Tag Archives: sound

FrogHeart’s 2023 comes to an end as 2024 comes into view

My personal theme for this last year (2023) and for the coming year was and is: catching up. On the plus side, my 2023 backlog (roughly six months) to be published was whittled down considerably. On the minus side, I start 2024 with a backlog of two to three months.

2023 on this blog had a lot in common with 2022 (see my December 31, 2022 posting), which may be due to what’s going on in the world of emerging science and technology or to my personal interests or possibly a bit of both. On to 2023 and a further blurring of boundaries:

Energy, computing and the environment

The argument against paper is that it uses up resources, it’s polluting, it’s affecting the environment, etc. Somehow the part where electricity which underpins so much of our ‘smart’ society does the same thing is left out of the discussion.

Neuromorphic (brainlike) computing and lower energy

Before launching into the stories about lowering energy usage, here’s an October 16, 2023 posting “The cost of building ChatGPT” that gives you some idea of the consequences of our insatiable desire for more computing and more ‘smart’ devices,

In its latest environmental report, Microsoft disclosed that its global water consumption spiked 34% from 2021 to 2022 (to nearly 1.7 billion gallons , or more than 2,500 Olympic-sized swimming pools), a sharp increase compared to previous years that outside researchers tie to its AI research. [emphases mine]

“It’s fair to say the majority of the growth is due to AI,” including “its heavy investment in generative AI and partnership with OpenAI,” said Shaolei Ren, [emphasis mine] a researcher at the University of California, Riverside who has been trying to calculate the environmental impact of generative AI products such as ChatGPT.

Why it matters: Microsoft’s five WDM [West Des Moines in Iowa] data centers — the “epicenter for advancing AI” — represent more than $5 billion in investments in the last 15 years.

Yes, but: They consumed as much as 11.5 million gallons of water a month for cooling, or about 6% of WDM’s total usage during peak summer usage during the last two years, according to information from West Des Moines Water Works.

The focus is AI but it doesn’t take long to realize that all computing has energy and environmental costs. I have more about Ren’s work and about water shortages in the “The cost of building ChatGPT” posting.

This next posting would usually be included with my other art/sci postings but it touches on the issues. My October 13, 2023 posting about Toronto’s Art/Sci Salon events, in particular, there’s the Streaming Carbon Footprint event (just scroll down to the appropriate subhead). For the interested, I also found this 2022 paper “The Carbon Footprint of Streaming Media:; Problems, Calculations, Solutions” co-authored by one of the artist/researchers (Laura U. Marks, philosopher and scholar of new media and film at Simon Fraser University) who presented at the Toronto event.

I’m late to the party; Thomas Daigle posted a January 2, 2020 article about energy use and our appetite for computing and ‘smart’ devices for the Canadian Broadcasting Corporation’s online news,

For those of us binge-watching TV shows, installing new smartphone apps or sharing family photos on social media over the holidays, it may seem like an abstract predicament.

The gigabytes of data we’re using — although invisible — come at a significant cost to the environment. Some experts say it rivals that of the airline industry. 

And as more smart devices rely on data to operate (think internet-connected refrigerators or self-driving cars), their electricity demands are set to skyrocket.

“We are using an immense amount of energy to drive this data revolution,” said Jane Kearns, an environment and technology expert at MaRS Discovery District, an innovation hub in Toronto.

“It has real implications for our climate.”

Some good news

Researchers are working on ways to lower the energy and environmental costs, here’s a sampling of 2023 posts with an emphasis on brainlike computing that attest to it,

If there’s an industry that can make neuromorphic computing and energy savings sexy, it’s the automotive indusry,

On the energy front,

Most people are familiar with nuclear fission and some its attendant issues. There is an alternative nuclear energy, fusion, which is considered ‘green’ or greener anyway. General Fusion is a local (Vancouver area) company focused on developing fusion energy, alongside competitors from all over the planet.

Part of what makes fusion energy attractive is that salt water or sea water can be used in its production and, according to that December posting, there are other applications for salt water power,

More encouraging developments in environmental science

Again, this is a selection. You’ll find a number of nano cellulose research projects and a couple of seaweed projects (seaweed research seems to be of increasing interest).

All by myself (neuromorphic engineering)

Neuromorphic computing is a subset of neuromorphic engineering and I stumbled across an article that outlines the similarities and differences. My ‘summary’ of the main points and a link to the original article can be found here,

Oops! I did it again. More AI panic

I included an overview of the various ‘recent’ panics (in my May 25, 2023 posting below) along with a few other posts about concerning developments but it’s not all doom and gloom..

Governments have realized that regulation might be a good idea. The European Union has a n AI act, the UK held an AI Safety Summit in November 2023, the US has been discussing AI regulation with its various hearings, and there’s impending legislation in Canada (see professor and lawyer Michael Geist’s blog for more).

