Kat Kerlin, which originated the news item, provides more detail (Note: A link has been removed),

The study, published in the journal Molecular Ecology Resources, was led by scientists at the University of California, Davis, and the California Department of Water Resources in collaboration with MIT Broad Institute [emphasis mine].

As a proof of concept, it found that the CRISPR-based detection platform SHERLOCK (Specific High-sensitivity Enzymatic Reporter Unlocking) [emphasis mine] was able to genetically distinguish threatened fish species from similar-looking nonnative species in nearly real time, with no need to extract DNA.

“CRISPR can do a lot more than edit genomes,” said co-author Andrea Schreier, an adjunct assistant professor in the UC Davis animal science department. “It can be used for some really cool ecological applications, and we’re just now exploring that.”

WHEN GETTING IT WRONG IS A BIG DEAL

The scientists focused on three fish species of management concern in the San Francisco Estuary: the U.S. threatened and California endangered Delta smelt, the California threatened longfin smelt and the nonnative wakasagi. These three species are notoriously difficult to visually identify, particularly in their younger stages.

Hundreds of thousands of Delta smelt once lived in the Sacramento-San Joaquin Delta before the population crashed in the 1980s. Only a few thousand are estimated to remain in the wild.

“When you’re trying to identify an endangered species, getting it wrong is a big deal,” said lead author Melinda Baerwald, a project scientist at UC Davis at the time the study was conceived and currently an environmental program manager with California Department of Water Resources.

For example, state and federal water pumping projects have to reduce water exports if enough endangered species, like Delta smelt or winter-run chinook salmon, get sucked into the pumps. Rapid identification makes real-time decision making about water operations feasible.

FROM HOURS TO MINUTES

Typically to accurately identify the species, researchers rub a swab over the fish to collect a mucus sample or take a fin clip for a tissue sample. Then they drive or ship it to a lab for a genetic identification test and await the results. Not counting travel time, that can take, at best, about four hours.

SHERLOCK shortens this process from hours to minutes. Researchers can identify the species within about 20 minutes, at remote locations, noninvasively, with no specialized lab equipment. Instead, they use either a handheld fluorescence reader or a flow strip that works much like a pregnancy test — a band on the strip shows if the target species is present.

“Anyone working anywhere could use this tool to quickly come up with a species identification,” Schreier said.

OTHER CRYPTIC CRITTERS

While the three fish species were the only animals tested for this study, the researchers expect the method could be used for other species, though more research is needed to confirm. If so, this sort of onsite, real-time capability may be useful for confirming species at crime scenes, in the animal trade at border crossings, for monitoring poaching, and for other animal and human health applications.

“There are a lot of cryptic species we can’t accurately identify with our naked eye,” Baerwald said. “Our partners at MIT are really interested in pathogen detection for humans. We’re interested in pathogen detection for animals as well as using the tool for other conservation issues.”

Here’s a link to and a citation for the paper,

Rapid and accurate species identification for ecological studies and monitoring using CRISPR‐based SHERLOCK by Melinda R. Baerwald, Alisha M. Goodbla, Raman P. Nagarajan, Jonathan S. Gootenberg, Omar O. Abudayyeh, Feng Zhang, Andrea D. Schreier. Molecular Ecology Resources https://doi.org/10.1111/1755-0998.13186 First published: 12 May 2020

This paper is behind a paywall.

The business of CRISPR

SHERLOCK™, is a trademark for what Sherlock Biosciences calls one of its engineering biology platforms. From the Sherlock Biosciences Technology webpage,

What is SHERLOCK™?

SHERLOCK is an evolution of CRISPR technology, which others use to make precise edits in genetic code. SHERLOCK can detect the unique genetic fingerprints of virtually any DNA or RNA sequence in any organism or pathogen. Developed by our founders and licensed exclusively from the Broad Institute, SHERLOCK is a method for single molecule detection of nucleic acid targets and stands for Specific High Sensitivity Enzymatic Reporter unLOCKing. It works by amplifying genetic sequences and programming a CRISPR molecule to detect the presence of a specific genetic signature in a sample, which can also be quantified. When it finds those signatures, the CRISPR enzyme is activated and releases a robust signal. This signal can be adapted to work on a simple paper strip test, in laboratory equipment, or to provide an electrochemical readout that can be read with a mobile phone.

However, things get a little more confusing when you look at the Broad Institute’s Developing Diagnostics and Treatments webpage,

Ensuring the SHERLOCK diagnostic platform is easily accessible, especially in the developing world, where the need for inexpensive, reliable, field-based diagnostics is the most urgent

SHERLOCK (Specific High-sensitivity Enzymatic Reporter unLOCKing) is a CRISPR-based diagnostic tool that is rapid, inexpensive, and highly sensitive, with the potential to have a transformative effect on research and global public health. The SHERLOCK platform can detect viruses, bacteria, or other targets in clinical samples such as urine or blood, and reveal results on a paper strip — without the need for extensive specialized equipment. This technology could potentially be used to aid the response to infectious disease outbreaks, monitor antibiotic resistance, detect cancer, and more. SHERLOCK tools are freely available [emphasis mine] for academic research worldwide, and the Broad Institute’s licensing framework [emphasis mine] ensures that the SHERLOCK diagnostic platform is easily accessible in the developing world, where inexpensive, reliable, field-based diagnostics are urgently needed.

Here’s what I suspect. as stated, the Broad Institute has free SHERLOCK licenses for academic institutions and not-for-profit organizations but Sherlock Biosciences, a Broad Institute spinoff company, is for-profit and has trademarked SHERLOCK for commercial purposes.

Final thoughts

This looks like a relatively subtle campaign to influence public perceptions. Genetic modification or genetic engineering as exemplified by the CRISPR gene editing technique is a force for the good of all. It will help us in our hour of need (COVID-19 pandemic) and it can help us save various species and better manage our resources.

This contrasts greatly with the publicity generated by the CRISPR twins situation where a scientist claimed to have successfully edited the germline for twins, Lulu and Nana. This was done despite a voluntary, worldwide moratorium on germline editing of viable embryos. (Search the terms [either here or on a standard search engine] ‘CRISPR twins’, ‘Lulu and Nana’, and/or ‘He Jiankui’ for details about the scandal.

In addition to presenting CRISPR as beneficial in the short term rather than the distant future, this publicity also subtly positions the Broad Institute as CRISPR’s owner.

Or, maybe I’m wrong. Regardless, I’m watching.

US Food and Drug Administration (FDA) gives first authorization for CRISPR (clustered regularly interspersed short palindromic repeats) use in COVID-19 crisis

Clustered regularly interspersed short palindromic repeats (CRISPR) gene editing has been largely confined to laboratory use or tested in agricultural trials. I believe that is true worldwide excepting the CRISPR twin scandal. (There are numerous postings about the CRISPR twins here including a Nov. 28, 2018 post, a May 17, 2019 post, and a June 20, 2019 post. Update: It was reported (3rd. para.) in December 2019 that He had been sentenced to three years jail time.)

Connie Lin in a May 7, 2020 article for Fast Company reports on this surprising decision by the US Food and Drug Administration (FDA), Note: A link has been removed),

The U.S. Food and Drug Administration has granted Emergency Use Authorization to a COVID-19 test that uses controversial gene-editing technology CRISPR.

This marks the first time CRISPR has been authorized by the FDA, although only for the purpose of detecting the coronavirus, and not for its far more contentious applications. The new test kit, developed by Cambridge, Massachusetts-based Sherlock Biosciences, will be deployed in laboratories certified to carry out high-complexity procedures and is “rapid,” returning results in about an hour as opposed to those that rely on the standard polymerase chain reaction method, which typically requires six hours.

The announcement was made in the FDA’s Coronavirus (COVID-19) Update: May 7, 2020 Daily Roundup (4th item in the bulleted list), Or, you can read the May 6, 2020 letter (PDF) sent to John Vozella of Sherlock Biosciences by the FDA.

As well, there’s the May 7, 2020 Sherlock BioSciences news release (the most informative of the lot),

Sherlock Biosciences, an Engineering Biology company dedicated to making diagnostic testing better, faster and more affordable, today announced the company has received Emergency Use Authorization (EUA) from the U.S. Food and Drug Administration (FDA) for its Sherlock™ CRISPR SARS-CoV-2 kit for the detection of the virus that causes COVID-19, providing results in approximately one hour.

“While it has only been a little over a year since the launch of Sherlock Biosciences, today we have made history with the very first FDA-authorized use of CRISPR technology, which will be used to rapidly identify the virus that causes COVID-19,” said Rahul Dhanda, co-founder, president and CEO of Sherlock Biosciences. “We are committed to providing this initial wave of testing kits to physicians, laboratory experts and researchers worldwide to enable them to assist frontline workers leading the charge against this pandemic.”

