Category Archives: intellectual property

Listen in on a UNESCO (United Nations Educational, Scientific and Cultural Organization) meeting (about Open Science)

If you are intrigues by the idea of sitting in on a UNESCO meeting, in this case, the Intergovernmental special committee meeting (Category II) related to the draft UNESCO Recommendation on Open Science, there is an opportunity.

Before getting to the opportunity, I want to comment on how smart the UNESCO communications/press office has been. Interest in relaxing COVID-19 vaccine patent rules is gaining momentum (May 6, 2021 Associated Press news item on Canadian Broadcasting Corporation [CBC]) and a decision was made in the press office (?) to capitalize on this momentum as a series of UNESCO meetings about open science are taking place. Well done!

Later in this post, I have a few comments about the intellectual property scene and open science in Canada.

UNESCO’s open meeting

According to the May 7, 2021 UNESCO press release no. 42 (received via email),

UNESCO welcomes move to lift the patent on the vaccines and pushes for
Open Science

Paris, 7 May [2021] -“The decision of the United States and many other
countries to call for the lifting of patent protection for coronavirus
vaccines could save millions of lives and serve as a blueprint for the
future of scientific cooperation. COVID-19 does not respect borders. No
country will be safe until the people of every country have access to
the vaccine,” said UNESCO Director-General Audrey Azoulay.

This growing momentum comes in response to the joint appeal made by
UNESCO, the WHO [World Health Organization] and the UNHCR [United Nations Commission on Human Rights] to open up science and boost scientific
cooperation in October 2020. Early in the pandemic last spring, UNESCO
mobilized over 122 countries to promote Open Science and reinforced
international cooperation.

The pandemic triggered strong support for Open Science among Member
States for this agenda. Chinese scientists sequenced the genome of the
new coronavirus on 11 January 2020 and posted it online, enabling German
scientists to develop a screening test, which was then shared by the
World Health Organization with governments everywhere. 

Since the outbreak of COVID-19, the world has embarked on a new era of
scientific research, forcing all countries to construct the shared rules
and common norms we need to work more effectively in these changing
times.

The recent announcements of countries in favor of lifting patents show
the growing support for open scientific cooperation. They also coincide
with the five-day meeting of UNESCO Member States to define a global
standard-setting framework on Open Science, which aims to develop new
models for the circulation of scientific knowledge and its benefits,
including global commons.

The outcomes of the meeting will lead to a Global Recommendation on Open
Science to be adopted by UNESCO’s 193 Member States at the
Organization’s General Conference in November 2021. This
Recommendation aims to be a driver for shared global access to data,
publications, patents, software, educational resources and technological
innovations and to reengage all of society in science.

More Information on UNESCO’s Open Science meeting:
https://events.unesco.org/event?id=1907937890&lang=1033 [1]

After clicking on UNESCO’s events link (in the above), you’ll be sent to a page where you’ll be invited to link to a live webcast (it’s live if there’s a session taking place and there will be on May 10, May 11, and May 12, 2021). If you’re on the West Coast of Canada or the US, add nine hours since the meeting is likely taking place on Paris (France) time (so at 2 pm PT, you’re not likely to hear anything), where UNESCO is headquartered. When you get to the page hosting the live webcast, click on the tab listing the current day’s date.

I managed to listen to some of the meeting this morning (May 7, 2021) at about 8 am my time; for the participants, it was a meeting that ran late. The thrill is being able to attend or listen in. From a content perspective, you probably need to be serious about open science and the language used to define it and make recommendations about it.

Comments on open science and intellectual property in Canada

Mentioned earlier was the rising momentum for relaxing COVID-19 vaccine patent rules, I looked carefully at the May 6, 2021 Associated Press news item on CBC] and couldn’t find any evidence that Canada is actively supporting the idea. However, the Canadian government has indicated a willingness to discuss relaxing the rules,

France joined the United States on Thursday [May 6, 2021] in supporting an easing of patent protections on COVID-19 vaccines that could help poorer countries get more doses and speed the end of the pandemic. While the backing from two countries with major drugmakers is important, many obstacles remain.

The United States’ support for waiving the protections marked a dramatic shift in its position. Still, even just one country voting against such a waiver would be enough to block efforts at the World Trade Organization [WTO].

With the Biden administration’s announcement on Wednesday [May 5, 2021], the U.S. became the first country in the developed world with big vaccine manufacturing to publicly support the waiver idea floated by India and South Africa last October at the WTO.

“I completely favour this opening up of the intellectual property,” French President Emmanuel Macron said Thursday [May 6, 2021] on a visit to a vaccine centre.

Many other leaders chimed in — though few expressed direct support. Italian Foreign Minister Luigi Di Maio wrote on Facebook that the U.S. announcement was “a very important signal” and that the world needs “free access” to patents for the vaccines.

Australian Prime Minister Scott Morrison called the U.S. position “great news” but did not directly respond to a question about whether his country would support a waiver.

Canada’s International Trade Minister Mary Ng told the House of Commons on Thursday that the federal government will “actively participate” in talks to waive the global rules that protect vaccine trade secrets. [emphases mine]

[Canada’s] International Development Minister Karina Gould said the U.S. support for waiving patents is “a really important step in this conversation.” [emphases mine]

Big difference between supporting something and talking about it, eh?

Open science in Canada

Back in 2016, the Montreal Neurological Institute (MNI or Montreal Neuro) in Québec, Canada was the first academic institution in the world to embrace an open science policy. Here’s the relevant excerpt from my January 22, 2016 posting (the posting describes the place that Montreal Neuro occupies historically in Canada and on the global stage),

.. David Bruggeman tells the story in a Jan. 21, 2016 posting on his Pasco Phronesis blog (Note: Links have been removed),

The Montreal Neurological Institute (MNI) at McGill University announced that it will be the first academic research institute to become what it calls ‘Open Science.’  As Science is reporting, the MNI will make available all research results and research data at the time of publication.  Additionally it will not seek patents on any of the discoveries made on research at the Institute. [emphasis mine]

Will this catch on?  I have no idea if this particular combination of open access research data and results with no patents will spread to other university research institutes.  But I do believe that those elements will continue to spread.  More universities and federal agencies are pursuing open access options for research they support.  Elon Musk has opted to not pursue patent litigation for any of Tesla Motors’ patents, and has not pursued patents for SpaceX technology (though it has pursued litigation over patents in rocket technology). …

What about intellectual property (IP) and the 2021 federal budget?

Interestingly, the 2021 Canadian federal budget, released April 19, 2021, (see my May 4, 2021 posting) has announced more investments in intellectual property initiatives,

“Promoting Canadian Intellectual Property

As the most highly educated country in the OECD [Organization for Economic Cooperation and Development], Canada is full of innovative and entrepreneurial people with great ideas. Those ideas are valuable intellectual property that are the seeds of huge growth opportunities. Building on the National Intellectual Property Strategy announced in Budget 2018, the government proposes to further support Canadian innovators, start-ups, and technology-intensive businesses. Budget 2021 proposes:

  • $90 million, over two years, starting in 2022-23, to create ElevateIP, a program to help accelerators and incubators provide start-ups with access to expert intellectual property services.
  • $75 million over three years, starting in 2021-22, for the National Research Council’s Industrial Research Assistance Program to provide high-growth client firms with access to expert intellectual property services.

These direct investments would be complemented by a Strategic Intellectual Property Program Review that will be launched. It is intended as a broad assessment of intellectual property provisions in Canada’s innovation and science programming, from basic research to near-commercial projects. This work will make sure Canada and Canadians fully benefit from innovations and intellectual property.”

Now, it’s back to me and the usual formatting for an upcoming excerpt. As for Canada’s National Intellectual Property Strategy, here’s more from the April 26, 2018 Innovation, Science and Economic Development Canada news release,

Canada’s IP Strategy will help Canadian entrepreneurs better understand and protect intellectual property and also get better access to shared intellectual property. Canada is a leader in research, science, creation and invention, but it can do more when it comes to commercializing innovations.

The IP Strategy will help give businesses the information and confidence they need to grow their business and take risks.

The IP Strategy will make changes in three key areas:

LEGISLATION

The IP Strategy will amend key IP laws to ensure that we remove barriers to innovation, particularly any loopholes that allow those seeking to use IP in bad faith to stall innovation for their own gain.

The IP Strategy will create an independent body to oversee patent and trademark agents, which will ensure that professional and ethical standards are maintained, and will support the provision of quality advice from IP professionals.

LITERACY AND ADVICE

As part of the IP Strategy, the Canadian Intellectual Property Office will launch a suite of programs to help improve IP literacy among Canadians.

The IP Strategy includes support for domestic and international engagement between Indigenous people and decision makers as well as for research activities and capacity building.

The IP Strategy will also support training for federal employees who deal with IP governance.

TOOLS

The IP Strategy will provide tools to support Canadian businesses as they learn about IP and pursue their own IP strategies.

The government is creating a patent collective to bring together businesses to facilitate better IP outcomes for members. The patent collective is the coming together of firms to share in IP expertise and strategy, including gaining access to a larger collection of patents and IP. 

I’m guessing what the government wants is more patents; at the same time, it does not want to get caught up in patent thickets and the patent troll wars often seen in the US. The desire for more patents isn’t simply ‘protection’ for Canadian businesses, it’s born also from a desire to brag (from “A few final comments subsection” in my May 4, 2021 posting on the Canadian federal budget),

The inclusion of a section on intellectual property in the budget could seem peculiar. I would have thought that years ago before I learned that governments measure and compare with other government the success of their science and technology efforts by the number of patents that have been filed. [new emphasis mine] There are other measures but intellectual property is very important, as far as governments are concerned. My “Billions lost to patent trolls; US White House asks for comments on intellectual property (IP) enforcement; and more on IP” June 28, 2012 posting points to some of the shortcomings, with which we still grapple.

Not just a Canadian conundrum

IP (patents, trademarks, and copyright) has a long history and my understanding of patents and copyright (not sure about trademarks) is that they were initially intended to guarantee inventors and creators a fixed period of time in which to make money from their inventions and/or creations. IP was intended to encourage competition not stifle it as happens so often these days. Here’s more about patents from the Origin of Patents: Everything You Need to Know webpage on the upcounsel.com website (Note: Links have been removed),

Origins of Patent Law and the Incentive Theory

It is possible to trace the idea of patent law as far back as the 9th century B.C. in ancient Greece.  However, one of the most vital pieces of legislation in the history of patents is the English Statute of Monopolies. The Parliament passed the Statute of Monopolies to end monopolies, which stifled competition. 

However, for about a decade, the Statute issued “letters patent” to allow for limited monopolies. This measure was seen as a way of balancing the importance of providing incentives for inventions with the distaste for monopolies. [emphasis mine] While monopolies usually don’t offer any innovative benefits, inventors need to have an incentive to create innovations that benefit society.

Changes?

As you can see in the ‘Origins of Patent Law’ excerpt , there’s a tension between ensuring profitability and spurring innovation. It certainly seems that our current approach to the problem is no longer successful.

There has been an appetite for change in how science is pursued, shared, and commercialized. Listening in on UNESCO’s Open Science meeting:
https://events.unesco.org/event?id=1907937890&lang=1033 [1] (May 10 -12, 2021) is an opportunity to see how this movement could develop. Sadly, I don’t think the World Trade Organization is going to afford anyone the opportunity to tune in to discussions about relaxing COVDI-19 vaccine patent rules. (sigh)

As for the Canadian government’s ‘willingness to talk’ I expect the Canadian representative at the UNESCO will be very happy to adopt open science while the Canadian representative at the WTO will dance around without committing.

If you are inclined, please do share your thoughts on either of the meetings or on the move towards open science.

Canada’s 2021 budget and science

As more than one observer has noted, this April 19, 2021 budget is the first in two years. Predictably, there has been some distress over the copious amounts of money being spent to stimulate/restart the economy whether it needs it or not. Some have described this as a pre-election budget. Overall, there seems to be more satisfaction than criticism.

Maybe a little prescient?

After mentioning some of the government’s issues with money (Phoenix Payroll System debacle and WE Charity scandal) in my April 13, 2021 posting about the then upcoming Canadian Science Policy Centre’s post-budget symposium, I had these comments (which surprise even me),

None of this has anything to do with science funding (as far as I know) but it does set the stage for questions about how science funding is determined and who will be getting it. There are already systems in place for science funding through various agencies but the federal budget often sets special priorities such as the 2017 Pan-Canadian Artificial Intelligence Strategy [emphasis added April 29, 2021] with its attendant $125M. As well,Prime Minister Justin Trudeau likes to use science as a means of enhancing his appeal. [emphasis mine] See my March 16, 2018 posting for a sample of this, scroll down to the “Sunny ways: a discussion between Justin Trudeau and Bill Nye” subhead.

Budget 2021 introduced two new strategies, the first ones since the 2017 budget: the Pan-Canadian Genomics Strategy and the National Quantum Strategy. As for whether this ploy will help enhance Trudeau’s appeal, that seems doubtful given his current plight (see an April 27, 2021 CBC online news item “PM says his office didn’t know Vance allegations were about sexual misconduct” for a description of some of Trudeau’s latest political scandal).

Science in the 2021 budget (a few highlights)

For anyone who wants to take a look at the 2021 Canadian Federal Budget, Chapters Four and Five (in Part Two) seems to contain the bulk of the science funding announcements. Here are the highlights, given my perspective, from Chapter Four (Note: I don’t chime in again until the “A full list …. subhead):

4.6 Investing in World-leading Research and Innovation

A plan for a long-term recovery must look to challenges and opportunities that lie ahead in the years and decades to come. It must be led by a growth strategy that builds on the unique competitive advantages of the Canadian economy, and make sure that Canada is well-positioned to meet the demands of the next century. This work begins with innovation.