A long time coming, a nanomedicine comeuppance

Paolo Macchiarini is now infamous for his untested, dangerous approach to medicine. Like a lot of people, I was fooled too as you can see in my August 2, 2011 posting, “Body parts nano style,”

In early July 2011, there were reports of a new kind of transplant involving a body part made of a biocomposite. Andemariam Teklesenbet Beyene underwent a trachea transplant that required an artificial windpipe crafted by UK experts then flown to Sweden where Beyene’s stem cells were used to coat the windpipe before being transplanted into his body.

It is an extraordinary story not least because Beyene, a patient in a Swedish hospital planning to return to Eritrea after his PhD studies in Iceland, illustrates the international cooperation that made the transplant possible.

The scaffolding material for the artificial windpipe was developed by Professor Alex Seifalian at the University College London in a landmark piece of nanotechnology-enabled tissue engineering. …

Five years later I stumbled across problems with Macchiarini’s work as outlined in my April 19, 2016 posting, “Macchiarini controversy and synthetic trachea transplants (part 1 of 2)” and my other April 19, 2016 posting, “Macchiarini controversy and synthetic trachea transplants (part 2 of 2)“.

This year, Gretchen Vogel (whose work was featured in my 2016 posts) has written a June 21, 2023 update about the Macchiarini affair for Science magazine, Note: Links have been removed,

Surgeon Paolo Macchiarini, who was once hailed as a pioneer of stem cell medicine, was found guilty of gross assault against three of his patients today and sentenced to 2 years and 6 months in prison by an appeals court in Stockholm. The ruling comes a year after a Swedish district court found Macchiarini guilty of bodily harm in two of the cases and gave him a suspended sentence. After both the prosecution and Macchiarini appealed that ruling, the Svea Court of Appeal heard the case in April and May. Today’s ruling from the five-judge panel is largely a win for the prosecution—it had asked for a 5-year sentence whereas Macchiarini’s lawyer urged the appeals court to acquit him of all charges.

Macchiarini performed experimental surgeries on the three patients in 2011 and 2012 while working at the renowned Karolinska Institute. He implanted synthetic windpipes seeded with stem cells from the patients’ own bone marrow, with the hope the cells would multiply over time and provide an enduring replacement. All three patients died when the implants failed. One patient died suddenly when the implant caused massive bleeding just 4 months after it was implanted; the two others survived for 2.5 and nearly 5 years, respectively, but suffered painful and debilitating complications before their deaths.

In the ruling released today, the appeals judges disagreed with the district court’s decision that the first two patients were treated under “emergency” conditions. Both patients could have survived for a significant length of time without the surgeries, they said. The third case was an “emergency,” the court ruled, but the treatment was still indefensible because by then Macchiarini was well aware of the problems with the technique. (One patient had already died and the other had suffered severe complications.)

A fictionalized tv series ( part of the Dr. Death anthology series) based on Macchiarini’s deceptions and a Dr. Death documentary are being broadcast/streamed in the US during January 2024. These come on the heels of a November 2023 Macchiarini documentary also broadcast/streamed on US television.

Dr. Death (anthology), based on the previews I’ve seen, is heavily US-centric, which is to be expected since Adam Ciralsky is involved in the production. Ciralsky wrote an exposé about Macchiarini for Vanity Fair published in 2016 (also featured in my 2016 postings). From a December 20, 2023 article by Julie Miller for Vanity Fair, Note: A link has been removed,

Seven years ago [2016], world-renowned surgeon Paolo Macchiarini was the subject of an ongoing Vanity Fair investigation. He had seduced award-winning NBC producer Benita Alexander while she was making a special about him, proposed, and promised her a wedding officiated by Pope Francis and attended by political A-listers. It was only after her designer wedding gown was made that Alexander learned Macchiarini was still married to his wife, and seemingly had no association with the famous names on their guest list.

Vanity Fair contributor Adam Ciralsky was in the midst of reporting the story for this magazine in the fall of 2015 when he turned to Dr. Ronald Schouten, a Harvard psychiatry professor. Ciralsky sought expert insight into the kind of fabulist who would invent and engage in such an audacious lie.

“I laid out the story to him, and he said, ‘Anybody who does this in their private life engages in the same conduct in their professional life,” recalls Ciralsky, in a phone call with Vanity Fair. “I think you ought to take a hard look at his CVs.”