The Sherlock™ CRISPR SARS-CoV-2 test kit is designed for use in laboratories certified under the Clinical Laboratory Improvement Amendments of 1988 (CLIA), 42 U.S.C. §263a, to perform high complexity tests. Based on the SHERLOCK method, which stands for Specific High-sensitivity Enzymatic Reporter unLOCKing, the kit works by programming a CRISPR molecule to detect the presence of a specific genetic signature – in this case, the genetic signature for SARS-CoV-2 – in a nasal swab, nasopharyngeal swab, oropharyngeal swab or bronchoalveolar lavage (BAL) specimen. When the signature is found, the CRISPR enzyme is activated and releases a detectable signal. In addition to SHERLOCK, the company is also developing its INSPECTR™ platform to create an instrument-free, handheld test – similar to that of an at-home pregnancy test – that utilizes Sherlock Biosciences’ Synthetic Biology platform to provide rapid detection of a genetic match of the SARS-CoV-2 virus.

“When our lab collaborated with Dr. Feng Zhang’s team to develop SHERLOCK, we believed that this CRISPR-based diagnostic method would have a significant impact on global health,” said James J. Collins, co-founder and board member of Sherlock Biosciences and Termeer Professor of Medical Engineering and Science for MIT’s Institute for Medical Engineering and Science (IMES) and Department of Biological Engineering. “During what is a major healthcare crisis across the globe, we are heartened that the first FDA-authorized use of CRISPR will aid in the fight against this global COVID-19 pandemic.”

Access to rapid diagnostics is critical for combating this pandemic and is a primary focus for Sherlock Biosciences co-founder and board member, David R. Walt, Ph.D., who co-leads the Mass [Massachusetts] General Brigham Center for COVID Innovation.

“SHERLOCK enables rapid identification of a single alteration in a DNA or RNA sequence in a single molecule,” said Dr. Walt. “That precision, coupled with its capability to be deployed to multiplex over 100 targets or as a simple point-of-care system, will make it a critical addition to the arsenal of rapid diagnostics already being used to detect COVID-19.”

This development is particularly interesting since there was a major intellectual property dispute over CRISPR between the Broad Institute (a Harvard University and Massachusetts Institute of Technology [MIT] joint initiative), and the University of California at Berkeley (UC Berkeley). The Broad Institute mostly won in the first round of the patent fight, as I noted in a March 15, 2017 post but, as far as I’m aware, UC Berkeley is still disputing that decision.

In the period before receiving authorization, it appears that Sherlock Biosciences was doing a little public relations and ‘consciousness raising’ work. Here’s a sample from a May 5, 2020 article by Sharon Begley for STAT (Note: Links have been removed),

The revolutionary genetic technique better known for its potential to cure thousands of inherited diseases could also solve the challenge of Covid-19 diagnostic testing, scientists announced on Tuesday. A team headed by biologist Feng Zhang of the McGovern Institute at MIT and the Broad Institute has repurposed the genome-editing tool CRISPR into a test able to quickly detect as few as 100 coronavirus particles in a swab or saliva sample.

Crucially, the technique, dubbed a “one pot” protocol, works in a single test tube and does not require the many specialty chemicals, or reagents, whose shortage has hampered the rollout of widespread Covid-19 testing in the U.S. It takes about an hour to get results, requires minimal handling, and in preliminary studies has been highly accurate, Zhang told STAT. He and his colleagues, led by the McGovern’s Jonathan Gootenberg and Omar Abudayyeh, released the protocol on their STOPCovid.science website.

Because the test has not been approved by the Food and Drug Administration, it is only for research purposes for now. But minutes before speaking to STAT on Monday, Zhang and his colleagues were on a conference call with FDA officials about what they needed to do to receive an “emergency use authorization” that would allow clinical use of the test. The FDA has used EUAs to fast-track Covid-19 diagnostics as well as experimental therapies, including remdesivir, after less extensive testing than usually required.

For an EUA, the agency will require the scientists to validate the test, which they call STOPCovid, on dozens to hundreds of samples. Although “it is still early in the process,” Zhang said, he and his colleagues are confident enough in its accuracy that they are conferring with potential commercial partners who could turn the test into a cartridge-like device, similar to a pregnancy test, enabling Covid-19 testing at doctor offices and other point-of-care sites.

“It could potentially even be used at home or at workplaces,” Zhang said. “It’s inexpensive, does not require a lab, and can return results within an hour using a paper strip, not unlike a pregnancy test. This helps address the urgent need for widespread, accurate, inexpensive, and accessible Covid-19 testing.” Public health experts say the availability of such a test is one of the keys to safely reopening society, which will require widespread testing, and then tracing and possibly isolating the contacts of those who test positive.

If you have time, do read Begley’s in full.

Increased food security with hexanal for younger looking, fresher tasting fruits and vegetables

Also known as an anti-aging agent for your fruit and vegetables, hexanal is an environmentally friendly chemical, which is found naturally. Research has led to a synthesized nanotechnology-enabled product now being commercialized. I’ve been following the story off and on since 2012 (see my ‘India, Sri Lanka, and Canada team up for nanotechnology-enabled food packaging‘ posting). I last wrote about the project in a December 29, 2015 posting.

For some reason, hexanal hit the news hard in 2019 having been preceded by some interest in 2018. What follows is an update and a timeline of sorts.

January 2019: More funding

A January 24,2019 essay (also published on the University of Guelph website on January 29, 2019) by Jayasankar Subramanian and Elizabeth Finnis, both are lead researchers on the the project and professors at the University of Guelph (Canada), provides an overview and an update of the hexanal project (Note: Links have been removed) ,

Fruits like mangoes, bananas, papayas and limes are shipped long distances before they get to your table. Many fruits are delicate, and there may be a long period of time that elapses between when the fruit is picked and its arrival in grocery stores and other markets. They’re often picked before they’re truly ripe in order to increase their shelf life.

Even so, globally, up to 40 per cent of all picked fruit can be lost and this represents billions of dollars. But what if we had the technology to delay fruit’s natural degradation process? This is where hexanal can make a difference.

Fruits like mangoes, bananas, papayas and limes are shipped long distances before they get to your table. Many fruits are delicate, and there may be a long period of time that elapses between when the fruit is picked and its arrival in grocery stores and other markets. They’re often picked before they’re truly ripe in order to increase their shelf life.

Even so, globally, up to 40 per cent of all picked fruit can be lost and this represents billions of dollars. But what if we had the technology to delay fruit’s natural degradation process? This is where hexanal can make a difference.

Hexanal is naturally produced by plants to ward off pests; our research at the University of Guelph has found that when it’s applied externally, hexanal can also slow down the aging process.

Like everything else, fruit ages with time. The shrivelling and rot is triggered by the enzyme phospholipase D (PLD), which causes the eventual collapse of the fruit’s membrane. Essentially, fruit membranes are snug, and function like a brick wall of phospholipid bilayers. Phospholipase D breaks the alignment of the bricks, causing the membrane to crumble. Hexanal acts by reducing and slowing the formation of PLD, which in turn slows the collapse of the fruit’s membrane.

In partnership with agricultural and social science researchers in Canada and five other countries, we have tested nine hexanal technologies. These include a spray formulation that gets applied to fruit when they’re still on trees, post-harvest dips, fruit wraps, stickers and sachets embedded with hexanal.

Our findings have implications for consumers, retailers and, more importantly, farmers. For example, when applied as a pre-harvest spray, hexanal can keep fruit on trees longer and keep it fresher after harvest — up to three weeks longer for mangoes.

Hexanal is naturally produced by all plants and is already found as an additive in some food products. Hexanal is also approved by Health Canada as a flavour formula. Our tests of synthesized hexanal sprays, dips and other technologies showed that there were no negative effects on plants, insects or other animals. In addition, hexanal evaporates within 24 hours, which means there’s no residue left on fruit.

Farmers who participated in hexanal testing in Canada and elsewhere were happy with the product both in terms of its effectiveness and bio-safety.

Currently, hexanal for agricultural use is in the two-year regulatory clearance process in Canada and the U.S. Once the process is complete, hexanal formulations are expected to be available for farmer use and can be accessed through companies with a license for production.

Hexanal slows down the ripening and aging process in fresh produce. Author provided

That’s a stunning difference, eh?