To drive growth and create good, well-paying jobs, entrepreneurs and businesses need to be able to translate Canada’s world-class leadership in research into innovative products and services for Canadians, and for the world.

These investments will help cement Canada’s position as a world leader in research and innovation, building a global brand that will attract talent and capital for years to come.

Supporting Innovation and Industrial Transformation

Since its launch in 2017, the Strategic Innovation Fund has been helping businesses invest, grow, and innovate in Canada. Through its efforts to help businesses make the investments they need to succeed, the fund is well-placed to support growth and the creation of good jobs across the Canadian economy—both now and in the future.

  • Budget 2021 proposes to provide the Strategic Innovation Fund with an incremental $7.2 billion over seven years on a cash basis, starting in 2021-22, and $511.4 million ongoing. This funding will be directed as follows:
  • $2.2 billion over seven years, and $511.4 million ongoing to support innovative projects across the economy—including in the life sciences, automotive, aerospace, and agriculture sectors.
  • $5 billion over seven years to increase funding for the Strategic Innovation Fund’s Net Zero Accelerator, as detailed in Chapter 5. Through the Net Zero Accelerator the fund would scale up its support for projects that will help decarbonize heavy industry, support clean technologies and help meaningfully accelerate domestic greenhouse gas emissions reductions by 2030.

The funding proposed in Budget 2021 will build on the Strategic Innovation Fund’s existing resources, including the $3 billion over five years announced in December 2020 for the Net Zero Accelerator. With this additional support, the Strategic Innovation Fund will target investments in important areas of future growth over the coming years to advance multiple strategic objectives for the Canadian economy:

  • $1.75 billion in support over seven years would be targeted toward aerospace in recognition of the longer-lasting impacts to this sector following COVID-19. This is in addition to the $250 million Aerospace Regional Recovery Initiative, outlined in section 4.2, providing a combined support of $2 billion to help this innovative sector recover and grow out of the crisis.
  • $1 billion of support over seven years would be targeted toward growing Canada’s life sciences and bio-manufacturing sector, restoring capabilities that have been lost and supporting the innovative Canadian firms and jobs in this sector. This is an important component of Canada’s plan to build domestic resilience and improve long-term pandemic preparedness proposed in Chapter 1, providing a combined $2.2 billion over seven years.
  • $8 billion over seven years for the Net Zero Accelerator to support projects that will help reduce Canada’s greenhouse gas emissions by expediting decarbonization projects, scaling-up clean technology, and accelerating Canada’s industrial transformation. More details are in Chapter 5.

Renewing the Pan-Canadian Artificial Intelligence Strategy

Artificial intelligence is one of the greatest technological transformations of our age. Canada has communities of research, homegrown talent, and a diverse ecosystem of start-ups and scale-ups. But these Canadian innovators need investment in order to ensure our economy takes advantage of the enormous growth opportunities ahead in this sector. By leveraging our position of strength, we can also ensure that Canadian values are embedded across widely used, global platforms.

  • Budget 2021 proposes to provide up to $443.8 million over ten years, starting in 2021-22, in support of the Pan-Canadian Artificial Intelligence Strategy, including:
  • $185 million over five years, starting in 2021-22, to support the commercialization of artificial intelligence innovations and research in Canada.
  • $162.2 million over ten years, starting in 2021-22, to help retain and attract top academic talent across Canada—including in Alberta, British Columbia, Ontario, and Quebec. This programming will be delivered by the Canadian Institute for Advanced Research.
  • $48 million over five years, starting in 2021-22, for the Canadian Institute for Advanced Research to renew and enhance its research, training, and knowledge mobilization programs.
  • $40 million over five years, starting in 2022-23, to provide dedicated computing capacity for researchers at the national artificial intelligence institutes in Edmonton, Toronto, and Montréal.
  • $8.6 million over five years, starting in 2021-22, to advance the development and adoption of standards related to artificial intelligence.

Launching a National Quantum Strategy

Quantum technology is at the very leading edge of science and innovation today, with enormous potential for commercialization. This emerging field will transform how we develop and design everything from life-saving drugs to next generation batteries, and Canadian scientists and entrepreneurs are well-positioned to take advantage of these opportunities. But they need investments to be competitive in this fast growing global market.

  • Budget 2021 proposes to provide $360 million over seven years, starting in 2021-22, to launch a National Quantum Strategy. The strategy will amplify Canada’s significant strength in quantum research; grow our quantum-ready technologies, companies, and talent; and solidify Canada’s global leadership in this area. This funding will also establish a secretariat at the Department of Innovation, Science and Economic Development to coordinate this work.

The government will provide further details on the rollout of the strategy in the coming months.

Revitalizing the Canadian Photonics Fabrication Centre

Canada is a world leader in photonics, the technology of generating and harnessing the power of light. This is the science behind fibre optics, advanced semi-conductors, and other cutting-edge technologies, and there is a strong history of Canadian companies bringing this expertise to the world. The National Research Council’s Canadian Photonics Fabrication Centre supplies photonics research, testing, prototyping, and pilot-scale manufacturing services to academics and large, small and medium-sized photonics businesses in Canada. But its aging facility puts this critical research and development at risk.

  • Budget 2021 proposes to provide $90 million over five years on a cash basis, starting in 2021-22, to the National Research Council to retool and modernize the Canadian Photonics Fabrication Centre. This would allow the centre to continue helping Canadian researchers and companies grow and support highly skilled jobs.

Launching a Pan-Canadian Genomics Strategy

Genomics research is developing cutting-edge therapeutics and is helping Canada track and fight COVID-19. Canada was an early mover in advancing genomics science and is now a global leader in the field. A national approach to support genomics research can lead to breakthroughs that have real world applications. There is an opportunity to improve Canadians’ health and well-being while also creating good jobs and economic growth. Leveraging and commercializing this advantage will give Canadian companies, researchers, and workers a competitive edge in this growing field.

  • Budget 2021 proposes to provide $400 million over six years, starting in 2021-22, in support of a Pan-Canadian Genomics Strategy. This funding would provide $136.7 million over five years, starting in 2022-23, for mission-driven programming delivered by Genome Canada to kick-start the new Strategy and complement the government’s existing genomics research and innovation programming.

Further investments to grow Canada’s strengths in genomics under the Strategy will be announced in the future.

Conducting Clinical Trials

Canadian scientists are among the best in the world at conducting high-quality clinical trials. Clinical trials lead to the development of new scientifically proven treatments and cures, and improved health outcomes for Canadians. They also create good jobs in the health research sector, including the pharmaceutical sector, and support the creation of new companies, drugs, medical devices, and other health products.

  • Budget 2021 proposes to provide $250 million over three years, starting in 2021-22, to the Canadian Institutes of Health Research to implement a new Clinical Trials Fund.

Supporting the Innovation Superclusters Initiative

Since it was launched in 2017, the Innovation Superclusters Initiative has helped Canada build successful innovation ecosystems in important areas of the economy. Drawing on the strength and breadth of their networks, the superclusters were able to quickly pivot their operations and played an important role in Canada’s COVID-19 response. For example, the Digital Technology Supercluster allocated resources to projects that used digital technologies and artificial intelligence to help facilitate faster, more accurate diagnosis, treatment, and care of COVID-19 patients.

To help ensure those superclusters that made emergency investments to support Canada’s COVID-19 response and others can continue supporting innovative Canadian projects:

  • Budget 2021 proposes to provide $60 million over two years, starting in 2021-22, to the Innovation Superclusters Initiative.

Promoting Canadian Intellectual Property

As the most highly educated country in the OECD, Canada is full of innovative and entrepreneurial people with great ideas. Those ideas are valuable intellectual property that are the seeds of huge growth opportunities. Building on the National Intellectual Property Strategy announced in Budget 2018, the government proposes to further support Canadian innovators, start-ups, and technology-intensive businesses. Budget 2021 proposes:

  • $90 million, over two years, starting in 2022-23, to create ElevateIP, a program to help accelerators and incubators provide start-ups with access to expert intellectual property services.
  • $75 million over three years, starting in 2021-22, for the National Research Council’s Industrial Research Assistance Program to provide high-growth client firms with access to expert intellectual property services.

These direct investments would be complemented by a Strategic Intellectual Property Program Review that will be launched. It is intended as a broad assessment of intellectual property provisions in Canada’s innovation and science programming, from basic research to near-commercial projects. This work will make sure Canada and Canadians fully benefit from innovations and intellectual property.

Capitalizing on Space-based Earth Observation

Earth observation satellites support critical services that Canadians rely on. They provide reliable weather forecasts, support military and transport logistics, help us monitor and fight climate change, and support innovation across sectors, including energy and agriculture. They also create high-quality jobs in Canada and the government will continue to explore opportunities to support Canadian capacity, innovation, and jobs in this sector. To maintain Canada’s capacity to collect and use important data from these satellites, Budget 2021 proposes to provide:

  • $80.2 million over eleven years, starting in 2021-22, with $14.9 million in remaining amortization and $6.2 million per year ongoing, to Natural Resources Canada and Environment and Climate Change Canada to replace and expand critical but aging ground-based infrastructure to receive satellite data.
  • $9.9 million over two years, starting in 2021-22, to the Canadian Space Agency to plan for the next generation of Earth observation satellites.

Science and Technology Collaboration with Israeli Firms

Collaborating with global innovation leaders allows Canadian companies to leverage expertise to create new products and services, support good jobs, and reach new export markets.

  • Budget 2021 proposes to provide additional funding of $10 million over five years, starting in 2021-2022, and $2 million per year ongoing, to expand opportunities for Canadian SMEs to engage in research and development partnerships with Israeli SMEs as part of the Canadian International Innovation Program. This will be sourced from existing Global Affairs Canada resources. The government also intends to implement an enhanced delivery model for this program, including possible legislation.

4.7 Supporting a Digital Economy

More and more of our lives are happening online—from socializing, to our jobs, to commerce. Recognizing the fundamental shifts underway in our society, the government introduced a new Digital Charter in 2020 that seeks to better protect the privacy, security, and personal data of Canadians, building trust and confidence in the digital economy.

To make sure that Canadian businesses can keep pace with this digital transformation and that they are part of this growth, Budget 2021 includes measures to ensure businesses and workers in every region of the country have access to fast, reliable internet. It also has measures to make sure that the digital economy is fair and well reported on.

A digital economy that serves and protects Canadians and Canadian businesses is vital for long-term growth.

Accelerating Broadband for Everyone

The COVID-19 pandemic has shifted much of our lives online and transformed how we live, work, learn, and do business. This makes it more important than ever that Canadians, including Canadian small businesses in every corner of this country, have access to fast and reliable high-speed internet. Canadians and Canadian businesses in many rural and remote communities who still do not have access to high-speed internet face a barrier to equal participation in the economy. Building on the $6.2 billion the federal government and federal agencies have made available for universal broadband since 2015:

  • Budget 2021 proposes to provide an additional $1 billion over six years, starting in 2021-22, to the Universal Broadband Fund to support a more rapid rollout of broadband projects in collaboration with provinces and territories and other partners. This would mean thousands more Canadians and small businesses will have faster, more reliable internet connections.

In total, including proposed Budget 2021 funding, $2.75 billion will be made available through the Universal Broadband Fund to support Canadians in rural and remote communities. Recently, the Universal Broadband Fund provided funding to ensure Quebec could launch Operation High Speed, connecting nearly 150,000 Quebecers to high-speed internet. These continuing investments will help Canada accelerate work to reach its goal of 98 per cent of the country having high-speed broadband by 2026 and 100 per cent by 2030.

Establishing a New Data Commissioner

Digital and data-driven technologies open up new markets for products and services that allow innovative Canadians to create new business opportunities—and high-value jobs. But as the digital and data economy grows, Canadians must be able to trust that their data are protected and being used responsibly.

  • Budget 2021 proposes to provide $17.6 million over five years, starting in 2021-22, and $3.4 million per year ongoing, to create a Data Commissioner. The Data Commissioner would inform government and business approaches to data-driven issues to help protect people’s personal data and to encourage innovation in the digital marketplace.
  • Budget 2021 also proposes to provide $8.4 million over five years, starting in 2021-22, and $2.3 million ongoing, to the Standards Council of Canada to continue its work to advance industry-wide data governance standards.

A full list of science funding highlights from the 2021 federal budget

If you don’t have the time or patience to comb through the budget for all of the science funding announcements, you can find an excellent list in an April 19, 2021posting on Evidence for Democracy (Note: Links have been removed; h/t Science Media Centre of Canada newsletter),

Previously, we saw a landmark budget for science in 2018, which made historic investments in fundamental research totaling more than $1.7 billion. This was followed by additional commitments in 2019 that included expanded support for research trainees and access to post-secondary education. While no federal budget was tabled in 2020, there have been ongoing investments in Canadian science throughout the pandemic.

Budget 2021 attempts to balance the pressing challenges of the pandemic with a long-term view towards recovery and growth. We are pleased to see strategic investments across the Canadian science ecosystem, including targeted research funding in artificial intelligence, quantum technologies, and bioinnovation. There is also a focus on climate action, which outlines a $17.6 billion investment towards green recovery and conservation. There are also noteworthy investments in research and development partnerships, and data capacity. Beyond research, Budget 2021 includes investments in childcare, mental health, Indigenous communities, post-secondary education, and support for gender-based and Black-led initiatives.