That was the turning point in the story for Ciralsky, a former CIA lawyer who soon learned that Macchiarini was more dangerous as a surgeon than a suitor. …

Here’s a link to Ciralsky’s original article, which I described this way, from my April 19, 2016 posting (part 2 of the Macchiarini controversy),

For some bizarre frosting on this disturbing cake (see part 1 of the Macchiarini controversy and synthetic trachea transplants for the medical science aspects), a January 5, 2016 Vanity Fair article by Adam Ciralsky documents Macchiarini’s courtship of an NBC ([US] National Broadcasting Corporation) news producer who was preparing a documentary about him and his work.

[from Ciralsky’s article]

“Macchiarini, 57, is a magnet for superlatives. He is commonly referred to as “world-renowned” and a “super-surgeon.” He is credited with medical miracles, including the world’s first synthetic organ transplant, which involved fashioning a trachea, or windpipe, out of plastic and then coating it with a patient’s own stem cells. That feat, in 2011, appeared to solve two of medicine’s more intractable problems—organ rejection and the lack of donor organs—and brought with it major media exposure for Macchiarini and his employer, Stockholm’s Karolinska Institute, home of the Nobel Prize in Physiology or Medicine. Macchiarini was now planning another first: a synthetic-trachea transplant on a child, a two-year-old Korean-Canadian girl named Hannah Warren, who had spent her entire life in a Seoul hospital. … “

Other players in the Macchiarini story

Pierre Delaere, a trachea expert and professor of head and neck surgery at KU Leuven (a university in Belgium) was one of the first to draw attention to Macchiarini’s dangerous and unethical practices. To give you an idea of how difficult it was to get attention for this issue, there’s a September 1, 2017 article by John Rasko and Carl Power for the Guardian illustrating the issue. Here’s what they had to say about Delaere and other early critics of the work, Note: Links have been removed,

Delaere was one of the earliest and harshest critics of Macchiarini’s engineered airways. Reports of their success always seemed like “hot air” to him. He could see no real evidence that the windpipe scaffolds were becoming living, functioning airways – in which case, they were destined to fail. The only question was how long it would take – weeks, months or a few years.

Delaere’s damning criticisms appeared in major medical journals, including the Lancet, but weren’t taken seriously by Karolinska’s leadership. Nor did they impress the institute’s ethics council when Delaere lodged a formal complaint. [emphases mine]

Support for Macchiarini remained strong, even as his patients began to die. In part, this is because the field of windpipe repair is a niche area. Few people at Karolinska, especially among those in power, knew enough about it to appreciate Delaere’s claims. Also, in such a highly competitive environment, people are keen to show allegiance to their superiors and wary of criticising them. The official report into the matter dubbed this the “bandwagon effect”.

With Macchiarini’s exploits endorsed by management and breathlessly reported in the media, it was all too easy to jump on that bandwagon.

And difficult to jump off. In early 2014, four Karolinska doctors defied the reigning culture of silence [emphasis mine] by complaining about Macchiarini. In their view, he was grossly misrepresenting his results and the health of his patients. An independent investigator agreed. But the vice-chancellor of Karolinska Institute, Anders Hamsten, wasn’t bound by this judgement. He officially cleared Macchiarini of scientific misconduct, allowing merely that he’d sometimes acted “without due care”.

For their efforts, the whistleblowers were punished. [emphasis mine] When Macchiarini accused one of them, Karl-Henrik Grinnemo, of stealing his work in a grant application, Hamsten found him guilty. As Grinnemo recalls, it nearly destroyed his career: “I didn’t receive any new grants. No one wanted to collaborate with me. We were doing good research, but it didn’t matter … I thought I was going to lose my lab, my staff – everything.”

This went on for three years until, just recently [2017], Grinnemo was cleared of all wrongdoing.

It is fitting that Macchiarini’s career unravelled at the Karolinska Institute. As the home of the Nobel prize in physiology or medicine, one of its ambitions is to create scientific celebrities. Every year, it gives science a show-business makeover, picking out from the mass of medical researchers those individuals deserving of superstardom. The idea is that scientific progress is driven by the genius of a few.

It’s a problematic idea with unfortunate side effects. A genius is a revolutionary by definition, a risk-taker and a law-breaker. Wasn’t something of this idea behind the special treatment Karolinska gave Macchiarini? Surely, he got away with so much because he was considered an exception to the rules with more than a whiff of the Nobel about him. At any rate, some of his most powerful friends were themselves Nobel judges until, with his fall from grace, they fell too.

The September 1, 2017 article by Rasko and Power is worth the read if you have the interest and the time. And, Delaere has written up a comprehensive analysis, which includes basic information about tracheas and more, “The Biggest Lie in Medical History” 2020, PDF, 164 pp., Creative Commons Licence).

I also want to mention Leonid Schneider, science journalist and molecular cell biologist, whose work the Macchiarini scandal on his ‘For Better Science’ website was also featured in my 2016 pieces. Schneider’s site has a page titled, ‘Macchiarini’s trachea transplant patients: the full list‘ started in 2017 and which he continues to update with new information about the patients. The latest update was made on December 20, 2023.