Funding

At about the same time as the Conversation essay by Subramanian and Finnis, the University of Guelph published (on the Council of Ontario Universities website) a January 27, 2019 news release announcing new funds for the project,

A University of Guelph research project that has already improved the livelihoods of small-scale Asian farmers will further expand worldwide, thanks to more than $4.2 million in federal support announced Friday afternoon.

The project involves innovative packaging developed in part by Guelph researchers using nanotechnology to improve the shelf life of mangoes, a major fruit crop in much of the world.

Already, the technology has helped to significantly reduce post-harvest losses in Sri Lanka and India. Poor storage meant that farmers routinely lost up to 40 per cent of their crops, worth upwards of $800 million a year. The new technology has also boosted per-acre revenue.

New funding support from the International Development Research Centre (IDRC) and Foreign Affairs, Trade and Development Canada will allow researchers to broaden this successful initiative to Kenya, Tanzania, and Trinidad and Tobago.

Researchers will also look at other fruit — bananas, grapes, papaya, nectarines and berries — and investigate ways to commercialize the technologies.

… it will also be a main pillar of the Guelph-East Africa Initiative, which U of G established to bring together stakeholders to support research and teaching in food, health, water, education, environment and community.

“This confirms our commitment to improve agriculture in East Africa and around the world.” [said John Livernois, interim vice-president {research} ]

The project involves the use of hexanal, a natural plant product that delays fruit ripening and aging. Guelph plant agriculture professor Gopi Paliyath holds an American patent on the discovery of hexanal as a post-harvest agent. It’s also an FDA-approved food additive.

The project also involves Guelph plant agriculture professors Paliyath and Al Sullivan; Loong-tak Lim from Food Science; and Elizabeth Finnis, Sociology and Anthropology. Foreign research partners are based at Tamil Nadu Agricultural University, India; Industrial Technical Institute, Sri Lanka; University of Nairobi, Kenya; Sokoine University of Agriculture, Tanzania; and the University of [the] West Indies, Trinidad and Tobago.

Prior to more funding: a memorandum of understanding

I’m having to guess as the document about the memorandum of understanding (MOU) to commercialize hexanal is not dated but it seems to have been produced in March 2018. (Canada’s International Development Research Centre ([IDRC] has a webpage about the memorandum but no memorandum that I could find.) I stumbled across this account of the event where the MOU was signed,

Ms. Jennifer Daubeny, Consulate General of Canada, delivered the special address narrating the significance of Canadian fundingin developing nanotechnologies to reduce post-harvest losses that enables food security in Asian Countries. Dr. K. Ramasamy, Vice Chancellor, Tamil Nadu Agricultural University [TNAU], Coimbatore presided over the function and highlighted the role of TNAU in knitting nanotechnology research framework and serving as a torch bearer in the country. He emphasized that the GAC-IDRC Project helped more than 60 students and researchers, developed two technologies, filed patents for two inventions, extensive infrastructure development besides helping more than 12,000 fruit growers in the State of Tamil Nadu. Dr. Jayasankar Subramanian, Professor, University of Guelph, Canada, explained the evolution of the project till reached the stage of technology delivery to benefit farmers. Dr. K.S. Subramanian, NABARD Chair Professor, TNAU, Coimbatore, lead Principal Investigator of the Project for India presented nanotechnologies developed to assist in the entire value chain from the farm to fork. Mr. Arun Nagarajan, President, Tamil Nadu Fruit Growers’ Association, explained that the fruit growers are eager to use the technology to improve their farm income. Mr. Terence Park, Managing Director, Smart Harvest Agri, Canada, [emphasis mine] bestowed interest to take forward the technologies to the farm gate and signed MOU with TNAU for the Commercialization of the Hexanal Formulation. Dr. G.J. Janavi,Professor & Head, Department of Nano Science & Technology, TNAU, Coimbatore welcomed the gathering and Dr. C. Sekar, Dean, Imayam Agricultural College,Turaiyur, and Co-PI of the Project proposed a formal vote of thanks.

The Canadian Consul General Ms. Jennifer Daubeny visited all the exhibits and interacted with students, scholars and researchers besides the NGO partner Myrada. She was very impressed with the technologies developed by TNAU in collaboration with University of Guelph, Canada, and looking forward to support research programs in the near future. More than 200 Scientists and Diplomats from Canada, students, scholars, university officials participated in the event.

Products launch by ITI, Colombo

Two of the project’s technology outputs -hexanal incorporated ITI Bio-wax and the Tree Fresh Formulation spray [emphasis mine] were transferred to Hayleys Agriculture Pvt. Ltd., a reputed Agro Service provider in Sri Lanka. The products were launched on 22ndMarch 2018 at the Taj Samudra Hotel, Colombo. The chief guest at the event was the Hon. Susil Premajayantha, Minister of Science Technology and Research (Min. ST&R). The guest of honour was H.E. David McKinnon, High Commissioner for Canada in Sri Lanka. Others present included the Secretary to the Min. ST&R, The Chairman and Director General, ITI, Mr Rizvi Zaheed, Hayleys Agriculture and his team, the Chairman, National Science Foundation, Sri Lanka, representative of the Chairman Sri Lanka Export Development Board, representatives from the Dialog mobile service provider, the Registrar of Pesticides, representing the Dir. Gen., of Agriculture, President of the Lanka Fruit and Vegetable Producers, Processors and Exporters Association, leading large scale mango, papaya and pineapple growers, several export and fruit processing company representatives, senior officials from the ITI, the multi-disciplinary ITI research team and our partner from CEPA. The press was also well represented and a total of 100 persons were present on this occasion. The Managing Director Hayles, the two PIs’ of the project, the High Commissioner for Canada, The Minister and for ST&R and the Secretary to the Ministry addressed the gathering and the new video clip on the project was viewed. The new products were jointly uncovered for display by the Hon. Minister and H.E., the High Commissioner. Samples of the products were distributed to the President of the Lanka Fruit and Vegetable Producers Processors and Exporters Association and to two leading mango growers. The Project team also took this opportunity to run a presentation on the various stages of the project and related activities, display posters on their research findings and to print and distribute the pamphlets on the same as well as on hexanal, the latter as prepared by our partners from the University of Guelph. The launch ended with a time of fellowship providing a useful opportunity for networking.

A YouTube video about the product launch of hexanal-based Bio-wax and the Tree Fresh Formulation spray (I don’t know if those were the permanent names or if they are specific to Sri Lanka and other countries will adopt other names) helped to establish the date for the MOU. You can find the video here.

Judging from the media stories, the team in India has provided most of the leadership for commercializing hexanal.

Commercialization 2019 and beyond

To sum up, after a memorandum of understanding is signed and some prototype products have been unveiled in India in 2018 then, in early 2019, there’s more funding announced by IDRC to expand the number of countries involved and to continue research into efforts to save other types of produce.

Moving things along is an August 15, 2019 news item on Agropages.com,

Two nano formulations would be commercialized by the Directorate of Agri business development of Tamil Nadu Agricultural University (TNAU) soon.  

Fruity fresh is a liquid nano formulation containing hexanal that keeps fruits and vegetables fresh for more days. The pre-harvest spray of Fruity Fresh extends the shelf life of mango for two weeks on trees and another two weeks under storage conditions by employing post-harvest dip methodology, Dr. A. Lakshmanan, Professor and Head, Department of Nano Science and Technology told a meet on “Linking Nano Stakeholders” held at the University.  

Hexanal has also been successfully encapsulated in polymer matrix either as an electro spun fibre matrix (Nano sticker) or nano-pellets that extends shelf life of fruits by 1-2 weeks during storage and transportation, he said.  

This sticker and pellets technology is highly user friendly and can be placed inside the cartons containing fruits during transport for enhancing the freshness.

According to a November 5, 2019 article by Pearly Neo for foodnavigator-asia.com, there is pricing for four products. Nano Sticker and Nano Pellet each will cost $US 0.028 and the spray, Fruity Fresh, will cost $US 4.23 to $US 5.65 for a one liter bottle diluted in 50 liters of water (for use on approximately five trees) and the Fruity Fresh dipping solution at $US 0.0071per kg.

As far as I’m aware none of these products are available in Canada but there is a website for Smart Harvest Agri, Canada although the name used is a little different. First, there’s the Federal Corporation Information listing for Smart Harvest Agritech Limited. You’ll notice there are two directors,

Amanjit Singh Bains
7685 150B Street
Surrey BC V3S 5P1
Canada

Terence Park
Yongsan CJ Nine Park
Seoul
Korea, Republic of

The company’s Smart Harvest website doesn’t list any products but it does discuss something they call “FRESHXtend technology” for fruits and vegetables.