We note that this budget does not include significant increases to the federal granting agencies, or legislation to safeguard the Office of the Chief Science Advisor.

Below, we highlight key research-related investments in Budget 2021.

The list is here in the April 19, 2021posting.

Is it magic or how does the federal budget get developed?

I believe most of the priorities are set by power players behind the scenes. We glimpsed some of the dynamics courtesy of the WE Charity scandal 2020/21 and the SNC-Lavalin scandal in 2019.

Access to special meetings and encounters are not likely to be given to any member of the ‘great unwashed’ but we do get to see the briefs that are submitted in anticipation of a new budget. These briefs and meetings with witnesses are available on the Parliament of Canada website (Standing Committee on Finance (FINA) webpage for pre-budget consultations.

For the 2021 federal budget, there are 792 briefs and transcripts of meeting with 52 witnesses. Whoever designed the page decided to make looking at more than one or two briefs onerous. Just click on a brief that interests you and try to get back to the list.

National Quantum Strategy

There is a search function but ‘quantum’ finds only Xanadu Quantum Technologies (more about their brief in a minute) and not D-Wave Systems, which is arguably a more important player in the field. Regardless, both companies presented briefs although the one from Xanadu was of the most interest as it seems to be recommending a national strategy without actually using the term (from the Xanadu Quantum Technologies budget 2021 brief),

Recommendation 1: Quantum Advisory Board

The world is at the beginning of the second Quantum Revolution, which will result in the development and deployment of revolutionary quantum technologies, based upon the scientific discoveries of the past century. Major economies of the world, including the USA, China, Japan, EU, UK and South Korea, have all identified quantum technologies as strategically important, and have adopted national strategies or frameworks. Many of them have dedicated billions of dollars of funding to quantum technology R&D and commercialization. We urge the government to create a Quantum Advisory Board or Task Force, to ensure a coherent national strategy which involves all areas of government:research, education, industry, trade, digital government, transportation, health, defence,etc.

Recommendation 2: Continue Supporting Existing Research Centres

Canada has a long history of nurturing world-class academic research in quantum science at our universities. The CFREF [Canada First Research Excellence Fund {CFREF}] program was a welcome catalyst which solidified the international stature of the quantum research programs at UBC [University of British Columbia], Waterloo [University of Waterloo; Ontario] and Sherbrooke [University of Sherbrooke; Québec]. Many of our highly qualified team members have graduated from these programs and other Canadian universities. We urge the government to continue funding these research centers past the expiration of the CFREF program, to ensure the scientific critical mass is not dissipated, and the highly sought-after talent is not pulled away to other centers around the world.

Recommendation 3: National Quantum Computing Access Centre

Our Canadian competitor, D-Wave Systems, was started in Canada nearly 20 years ago,and has yet to make significant sales or build a strong user base within Canada. At Xanadu we also find that the most ready customers for our computers are researchers in the USA,rather than in Canada, despite the strong interest from many individual professors we speak with at a number of Canadian universities. We urge the government to create a National Quantum Computing Access Centre, through Compute Canada or another similar national organization, which can centralize and coordinate the provision of quantum computing access for the Canadian academic research community. Without access to these new machines, Canadian researchers will lose their ability to innovate new algorithms and applications of this groundbreaking technology. It will be impossible to train the future workforce of quantum programmers, without access to the machines like those of D-Wave and Xanadu.

Recommendation 4: National Quantum Technology Roundtable

Traditional, resource-based Canadian industries are not historically known for the ir innovative adoption of new technology, and the government has created many programs to encourage digitalization of manufacturing and resource industries, and also newer,cleaner technology adoption in the energy and other heavy industries. Quantum technologies in computing, communications and sensing have the potential to make exponential improvements in many industries, including: chemicals, materials, logistics,transportation, electricity grids, transit systems, wireless networks, financial portfolio analysis and optimization, remote sensing, exploration, border security, and improved communication security. We urge the government to convene national roundtable discussions, perhaps led by the NRC, to bring together the Canadian researchers and companies developing these new technologies, along with the traditional industries and government bodies of Canada who stand to benefit from adopting them, for mutual education and information sharing, roadmapping, benchmarking and strategic planning.

Recommendation 5: New Quantum Computing Institute in Toronto

The University of Toronto is the leading research institution in Canada, and one of the top research universities in the world. Many world-class scientists in quantum physics,chemistry, computer science, and electrical engineering are currently part of the Centre for Quantum Information and Quantum Control (CQIQC) at the university [University of Toronto]. British Columbia has recently announced the creation of a new institute dedicated to the study of Quantum Algorithms, and we encourage the government to build upon the existing strengths of the quantum research programs at the CQIQC, through the funding of a new,world-class research institute, focussed on quantum computing. Such an institute will leverage not only the existing quantum expertise, but also the world-class artificial intelligence and machine learning research communities in the city. The tech industry in Toronto is also the fastest growing in North America, hiring more than San Francisco or Boston. We request the government fund the establishment of a new quantum computing institute built on Toronto’s 3 pillars of quantum research, artificial intelligence, and a thriving tech industry, to create a center of excellence with global impact.

Recommendation 6: Dedicated BDC [Business Development Bank of Canada] Quantum Venture Fund

Although there is no major international firm developing and selling quantum-based technology from Canada, a number of the world’s most promising start-ups are based here. Xanadu and our peer firms are now actively shaping our business models; refining our products and services; undertaking research and development; and developing networks of customers.To date, Canadian firms like Xanadu have been successful at raising risk capital from primarily domestic funds like BDC, OMERS, Georgian Partners and Real Ventures,without having to leave the country. In order to ensure a strong “Quantum Startup”ecosystem in Canada, we request that the BDC be mandated to establish a specialist quantum technology venture capital fund. Such a fund will help ensure the ongoing creation of a whole cluster of Canadian startups in all areas of Quantum Technology, and help to keep the technologies and talent coming from our research universities within the country.

Christian Weedbrook, Xanadu Chief Executive Officer, has taken the time to dismiss his chief competitor and managed to ignore the University of Calgary in his Canadian quantum future. (See my September 21, 2016 posting “Teleporting photons in Calgary (Canada) is a step towards a quantum internet,” where that team set a record for distance.)

The D-Wave Systems budget 2021 brief does have some overlapping interests but is largely standalone and more focused on business initiatives and on the US. Both briefs mention the Quantum Algorithms Institute (QAI), which is being established at Simon Fraser University (SFU) with an investment from the government of British Columbia (see this Oct. 2, 2019 SFU press release).

Where Weedbrook is passionately Canadian and signed the Xanadu brief himself, the D-Wave brief is impersonal and anonymous.

Pan-Canadian Genomics Strategy

The Genome Canada brief doesn’t mention a pan-Canadian strategy,

List of Recommendations:

•Recommendation 1: That the government invest in mission-driven research —with line-of-sight to application —to mobilize genomics to drive Canada’s recovery in key sectors.

•Recommendation 2: That the government invest in a national genomics data strategy to drive data generation, analysis, standards, tools, access and usage to derive maximum value and impact from Canada’s genomics data assets.

•Recommendation 3: That the government invest in training of the next generation of genomics researchers, innovators and entrepreneurs to support the development of a genomics-enabled Canadian bioeconomy.

•Recommendation 4: That the government invest in long-term and predictable research and research infrastructure through the federal granting agencies and the Canada Foundation forInnovation to ensure a strong and vibrant knowledge base for recovery.

It’s not an exciting start but if you continue you’ll find a well written and compelling brief.

A happy April 19, 2021 GenomeCanada news release provides an overview of how this affects the Canadian life sciences research effort,

“The federal government announced $400 million for a new Pan-Canadian Genomics Strategy, including $136.7 million for Genome Canada to kickstart the Strategy, with further investments to be announced in the future. The budget recognized the key role genomics plays in developing cutting-edge therapeutics and in helping Canada track and fight COVID-19. It recognizes that Canada is a global leader in the field and that genomics can improve Canadians’ health and wellbeing while also creating good jobs and economic growth. Leveraging and commercializing this advantage will give Canadian companies, researchers, and workers a competitive edge in this growing field.

… Today’s announcement included excellent news for Canada’s long-term sustainable economic growth in biomanufacturing and the life sciences, with a total of $2.2 billion over seven years going toward growing life sciences, building up Canada’s talent pipeline and research systems, and supporting life sciences organizations.
 
Genome Canada welcomes other investments that will strengthen Canada’s research, innovation and talent ecosystem and drive economic growth in sectors of the future, including:

  • $500 million over four years, starting in 2021-22, for the Canada Foundation for Innovation to support the bio-science capital and infrastructure needs of post-secondary institutions and research hospitals;
  • $250 million over four years, starting in 2021-22, for the federal research granting councils to create a new tri-council biomedical research fund;
  • $250 million over three years, starting in 2021-22, to the Canadian Institutes of Health Research to implement a new Clinical Trials Fund;
  • $92 million over four years, starting in 2021-22, for adMare to support company creation, scale up, and training activities in the life sciences sector;
  • $59.2 million over three years, starting in 2021-22, for the Vaccine and Infectious Disease Organization to support the development of its vaccine candidates and expand its facility in Saskatoon;
  • $45 million over three years, starting in 2022-23, to the Stem Cell Network to support stem cell and regenerative medicine research; and
  • $708 million over five years, starting in 2021-22, to Mitacs to create at least 85,000 work-integrated learning placements that provide on-the-job learning and provide businesses with support to develop talent and grow.

The visionary support announced in Budget 2021 puts Canada on competitive footing with other G7 nations that have made major investments in research and innovation to drive high-value growth sectors, while placing bio-innovation at the heart of their COVID-19 recoveries. Genome Canada looks forward to leading the new Pan-Canadian Genomics Strategy and to working with Innovation, Science and Economic Development Canada and other partners on the strategic investments announced today.   

“To solve complex global problems, such as a worldwide pandemic and climate change, we need transdisciplinary approaches. The life sciences will play significant roles within such an approach. The funding announced today will be instrumental in driving Genome Canada’s mission to be Canada’s genomics platform for future pandemic preparedness, its capacity for biomanufacturing, and its bio-economy overall.”

– Dr. Rob Annan, President and CEO, Genome Canada

Canadian business innovation, science, and innovation—oxymoron?

Navdeep Bains was Canada’s Minister of Innovation, Science and Industry (2015-January 12, 2021) and he had a few things to say as he stepped away (from an April 16, 2021 article by Kevin Carmichael for PostMedia on the SaltWire; Atlantic Canada website),

Navdeep Bains earlier this spring [2021] spoke to me about his tenure as industry minister, which inevitably led to questions about Canada’s eroding competitiveness. He said that he thought he’d done a pretty good job of creating the conditions for a more innovative economy. But the corporate elite? Not so much.

“The ball is back in business’s court,” Bains said. “Frankly, if businesses don’t do this, I think in the long run they will struggle. They have to start changing their behaviour significantly.”

How’s that for a parting shot?

Bains wasn’t the first Canadian policy-maker to get frustrated by Corporate Canada’s aversion to risky bets on research and cutting-edge technology [emphasis mine]. But it’s been a long time since anyone in Ottawa tried to coax them to keep up with the times by dangling big sacks of cash in their faces. All they had to do was demonstrate some ambition and be willing to complement the federal government’s contribution with an investment of their own.

“He [Bains] was a great cheerleader,” said Mike Wessinger, chief executive of PointClickCare Technologies Inc., a Mississauga-based developer of software that helps long-term care homes manage data. “He would always proactively reach out. It was great that he cared.”

It’s easy to dismiss the importance of cheerleading. Canada’s digitally native companies were struggling to be taken seriously in Ottawa a decade ago. Former prime minister Stephen Harper pitched in with the Obama administration to save General Motors Co. and Chrysler Group LLC in 2009, but he let Nortel Networks Corp. fail. The technology industry needed a champion, and it found one in Bains.

Bains argued that his programs [legacy assessment] deserve more time. Industrial policy was still derided when he took over the industry department. It’s now mainstream. For now, that’s his legacy. It’s up to his former colleagues to write the final chapter.

I haven’t seen any OECD (Organization for Economic Cooperation and Development) figures recently but Canada’s industrial R&D (research development) has been on a downward slide for several years compared to many ‘developed’ countries.

A few final comments

I am intrigued by the inclusion of science and technology collaboration with Israeli firms (through the Canadian International Innovation Program) in the 2021 budget. It’s the only country to be specifically identified in this budget’s science funding announcements.

In fact, I can’t recall seeing any other budget of the last 10 years or so with mention of a specific country as a focus for Canadian science and technology collaboration. Perhaps Israeli companies are especially focused on industrial R&D and risk taking and they hope some of that will rub off on Canadians?

For anyone who might be curious as to the name difference between the new Pan-Canadian Genomic Strategy and the National Quantum Strategy, it may be due to the maturity (age) associated with the research field and its business efforts.

GenomeCanada (a Canadian government-funded not-for-profit agency founded in 2000) and its regional centres are the outcome of some national strategizing in the 1990s, from the GenomeCanada 20th anniversary webpage,

In the 1990s, the Human Genome Project captivates the world. But Canada doesn’t have a coordinated national approach. A group of determined Canadian scientists convinces the federal government to make a bold investment in genomics to ensure Canada doesn’t miss out on the benefits of this breakthrough science. Genome Canada is established on February 8, 2000.