Promising nanomedicine research but no promises and a caveat

Most of the research mentioned here is still in the laboratory. i don’t often come across work that has made its way to clinical trials since the focus of this blog is emerging science and technology,

*If you’re interested in the business of neurotechnology, the July 17, 2023 posting highlights a very good UNESCO report on the topic.

Funky music (sound and noise)

I have couple of stories about using sound for wound healing, bioinspiration for soundproofing applications, detecting seismic activity, more data sonification, etc.

Same old, same old CRISPR

2023 was relatively quiet (no panics) where CRISPR developments are concerned but still quite active.

Art/Sci: a pretty active year

I didn’t realize how active the year was art/sciwise including events and other projects until I reviewed this year’s postings. This is a selection from 2023 but there’s a lot more on the blog, just use the search term, “art/sci,” or “art/science,” or “sciart.”

While I often feature events and projects from these groups (e.g., June 2, 2023 posting, “Metacreation Lab’s greatest hits of Summer 2023“), it’s possible for me to miss a few. So, you can check out Toronto’s Art/Sci Salon’s website (strong focus on visual art) and Simon Fraser University’s Metacreation Lab for Creative Artificial Intelligence website (strong focus on music).

My selection of this year’s postings is more heavily weighted to the ‘writing’ end of things.

Boundaries: life/nonlife

Last year I subtitled this section, ‘Aliens on earth: machinic biology and/or biological machinery?” Here’s this year’s selection,

Canada’s 2023 budget … military

2023 featured an unusual budget where military expenditures were going to be increased, something which could have implications for our science and technology research.

Then things changed as Murray Brewster’s November 21, 2023 article for the Canadian Broadcasting Corporation’s (CBC) news online website comments, Note: A link has been removed,

There was a revelatory moment on the weekend as Defence Minister Bill Blair attempted to bridge the gap between rhetoric and reality in the Liberal government’s spending plans for his department and the Canadian military.

Asked about an anticipated (and long overdue) update to the country’s defence policy (supposedly made urgent two years ago by Russia’s full-on invasion of Ukraine), Blair acknowledged that the reset is now being viewed through a fiscal lens.

“We said we’re going to bring forward a new defence policy update. We’ve been working through that,” Blair told CBC’s Rosemary Barton Live on Sunday.

“The current fiscal environment that the country faces itself does require (that) that defence policy update … recognize (the) fiscal challenges. And so it’ll be part of … our future budget processes.”

One policy goal of the existing defence plan, Strong, Secure and Engaged, was to require that the military be able to concurrently deliver “two sustained deployments of 500 [to] 1,500 personnel in two different theaters of operation, including one as a lead nation.”

In a footnote, the recent estimates said the Canadian military is “currently unable to conduct multiple operations concurrently per the requirements laid out in the 2017 Defence Policy. Readiness of CAF force elements has continued to decrease over the course of the last year, aggravated by decreasing number of personnel and issues with equipment and vehicles.”

Some analysts say they believe that even if the federal government hits its overall budget reduction targets, what has been taken away from defence — and what’s about to be taken away — won’t be coming back, the minister’s public assurances notwithstanding.

10 years: Graphene Flagship Project and Human Brain Project

Graphene and Human Brain Project win biggest research award in history (& this is the 2000th post)” on January 28, 2013 was how I announced the results of what had been a a European Union (EU) competition that stretched out over several years and many stages as projects were evaluated and fell to the wayside or were allowed onto the next stage. The two finalists received €1B each to be paid out over ten years.

Future or not

As you can see, there was plenty of interesting stuff going on in 2023 but no watershed moments in the areas I follow. (Please do let me know in the Comments should you disagree with this or any other part of this posting.) Nanotechnology seems less and less an emerging science/technology in itself and more like a foundational element of our science and technology sectors. On that note, you may find my upcoming (in 2024) post about a report concerning the economic impact of its National Nanotechnology Initiative (NNI) from 2002 to 2022 of interest.

Following on the commercialization theme, I have noticed an increase of interest in commercializing brain and brainlike engineering technologies, as well as, more discussion about ethics.

Colonizing the brain?

UNESCO held events such as, this noted in my July 17, 2023 posting, “Unveiling the Neurotechnology Landscape: Scientific Advancements, Innovations and Major Trends—a UNESCO report” and this noted in my July 7, 2023 posting “Global dialogue on the ethics of neurotechnology on July 13, 2023 led by UNESCO.” An August 21, 2023 posting, “Ethical nanobiotechnology” adds to the discussion.