Final comment

I sometimes hear complaints about government funding and what seems to be a lack of follow through with exciting research work being done in Canada. I hope that in the months to come that this story of an international collaboration, which started with three countries and has now expanded to at least six countries and has led to increased food security with an environmentally friendly material and commercialization of research, gets some attention.

From the few sources I’ve been able to find, it seems India and Sri Lanka are leading the commercialization charge while Canada has contributed to an Asian-led project which has now expanded to include Kenya, Tanzania, and Trinidad and Tobago. Bravo t them all!

AI (artificial intelligence) artist got a show at a New York City art gallery

AI artists first hit my radar in August 2018 when Christie’s Auction House advertised an art auction of a ‘painting’ by an algorithm (artificial intelligence). There’s more in my August 31, 2018 posting but, briefly, a French art collective, Obvious, submitted a painting, “Portrait of Edmond de Belamy,” that was created by an artificial intelligence agent to be sold for an estimated to $7000 – $10,000. They weren’t even close. According to Ian Bogost’s March 6, 2019 article for The Atlantic, the painting sold for $432,500 In October 2018.

It has also, Bogost notes in his article, occasioned an art show (Note: Links have been removed),

… part of “Faceless Portraits Transcending Time,” an exhibition of prints recently shown [Februay 13 – March 5, 2019] at the HG Contemporary gallery in Chelsea, the epicenter of New York’s contemporary-art world. All of them were created by a computer.

The catalog calls the show a “collaboration between an artificial intelligence named AICAN and its creator, Dr. Ahmed Elgammal,” a move meant to spotlight, and anthropomorphize, the machine-learning algorithm that did most of the work. According to HG Contemporary, it’s the first solo gallery exhibit devoted to an AI artist.

If they hadn’t found each other in the New York art scene, the players involved could have met on a Spike Jonze film set: a computer scientist commanding five-figure print sales from software that generates inkjet-printed images; a former hotel-chain financial analyst turned Chelsea techno-gallerist with apparent ties to fine-arts nobility; a venture capitalist with two doctoral degrees in biomedical informatics; and an art consultant who put the whole thing together, A-Team–style, after a chance encounter at a blockchain conference. Together, they hope to reinvent visual art, or at least to cash in on machine-learning hype along the way.

The show in New York City, “Faceless Portraits …,” exhibited work by an artificially intelligent artist-agent (I’m creating a new term to suit my purposes) that’s different than the one used by Obvious to create “Portrait of Edmond de Belamy,” As noted earlier, it sold for a lot of money (Note: Links have been removed),

Bystanders in and out of the art world were shocked. The print had never been shown in galleries or exhibitions before coming to market at auction, a channel usually reserved for established work. The winning bid was made anonymously by telephone, raising some eyebrows; art auctions can invite price manipulation. It was created by a computer program that generates new images based on patterns in a body of existing work, whose features the AI “learns.” What’s more, the artists who trained and generated the work, the French collective Obvious, hadn’t even written the algorithm or the training set. They just downloaded them, made some tweaks, and sent the results to market.

“We are the people who decided to do this,” the Obvious member Pierre Fautrel said in response to the criticism, “who decided to print it on canvas, sign it as a mathematical formula, put it in a gold frame.” A century after Marcel Duchamp made a urinal into art [emphasis mine] by putting it in a gallery, not much has changed, with or without computers. As Andy Warhol famously said, “Art is what you can get away with.”

A bit of a segue here, there is a controversy as to whether or not that ‘urinal art’, also known as, The Fountain, should be attributed to Duchamp as noted in my January 23, 2019 posting titled ‘Baroness Elsa von Freytag-Loringhoven, Marcel Duchamp, and the Fountain’.

Getting back to the main action, Bogost goes on to describe the technologies underlying the two different AI artist-agents (Note: Links have been removed),

… Using a computer is hardly enough anymore; today’s machines offer all kinds of ways to generate images that can be output, framed, displayed, and sold—from digital photography to artificial intelligence. Recently, the fashionable choice has become generative adversarial networks, or GANs, the technology that created Portrait of Edmond de Belamy. Like other machine-learning methods, GANs use a sample set—in this case, art, or at least images of it—to deduce patterns, and then they use that knowledge to create new pieces. A typical Renaissance portrait, for example, might be composed as a bust or three-quarter view of a subject. The computer may have no idea what a bust is, but if it sees enough of them, it might learn the pattern and try to replicate it in an image.

GANs use two neural nets (a way of processing information modeled after the human brain) to produce images: a “generator” and a “discerner.” The generator produces new outputs—images, in the case of visual art—and the discerner tests them against the training set to make sure they comply with whatever patterns the computer has gleaned from that data. The quality or usefulness of the results depends largely on having a well-trained system, which is difficult.

That’s why folks in the know were upset by the Edmond de Belamy auction. The image was created by an algorithm the artists didn’t write, trained on an “Old Masters” image set they also didn’t create. The art world is no stranger to trend and bluster driving attention, but the brave new world of AI painting appeared to be just more found art, the machine-learning equivalent of a urinal on a plinth.

Ahmed Elgammal thinks AI art can be much more than that. A Rutgers University professor of computer science, Elgammal runs an art-and-artificial-intelligence lab, where he and his colleagues develop technologies that try to understand and generate new “art” (the scare quotes are Elgammal’s) with AI—not just credible copies of existing work, like GANs do. “That’s not art, that’s just repainting,” Elgammal says of GAN-made images. “It’s what a bad artist would do.”

Elgammal calls his approach a “creative adversarial network,” or CAN. It swaps a GAN’s discerner—the part that ensures similarity—for one that introduces novelty instead. The system amounts to a theory of how art evolves: through small alterations to a known style that produce a new one. That’s a convenient take, given that any machine-learning technique has to base its work on a specific training set.

The results are striking and strange, although calling them a new artistic style might be a stretch. They’re more like credible takes on visual abstraction. The images in the show, which were produced based on training sets of Renaissance portraits and skulls, are more figurative, and fairly disturbing. Their gallery placards name them dukes, earls, queens, and the like, although they depict no actual people—instead, human-like figures, their features smeared and contorted yet still legible as portraiture. Faceless Portrait of a Merchant, for example, depicts a torso that might also read as the front legs and rear haunches of a hound. Atop it, a fleshy orb comes across as a head. The whole scene is rippled by the machine-learning algorithm, in the way of so many computer-generated artworks.

Faceless Portrait of a Merchant, one of the AI portraits produced by Ahmed Elgammal and AICAN. (Artrendex Inc.) [downloaded from https://www.theatlantic.com/technology/archive/2019/03/ai-created-art-invades-chelsea-gallery-scene/584134/]

Bogost consults an expert on portraiture for a discussion about the particularities of portraiture and the shortcomings one might expect of an AI artist-agent (Note: A link has been removed),

“You can’t really pick a form of painting that’s more charged with cultural meaning than portraiture,” John Sharp, an art historian trained in 15th-century Italian painting and the director of the M.F.A. program in design and technology at Parsons School of Design, told me. The portrait isn’t just a style, it’s also a host for symbolism. “For example, men might be shown with an open book to show how they are in dialogue with that material; or a writing implement, to suggest authority; or a weapon, to evince power.” Take Portrait of a Youth Holding an Arrow, an early-16th-century Boltraffio portrait that helped train the AICAN database for the show. The painting depicts a young man, believed to be the Bolognese poet Girolamo Casio, holding an arrow at an angle in his fingers and across his chest. It doubles as both weapon and quill, a potent symbol of poetry and aristocracy alike. Along with the arrow, the laurels in Casio’s hair are emblems of Apollo, the god of both poetry and archery.

A neural net couldn’t infer anything about the particular symbolic trappings of the Renaissance or antiquity—unless it was taught to, and that wouldn’t happen just by showing it lots of portraits. For Sharp and other critics of computer-generated art, the result betrays an unforgivable ignorance about the supposed influence of the source material.

But for the purposes of the show, the appeal to the Renaissance might be mostly a foil, a way to yoke a hip, new technology to traditional painting in order to imbue it with the gravity of history: not only a Chelsea gallery show, but also an homage to the portraiture found at the Met. To reinforce a connection to the cradle of European art, some of the images are presented in elaborate frames, a decision the gallerist, Philippe Hoerle-Guggenheim (yes, that Guggenheim; he says the relation is “distant”) [the Guggenheim is strongly associated with the visual arts by way the two Guggeheim museums, one in New York City and the other in Bilbao, Portugal], told me he insisted upon. Meanwhile, the technical method makes its way onto the gallery placards in an official-sounding way—“Creative Adversarial Network print.” But both sets of inspirations, machine-learning and Renaissance portraiture, get limited billing and zero explanation at the show. That was deliberate, Hoerle-Guggenheim said. He’s betting that the simple existence of a visually arresting AI painting will be enough to draw interest—and buyers. It would turn out to be a good bet.