While the folks in the quantum world are more obviously competitive (if the two briefs are indicative), there is the Quantum Industry Canada consortium, which was announced on October 6, 2020 on the Cision website,

Industry Association will accelerate the commercialization of Canada’s quantum sector – a $142.4B opportunity for Canadians.

TORONTO, Oct. 6, 2020 /CNW/ – A consortium of Canada’s leading quantum technology companies announced today that they are launching Quantum Industry Canada (QIC), an industry association with a mission to ensure that Canadian quantum innovation and talent is translated into Canadian business success and economic prosperity.

The twenty-four founding members represent Canada’s most commercial-ready quantum technologies, covering applications in quantum computing, quantum sensing, quantum communications, and quantum-safe cryptography.

It’s quite possible this National Quantum Strategy will result in a national not-for-profit agency and, eventually, a pan-Canadian strategy of its own. My impression is that competition in the life sciences research and business concerns is just as intense as in the quantum research and business concerns; the difference (as suggested earlier) lies in the maturity of, as well as, cultural differences between the communities.

If you have the time, the briefs offer an fascinating albeit truncated view into the machinations behind a federal budget: Parliament of Canada website (Standing Committee on Finance; FINA) webpage for pre-budget consultations.

The inclusion of a section on intellectual property in the budget could seem peculiar. I would have thought that years ago before I learned that governments measure and compare with other government the success of their science and technology efforts by the number of patents that have been filed. There are other measures but intellectual property is very important, as far as governments are concerned. My “Billions lost to patent trolls; US White House asks for comments on intellectual property (IP) enforcement; and more on IP” June 28, 2012 posting points to some of the shortcomings, with which we still grapple.

To finally finish this off, Canadian Science Policy Centre has a call for 2021 Budget Editorial Call. (600-800 words)

ETA May 6, 2021: Ooops! This is the end: The Canadian Science Policy Centre has posted recordings of their 2021 federal budget symposium here (according to a May 6, 2021 announcement received via email).

Girl Trouble—UNESCO’s and the World Economic Forum’s Breaking Through Bias in AI panel on International Women’s Day March 8, 2021

What a Monday morning! United Nations Educational, Scientific and Cultural Organization (UNESCO; French: Organisation des Nations unies pour l’éducation, la science et la culture) and the World Economic Forum (WEF) hosted a live webcast (which started at 6 am PST or 1500 CET [3 pm in Paris, France]). The session is available online for viewing both here on UNESCO’s Girl Trouble webpage and here on YouTube. It’s about 2.5 hours long with two separate discussions and a question period after each discussion. You will have a 2 minute wait before seeing any speakers or panelists.

Here’s why you might want to check this out (from the Girl Trouble: Breaking Through The Bias in AI page on the UNESCO website),

UNESCO and the World Economic Forum present Girl Trouble: Breaking Through The Bias in AI on International Women’s Day, 8th March, 3:00 pm – 5:30 pm (CET). This timely round-table brings together a range of leading female voices in tech to confront the deep-rooted gender imbalances skewing the development of artificial intelligence. Today critics charge that AI feeds on biased data-sets, amplifying the existing the anti-female biases of our societies, and that AI is perpetuating harmful stereotypes of women as submissive and subservient. Is it any wonder when only 22% of AI professionals globally are women?

Our panelists are female change-makers in AI. From C-suite professionals taking decisions which affect us all, to women innovating new AI tools and policies to help vulnerable groups, to those courageously exposing injustice and algorithmic biases, we welcome:

Gabriela Ramos, Assistant Director-General of Social and Human Sciences, UNESCO, leading the development of UNESCO’s Recommendation on the Ethics of AI, the first global standard-setting instrument in the field.
Kay Firth-Butterfield, Keynote speaker. Kay was the world’s first chief AI Ethics Officer. As Head of AI & Machine Learning, and a Member of the Executive Committee of the World Economic Forum, Kay develops new alliances to promote awareness of gender bias in AI;
Ashwini Asokan, CEO of Chennai-based AI company, Mad Street Den. She explores how Artificial Intelligence can be applied meaningfully and made accessible to billions across the globe;
Adriana Bora a researcher using machine learning to boost compliance with the UK and Australian Modern Slavery Acts, and to combat modern slavery, including the trafficking of women;
Anne Bioulac, a member of the Women in Africa Initiative, developing AI-enabled online learning to empower African women to use AI in digital entrepreneurship;
Meredith Broussard, a software developer and associate professor of data journalism at New York University, whose research focuses on AI in investigative reporting, with a particular interest in using data analysis for social good ;
Latifa Mohammed Al-AbdulKarim, named by Forbes magazine as one of 100 Brilliant Women in AI Ethics, and as one of the women defining AI in the 21st century;
Wanda Munoz, of the Latin American Human Security Network. One of the Nobel Women’s Initiative’s 2020 peacebuilders, she raises aware-ness around gender-based violence and autonomous weapons;
Nanjira Sambuli, a Member of the UN Secretary General’s High-Level Panel for Digital Cooperation and Advisor for the A+ Alliance for Inclusive Algorithms;
Jutta Williams, Product Manager at Twitter, analyzing how Twitter can improve its models to reduce bias.

There’s an urgent need for more women to participate in and lead the design, development, and deployment of AI systems. Evidence shows that by 2022, 85% of AI projects will deliver erroneous outcomes due to bias.

AI Recruiters searching for female AI specialists online just cannot find them. Companies hiring experts for AI and data science jobs estimate fewer than 1 per cent of the applications they receive come from women. Women and girls are 4 times less likely to know how to programme computers, and 13 times less likely to file for technology patent. They are also less likely to occupy leadership positions in tech companies.

Building on UNESCO’s cutting edge research in this field, and flagship 2019 publication “I’d Blush if I Could”, and policy guidance on gender equality in the 2020 UNESCO Draft Recommendation on the Ethics of Artificial Intelligence, the panel will look at:

1. The 4th industrial revolution is on our doorstop, and gender equality risks being set back decades; What more can we do to attract more women to design jobs in AI, and to support them to take their seats on the boards of tech companies.

2. How can AI help us advance women and girls’ rights in society? And how can we solve the problem of algorithmic gender bias in AI systems?

Women’s leadership in the AI Sector at all levels, from big tech to the start-up AI economy in developing countries will be placed under the micro-scope.

Confession: I set the timer correctly but then forget to set the alarm so I watched the last 1.5 hours (I plan to go back and get the first hour later). Here’s a little of what transpired.

Moderator

Kudos to the moderator, Natashya Gutierrez, for her excellent performance; it can’t have been easy to keep track of the panelists and questions for a period of 2.5 hours,

Natashya Gutierrez, Editor-in-Chief APAC, VICE World News

Natashya is an award-winning multimedia journalist and current Editor in Chief of VICE World News in APAC [Asia-Pacific Countries]. She oversees editorial teams across Australia, Indonesia, India, Hong Kong, Thailand, the Philippines, Singapore, Japan and Korea. Natashya’s reporting specialises on women’s rights. At VICE, she hosts Unequal, a series focused on gender inequality in Asia. She is the recipient of several journalism awards including the Society of Publishers in Asia for reporting on women’s issues, and the Asia Journalism Fellowship. Before VICE, she was part of the founding team of Rappler, an online news network based in the Philippines. She has been selected as one of Asia’s emerging young leaders and named a Development Fellow by the Asia Foundation. Natashya is a graduate of Yale University.

First panel discussion

For anyone who’s going to watch the session, don’t forget it takes about two minutes before there’s sound. The first panel was focused on “the female training and recruitment crisis in AI.’

  • The right people

I have a suspicion that Ashwini Asokan’s comment about getting the ‘right people’ to create the algorithms and make decisions about AI was not meant the way it might sound. I will have to listen again but, at a guess, I think she was suggesting that a bunch of 25 – 35 year old developers (mostly male and working in monoculture environments) is not going to be cognizant of how their mathematical decisions will impact real world lives.

So, getting the ‘right people’ means more inclusive hiring.

  • Is AI always the best solution?

In all the talk about AI, it’s assumed that this technology is the best solution to all problems. One of the panelists (Nanjira Sambuli) suggested an analogue solution (e. g., a book) might be a better solution on occasion.

There are some things that people are better at than AI (can’t remember which panelist said this). That comment hints at something which seems heretical. It challenges the notion that technology is always better than a person.

I once had someone at a bank explain to me that computers were very smart (by implication, smarter than me)—30 years ago The teller was talking about a database.

Adriana Bora (I think) suggested that lived experience should be considered when putting together consultative groups and developer groups.

This theme of AI not being the best solution for all problems came up again in the second panel discussion

Second panel discussion

The second panel was focused on “innovative AI-based solutions to address bias against women.”

  • AI is math and it’s hard

It’s surprisingly easy to forget that AI is math. Meredith Broussard pointed out that most of us (around the world) have a very Hollywood idea about what AI is.

Broussard noted that AI has its limits and there are times when it’s not the right choice.

She made an interesting point in her comment about AI being hard. I don’t think she meant to echo the old cliché ‘math is hard, so it’s not for girls’. The comment seemed to speak to the breadth and depth of the AI sector. Simultaneous with challenging mathematics, we need to take into account so much more than was imagined in the Industrial Revolution when ecological consequences were unimagined and inequities often taken as god-given.

  • Inequities and language

Natashya Gutierrez, the moderator, noted that AI doesn’t create bias, it magnifies it.

One of the panelists, Jutta Williams (Twitter), noted later that algorithms are designed to favour certain types of language, e. g., information presented as factual rather than emotive. That’s how you get more attention on social media platforms. In essence, the bias in the algorithms was not towards males but towards the way they tend to communicate.

  • Laziness

Describing engineers as ‘lazy’, Meredith Broussard added this about the mindset, ‘write once, run anywhere’.

A colleague, some years ago, drew my attention to the problem. She was unsuccessfully trying to get the developers to fix a problem in the code. They simply couldn’t be bothered. It wasn’t an interesting problem and there was no reward for fixing it.

I’m having a problem now where I suspect engineers/developers don’t want to tweak or correct code in WordPress. It’s the software I use to create my blog postings and I use tags to make those postings easier to find.

Sometime in December 2018 I updated my blog software to their latest version. Many problems ensued but there is one which persists to this day. I can’t tag any new words with apostrophes in them (very common in French). The system refuses to save them.

Previous versions of WordPress were quite capable of saving words with apostrophes. Those words are still in my ‘tag database’.

  • Older generation has less tech savvy

Adriana Bora suggested that the older generation should also be considered in discussions about AI and inclusivity. I’m glad to hear her mention.

Unfortunately, she seemed to be under the impression that seniors don’t know much about technology.

Yes and no. Who do you think built and developed the technologies you are currently using? Probably your parents and grandparents. Networks were first developed in the early to mid-1960s. The Internet is approximately 40 years old. (You can get the details in the History of the Internet entry on Wikipedia.)

Yes, I’ve made that mistake about seniors/elders too.

It’s possible that person over … what age is that? Over 55? Over 60? Over 65? Over 75? and so on … Anyway, that person may not have had much experience with the digital world or it may be dated experience but that assumption is problematic.

As an antidote, here’s one of my favourite blogs, Grandma Got STEM. It’s mostly written by people reminiscing about their STEM mothers and grandmothers.

  • Bits and bobs

There seemed to be general agreement that there needs to be more transparency about the development of AI and what happens in the ‘AI black box’.

Gabriela Ramos, keynote speaker, commented that transparency needs to be paired up with choice otherwise it won’t do much good.

After recounting a distressing story about how activists have had their personal revealed in various networks, Wanda Munoz noted that AI can be used for good.

The concerns are not theoretical and my final comments

Munoz, of course, brought a real life example of bad things happening but I’d like to reinforce it with one more example. The British Broadcasting Corporation (BBC) in a January 13, 2021 news article by Leo Kelion broke the news that Huawei, a Chinese technology company, had technology that could identify ethnic groups (Note: Links have been removed),

A Huawei patent has been brought to light for a system that identifies people who appear to be of Uighur origin among images of pedestrians.

The filing is one of several of its kind involving leading Chinese technology companies, discovered by a US research company and shared with BBC News.

Huawei had previously said none of its technologies was designed to identify ethnic groups.

It now plans to alter the patent.

The company indicated this would involve asking the China National Intellectual Property Administration (CNIPA) – the country’s patent authority – for permission to delete the reference to Uighurs in the Chinese-language document.

Uighur people belong to a mostly Muslim ethnic group that lives mainly in Xinjiang province, in north-western China.

Government authorities are accused of using high-tech surveillance against them and detaining many in forced-labour camps, where children are sometimes separated from their parents.

Beijing says the camps offer voluntary education and training.

Huawei’s patent was originally filed in July 2018, in conjunction with the Chinese Academy of Sciences .

It describes ways to use deep-learning artificial-intelligence techniques to identify various features of pedestrians photographed or filmed in the street.

But the document also lists attributes by which a person might be targeted, which it says can include “race (Han [China’s biggest ethnic group], Uighur)”.

More than one company has been caught out, do read the January 13, 2021 news article in its entirety.

I did not do justice to the depth and breadth of the discussion. (I noticed I missed a few panelists and it’s entirely my fault; I should have woken up sooner. I apologize for the omissions.)

If you have the time and the inclination, do go to the Girl Trouble: Breaking Through The Bias in AI page on the UNESCO website where in addition to the panel video, you can find a number of related reports:

Happy International Women’s Day 2021.

“transforming a plant is still an art” even with CRISPR

“Plus ça change, plus c’est la même chose (the more things change, the more things stay the same), is an old French expression that came to mind when I stumbled across two stories about genetic manipulation of food-producing plants.