Meanwhile, Australia has been producing some very interesting mind/robot research, my June 13, 2023 posting, “Mind-controlled robots based on graphene: an Australian research story.” I have more of this kind of research (mind control or mind reading) from Australia to be published in early 2024. The Australians are not alone, there’s also this April 12, 2023 posting, “Mind-reading prosthetic limbs” from Germany.

My May 12, 2023 posting, “Virtual panel discussion: Canadian Strategies for Responsible Neurotechnology Innovation on May 16, 2023” shows Canada is entering the discussion. Unfortunately, the Canadian Science Policy Centre (CSPC), which held the event, has not posted a video online even though they have a youtube channel featuring other of their events.

As for neurmorphic engineering, China has produced a roadmap for its research in this area as noted in my March 20, 2023 posting, “A nontraditional artificial synaptic device and roadmap for Chinese research into neuromorphic devices.”

Quantum anybody?

I haven’t singled it out in this end-of-year posting but there is a great deal of interest in quantum computer both here in Canada and elsewhere. There is a 2023 report from the Council of Canadian Academies on the topic of quantum computing in Canada, which I hope to comment on soon.

Final words

I have a shout out for the Canadian Science Policy Centre, which celebrated its 15th anniversary in 2023. Congratulations!

For everyone, I wish peace on earth and all the best for you and yours in 2024!

It’s not just the sound, it’s the vibration too (a red-eyed treefrog calls for a mate)

This is an exceptionally pretty image of a frog that sometimes seems to be everywhere,,

Credit: Pixabay/CC0 Public Domain [downloaded from https://phys.org/news/2022-09-red-eyed-treefrogs-vibration-aggression.html]

I usually try to include one or two postings a year about frogs on this blog in honour of its name. The first one in 2022 was titled, “Got a photo of a frog being bitten by flies? There’s a research study …” (a June 24, 2022 post).

This year (2023; I’m a bit late), I have a September 14, 2022 news item on phys.org focused on mating calls, aggression, and vibrations,

One would be hard-pressed to take a walk outside without hearing the sounds of calling animals. During the day, birds chatter back and forth, and as night falls, frogs and insects call to defend territories and to attract potential mates. For several decades, biologists have studied these calls with great interest, taking away major lessons about the evolution of animal displays and the processes of speciation. But there may be a lot more to animal calls than we have realized.

A new study appearing in the Journal of Experimental Biology by Dr. Michael Caldwell and student researchers at Gettysburg College demonstrates that the calls of red-eyed treefrogs don’t just send sounds through the air, but also send vibrations through the plants. What’s more, these plant vibrations change the message that other frogs receive in major ways. The researchers played sound and vibrations produced by calling males to other red-eyed treefrogs surrounding a rainforest pond in Panama. They found that female frogs are over twice as likely to choose the calls of a potential mate if those calls include both sound and vibrations, and male frogs are far more aggressive and show a greater range of aggressive displays when they can feel the vibrations generated by the calls of their rivals.

“This really changes how we look at things,” says Caldwell. “If we want to know how a call functions, we can’t just look at the sound it makes anymore. We need to at least consider the roles that its associated vibrations play in getting the message across.”

A September 14, 2022 Gettysburg College news release, which originated the news item, delves further into vibrations,

Because vibrations are unavoidably excited in any surface a calling animal is touching, the authors of the new study suggest it is likely that many more species communicate using similar ‘bimodal acoustic calls’ that function simultaneously through both airborne sound and plant-, ground-, or water-borne vibrations. “There is zero reason to suspect that bimodal acoustic calls are limited to red-eyed treefrogs. In fact, we know they aren’t,” says Caldwell, who points out that researchers at UCLA [University of California at Los Angeles] and the University of Texas are reporting similar results with distantly related frog species, and that elephants and several species of insect have been shown to communicate this way. “For decades,” says Caldwell, “..we just didn’t know what to look for, but with a growing scientific interest in vibrational communication, all of that is rapidly changing.”

This new focus on animal calls as functioning through both sound and vibration could set the stage for major advances in the study of signal evolution. One potential implication highlighted by the team at Gettysburg College is that “we may even learn new things about sound signals we thought we understood.” This is because both the sound and the vibrational components of bimodal acoustic signals are generated together by the same organs. So, selection acting either call component will also necessarily shape the evolution of the other. 

The red-eyed treefrog is one of the most photographed species on the planet, which makes these findings all the more unexpected. “It just goes to show, we still have a lot to learn about animal behavior,” reports Dr. Caldwell. “We hear animal calls so often that we tune most of them out, but when we make a point to look at the world from the perspective of a frog, species that are far more sensitive to vibrations than humans, it quickly becomes clear that we have been overlooking a major part of what they are saying to one another.”

This research was performed at the Smithsonian Tropical Research Institute and Gettysburg College, with funding from the Smithsonian Institution and the Cross-disciplinary Science Institute at Gettysburg College.