The art market is just that: a market. Some of the most renowned names in art today, from Damien Hirst to Banksy, trade in the trade of art as much as—and perhaps even more than—in the production of images, objects, and aesthetics. No artist today can avoid entering that fray, Elgammal included. “Is he an artist?” Hoerle-Guggenheim asked himself of the computer scientist. “Now that he’s in this context, he must be.” But is that enough? In Sharp’s estimation, “Faceless Portraits Transcending Time” is a tech demo more than a deliberate oeuvre, even compared to the machine-learning-driven work of his design-and-technology M.F.A. students, who self-identify as artists first.

Judged as Banksy or Hirst might be, Elgammal’s most art-worthy work might be the Artrendex start-up itself, not the pigment-print portraits that its technology has output. Elgammal doesn’t treat his commercial venture like a secret, but he also doesn’t surface it as a beneficiary of his supposedly earnest solo gallery show. He’s argued that AI-made images constitute a kind of conceptual art, but conceptualists tend to privilege process over product or to make the process as visible as the product.

Hoerle-Guggenheim worked as a financial analyst for Hyatt before getting into the art business via some kind of consulting deal (he responded cryptically when I pressed him for details). …

This is a fascinating article and I have one last excerpt, which poses this question, is an AI artist-agent a collaborator or a medium? There ‘s also speculation about how AI artist-agents might impact the business of art (Note: Links have been removed),

… it’s odd to list AICAN as a collaborator—painters credit pigment as a medium, not as a partner. Even the most committed digital artists don’t present the tools of their own inventions that way; when they do, it’s only after years, or even decades, of ongoing use and refinement.

But Elgammal insists that the move is justified because the machine produces unexpected results. “A camera is a tool—a mechanical device—but it’s not creative,” he said. “Using a tool is an unfair term for AICAN. It’s the first time in history that a tool has had some kind of creativity, that it can surprise you.” Casey Reas, a digital artist who co-designed the popular visual-arts-oriented coding platform Processing, which he uses to create some of his fine art, isn’t convinced. “The artist should claim responsibility over the work rather than to cede that agency to the tool or the system they create,” he told me.

Elgammal’s financial interest in AICAN might explain his insistence on foregrounding its role. Unlike a specialized print-making technique or even the Processing coding environment, AICAN isn’t just a device that Elgammal created. It’s also a commercial enterprise.

Elgammal has already spun off a company, Artrendex, that provides “artificial-intelligence innovations for the art market.” One of them offers provenance authentication for artworks; another can suggest works a viewer or collector might appreciate based on an existing collection; another, a system for cataloging images by visual properties and not just by metadata, has been licensed by the Barnes Foundation to drive its collection-browsing website.

The company’s plans are more ambitious than recommendations and fancy online catalogs. When presenting on a panel about the uses of blockchain for managing art sales and provenance, Elgammal caught the attention of Jessica Davidson, an art consultant who advises artists and galleries in building collections and exhibits. Davidson had been looking for business-development partnerships, and she became intrigued by AICAN as a marketable product. “I was interested in how we can harness it in a compelling way,” she says.

The art market is just that: a market. Some of the most renowned names in art today, from Damien Hirst to Banksy, trade in the trade of art as much as—and perhaps even more than—in the production of images, objects, and aesthetics. No artist today can avoid entering that fray, Elgammal included. “Is he an artist?” Hoerle-Guggenheim asked himself of the computer scientist. “Now that he’s in this context, he must be.” But is that enough? In Sharp’s estimation, “Faceless Portraits Transcending Time” is a tech demo more than a deliberate oeuvre, even compared to the machine-learning-driven work of his design-and-technology M.F.A. students, who self-identify as artists first.

Judged as Banksy or Hirst might be, Elgammal’s most art-worthy work might be the Artrendex start-up itself, not the pigment-print portraits that its technology has output. Elgammal doesn’t treat his commercial venture like a secret, but he also doesn’t surface it as a beneficiary of his supposedly earnest solo gallery show. He’s argued that AI-made images constitute a kind of conceptual art, but conceptualists tend to privilege process over product or to make the process as visible as the product.

Hoerle-Guggenheim worked as a financial analyst[emphasis mine] for Hyatt before getting into the art business via some kind of consulting deal (he responded cryptically when I pressed him for details). …

If you have the time, I recommend reading Bogost’s March 6, 2019 article for The Atlantic in its entirety/ these excerpts don’t do it enough justice.

Portraiture: what does it mean these days?

After reading the article I have a few questions. What exactly do Bogost and the arty types in the article mean by the word ‘portrait’? “Portrait of Edmond de Belamy” is an image of someone who doesn’t and never has existed and the exhibit “Faceless Portraits Transcending Time,” features images that don’t bear much or, in some cases, any resemblance to human beings. Maybe this is considered a dull question by people in the know but I’m an outsider and I found the paradox: portraits of nonexistent people or nonpeople kind of interesting.

BTW, I double-checked my assumption about portraits and found this definition in the Portrait Wikipedia entry (Note: Links have been removed),

A portrait is a painting, photograph, sculpture, or other artistic representation of a person [emphasis mine], in which the face and its expression is predominant. The intent is to display the likeness, personality, and even the mood of the person. For this reason, in photography a portrait is generally not a snapshot, but a composed image of a person in a still position. A portrait often shows a person looking directly at the painter or photographer, in order to most successfully engage the subject with the viewer.

So, portraits that aren’t portraits give rise to some philosophical questions but Bogost either didn’t want to jump into that rabbit hole (segue into yet another topic) or, as I hinted earlier, may have assumed his audience had previous experience of those kinds of discussions.

Vancouver (Canada) and a ‘portraiture’ exhibit at the Rennie Museum

By one of life’s coincidences, Vancouver’s Rennie Museum had an exhibit (February 16 – June 15, 2019) that illuminates questions about art collecting and portraiture, From a February 7, 2019 Rennie Museum news release,

‘downloaded from https://renniemuseum.org/press-release-spring-2019-collected-works/] Courtesy: Rennie Museum

February 7, 2019

Press Release | Spring 2019: Collected Works
By rennie museum

rennie museum is pleased to present Spring 2019: Collected Works, a group exhibition encompassing the mediums of photography, painting and film. A portraiture of the collecting spirit [emphasis mine], the works exhibited invite exploration of what collected objects, and both the considered and unintentional ways they are displayed, inform us. Featuring the works of four artists—Andrew Grassie, William E. Jones, Louise Lawler and Catherine Opie—the exhibition runs from February 16 to June 15, 2019.

Four exquisite paintings by Scottish painter Andrew Grassie detailing the home and private storage space of a major art collector provide a peek at how the passionately devoted integrates and accommodates the physical embodiments of such commitment into daily life. Grassie’s carefully constructed, hyper-realistic images also pose the question, “What happens to art once it’s sold?” In the transition from pristine gallery setting to idiosyncratic private space, how does the new context infuse our reading of the art and how does the art shift our perception of the individual?

Furthering the inquiry into the symbiotic exchange between possessor and possession, a selection of images by American photographer Louise Lawler depicting art installed in various private and public settings question how the bilateral relationship permeates our interpretation when the collector and the collected are no longer immediately connected. What does de-acquisitioning an object inform us and how does provenance affect our consideration of the art?

The question of legacy became an unexpected facet of 700 Nimes Road (2010-2011), American photographer Catherine Opie’s portrait of legendary actress Elizabeth Taylor. Opie did not directly photograph Taylor for any of the fifty images in the expansive portfolio. Instead, she focused on Taylor’s home and the objects within, inviting viewers to see—then see beyond—the façade of fame and consider how both treasures and trinkets act as vignettes to the stories of a life. Glamorous images of jewels and trophies juxtapose with mundane shots of a printer and the remote-control user manual. Groupings of major artworks on the wall are as illuminating of the home’s mistress as clusters of personal photos. Taylor passed away part way through Opie’s project. The subsequent photos include Taylor’s mementos heading off to auction, raising the question, “Once the collections that help to define someone are disbursed, will our image of that person lose focus?”