The first story involves CRISPR (clustered regularly interspersed short palindromic repeats) gene editing and the second involves more ancient ways to manipulate plant genetics.

Getting ‘CRISPR’d’ plant cells to grow into plants

Plants often don’t grow from cells after researchers alter their genomes. Using a new technology, a team coaxed wheat (above) and other crops to more readily produce genome-edited healthy adult plants. Credit: Juan Debernardi

An October 13, 2020 news item on phys.org announces research about getting better results after a plant’s genome has been altered,

Researchers know how to make precise genetic changes within the genomes of crops, but the transformed cells often refuse to grow into plants. One team has devised a new solution.

Scientists who want to improve crops face a dilemma: it can be difficult to grow plants from cells after you’ve tweaked their genomes.

A new tool helps ease this process by coaxing the transformed cells, including those modified with the gene-editing system CRISPR-Cas9, to regenerate new plants. Howard Hughes Medical Institute Research Specialist Juan M. Debernardi and Investigator Jorge Dubcovsky, together with David Tricoli at the University of California, Davis [UC Davis] Plant Transformation Facility, Javier Palatnik from Argentina, and colleagues at the John Innes Center [UK], collaborated on the work. The team reports the technology, developed in wheat and tested in other crops, October 12, 2020, in the journal Nature Biotechnology.

An October 12, 2020 Howard Hughes Medical Institute (HHMI) news release, which originated the news item, provides more detail,

“The problem is that transforming a plant is still an art [emphasis mine],” Dubcovsky says. The success rate is often low – depending on the crop being modified, 100 attempts may yield only a handful of green shoots that can turn into full-grown plants. The rest fail to produce new plants and die. Now, however, “we have reduced this barrier,” says Dubcovsky, a plant geneticist at UC Davis. Using two genes that already control development in many plants, his team dramatically increased the formation of shoots in modified wheat, rice, citrus, and other crops.

Although UC Davis has a pending patent for commercial applications, Dubcovsky says the technique is available to any researcher who wants to use it for research, at no charge. A number of plant breeding companies have also expressed interested in licensing it. “Now people are trying it in multiple crops,” he says.

Humans have worked to improve plants since the dawn of agriculture, selecting wild grasses to produce cultivated maize and wheat, for example. Nowadays, though, CRISPR has given researchers the ability to make changes to the genome with surgical precision. They have used it to create wheat plants with larger grains, generate resistance to fungal infection, design novel tomato plant architectures, and engineer other traits in new plant varieties.

But the process isn’t easy. Scientists start out with plant cells or pieces of tissue, into which they introduce the CRISPR machinery and a small guide to the specific genes they’d like to edit. They must then entice the modified cells into forming a young plant. Most don’t sprout – a problem scientists are still working to understand.

They have tried to find work-arounds, including boosting the expression of certain genes that control early stages of plant development. While this approach has had some success, it can lead to twisted, stunted, sterile plants if not managed properly.Dubcovsky and his colleagues looked at two other growth-promoting genes, GRF and GIF, that work together in young tissues or organs of plants ranging from moss to fruit trees. The team put these genes side-by-side, like a couple holding hands, before adding them to plant cells. “If you go to a dance, you need to find your partner,” Dubcovsky says. “Here, you are tied with a rope to your partner.”

Dubcovsky’s team found that genetically altered wheat, rice, hybrid orange, and other crops produced many more shoots if those experiments included the linked GRF and GIF genes. In experiments with one variety of wheat, the appearance of shoots increased nearly eight-fold. The number of shoots in rice and the hybrid orange, meanwhile, more than doubled and quadrupled, respectively. What’s more, these shoots grew into healthy plants capable of reproducing on their own, with none of the defects that can result when scientists boost other development-controlling genes. That’s because one of the genes is naturally degraded in adult tissues, Dubcovsky says.

Caroline Roper, a plant pathologist at University of California, Riverside who was not involved in the work, plans to use the new technology to study citrus greening, a bacterial disease that kills trees and renders oranges hard and bitter.

To understand how citrus trees can protect themselves, she needs to see how removing certain genes alters their susceptibility to the bacterium — information that could lead to ways to fight the disease. With conventional techniques, it could take at least two years to generate the gene-edited plants she needs. She hopes Dubcovsky’s tool will shorten that timeline.  

“Time is of the essence. The growers, they wanted an answer yesterday, because they’re at the brink of having to abandon cultivating citrus,” she says.

For anyone who noticed the reference to citrus greening in the last paragraphs of this news release, I have more information aboutthe disease and efforts to it in an August 6, 2020 posting.

As for the latest in gene editing and regeneration, here’s a link to and a citation for the paper,

A GRF–GIF chimeric protein improves the regeneration efficiency of transgenic plants by Juan M. Debernardi, David M. Tricoli, Maria F. Ercoli, Sadiye Hayta, Pamela Ronald, Javier F. Palatnik & Jorge Dubcovsky. Nature Biotechnology volume 38, pages 1274–1279(2020) DOI: https://doi.org/10.1038/s41587-020-0703-0 First Published Online: 12 October 2020 Journal Issue Date: November 2020

This paper is behind a paywall.

Ancient farming techniques for engineering crops

I stumbled on this story by Gabriela Serrato Marks for Massive Science almost three years late (it’s a Dec. 5, 2017 article),

There are more than 50 strains of maize, called landraces, grown in Mexico. A landrace is similar to a dog breed: Corgis and Huskies are both dogs, but they were bred to have different traits. Maize domestication worked the same way.

Some landraces of maize can grow in really dry conditions; others grow best in wetter soils. Early maize farmers selectively bred maize landraces that were well-adapted to the conditions on their land, a practice that still continues today in rural areas of Mexico.

If you think this sounds like an early version of genetic engineering, you’d be correct. But nowadays, modern agriculture is moving away from locally adapted strains and traditional farming techniques and toward active gene manipulation. The goal of both traditional landrace development and modern genetic modification has been to create productive, valuable crops, so these two techniques are not necessarily at odds.

But as more farmers converge on similar strains of (potentially genetically modified) seeds instead of developing locally adapted landraces, there are two potential risks: one is losing the cultural legacy of traditional agricultural techniques that have been passed on in families for centuries or even millennia, and another is decreasing crop resilience even as climate variability is increasing.

Mexico is the main importer of US-grown corn, but that imported corn is primarily used to feed livestock. The corn that people eat or use to make tortillas is grown almost entirely in Mexico, which is where landraces come in.

It is a common practice to grow multiple landraces with different traits as an insurance policy against poor growth conditions. The wide range of landraces contains a huge amount of genetic diversity, making it less likely that one adverse event, such as a drought or pest infestation, will wipe out an entire crop. If farmers only grow one type of corn, the whole crop is vulnerable to the same event.

Landraces are also different from most commercially available hybrid strains of corn because they are open pollinating, which means that farmers can save seeds and replant them the next year, saving money and preserving the strain. If a landrace is not grown anymore, its contribution to maize’s genetic diversity is permanently lost.

This diversity was cultivated over generations from maize’s wild cousin, teosinte, by 60 groups of indigenous people in Mexico. Teosinte looks like a skinny, hairier version of maize. It still grows wild in some parts of Central America, but its close relatives have been found, domesticated, at archaeological sites in the region over 9,000 years old. These early maize cobs could easily fit in the palm of your hand – not big enough to be a staple crop that early farmers could depend upon for sustenance. Genetically, they were more similar to wild teosinte than to modern maize.

[] archaeologists also found that the cobs in Honduras, which is outside the natural range of teosinte, were larger than cobs of the same age from the original domestication region in southern Mexico. The scientists think that people in Honduras were able to develop more productive maize landraces because their crops were isolated from wild teosinte.

The size and shape of the ancient cobs from Honduras show that early farmers engineered the maize crop [emphasis mine] to make it more productive. They developed unique landraces that were well adapted to local conditions and successfully cultivated enough maize to support their communities. In many ways, they were early geneticists. [emphasis mine] …

We have a lot to learn from the indigenous farmers who were growing maize 4,000 years ago. Their history provides examples of both environmentally sound genetic modification and effective adaptation to climate variability. [emphases mine] …

Plus ça change …, eh?

Congratulations to winners of 2020 Nobel Prize for Chemistry: Dr. Emmanuelle Charpentier & Dr. Jennifer A. Doudna (CRISPR-cas9)

It’s possible there’s a more dramatic development in the field of contemporary gene-editing but it’s indisputable that CRISPR (clustered regularly interspaced short palindromic repeats) -cas9 (CRISPR-associated 9 [protein]) ranks very highly indeed.

The technique, first discovered (or developed) in 2012, has brought recognition in the form of the 2020 Nobel Prize for Chemistry to CRISPR’s two discoverers, Emanuelle Charpentier and Jennifer Doudna.

An October 7, 2020 news item on phys.org announces the news,

The Nobel Prize in chemistry went to two researchers Wednesday [October 7, 2020] for a gene-editing tool that has revolutionized science by providing a way to alter DNA, the code of life—technology already being used to try to cure a host of diseases and raise better crops and livestock.

Emmanuelle Charpentier of France and Jennifer A. Doudna of the United States won for developing CRISPR-cas9, a very simple technique for cutting a gene at a specific spot, allowing scientists to operate on flaws that are the root cause of many diseases.

“There is enormous power in this genetic tool,” said Claes Gustafsson, chair of the Nobel Committee for Chemistry.

More than 100 clinical trials are underway to study using CRISPR to treat diseases, and “many are very promising,” according to Victor Dzau, president of the [US] National Academy of Medicine.

“My greatest hope is that it’s used for good, to uncover new mysteries in biology and to benefit humankind,” said Doudna, who is affiliated with the University of California, Berkeley, and is paid by the Howard Hughes Medical Institute, which also supports The Associated Press’ Health and Science Department.

The prize-winning work has opened the door to some thorny ethical issues: When editing is done after birth, the alterations are confined to that person. Scientists fear CRISPR will be misused to make “designer babies” by altering eggs, embryos or sperm—changes that can be passed on to future generations.

Unusually for phys.org, this October 7, 2020 news item is not a simple press/news release reproduced in its entirety but a good overview of the researchers’ accomplishments and a discussion of some of the issues associated with CRISPR along with the press release at the end.

I have covered some CRISPR issues here including intellectual property (see my March 15, 2017 posting titled, “CRISPR patent decision: Harvard’s and MIT’s Broad Institute victorious—for now‘) and designer babies (as exemplified by the situation with Dr. He Jiankui; see my July 28, 2020 post titled, “July 2020 update on Dr. He Jiankui (the CRISPR twins) situation” for more details about it).

An October 7, 2020 article by Michael Grothaus for Fast Company provides a business perspective (Note: A link has been removed),

Needless to say, research by the two scientists awarded the Nobel Prize in Chemistry today has the potential to change the course of humanity. And with that potential comes lots of VC money and companies vying for patents on techniques and therapies derived from Charpentier’s and Doudna’s research.

One such company is Doudna’s Editas Medicine [according to my search, the only company associated with Doudna is Mammoth Biosciences, which she co-founded], while others include Caribou Biosciences, Intellia Therapeutics, and Casebia Therapeutics. Given the world-changing applications—and the amount of revenue such CRISPR therapies could bring in—it’s no wonder that such rivalry is often heated (and in some cases has led to lawsuits over the technology and its patents).

As Doudna explained in her book, A Crack in Creation: Gene Editing and the Unthinkable Power to Control Evolution, cowritten by Samuel H. Sternberg …, “… —but we could also have woolly mammoths, winged lizards, and unicorns.” And as for that last part, she made clear, “No, I am not kidding.”

Everybody makes mistakes and the reference to Editas Medicine is the only error I spotted. You can find out more about Mammoth Biosciences here and while Dr. Doudna’s comment, “My greatest hope is that it’s used for good, to uncover new mysteries in biology and to benefit humankind,” is laudable it would seem she wishes to profit from the discovery. Mammoth Biosciences is a for-profit company as can be seen at the end of the Mammoth Biosciences’ October 7, 2020 congratulatory news release,

About Mammoth Biosciences

Mammoth Biosciences is harnessing the diversity of nature to power the next-generation of CRISPR products. Through the discovery and development of novel CRISPR systems, the company is enabling the full potential of its platform to read and write the code of life. By leveraging its internal research and development and exclusive licensing to patents related to Cas12, Cas13, Cas14 and Casɸ, Mammoth Biosciences can provide enhanced diagnostics and genome editing for life science research, healthcare, agriculture, biodefense and more. Based in San Francisco, Mammoth Biosciences is co-founded by CRISPR pioneer Jennifer Doudna and Trevor Martin, Janice Chen, and Lucas Harrington. The firm is backed by top institutional investors [emphasis mine] including Decheng, Mayfield, NFX, and 8VC, and leading individual investors including Brook Byers, Tim Cook, and Jeff Huber.

An October 7, 2029 Nobel Prize press release, which unleashed all this interest in Doudna and Charpentier, notes this,

Prize amount: 10 million Swedish kronor, to be shared equally between the Laureates.

In Canadian money that amount is $1,492,115.03 (as of Oct. 9, 2020 12:40 PDT when I checked a currency converter).

Ordinarily there’d be a mildly caustic comment from me about business opportunities and medical research but this is a time for congratulations to both Dr. Emanuelle Charpentier and Dr. Jennifer Doudna.

Effective treatment for citrus-destroying disease?