Here’s a link to and a citation for the paper,

Beyond sound: bimodal acoustic calls used in mate-choice and aggression by red-eyed treefrogs by Michael S. Caldwell, Kayla A. Britt, Lilianna C. Mischke, Hannah I. Collins. Journal of Experimental Biology Volume 225, Issue 16 August 2022 DOI:
https://doi.org/10.1242/jeb.244460 Published August 25, 2022

This paper is behind a paywall. But, researchers have made some video clips available for viewing,

SFU’s Philippe Pasquier speaks at “The rise of Creative AI and its ethics” online event on Tuesday, January 11, 2022 at 6 am PST

Simon Fraser University’s (SFU) Metacreation Lab for Creative AI (artificial intelligence) in Vancouver, Canada, has just sent me (via email) a January 2022 newsletter, which you can find here. There are a two items I found of special interest.

Max Planck Centre for Humans and Machines Seminars

From the January 2022 newsletter,

Max Planck Institute Seminar – The rise of Creative AI & its ethics
January 11, 2022 at 15:00 pm [sic] CET | 6:00 am PST

Next Monday [sic], Philippe Pasquier, director of the Metacreation Labn will
be providing a seminar titled “The rise of Creative AI & its ethics”
[Tuesday, January 11, 2022] at the Max Planck Institute’s Centre for Humans and
Machine [sic].

The Centre for Humans and Machines invites interested attendees to
our public seminars, which feature scientists from our institute and
experts from all over the world. Their seminars usually take 1 hour and
provide an opportunity to meet the speaker afterwards.

The seminar is openly accessible to the public via Webex Access, and
will be a great opportunity to connect with colleagues and friends of
the Lab on European and East Coast time. For more information and the
link, head to the Centre for Humans and Machines’ Seminars page linked
below.

Max Planck Institute – Upcoming Events

The Centre’s seminar description offers an abstract for the talk and a profile of Philippe Pasquier,

Creative AI is the subfield of artificial intelligence concerned with the partial or complete automation of creative tasks. In turn, creative tasks are those for which the notion of optimality is ill-defined. Unlike car driving, chess moves, jeopardy answers or literal translations, creative tasks are more subjective in nature. Creative AI approaches have been proposed and evaluated in virtually every creative domain: design, visual art, music, poetry, cooking, … These algorithms most often perform at human-competitive or superhuman levels for their precise task. Two main use of these algorithms have emerged that have implications on workflows reminiscent of the industrial revolution:

– Augmentation (a.k.a, computer-assisted creativity or co-creativity): a human operator interacts with the algorithm, often in the context of already existing creative software.

– Automation (computational creativity): the creative task is performed entirely by the algorithms without human intervention in the generation process.

Both usages will have deep implications for education and work in creative fields. Away from the fear of strong – sentient – AI, taking over the world: What are the implications of these ongoing developments for students, educators and professionals? How will Creative AI transform the way we create, as well as what we create?

Philippe Pasquier is a professor at Simon Fraser University’s School for Interactive Arts and Technology, where he directs the Metacreation Lab for Creative AI since 2008. Philippe leads a research-creation program centred around generative systems for creative tasks. As such, he is a scientist specialized in artificial intelligence, a multidisciplinary media artist, an educator, and a community builder. His contributions range from theoretical research on generative systems, computational creativity, multi-agent systems, machine learning, affective computing, and evaluation methodologies. This work is applied in the creative software industry as well as through artistic practice in computer music, interactive and generative art.

Interpreting soundscapes

Folks at the Metacreation Lab have made available an interactive search engine for sounds, from the January 2022 newsletter,

Audio Metaphor is an interactive search engine that transforms users’ queries into soundscapes interpreting them.  Using state of the art algorithms for sound retrieval, segmentation, background and foreground classification, AuMe offers a way to explore the vast open source library of sounds available on the  freesound.org online community through natural language and its semantic, symbolic, and metaphorical expressions. 

We’re excited to see Audio Metaphor included  among many other innovative projects on Freesound Labs, a directory of projects, hacks, apps, research and other initiatives that use content from Freesound or use the Freesound API. Take a minute to check out the variety of projects applying creative coding, machine learning, and many other techniques towards the exploration of sound and music creation, generative music, and soundscape composition in diverse forms an interfaces.

Explore AuMe and other FreeSound Labs projects    

The Audio Metaphor (AuMe) webpage on the Metacreation Lab website has a few more details about the search engine,

Audio Metaphor (AuMe) is a research project aimed at designing new methodologies and tools for sound design and composition practices in film, games, and sound art. Through this project, we have identified the processes involved in working with audio recordings in creative environments, addressing these in our research by implementing computational systems that can assist human operations.