In a similar fashion, the twenty-two photographs in Villa Iolas (1982/2017), by American artist and filmmaker William E. Jones, depict the Athens home of iconic art dealer and collector Alexander Iolas. Taken in 1982 by Jones during his first travels abroad, the photographs of art, furniture and antiquities tell a story of privilege that contrast sharply with the images Jones captures on a return visit in 2016. Nearly three decades after Iolas’s 1989 death, his home sits in dilapidation, looted and vandalized. Iolas played an extraordinary role in the evolution of modern art, building the careers of Max Ernst, Yves Klein and Giorgio de Chirico. He gave Andy Warhol his first solo exhibition and was a key advisor to famed collectors John and Dominique de Menil. Yet in the years since his death, his intention of turning his home into a modern art museum as a gift to Greece, along with his reputation, crumbled into ruins. The photographs taken by Jones during his visits in two different eras are incorporated into the film Fall into Ruin (2017), along with shots of contemporary Athens and antiquities on display at the National Archaeological Museum.

“I ask a lot of questions about how portraiture functionswhat is there to describe the person or time we live in or a certain set of politics…”
 – Catherine Opie, The Guardian, Feb 9, 2016

We tend to think of the act of collecting as a formal activity yet it can happen casually on a daily basis, often in trivial ways. While we readily acknowledge a collector consciously assembling with deliberate thought, we give lesser consideration to the arbitrary accumulations that each of us accrue. Be it master artworks, incidental baubles or random curios, the objects we acquire and surround ourselves with tell stories of who we are.

Andrew Grassie (Scotland, b. 1966) is a painter known for his small scale, hyper-realist works. He has been the subject of solo exhibitions at the Tate Britain; Talbot Rice Gallery, Edinburgh; institut supérieur des arts de Toulouse; and rennie museum, Vancouver, Canada. He lives and works in London, England.

William E. Jones (USA, b. 1962) is an artist, experimental film-essayist and writer. Jones’s work has been the subject of retrospectives at Tate Modern, London; Anthology Film Archives, New York; Austrian Film Museum, Vienna; and, Oberhausen Short Film Festival. He is a recipient of the John Simon Guggenheim Memorial Fellowship and the Creative Capital/Andy Warhol Foundation Arts Writers Grant. He lives and works in Los Angeles, USA.

Louise Lawler (USA, b. 1947) is a photographer and one of the foremost members of the Pictures Generation. Lawler was the subject of a major retrospective at the Museum of Modern Art, New York in 2017. She has held exhibitions at the Whitney Museum of American Art, New York; Stedelijk Museum, Amsterdam; National Museum of Art, Oslo; and Musée d’Art Moderne de La Ville de Paris. She lives and works in New York.

Catherine Opie (USA, b. 1961) is a photographer and educator. Her work has been exhibited at Wexner Center for the Arts, Ohio; Henie Onstad Art Center, Oslo; Los the Angeles County Museum of Art; Portland Art Museum; and the Guggenheim Museum, New York. She is the recipient of United States Artist Fellowship, Julius Shulman’s Excellence in Photography Award, and the Smithsonian’s Archive of American Art Medal.  She lives and works in Los Angeles.

rennie museum opened in October 2009 in historic Wing Sang, the oldest structure in Vancouver’s Chinatown, to feature dynamic exhibitions comprising only of art drawn from rennie collection. Showcasing works by emerging and established international artists, the exhibits, accompanied by supporting catalogues, are open free to the public through engaging guided tours. The museum’s commitment to providing access to arts and culture is also expressed through its education program, which offers free age-appropriate tours and customized workshops to children of all ages.

rennie collection is a globally recognized collection of contemporary art that focuses on works that tackle issues related to identity, social commentary and injustice, appropriation, and the nature of painting, photography, sculpture and film. Currently the collection includes works by over 370 emerging and established artists, with over fifty collected in depth. The Vancouver based collection engages actively with numerous museums globally through a robust, artist-centric, lending policy.

So despite the Wikipedia definition, it seems that portraits don’t always feature people. While Bogost didn’t jump into that particular rabbit hole, he did touch on the business side of art.

What about intellectual property?

Bogost doesn’t explicitly discuss this particular issue. It’s a big topic so I’m touching on it only lightly, if an artist worsk with an AI, the question as to ownership of the artwork could prove thorny. Is the copyright owner the computer scientist or the artist or both? Or does the AI artist-agent itself own the copyright? That last question may not be all that farfetched. Sophia, a social humanoid robot, has occasioned thought about ‘personhood.’ (Note: The robots mentioned in this posting have artificial intelligence.) From the Sophia (robot) Wikipedia entry (Note: Links have been removed),

Sophia has been interviewed in the same manner as a human, striking up conversations with hosts. Some replies have been nonsensical, while others have impressed interviewers such as 60 Minutes’ Charlie Rose.[12] In a piece for CNBC, when the interviewer expressed concerns about robot behavior, Sophia joked that he had “been reading too much Elon Musk. And watching too many Hollywood movies”.[27] Musk tweeted that Sophia should watch The Godfather and asked “what’s the worst that could happen?”[28][29] Business Insider’s chief UK editor Jim Edwards interviewed Sophia, and while the answers were “not altogether terrible”, he predicted it was a step towards “conversational artificial intelligence”.[30] At the 2018 Consumer Electronics Show, a BBC News reporter described talking with Sophia as “a slightly awkward experience”.[31]

On October 11, 2017, Sophia was introduced to the United Nations with a brief conversation with the United Nations Deputy Secretary-General, Amina J. Mohammed.[32] On October 25, at the Future Investment Summit in Riyadh, the robot was granted Saudi Arabian citizenship [emphasis mine], becoming the first robot ever to have a nationality.[29][33] This attracted controversy as some commentators wondered if this implied that Sophia could vote or marry, or whether a deliberate system shutdown could be considered murder. Social media users used Sophia’s citizenship to criticize Saudi Arabia’s human rights record. In December 2017, Sophia’s creator David Hanson said in an interview that Sophia would use her citizenship to advocate for women’s rights in her new country of citizenship; Newsweek criticized that “What [Hanson] means, exactly, is unclear”.[34] On November 27, 2018 Sophia was given a visa by Azerbaijan while attending Global Influencer Day Congress held in Baku. December 15, 2018 Sophia was appointed a Belt and Road Innovative Technology Ambassador by China'[35]

As for an AI artist-agent’s intellectual property rights , I have a July 10, 2017 posting featuring that question in more detail. Whether you read that piece or not, it seems obvious that artists might hesitate to call an AI agent, a partner rather than a medium of expression. After all, a partner (and/or the computer scientist who developed the programme) might expect to share in property rights and profits but paint, marble, plastic, and other media used by artists don’t have those expectations.

Moving slightly off topic , in my July 10, 2017 posting I mentioned a competition (literary and performing arts rather than visual arts) called, ‘Dartmouth College and its Neukom Institute Prizes in Computational Arts’. It was started in 2016 and, as of 2018, was still operational under this name: Creative Turing Tests. Assuming there’ll be contests for prizes in 2019, there’s (from the contest site) [1] PoetiX, competition in computer-generated sonnet writing; [2] Musical Style, composition algorithms in various styles, and human-machine improvisation …; and [3] DigiLit, algorithms able to produce “human-level” short story writing that is indistinguishable from an “average” human effort. You can find the contest site here.

Cooking up a lung one way or the other

I have two stories about lungs and they are entirely different with the older one being a bioengineering story from the US and the more recent one being an artificial tissue story from the University of Toronto and the University of Ottawa (both in Canada).

Lab grown lungs

The Canadian Broadcasting Corporation’s Quirks and Quarks radio programme posted a December 29, 2018 news item (with embedded radio files) about bioengineered lunjgs,

There are two major components to building an organ: the structure and the right cells on that structure. A team led by Dr. Joan Nichols, a Professor of Internal Medicine, Microbiology and Immunology at the University of Texas Medical Branch in Galveston, were able to tackle both parts of the problem

In their experiment they used a donor organ for the structure. They took a lung from an unrelated pig, and stripped it of its cells, leaving a scaffold of collagen, a tough, flexible protein.  This provided a pre-made appropriate structure, though in future they think it may be possible to use 3-D printing technology to get the same result.

They then added cultured cells from the animal who would be receiving the transplant – so the lung was made of the animal’s own cells. Cultured lung and blood vessel cells were placed on the scaffold and it was  placed in a tank for 30 days with a cocktail of nutrients to help the cells stick to the scaffold and proliferate. The result was a kind of baby lung.

They then transplanted the bio-engineered, though immature, lung into the recipient animal where they hoped it would continue to develop and mature – growing to become a healthy, functioning organ.

The recipients of the bio-engineered lungs were four pigs adult pigs, which appeared to tolerate the transplants well. In order to study the development of the bio-engineered lungs, they euthanized the animals at different times: 10 hours, two weeks, one month and two months after transplantation.