Citrus greening is a worldwide problem. A particularly virulent disease that destroys citrus fruit, it’s a problem that is worsening. Before getting to the research from the University of California at Riverside (UCR), here’s more about the disease and how it’s developing from the UCR Huanglongbing, (HLB, Citrus Greening webpage,

The Situation: Citrus huanglongbing (HLB), previously called citrus greening disease, is one of the most destructive diseases of citrus worldwide.  Originally thought to be caused by a virus, it is now known to be caused by unculturable phloem-limited bacteria.  There are three forms of greening that have been described.  The African form produces symptoms only under cool conditions and is transmitted by the African citrus psyllid Trioza erytreae, while the Asian form prefers warmer conditions and is transmitted by the Asian citrus psyllid Diaphorina citri.  Recently a third American form transmitted by the Asian citrus psyllid was discovered in Brazil.  This American form of the disease apparently originated in China.  In North America, the psyllid vector, Diaphorina citri, of HLB is found in Florida, Louisiana, Georgia, South Carolina, Texas and Hawaii, and recently arrived in Southern California from Mexico. HLB is known to occur in Florida Lousiana, South Carolina, Georgia, Cuba, Belize and the Eastern Yucatan of Mexico.  A federal quarantine restricts all movement of citrus and other plants in the family Rutaceae from Asian Citrus Psyllid or HLB-infested areas into California in order to prevent introduction of the disease.

 Damage:  The HLB bacteria can infect most citrus cultivars, species and hybrids and even some citrus relatives.  Leaves of newly infected trees develop a blotchy mottle appearance.  On chronically infected trees, the leaves are small and exhibit asymmetrical blotchy mottling (in contrast to Zinc deficiency that causes symmetrical blotching).  Fruit from HLB-infected trees are small, lopsided, poorly colored, and contain aborted seeds. The juice from affected fruit is low in soluble solids, high in acids and abnormally bitter.  The fruit retains its green color at the navel end when mature, which is the reason for the common name “citrus greening disease.”  This fruit is of no value because of poor size and quality.  There is no cure for the disease and rapid tree removal is critical for prevention of spread.

Economic Impact: HLB is one of the most devastating diseases of citrus and since its discovery in Florida in 2005, citrus acreage in that state has declined significantly.  If the disease were to establish in California, the nursery industry would be required to move all of their production under screenhouses, pesticide treatments for the vector would be instituted resulting in greatly increased pesticide costs (3-6 treatments per year) and indirect costs due to pesticide-induced disruption of integrated pest management programs for other citrus pests.  A costly eradication program would need to be instituted to remove infected trees in order to protect the citrus industry.

Distribution of HLB: In April 2012, after about a week of testing, the California Department of Food and Agriculture (CDFA) removed a pumelo tree with a lemon graft from Hacienda Heights in Los Angeles County after the tree and an Asian citrus psyllid found on the tree both tested positive for Huanglongbing. In 2005, HLB was also found in Florida and it is now known to occur in Louisiana, Georgia, South Carolina, Cuba, Belze and Eastern Mexico.  Worldwide, HLB is also present in China, eastern and southern Africa, the Indian subcontinent, Mauritius, Reunion, the Saudi Arabian peninsula, and southeast Asia.

Research:  Research is focusing on characterization of the bacteria, development of detection methods, and control of the disease and the psyllid.  To date, control of the disease is based on planting HLB-free citrus germplasm, eradication of infected citrus plants, and control of the vector with systemic insecticides.  Countries with HLB learn to manage the disease so that they can still produce citrus.  In California, the best strategy is to keep this disease out. This goal is supported by both federal and state quarantine regulations and the University of California’s Citrus Clonal Protection Program, which provides a mechanism for the safe introduction of citrus germplasm into California.

A July 7, 2020 news item on phys.org announces what researchers hope can be used commercially as a new treatment for citrus greening disease from researchers University of California at Riverside (UCR), Note: Links have been removed,

UC Riverside scientists have found the first substance capable of controlling Citrus Greening Disease, which has devastated citrus farms in Florida and also threatens California.

The new treatment effectively kills the bacterium causing the disease with a naturally occurring molecule found in wild citrus relatives. This molecule, an antimicrobial peptide, offers numerous advantages over the antibiotics currently used to treat the disease.

UCR geneticist Hailing Jin, who discovered the cure after a five-year search, explained that unlike antibiotic sprays, the peptide is stable even when used outdoors in high heat, easy to manufacture, and safe for humans.

A July 7, 2020 UCR news release (also on EurekAlert) by Jules Bernstein, which originated the news item, provides technical detail and information about plans to commercialize the product,

“This peptide is found in the fruit of Australian finger limes, which can naturally tolerate Citrus Greening bacteria and has been consumed for hundreds of years,” Jin said. “It is much safer to use this natural plant product on agricultural crops than other synthetic chemicals.”

Currently, some growers in Florida are spraying antibiotics and pesticides in an attempt to save trees from the CLas bacterium that causes citrus greening, also known as Huanglongbing or HLB.

“Most antibiotics are temperature sensitive, so their effects are largely reduced when applied in the hot weather,” Jin said. “By contrast, this peptide is stable even when used in 130-degree heat.”

Jin found the peptide by examining plants such as the Australian finger lime known to possess natural tolerance for the bacteria that causes Citrus Greening Disease, and she isolated the genes that contribute to this innate immunity. One of these genes produces the peptide, which she then tested over the course of two years. Improvement was soon visible.

“You can see the bacteria drastically reduced, and the leaves appear healthy again only a few months after treatment,” Jin said.

Because the peptide only needs to be reapplied a few times per year, it is highly cost effective for growers. This peptide can also be developed into a vaccine to protect young healthy plants from infection, as it is able to induce the plant’s innate immunity to the bacteria.

Jin’s peptide can be applied by injection or foliage spray, and it moves systemically through plants and remains stable, which makes the effect of the treatment stronger.

The treatment will be further enhanced with proprietary injection technology made by Invaio Sciences. UC Riverside has entered into an exclusive, worldwide license agreement with Invaio, ensuring this new treatment goes exactly where it’s needed in plants.

“Invaio is enthusiastic to partner with UC Riverside and advance this innovative technology for combating the disease known as Citrus Greening or Huanglongbing,” said Invaio Chief Science Officer Gerardo Ramos. “The prospect of addressing this previously incurable and devastating crop disease, helping agricultural communities and improving the environmental impact of production is exciting and rewarding,” he said. “This is crop protection in harmony with nature.”

The need for an HLB cure is a global problem, but hits especially close to home as California produces 80 percent of all the fresh citrus in the United States, said Brian Suh, director of technology commercialization in UCR’s Office of Technology Partnerships, which helps bring university technology to market for the benefit of society through licenses, partnerships, and startup companies.

“This license to Invaio opens up the opportunity for a product to get to market faster,” Suh said. “Cutting edge research from UCR, like the peptide identified by Dr. Jin, has a tremendous amount of commercial potential and can transform the trajectory of real-world problems with these innovative solutions.”

You can find out more about Invaio Sciences here.

Citrus greening has been featured here before in an April 7, 2015 posting titled, Citrus canker, Florida, and Zinkicide. There doesn’t seem to have been much progress made with this Florida solution for citrus greening. This 2018 document on nano.gov was the most recent I could find, ZinkicideTM- a systemic nano-ZnO based bactericide/fungicide for crop protection by Swadeshmukul Santra.

Suit up with nanofiber for protection against explosions and high temperatures

Where explosions are concerned you might expect to see some army research and you would be right. A June 29, 2020 news item on ScienceDaily breaks the news,

Since World War I, the vast majority of American combat casualties has come not from gunshot wounds but from explosions. Today, most soldiers wear a heavy, bullet-proof vest to protect their torso but much of their body remains exposed to the indiscriminate aim of explosive fragments and shrapnel.

Designing equipment to protect extremities against the extreme temperatures and deadly projectiles that accompany an explosion has been difficult because of a fundamental property of materials. Materials that are strong enough to protect against ballistic threats can’t protect against extreme temperatures and vice versa. As a result, much of today’s protective equipment is composed of multiple layers of different materials, leading to bulky, heavy gear that, if worn on the arms and legs, would severely limit a soldier’s mobility.

Now, Harvard University researchers, in collaboration with the U.S. Army Combat Capabilities Development Command Soldier Center (CCDC SC) and West Point, have developed a lightweight, multifunctional nanofiber material that can protect wearers from both extreme temperatures and ballistic threats.

A June 29, 2020 Harvard University news release (also on EurekAlert) by Leah Burrows, which originated the news item, expands on the theme,

“When I was in combat in Afghanistan, I saw firsthand how body armor could save lives,” said senior author Kit Parker, the Tarr Family Professor of Bioengineering and Applied Physics at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) and a lieutenant colonel in the United States Army Reserve. “I also saw how heavy body armor could limit mobility. As soldiers on the battlefield, the three primary tasks are to move, shoot, and communicate. If you limit one of those, you decrease survivability and you endanger mission success.”

“Our goal was to design a multifunctional material that could protect someone working in an extreme environment, such as an astronaut, firefighter or soldier, from the many different threats they face,” said Grant M. Gonzalez, a postdoctoral fellow at SEAS and first author of the paper.

In order to achieve this practical goal, the researchers needed to explore the tradeoff between mechanical protection and thermal insulation, properties rooted in a material’s molecular structure and orientation.

Materials with strong mechanical protection, such as metals and ceramics, have a highly ordered and aligned molecular structure. This structure allows them to withstand and distribute the energy of a direct blow. Insulating materials, on the other hand, have a much less ordered structure, which prevents the transmission of heat through the material.

Kevlar and Twaron are commercial products used extensively in protective equipment and can provide either ballistic or thermal protection, depending on how they are manufactured. Woven Kevlar, for example, has a highly aligned crystalline structure and is used in protective bulletproof vests. Porous Kevlar aerogels, on the other hand, have been shown to have high thermal insulation.

“Our idea was to use this Kevlar polymer to combine the woven, ordered structure of fibers with the porosity of aerogels to make long, continuous fibers with porous spacing in between,” said Gonzalez. “In this system, the long fibers could resist a mechanical impact while the pores would limit heat diffusion.”

The research team used immersion Rotary Jet-Spinning (iRJS), a technique developed by Parker’s Disease Biophysics Group, to manufacture the fibers. In this technique, a liquid polymer solution is loaded into a reservoir and pushed out through a tiny opening by centrifugal force as the device spins. When the polymer solution shoots out of the reservoir, it first passes through an area of open air, where the polymers elongate and the chains align. Then the solution hits a liquid bath that removes the solvent and precipitates the polymers to form solid fibers. Since the bath is also spinning — like water in a salad spinner — the nanofibers follow the stream of the vortex and wrap around a rotating collector at the base of the device.

By tuning the viscosity of the liquid polymer solution, the researchers were able to spin long, aligned nanofibers into porous sheets — providing enough order to protect against projectiles but enough disorder to protect against heat. In about 10 minutes, the team could spin sheets about 10 by 30 centimeters in size.

To test the sheets, the Harvard team turned to their collaborators to perform ballistic tests. Researchers at CCDC SC in Natick, Massachusetts simulated shrapnel impact by shooting large, BB-like projectiles at the sample. The team performed tests by sandwiching the nanofiber sheets between sheets of woven Twaron. They observed little difference in protection between a stack of all woven Twaron sheets and a combined stack of woven Twaron and spun nanofibers.

“The capabilities of the CCDC SC allow us to quantify the successes of our fibers from the perspective of protective equipment for warfighters, specifically,” said Gonzalez.

“Academic collaborations, especially those with distinguished local universities such as Harvard, provide CCDC SC the opportunity to leverage cutting-edge expertise and facilities to augment our own R&D capabilities,” said Kathleen Swana, a researcher at CCDC SC and one of the paper’s authors. “CCDC SC, in return, provides valuable scientific and soldier-centric expertise and testing capabilities to help drive the research forward.”

In testing for thermal protection, the researchers found that the nanofibers provided 20 times the heat insulation capability of commercial Twaron and Kevlar.

“While there are improvements that could be made, we have pushed the boundaries of what’s possible and started moving the field towards this kind of multifunctional material,” said Gonzalez.

“We’ve shown that you can develop highly protective textiles for people that work in harm’s way,” said Parker. “Our challenge now is to evolve the scientific advances to innovative products for my brothers and sisters in arms.”

Harvard’s Office of Technology Development has filed a patent application for the technology and is actively seeking commercialization opportunities.

Here’s a link to and a citation for the paper,

para-Aramid Fiber Sheets for Simultaneous Mechanical and Thermal Protection in Extreme Environments by Grant M. Gonzalez, Janet Ward, John Song, Kathleen Swana, Stephen A. Fossey, Jesse L. Palmer, Felita W. Zhang, Veronica M. Lucian, Luca Cera, John F. Zimmerman, F. John Burpo, Kevin Kit Parker. Matter DOI: https://doi.org/10.1016/j.matt.2020.06.001 Published:June 29, 2020

This paper is behind a paywall.

While this is the first time I’ve featured clothing/armour that’s protective against explosions I have on at least two occasions featured bulletproof clothing in a Canadian context. A November 4, 2013 posting had a story about a Toronto-based tailoring establishment, Garrison Bespoke, that was going to publicly test a bulletproof business suit. Should you be interested, it is possible to order the suit here. There’s also a February 11, 2020 posting announcing research into “Comfortable, bulletproof clothing for Canada’s Department of National Defence.”