We have successfully developed Audio Metaphor for the retrieval of audio file recommendations from natural language texts, and even used phrases generated automatically from Twitter to sonify the current state of Web 2.0. Another significant achievement of the project has been in the segmentation and classification of environmental audio with composition-specific categories, which were then applied in a generative system approach. This allows users to generate sound design simply by entering textual prompts.

As we direct Audio Metaphor further toward perception and cognition, we will continue to contribute to the music information retrieval field through environmental audio classification and segmentation. The project will continue to be instrumental in the design and implementation of new tools for sound designers and artists.

See more information on the website audiometaphor.ca.

As for Freesound Labs, you can find them here.

Science events and an exhibition concerning wind in the Vancouver (Canada) area for July 2019 and beyond

it’s not quite the bumper crop of science events that took place in May 2019, which may be a good thing if you’re eager to attend everything. First, here are the events and then, the exhibition.

Nerd Nite at the Movies

On July 10, 2019, a new series is being launched at the Vancouver International Film Festival (VIFF) Centre. Here’s the description from the Nerd Nite Vancouver SciFact vs SciFi: Nerd Nite Goes to the Movies event page,

SciFact vs SciFiction: Nerd Nite Goes to the Movies v1. Animal

This summer we’re trying something a little different. Our new summer series of talks – a collaboration between Nerd Nite and VIFF – examines the pseudo-science propagated by Hollywood, and seeks to sift real insights from fake facts, in a fun, playful but peer-approved format. Each show will feature clips from a variety of movies on a science theme with a featured scientist on hand all done Nerd Nite style with drinks! We begin with biology, and our first presenter is Dr Carin Bondar.

Dr Bondar has been the host of Science Channel’s Outrageous Acts of Science, and she’s the author of several books including “Wild Moms: The Science Behind Mating in the Animal Kingdom”. Tonight she’ll join Kaylee [Byers] and Michael [Unger] from Nerd Nite to discuss the sci-facts in a variety of clips from cinema. We’ll be discussing the science in Planet of the ApesThe BirdsArachnophobiaSnakes on a Plane, and more!

When: July 10 [2019]
Where: Vancouver International Film Centre
When: 7:30 – 8:30 – This talk will be followed by a screening of Alfred Hitchcock’s classic The Birds (9pm). Double bill price: $20
Tickets: Here!

The VIFF Centre’s SciFact vs SciFi: Animals According to Hollywood event page has much the same information plus this,

SciFact vs SciFi: Nerd Nite Goes to the Movies continues:

July 31 [2019] – Dr. Douglas Scott: The Universe According to Hollywood
Aug 14 [2019] – Mika McKinnon: Disaster According to Hollywood
Aug 28 [2019] – Greg Bole: Evolution According to Hollywood

This series put me in mind what was then the New York-based, ‘Science Goes to the Movies’. I first mentioned this series in a March 10, 2016 posting and it seems that since then, the series has lost a host and been embraced by public television (in the US). You can find the latest incarnation of Science Goes To The Movies here.

Getting back to Vancouver, no word as to which movies will accompany these future talks. If I had a vote, I’d love to see Gattaca accompany any talk on genetics.

That last sentence is both true and provides a neat segue to the next event.

Genetics at the Vancouver Public Library (VPL)

Coming up on July 23, 2019, a couple of graduate students at the University of British Columbia will be sharing some of the latest information on genetics. From the VPL events page,

Curiosities of the Natural World: Genetics – the Future of Medicine

Tuesday, July 23, 2019 (7:00 pm – 8:30 pm)
Central Library
Description

Since their discovery over a century ago, diabetes, multiple sclerosis, and Alzheimer’s have seemed like diseases without a cure. The advent of genetic treatments and biomarkers are changing the outcomes and treatments of these once impossible-to-treat conditions.

UBC researchers, Adam Ramzy and Maria-Elizabeth Baeva discuss the potential of genetic therapies for diabetes, and new biomarkers and therapeutics for Alzheimer ’s disease and multiple sclerosis.

This program is part of the Curiosities of the Natural World series in partnership with UBC Let’s Talk Science, the UBC Faculty of Science, and the UBC Public Scholars Initiative

Suitable for: Adults
Seniors

Additional Details:
Alma VanDusen and Peter Kaye Rooms, Lower Level

It’s hard to know how to respond to this as I loathe anything that has ‘future of medicine’ in it. Isn’t there always going to ***be*** ‘a’ future with medicine in it?

Also, there is at least one cautionary tale about this new era of ‘genetic medicine’: Glybera is a gene therapy that worked for people with a rare genetic disease. It is a **treatment**, the only one, and it is no longer available.