They found that as early as two weeks, the bio-engineered lung had integrated into the recipient animals’ body, building a strong network of blood vessels essential for the lung to survive. There was no evidence of pulmonary edema, the build of fluid in the lungs, which is usually a sign of the blood vessels not working efficiently.  There was no sign of rejection of the transplanted organs, and the pigs were healthy up to the point where they were euthanized.

One lingering concern is how well the bio-engineered lungs delivered oxygen. The four pigs who received the trasplant [sic] had one original functioning lung, so they didn’t depend on their new bio-engineered lung for breathing. The scientists were not sure that the bio-engineered lung was mature enough to handle the full load of oxygen on its own.

You can hear Bob McDonald’s (host of Quirks & Quarks, a Canadian Broadcasting Corporation science radio programme) interview lead scientist, Dr. Joan Nichols if you go to here. (Note: I find he overmodulates his voice but some may find he has a ‘friendly’ voice.)

This is an image of the lung scaffold produced by the team,

Lung scaffold in the bioreactor chamber on Day 1 of the experiment, before the cells from the study pig were added. (Credit: Joan Nichols) [downloaded from https://www.cbc.ca/radio/quirks/dec-29-2018-water-on-mars-lab-grown-lungs-and-more-the-biggest-science-stories-of-2018-1.4940811/lab-grown-lungs-are-transplanted-in-pigs-today-they-may-help-humans-tomorrow-1.4940822]

Here’s more technical detail in an August 1, 2018i University of Texas Medical Branch (UTMB) news release (also on EurekAlert), which originally announced the research,

A research team at the University of Texas Medical Branch at Galveston have bioengineered lungs and transplanted them into adult pigs with no medical complication.

In 2014, Joan Nichols and Joaquin Cortiella from The University of Texas Medical Branch at Galveston were the first research team to successfully bioengineer human lungs in a lab. In a paper now available in Science Translational Medicine, they provide details of how their work has progressed from 2014 to the point no complications have occurred in the pigs as part of standard preclinical testing.

“The number of people who have developed severe lung injuries has increased worldwide, while the number of available transplantable organs have decreased,” said Cortiella, professor of pediatric anesthesia. “Our ultimate goal is to eventually provide new options for the many people awaiting a transplant,” said Nichols, professor of internal medicine and associate director of the Galveston National Laboratory at UTMB.

To produce a bioengineered lung, a support scaffold is needed that meets the structural needs of a lung. A support scaffold was created using a lung from an unrelated animal that was treated using a special mixture of sugar and detergent to eliminate all cells and blood in the lung, leaving only the scaffolding proteins or skeleton of the lung behind. This is a lung-shaped scaffold made totally from lung proteins.

The cells used to produce each bioengineered lung came from a single lung removed from each of the study animals. This was the source of the cells used to produce a tissue-matched bioengineered lung for each animal in the study. The lung scaffold was placed into a tank filled with a carefully blended cocktail of nutrients and the animals’ own cells were added to the scaffold following a carefully designed protocol or recipe. The bioengineered lungs were grown in a bioreactor for 30 days prior to transplantation. Animal recipients were survived for 10 hours, two weeks, one month and two months after transplantation, allowing the research team to examine development of the lung tissue following transplantation and how the bioengineered lung would integrate with the body.

All of the pigs that received a bioengineered lung stayed healthy. As early as two weeks post-transplant, the bioengineered lung had established the strong network of blood vessels needed for the lung to survive.

“We saw no signs of pulmonary edema, which is usually a sign of the vasculature not being mature enough,” said Nichols and Cortiella. “The bioengineered lungs continued to develop post-transplant without any infusions of growth factors, the body provided all of the building blocks that the new lungs needed.”

Nichols said that the focus of the study was to learn how well the bioengineered lung adapted and continued to mature within a large, living body. They didn’t evaluate how much the bioengineered lung provided oxygenation to the animal.

“We do know that the animals had 100 percent oxygen saturation, as they had one normal functioning lung,” said Cortiella. “Even after two months, the bioengineered lung was not yet mature enough for us to stop the animal from breathing on the normal lung and switch to just the bioengineered lung.”

For this reason, future studies will look at long-term survival and maturation of the tissues as well as gas exchange capability.

The researchers said that with enough funding, they could grow lungs to transplant into people in compassionate use circumstances within five to 10 years.

“It has taken a lot of heart and 15 years of research to get us this far, our team has done something incredible with a ridiculously small budget and an amazingly dedicated group of people,” Nichols and Cortiella said.

Here’s a citation and another link for the paper,

Production and transplantation of bioengineered lung into a large-animal model by Joan E. Nichols, Saverio La Francesca, Jean A. Niles, Stephanie P. Vega, Lissenya B. Argueta, Luba Frank, David C. Christiani, Richard B. Pyles, Blanca E. Himes, Ruyang Zhang, Su Li, Jason Sakamoto, Jessica Rhudy, Greg Hendricks, Filippo Begarani, Xuewu Liu, Igor Patrikeev, Rahul Pal, Emiliya Usheva, Grace Vargas, Aaron Miller, Lee Woodson, Adam Wacher, Maria Grimaldo, Daniil Weaver, Ron Mlcak, and Joaquin Cortiella. Science Translational Medicine 01 Aug 2018: Vol. 10, Issue 452, eaao3926 DOI: 10.1126/scitranslmed.aao3926

This paper is behind a paywall.

Artificial lung cancer tissue

The research teams at the University of Toronto and the University of Ottawa worked on creating artificial lung tissue but other applications are possible too. First, there’s the announcement in a February 25, 2019 news item on phys.org,

A 3-D hydrogel created by researchers in U of T Engineering Professor Molly Shoichet’s lab is helping University of Ottawa researchers to quickly screen hundreds of potential drugs for their ability to fight highly invasive cancers.

Cell invasion is a critical hallmark of metastatic cancers, such as certain types of lung and brain cancer. Fighting these cancers requires therapies that can both kill cancer cells as well as prevent cell invasion of healthy tissue. Today, most cancer drugs are only screened for their ability to kill cancer cells.

“In highly invasive diseases, there is a crucial need to screen for both of these functions,” says Shoichet. “We now have a way to do this.”

A February 25, 2019 University of Toronto news release (also on EurekAlert), which originated the news item, offers more detail ,

In their latest research, the team used hydrogels to mimic the environment of lung cancer, selectively allowing cancer cells, and not healthy cells, to invade. In their latest research, the team used hydrogels to mimic the environment of lung cancer, selectively allowing cancer cells, and not healthy cells, to invade. This emulated environment enabled their collaborators in Professor Bill Stanford’s lab at University of Ottawa to screen for both cancer-cell growth and invasion. The study, led by Roger Y. Tam, a research associate in Shochet’s lab, was recently published in Advanced Materials.

“We can conduct this in a 384-well plate, which is no bigger than your hand. And with image-analysis software, we can automate this method to enable quick, targeted screenings for hundreds of potential cancer treatments,” says Shoichet.

One example is the researchers’ drug screening for lymphangioleiomyomatosis (LAM), a rare lung disease affecting women. Shoichet and her team were inspired by the work of Green Eggs and LAM, a Toronto-based organization raising awareness of the disease.

Using their hydrogels, they were able to automate and screen more than 800 drugs, thereby uncovering treatments that could target disease growth and invasion.

In the ongoing collaboration, the researchers plan to next screen multiple drugs at different doses to gain greater insight into new treatment methods for LAM. The strategies and insights they gain could also help identify new drugs for other invasive cancers.

Shoichet, who was recently named a Distinguished Woman in Chemistry or Chemical Engineering, also plans to patent the hydrogel technology.

“This has, and continues to be, a great collaboration that is advancing knowledge at the intersection of engineering and biology,” says Shoichet.

I note that Shoichet (pronounced ShoyKet) is getting ready to patent this work. I do have a question about this and it’s not up to Shoichet to answer as she didn’t create the system. Will the taxpayers who funded her work receive any financial benefits should the hydrogel prove to be successful or will we be paying double, both supporting her research and paying for the hydrogel through our healthcare costs?

Getting back to the research, here’s a link to and a citation for the paper,

Rationally Designed 3D Hydrogels Model Invasive Lung Diseases Enabling High‐Content Drug Screening by Roger Y. Tam, Julien Yockell‐Lelièvre, Laura J. Smith, Lisa M. Julian, Alexander E. G. Baker, Chandarong Choey, Mohamed S. Hasim, Jim Dimitroulakos, William L. Stanford, Molly S. Shoichet. Advanced Materials Volume 31, Issue 7 February 15, 2019 1806214 First published online: 27 December 2018 DOI: https://doi.org/10.1002/adma.201806214

This paper is behind a paywall.