The Broad Institute gives us another reason to love CRISPR

More and more, this resembles a public relations campaign. First, CRISPR (clustered regularly interspersed short palindromic repeats) gene editing is going to be helpful with COVID-19 and now it can help us to deal with conservation issues. (See my May 26, 2020 posting about the latest CRISPR doings as of May 7, 2020; included is a brief description of the patent dispute between Broad Institute and UC Berkeley and musings about a public relations campaign.)

A May 21, 2020 news item on ScienceDaily announces how CRISPR could be useful for conservation,

The gene-editing technology CRISPR has been used for a variety of agricultural and public health purposes — from growing disease-resistant crops to, more recently, a diagnostic test for the virus that causes COVID-19. Now a study involving fish that look nearly identical to the endangered Delta smelt finds that CRISPR can be a conservation and resource management tool, as well. The researchers think its ability to rapidly detect and differentiate among species could revolutionize environmental monitoring.

Caption: Longfin smelt can be difficult to differentiate from endangered Delta smelt. Here, a longfin smelt is swabbed for genetic identification through a CRISPR tool called SHERLOCK. Credit: Alisha Goodbla/UC Davis

A May 21, 2020 University of California at Davis (UC Davis) news release (also on EurekAlert) by Kat Kerlin, which originated the news item, provides more detail (Note: A link has been removed),

The study, published in the journal Molecular Ecology Resources, was led by scientists at the University of California, Davis, and the California Department of Water Resources in collaboration with MIT Broad Institute [emphasis mine].

As a proof of concept, it found that the CRISPR-based detection platform SHERLOCK (Specific High-sensitivity Enzymatic Reporter Unlocking) [emphasis mine] was able to genetically distinguish threatened fish species from similar-looking nonnative species in nearly real time, with no need to extract DNA.

“CRISPR can do a lot more than edit genomes,” said co-author Andrea Schreier, an adjunct assistant professor in the UC Davis animal science department. “It can be used for some really cool ecological applications, and we’re just now exploring that.”

WHEN GETTING IT WRONG IS A BIG DEAL

The scientists focused on three fish species of management concern in the San Francisco Estuary: the U.S. threatened and California endangered Delta smelt, the California threatened longfin smelt and the nonnative wakasagi. These three species are notoriously difficult to visually identify, particularly in their younger stages.

Hundreds of thousands of Delta smelt once lived in the Sacramento-San Joaquin Delta before the population crashed in the 1980s. Only a few thousand are estimated to remain in the wild.

“When you’re trying to identify an endangered species, getting it wrong is a big deal,” said lead author Melinda Baerwald, a project scientist at UC Davis at the time the study was conceived and currently an environmental program manager with California Department of Water Resources.

For example, state and federal water pumping projects have to reduce water exports if enough endangered species, like Delta smelt or winter-run chinook salmon, get sucked into the pumps. Rapid identification makes real-time decision making about water operations feasible.

FROM HOURS TO MINUTES

Typically to accurately identify the species, researchers rub a swab over the fish to collect a mucus sample or take a fin clip for a tissue sample. Then they drive or ship it to a lab for a genetic identification test and await the results. Not counting travel time, that can take, at best, about four hours.

SHERLOCK shortens this process from hours to minutes. Researchers can identify the species within about 20 minutes, at remote locations, noninvasively, with no specialized lab equipment. Instead, they use either a handheld fluorescence reader or a flow strip that works much like a pregnancy test — a band on the strip shows if the target species is present.

“Anyone working anywhere could use this tool to quickly come up with a species identification,” Schreier said.

OTHER CRYPTIC CRITTERS

While the three fish species were the only animals tested for this study, the researchers expect the method could be used for other species, though more research is needed to confirm. If so, this sort of onsite, real-time capability may be useful for confirming species at crime scenes, in the animal trade at border crossings, for monitoring poaching, and for other animal and human health applications.

“There are a lot of cryptic species we can’t accurately identify with our naked eye,” Baerwald said. “Our partners at MIT are really interested in pathogen detection for humans. We’re interested in pathogen detection for animals as well as using the tool for other conservation issues.”

Here’s a link to and a citation for the paper,

Rapid and accurate species identification for ecological studies and monitoring using CRISPR‐based SHERLOCK by Melinda R. Baerwald, Alisha M. Goodbla, Raman P. Nagarajan, Jonathan S. Gootenberg, Omar O. Abudayyeh, Feng Zhang, Andrea D. Schreier. Molecular Ecology Resources https://doi.org/10.1111/1755-0998.13186 First published: 12 May 2020

This paper is behind a paywall.

The business of CRISPR

SHERLOCK™, is a trademark for what Sherlock Biosciences calls one of its engineering biology platforms. From the Sherlock Biosciences Technology webpage,

What is SHERLOCK™?

SHERLOCK is an evolution of CRISPR technology, which others use to make precise edits in genetic code. SHERLOCK can detect the unique genetic fingerprints of virtually any DNA or RNA sequence in any organism or pathogen. Developed by our founders and licensed exclusively from the Broad Institute, SHERLOCK is a method for single molecule detection of nucleic acid targets and stands for Specific High Sensitivity Enzymatic Reporter unLOCKing. It works by amplifying genetic sequences and programming a CRISPR molecule to detect the presence of a specific genetic signature in a sample, which can also be quantified. When it finds those signatures, the CRISPR enzyme is activated and releases a robust signal. This signal can be adapted to work on a simple paper strip test, in laboratory equipment, or to provide an electrochemical readout that can be read with a mobile phone.

However, things get a little more confusing when you look at the Broad Institute’s Developing Diagnostics and Treatments webpage,

Ensuring the SHERLOCK diagnostic platform is easily accessible, especially in the developing world, where the need for inexpensive, reliable, field-based diagnostics is the most urgent

SHERLOCK (Specific High-sensitivity Enzymatic Reporter unLOCKing) is a CRISPR-based diagnostic tool that is rapid, inexpensive, and highly sensitive, with the potential to have a transformative effect on research and global public health. The SHERLOCK platform can detect viruses, bacteria, or other targets in clinical samples such as urine or blood, and reveal results on a paper strip — without the need for extensive specialized equipment. This technology could potentially be used to aid the response to infectious disease outbreaks, monitor antibiotic resistance, detect cancer, and more. SHERLOCK tools are freely available [emphasis mine] for academic research worldwide, and the Broad Institute’s licensing framework [emphasis mine] ensures that the SHERLOCK diagnostic platform is easily accessible in the developing world, where inexpensive, reliable, field-based diagnostics are urgently needed.

Here’s what I suspect. as stated, the Broad Institute has free SHERLOCK licenses for academic institutions and not-for-profit organizations but Sherlock Biosciences, a Broad Institute spinoff company, is for-profit and has trademarked SHERLOCK for commercial purposes.

Final thoughts

This looks like a relatively subtle campaign to influence public perceptions. Genetic modification or genetic engineering as exemplified by the CRISPR gene editing technique is a force for the good of all. It will help us in our hour of need (COVID-19 pandemic) and it can help us save various species and better manage our resources.

This contrasts greatly with the publicity generated by the CRISPR twins situation where a scientist claimed to have successfully edited the germline for twins, Lulu and Nana. This was done despite a voluntary, worldwide moratorium on germline editing of viable embryos. (Search the terms [either here or on a standard search engine] ‘CRISPR twins’, ‘Lulu and Nana’, and/or ‘He Jiankui’ for details about the scandal.

In addition to presenting CRISPR as beneficial in the short term rather than the distant future, this publicity also subtly positions the Broad Institute as CRISPR’s owner.

Or, maybe I’m wrong. Regardless, I’m watching.

US Food and Drug Administration (FDA) gives first authorization for CRISPR (clustered regularly interspersed short palindromic repeats) use in COVID-19 crisis

Clustered regularly interspersed short palindromic repeats (CRISPR) gene editing has been largely confined to laboratory use or tested in agricultural trials. I believe that is true worldwide excepting the CRISPR twin scandal. (There are numerous postings about the CRISPR twins here including a Nov. 28, 2018 post, a May 17, 2019 post, and a June 20, 2019 post. Update: It was reported (3rd. para.) in December 2019 that He had been sentenced to three years jail time.)

Connie Lin in a May 7, 2020 article for Fast Company reports on this surprising decision by the US Food and Drug Administration (FDA), Note: A link has been removed),

The U.S. Food and Drug Administration has granted Emergency Use Authorization to a COVID-19 test that uses controversial gene-editing technology CRISPR.

This marks the first time CRISPR has been authorized by the FDA, although only for the purpose of detecting the coronavirus, and not for its far more contentious applications. The new test kit, developed by Cambridge, Massachusetts-based Sherlock Biosciences, will be deployed in laboratories certified to carry out high-complexity procedures and is “rapid,” returning results in about an hour as opposed to those that rely on the standard polymerase chain reaction method, which typically requires six hours.

The announcement was made in the FDA’s Coronavirus (COVID-19) Update: May 7, 2020 Daily Roundup (4th item in the bulleted list), Or, you can read the May 6, 2020 letter (PDF) sent to John Vozella of Sherlock Biosciences by the FDA.

As well, there’s the May 7, 2020 Sherlock BioSciences news release (the most informative of the lot),

Sherlock Biosciences, an Engineering Biology company dedicated to making diagnostic testing better, faster and more affordable, today announced the company has received Emergency Use Authorization (EUA) from the U.S. Food and Drug Administration (FDA) for its Sherlock™ CRISPR SARS-CoV-2 kit for the detection of the virus that causes COVID-19, providing results in approximately one hour.

“While it has only been a little over a year since the launch of Sherlock Biosciences, today we have made history with the very first FDA-authorized use of CRISPR technology, which will be used to rapidly identify the virus that causes COVID-19,” said Rahul Dhanda, co-founder, president and CEO of Sherlock Biosciences. “We are committed to providing this initial wave of testing kits to physicians, laboratory experts and researchers worldwide to enable them to assist frontline workers leading the charge against this pandemic.”

The Sherlock™ CRISPR SARS-CoV-2 test kit is designed for use in laboratories certified under the Clinical Laboratory Improvement Amendments of 1988 (CLIA), 42 U.S.C. §263a, to perform high complexity tests. Based on the SHERLOCK method, which stands for Specific High-sensitivity Enzymatic Reporter unLOCKing, the kit works by programming a CRISPR molecule to detect the presence of a specific genetic signature – in this case, the genetic signature for SARS-CoV-2 – in a nasal swab, nasopharyngeal swab, oropharyngeal swab or bronchoalveolar lavage (BAL) specimen. When the signature is found, the CRISPR enzyme is activated and releases a detectable signal. In addition to SHERLOCK, the company is also developing its INSPECTR™ platform to create an instrument-free, handheld test – similar to that of an at-home pregnancy test – that utilizes Sherlock Biosciences’ Synthetic Biology platform to provide rapid detection of a genetic match of the SARS-CoV-2 virus.

“When our lab collaborated with Dr. Feng Zhang’s team to develop SHERLOCK, we believed that this CRISPR-based diagnostic method would have a significant impact on global health,” said James J. Collins, co-founder and board member of Sherlock Biosciences and Termeer Professor of Medical Engineering and Science for MIT’s Institute for Medical Engineering and Science (IMES) and Department of Biological Engineering. “During what is a major healthcare crisis across the globe, we are heartened that the first FDA-authorized use of CRISPR will aid in the fight against this global COVID-19 pandemic.”

Access to rapid diagnostics is critical for combating this pandemic and is a primary focus for Sherlock Biosciences co-founder and board member, David R. Walt, Ph.D., who co-leads the Mass [Massachusetts] General Brigham Center for COVID Innovation.

“SHERLOCK enables rapid identification of a single alteration in a DNA or RNA sequence in a single molecule,” said Dr. Walt. “That precision, coupled with its capability to be deployed to multiplex over 100 targets or as a simple point-of-care system, will make it a critical addition to the arsenal of rapid diagnostics already being used to detect COVID-19.”

This development is particularly interesting since there was a major intellectual property dispute over CRISPR between the Broad Institute (a Harvard University and Massachusetts Institute of Technology [MIT] joint initiative), and the University of California at Berkeley (UC Berkeley). The Broad Institute mostly won in the first round of the patent fight, as I noted in a March 15, 2017 post but, as far as I’m aware, UC Berkeley is still disputing that decision.

In the period before receiving authorization, it appears that Sherlock Biosciences was doing a little public relations and ‘consciousness raising’ work. Here’s a sample from a May 5, 2020 article by Sharon Begley for STAT (Note: Links have been removed),

The revolutionary genetic technique better known for its potential to cure thousands of inherited diseases could also solve the challenge of Covid-19 diagnostic testing, scientists announced on Tuesday. A team headed by biologist Feng Zhang of the McGovern Institute at MIT and the Broad Institute has repurposed the genome-editing tool CRISPR into a test able to quickly detect as few as 100 coronavirus particles in a swab or saliva sample.

Crucially, the technique, dubbed a “one pot” protocol, works in a single test tube and does not require the many specialty chemicals, or reagents, whose shortage has hampered the rollout of widespread Covid-19 testing in the U.S. It takes about an hour to get results, requires minimal handling, and in preliminary studies has been highly accurate, Zhang told STAT. He and his colleagues, led by the McGovern’s Jonathan Gootenberg and Omar Abudayyeh, released the protocol on their STOPCovid.science website.

Because the test has not been approved by the Food and Drug Administration, it is only for research purposes for now. But minutes before speaking to STAT on Monday, Zhang and his colleagues were on a conference call with FDA officials about what they needed to do to receive an “emergency use authorization” that would allow clinical use of the test. The FDA has used EUAs to fast-track Covid-19 diagnostics as well as experimental therapies, including remdesivir, after less extensive testing than usually required.