A little digital piracy can boost bottom line for manufacturers and retailers

I’ve seen the argument before but this is the first time I’ve seen an academic supporting the thesis that digital piracy can be a boon for business. From a January 28, 2019 news item on phys.org,

HBO’s popular television series “Game of Thrones” returns in April, but millions of fans continue to illegally download the program, giving it the dubious distinction of being the most pirated program.

Many may wonder why the TV network hasn’t taken a more aggressive approach to combating illegal streaming services and downloaders. Perhaps it is because the benefits to the company outweigh the consequences. Research analysis by faculty in Indiana University’s Kelley School of Business and two other schools found that a moderate level of piracy can have a positive impact on the bottom line for both the manufacturer and the retailer—and not at the expense of consumers.

A January 28, 2019 Indiana University at Bloomington news release (also on EurekAlert), which originated the news item, expands on the theme,

“When information goods are sold to consumers via a retailer, in certain situations, a moderate level of piracy seems to have a surprisingly positive impact on the profits of the manufacturer and the retailer while, at the same time, enhancing consumer welfare,” wrote Antino Kim, assistant professor of operations and decision technologies at Kelley, and his co-authors.

“Such a win-win-win situation is not only good for the supply chain but is also beneficial for the overall economy.”

While not condoning piracy, Kim and his colleagues were surprised to find that it can actually reduce, or completely eliminate at times, the adverse effect of double marginalization, an economic concept where both manufacturers and retailers in the same supply chain add to the price of a product, passing these markups along to consumers.

The professors found that, because piracy can affect the pricing power of both the manufacturer and the retailer, it injects “shadow” competition into an otherwise monopolistic market.

“From the manufacturer’s point of view, the retailer getting squeezed is a good thing,” Kim said. “It can’t mark up the product as before, and the issue of double marginalization diminishes. Vice versa, if the manufacturer gets squeezed, the retailer is better off

“What we found is, by both of them being squeezed together — both at the upstream and the downstream levels — they are able to get closer to the optimal retail price that a single, vertically integrated entity would charge.”

In the example of “Game of Thrones,” HBO is the upstream “manufacturer” in the supply chain, and cable and satellite TV operators are the downstream “retailers.”

Kim and his co-authors — Atanu Lahiri, associate professor of information systems at the University of Texas-Dallas, and Debabrata Dey, professor of information systems at the University of Washington — presented their findings in the article, “The ‘Invisible Hand’ of Piracy: An Economic Analysis of the Information-Goods Supply Chain,” published in the latest issue of MIS Quarterly.

They suggest that businesses, government and consumers rethink the value of anti-piracy enforcement, which can be quite costly, and consider taking a moderate approach. Australia, for instance, due to prohibitive costs, scrapped its three-strikes scheme to track down illegal downloaders and send them warning notices. Though the Australian Parliament passed a new anti-piracy law last year, its effectiveness remains unclear until after it is reviewed in two years.

As with other studies, Kim and his colleagues found that when enforcement is low and piracy is rampant, both manufacturers and retailers suffer. But they caution against becoming overzealous in prosecuting illegal downloaders or in lobbying for more enforcement.

“Our results do not imply that the legal channel should, all of a sudden, start actively encouraging piracy,” they said. “The implication is simply that, situated in a real-world context, our manufacturer and retailer should recognize that a certain level of piracy or its threat might actually be beneficial and should, therefore, exercise some moderation in their anti-piracy efforts.

“This could manifest itself in them tolerating piracy to a certain level, perhaps by turning a blind eye to it,” they add. “Such a strategy would indeed be consistent with how others have described HBO’s attitude toward piracy of its products.”

This research was first made available online in August 2018, ahead of final publication in print in December 2018.

Fascinating analysis, eh?

Here’s a link to and a citation for the paper,

The “Invisible Hand” of Piracy: An Economic Analysis of the Information-Goods Supply Chain by Antino Kim, Atanu Lahiri, and Debabrata Dey. MIS Quarterly 2018 Volume 42 Issue 4: 1117-1141; DOI: 10.25300/MISQ/2018/14798

Intriguingly, for a paper about piracy someone has decided it should reside behind a paywall. However, there is an appendix which seems to be freely available here.

Growing perfect human blood vessels in a Petri dish

I had not realized that blood vessels are considered organs (Live and learn.) The big news about blood vessel organoids was announced in a January 16, 2019 news item on ScienceDaily,

Scientists have managed to grow perfect human blood vessels as organoids in a petri dish for the first time

The breakthrough engineering technology, outlined in a new study published today [January 16, 2019] in Nature, dramatically advances research of vascular diseases like diabetes, identifying a key pathway to potentially prevent changes to blood vessels — a major cause of death and morbidity among those with diabetes.

A January 16, 2019 University of British Columbia (UBC; Canada) news release (also on EurekAlert), which originated the news item, explains organoids and describes the work in more detail,

An organoid is a three-dimensional structure grown from stem cells that mimics an organ and can be used to study aspects of that organ in a petri dish.

“Being able to build human blood vessels as organoids from stem cells is a game changer,” said the study’s senior author Josef Penninger, the Canada 150 Research Chair in Functional Genetics, director of the Life Sciences Institute at UBC and founding director of the Institute for Molecular Biotechnology of the Austrian Academy of Sciences (IMBA).

“Every single organ in our body is linked with the circulatory system. This could potentially allow researchers to unravel the causes and treatments for a variety of vascular diseases, from Alzheimer’s disease, cardiovascular diseases, wound healing problems, stroke, cancer and, of course, diabetes.”

Diabetes affects an estimated 420 million people worldwide. Many diabetic symptoms are the result of changes in blood vessels that result in impaired blood circulation and oxygen supply of tissues. Despite its prevalence, very little is known about the vascular changes arising from diabetes. This limitation has slowed the development of much-needed treatment.

To tackle this problem, Penninger and his colleagues developed a groundbreaking model: three-dimensional human blood vessel organoids grown in a petri dish. These so-called “vascular organoids” can be cultivated using stem cells in the lab, strikingly mimicking the structure and function of real human blood vessels.

When researchers transplanted the blood vessel organoids into mice, they found that they developed into perfectly functional human blood vessels including arteries and capillaries. The discovery illustrates that it is possible to not only engineer blood vessel organoids from human stem cells in a dish, but also to grow a functional human vascular system in another species.

“What is so exciting about our work is that we were successful in making real human blood vessels out of stem cells,” said Reiner Wimmer, the study’s first author and a postdoctoral research fellow at IMBA. “Our organoids resemble human capillaries to a great extent, even on a molecular level, and we can now use them to study blood vessel diseases directly on human tissue.”

One feature of diabetes is that blood vessels show an abnormal thickening of the basement membrane. As a result, the delivery of oxygen and nutrients to cells and tissues is strongly impaired, causing a multitude of health problems, such as kidney failure, heart attacks, strokes, blindness and peripheral artery disease, leading to amputations.

The researchers then exposed the blood vessel organoids to a “diabetic” environment in a petri dish.

“Surprisingly, we could observe a massive expansion of the basement membrane in the vascular organoids,” said Wimmer. “This typical thickening of the basement membrane is strikingly similar to the vascular damage seen in diabetic patients.”

The researchers then searched for chemical compounds that could block thickening of the blood vessel walls. They found none of the current anti-diabetic medications had any positive effects on these blood vessel defects. However, they discovered that an inhibitor of γ-secretase, a type of enzyme in the body, prevented the thickening of the blood vessel walls, suggesting, at least in animal models, that blocking γ-secretase could be helpful in treating diabetes.

The researchers say the findings could allow them to identify underlying causes of vascular disease, and to potentially develop and test new treatments for patients with diabetes.

Here’s a link to and a citation for the paper,

Human blood vessel organoids as a model of diabetic vasculopathy by Reiner A. Wimmer, Alexandra Leopoldi, Martin Aichinger, Nikolaus Wick, Brigitte Hantusch, Maria Novatchkova, Jasmin Taubenschmid, Monika Hämmerle, Christopher Esk, Joshua A. Bagley, Dominik Lindenhofer, Guibin Chen, Manfred Boehm, Chukwuma A. Agu, Fengtang Yang, Beiyuan Fu, Johannes Zuber, Juergen A. Knoblich, Dontscho Kerjaschki & Josef M. Penninger. Nature volume 565, pages505–510 (2019) DOI: https://doi.org/10.1038/s41586-018-0858-8 Issue Date: 24 January 2019

This paper is behind a paywall. One other thing, a patent application has been filed according to the Author information section (subsection: Competing interests) of the abstract.