For an EUA, the agency will require the scientists to validate the test, which they call STOPCovid, on dozens to hundreds of samples. Although “it is still early in the process,” Zhang said, he and his colleagues are confident enough in its accuracy that they are conferring with potential commercial partners who could turn the test into a cartridge-like device, similar to a pregnancy test, enabling Covid-19 testing at doctor offices and other point-of-care sites.

“It could potentially even be used at home or at workplaces,” Zhang said. “It’s inexpensive, does not require a lab, and can return results within an hour using a paper strip, not unlike a pregnancy test. This helps address the urgent need for widespread, accurate, inexpensive, and accessible Covid-19 testing.” Public health experts say the availability of such a test is one of the keys to safely reopening society, which will require widespread testing, and then tracing and possibly isolating the contacts of those who test positive.

If you have time, do read Begley’s in full.

Increased food security with hexanal for younger looking, fresher tasting fruits and vegetables

Also known as an anti-aging agent for your fruit and vegetables, hexanal is an environmentally friendly chemical, which is found naturally. Research has led to a synthesized nanotechnology-enabled product now being commercialized. I’ve been following the story off and on since 2012 (see my ‘India, Sri Lanka, and Canada team up for nanotechnology-enabled food packaging‘ posting). I last wrote about the project in a December 29, 2015 posting.

For some reason, hexanal hit the news hard in 2019 having been preceded by some interest in 2018. What follows is an update and a timeline of sorts.

January 2019: More funding

A January 24,2019 essay (also published on the University of Guelph website on January 29, 2019) by Jayasankar Subramanian and Elizabeth Finnis, both are lead researchers on the the project and professors at the University of Guelph (Canada), provides an overview and an update of the hexanal project (Note: Links have been removed) ,

Fruits like mangoes, bananas, papayas and limes are shipped long distances before they get to your table. Many fruits are delicate, and there may be a long period of time that elapses between when the fruit is picked and its arrival in grocery stores and other markets. They’re often picked before they’re truly ripe in order to increase their shelf life.

Even so, globally, up to 40 per cent of all picked fruit can be lost and this represents billions of dollars. But what if we had the technology to delay fruit’s natural degradation process? This is where hexanal can make a difference.

Fruits like mangoes, bananas, papayas and limes are shipped long distances before they get to your table. Many fruits are delicate, and there may be a long period of time that elapses between when the fruit is picked and its arrival in grocery stores and other markets. They’re often picked before they’re truly ripe in order to increase their shelf life.

Even so, globally, up to 40 per cent of all picked fruit can be lost and this represents billions of dollars. But what if we had the technology to delay fruit’s natural degradation process? This is where hexanal can make a difference.

Hexanal is naturally produced by plants to ward off pests; our research at the University of Guelph has found that when it’s applied externally, hexanal can also slow down the aging process.

Like everything else, fruit ages with time. The shrivelling and rot is triggered by the enzyme phospholipase D (PLD), which causes the eventual collapse of the fruit’s membrane. Essentially, fruit membranes are snug, and function like a brick wall of phospholipid bilayers. Phospholipase D breaks the alignment of the bricks, causing the membrane to crumble. Hexanal acts by reducing and slowing the formation of PLD, which in turn slows the collapse of the fruit’s membrane.

In partnership with agricultural and social science researchers in Canada and five other countries, we have tested nine hexanal technologies. These include a spray formulation that gets applied to fruit when they’re still on trees, post-harvest dips, fruit wraps, stickers and sachets embedded with hexanal.

Our findings have implications for consumers, retailers and, more importantly, farmers. For example, when applied as a pre-harvest spray, hexanal can keep fruit on trees longer and keep it fresher after harvest — up to three weeks longer for mangoes.

Hexanal is naturally produced by all plants and is already found as an additive in some food products. Hexanal is also approved by Health Canada as a flavour formula. Our tests of synthesized hexanal sprays, dips and other technologies showed that there were no negative effects on plants, insects or other animals. In addition, hexanal evaporates within 24 hours, which means there’s no residue left on fruit.

Farmers who participated in hexanal testing in Canada and elsewhere were happy with the product both in terms of its effectiveness and bio-safety.

Currently, hexanal for agricultural use is in the two-year regulatory clearance process in Canada and the U.S. Once the process is complete, hexanal formulations are expected to be available for farmer use and can be accessed through companies with a license for production.

Hexanal slows down the ripening and aging process in fresh produce. Author provided

That’s a stunning difference, eh?

Funding

At about the same time as the Conversation essay by Subramanian and Finnis, the University of Guelph published (on the Council of Ontario Universities website) a January 27, 2019 news release announcing new funds for the project,

A University of Guelph research project that has already improved the livelihoods of small-scale Asian farmers will further expand worldwide, thanks to more than $4.2 million in federal support announced Friday afternoon.

The project involves innovative packaging developed in part by Guelph researchers using nanotechnology to improve the shelf life of mangoes, a major fruit crop in much of the world.

Already, the technology has helped to significantly reduce post-harvest losses in Sri Lanka and India. Poor storage meant that farmers routinely lost up to 40 per cent of their crops, worth upwards of $800 million a year. The new technology has also boosted per-acre revenue.

New funding support from the International Development Research Centre (IDRC) and Foreign Affairs, Trade and Development Canada will allow researchers to broaden this successful initiative to Kenya, Tanzania, and Trinidad and Tobago.

Researchers will also look at other fruit — bananas, grapes, papaya, nectarines and berries — and investigate ways to commercialize the technologies.

… it will also be a main pillar of the Guelph-East Africa Initiative, which U of G established to bring together stakeholders to support research and teaching in food, health, water, education, environment and community.

“This confirms our commitment to improve agriculture in East Africa and around the world.” [said John Livernois, interim vice-president {research} ]

The project involves the use of hexanal, a natural plant product that delays fruit ripening and aging. Guelph plant agriculture professor Gopi Paliyath holds an American patent on the discovery of hexanal as a post-harvest agent. It’s also an FDA-approved food additive.

The project also involves Guelph plant agriculture professors Paliyath and Al Sullivan; Loong-tak Lim from Food Science; and Elizabeth Finnis, Sociology and Anthropology. Foreign research partners are based at Tamil Nadu Agricultural University, India; Industrial Technical Institute, Sri Lanka; University of Nairobi, Kenya; Sokoine University of Agriculture, Tanzania; and the University of [the] West Indies, Trinidad and Tobago.

Prior to more funding: a memorandum of understanding

I’m having to guess as the document about the memorandum of understanding (MOU) to commercialize hexanal is not dated but it seems to have been produced in March 2018. (Canada’s International Development Research Centre ([IDRC] has a webpage about the memorandum but no memorandum that I could find.) I stumbled across this account of the event where the MOU was signed,

Ms. Jennifer Daubeny, Consulate General of Canada, delivered the special address narrating the significance of Canadian fundingin developing nanotechnologies to reduce post-harvest losses that enables food security in Asian Countries. Dr. K. Ramasamy, Vice Chancellor, Tamil Nadu Agricultural University [TNAU], Coimbatore presided over the function and highlighted the role of TNAU in knitting nanotechnology research framework and serving as a torch bearer in the country. He emphasized that the GAC-IDRC Project helped more than 60 students and researchers, developed two technologies, filed patents for two inventions, extensive infrastructure development besides helping more than 12,000 fruit growers in the State of Tamil Nadu. Dr. Jayasankar Subramanian, Professor, University of Guelph, Canada, explained the evolution of the project till reached the stage of technology delivery to benefit farmers. Dr. K.S. Subramanian, NABARD Chair Professor, TNAU, Coimbatore, lead Principal Investigator of the Project for India presented nanotechnologies developed to assist in the entire value chain from the farm to fork. Mr. Arun Nagarajan, President, Tamil Nadu Fruit Growers’ Association, explained that the fruit growers are eager to use the technology to improve their farm income. Mr. Terence Park, Managing Director, Smart Harvest Agri, Canada, [emphasis mine] bestowed interest to take forward the technologies to the farm gate and signed MOU with TNAU for the Commercialization of the Hexanal Formulation. Dr. G.J. Janavi,Professor & Head, Department of Nano Science & Technology, TNAU, Coimbatore welcomed the gathering and Dr. C. Sekar, Dean, Imayam Agricultural College,Turaiyur, and Co-PI of the Project proposed a formal vote of thanks.

The Canadian Consul General Ms. Jennifer Daubeny visited all the exhibits and interacted with students, scholars and researchers besides the NGO partner Myrada. She was very impressed with the technologies developed by TNAU in collaboration with University of Guelph, Canada, and looking forward to support research programs in the near future. More than 200 Scientists and Diplomats from Canada, students, scholars, university officials participated in the event.

Products launch by ITI, Colombo

Two of the project’s technology outputs -hexanal incorporated ITI Bio-wax and the Tree Fresh Formulation spray [emphasis mine] were transferred to Hayleys Agriculture Pvt. Ltd., a reputed Agro Service provider in Sri Lanka. The products were launched on 22ndMarch 2018 at the Taj Samudra Hotel, Colombo. The chief guest at the event was the Hon. Susil Premajayantha, Minister of Science Technology and Research (Min. ST&R). The guest of honour was H.E. David McKinnon, High Commissioner for Canada in Sri Lanka. Others present included the Secretary to the Min. ST&R, The Chairman and Director General, ITI, Mr Rizvi Zaheed, Hayleys Agriculture and his team, the Chairman, National Science Foundation, Sri Lanka, representative of the Chairman Sri Lanka Export Development Board, representatives from the Dialog mobile service provider, the Registrar of Pesticides, representing the Dir. Gen., of Agriculture, President of the Lanka Fruit and Vegetable Producers, Processors and Exporters Association, leading large scale mango, papaya and pineapple growers, several export and fruit processing company representatives, senior officials from the ITI, the multi-disciplinary ITI research team and our partner from CEPA. The press was also well represented and a total of 100 persons were present on this occasion. The Managing Director Hayles, the two PIs’ of the project, the High Commissioner for Canada, The Minister and for ST&R and the Secretary to the Ministry addressed the gathering and the new video clip on the project was viewed. The new products were jointly uncovered for display by the Hon. Minister and H.E., the High Commissioner. Samples of the products were distributed to the President of the Lanka Fruit and Vegetable Producers Processors and Exporters Association and to two leading mango growers. The Project team also took this opportunity to run a presentation on the various stages of the project and related activities, display posters on their research findings and to print and distribute the pamphlets on the same as well as on hexanal, the latter as prepared by our partners from the University of Guelph. The launch ended with a time of fellowship providing a useful opportunity for networking.

A YouTube video about the product launch of hexanal-based Bio-wax and the Tree Fresh Formulation spray (I don’t know if those were the permanent names or if they are specific to Sri Lanka and other countries will adopt other names) helped to establish the date for the MOU. You can find the video here.

Judging from the media stories, the team in India has provided most of the leadership for commercializing hexanal.

Commercialization 2019 and beyond

To sum up, after a memorandum of understanding is signed and some prototype products have been unveiled in India in 2018 then, in early 2019, there’s more funding announced by IDRC to expand the number of countries involved and to continue research into efforts to save other types of produce.

Moving things along is an August 15, 2019 news item on Agropages.com,

Two nano formulations would be commercialized by the Directorate of Agri business development of Tamil Nadu Agricultural University (TNAU) soon.  

Fruity fresh is a liquid nano formulation containing hexanal that keeps fruits and vegetables fresh for more days. The pre-harvest spray of Fruity Fresh extends the shelf life of mango for two weeks on trees and another two weeks under storage conditions by employing post-harvest dip methodology, Dr. A. Lakshmanan, Professor and Head, Department of Nano Science and Technology told a meet on “Linking Nano Stakeholders” held at the University.  

Hexanal has also been successfully encapsulated in polymer matrix either as an electro spun fibre matrix (Nano sticker) or nano-pellets that extends shelf life of fruits by 1-2 weeks during storage and transportation, he said.  

This sticker and pellets technology is highly user friendly and can be placed inside the cartons containing fruits during transport for enhancing the freshness.

According to a November 5, 2019 article by Pearly Neo for foodnavigator-asia.com, there is pricing for four products. Nano Sticker and Nano Pellet each will cost $US 0.028 and the spray, Fruity Fresh, will cost $US 4.23 to $US 5.65 for a one liter bottle diluted in 50 liters of water (for use on approximately five trees) and the Fruity Fresh dipping solution at $US 0.0071per kg.

As far as I’m aware none of these products are available in Canada but there is a website for Smart Harvest Agri, Canada although the name used is a little different. First, there’s the Federal Corporation Information listing for Smart Harvest Agritech Limited. You’ll notice there are two directors,

Amanjit Singh Bains
7685 150B Street
Surrey BC V3S 5P1
Canada

Terence Park
Yongsan CJ Nine Park
Seoul
Korea, Republic of

The company’s Smart Harvest website doesn’t list any products but it does discuss something they call “FRESHXtend technology” for fruits and vegetables.

Final comment

I sometimes hear complaints about government funding and what seems to be a lack of follow through with exciting research work being done in Canada. I hope that in the months to come that this story of an international collaboration, which started with three countries and has now expanded to at least six countries and has led to increased food security with an environmentally friendly material and commercialization of research, gets some attention.

From the few sources I’ve been able to find, it seems India and Sri Lanka are leading the commercialization charge while Canada has contributed to an Asian-led project which has now expanded to include Kenya, Tanzania, and Trinidad and Tobago. Bravo t them all!