Kelly Crowe in a November 17, 2018 article for the CBC (Canadian Broadcasting Corporation) news writes about Glybera,

It is one of this country’s great scientific achievements.

The first drug ever approved that can fix a faulty gene.

It’s called Glybera, and it can treat a painful and potentially deadly genetic disorder with a single dose — a genuine made-in-Canada medical breakthrough.

But most Canadians have never heard of it.

A team of researchers at the University of British Columbia spent decades developing the treatment for people born with a genetic mutation that causes lipoprotein lipase disorder (LPLD).

LPLD affects communities in the Saguenay region of northeastern Quebec at a higher rate than anywhere else in the world.

Glybera was never sold in North America and was available in Europe for just two years, beginning in 2015. During that time, only one patient received the drug. Then it was abandoned by the company that held its European licensing rights.

The problem was the price.

The world’s first gene therapy, a remarkable discovery by a dedicated team of scientists who came together in a Vancouver lab, had earned a second, more dubious distinction:

The world’s most expensive drug.

It cost $1M for a single treatment and that single treatment is good for at least 10 years.

Pharmaceutical companies make their money from repeated use of their medicaments and Glybera required only one treatment so the company priced it according to how much they would have gotten for repeated use, $100,000 per year over a 10 year period. The company was not able to persuade governments and/or individuals to pay the cost.

In the end, 31 people got the treatment, most of them received it for free through clinical trials.

Crowe has written an exceptionally good story (November 17, 2018 article) about Glybera and I encourage you to read in its entirety. I warn you it’s heartbreaking.

I wrote about money and genetics in an April 26, 2019 posting (Gene editing and personalized medicine: Canada). Scroll down to the subsection titled ‘Cost/benefit analysis’ for a mention of Goldman Sachs, an American global investment banking, securities and investment management firm, and its conclusion that personalized medicine is not a viable business model. I wonder if part of their analysis included the Glybera experience.

Getting back to the July 23, 2019 talk at the VPL’s central branch, I have no doubt the researchers will be discussing some exciting work but the future might not be as rosy as one might hope.

I wasn’t able to find much information about either Adan Ramzy or Maria-Elizabeth Baeva. There’s this for Ramzy (scroll down to Class of 2021) and this for Baeva (scroll down to Scholarships).

WINDS from June 22 to September 29, 2019

This show or exhibition is taking place in New Westminster (part of the Metro Vancouver area) at the Anvil Centre’s New Media Gallery. From the Anvil Centre’s WINDS event page,

WINDS
New Media Gallery Exhibition
June 22  – September 29
Opening Reception + Artist Talk  is on June 21st at 6:30pm
 
Chris Welsby (UK)
Spencer Finch (UK)
David Bowen (USA)
Nathalie Miebach (Germany/USA)
 
Our summer exhibition features four exciting, multi-media installations by four international artists from UK and USA.  Each artist connects with the representation, recreation and manifestation of wind through physical space and time.  Each suggests how our perception and understanding of wind can be created through pressure, sound, data, pattern, music and motion and then further appreciated in poetic or metaphoric ways that might connect us with how the wind influences language, imagination or our understanding of historic events.
 
All the artists use sound as a key element ; to emphasize or recreate the sonic experience of different winds and their effects, to trigger memory or emotion, or to heighten certain effects that might prompt the viewer to consider significant philosophical questions. Common objects are used in all the works; discarded objects, household or readymade objects and everyday materials; organic, synthetic, natural and manmade. The viewer will find connections with past winds and events both recent and distant.  There is an attempt to capture or allude to a moment in time which brings with it suggestions of mortality,  thereby transforming the works into poignant memento-mori.

Dates
June 22 – September 29, 2019

Price
Complimentary

Location
777 Columbia Street. New Media Gallery.

The New Media Gallery’s home page features ‘winds’ (yes, it’s all in lower case),

Landscape and weather have long shared an intimate connection with the arts.  Each of the works here is a landscape: captured, interpreted and presented through a range of technologies. The four artists in this exhibition have taken, as their material process, the movement of wind through physical space & time. They explore how our perception and understanding of landscape can be interpreted through technology. 

These works have been created by what might be understood as a sort of scientific method or process that involves collecting data, acute observation, controlled experiments and the incorporation of measurements and technologies that control or collect motion, pressure, sound, pattern and the like. The artists then take us in other directions; allowing technology or situations to render visible that which is invisible, creating and focussing on peculiar or resonant qualities of sound, light or movement in ways that seem to influence emotion or memory, dwelling on iconic places and events, or revealing in subtle ways, the subjective nature of time.  Each of these works suggest questions related to the nature of illusive experience and how or if it can be captured, bringing inevitable connections to authorship, loss, memory and memento mori

David Bowen
tele-present wind
Image
Biography
Credits

Spencer Finch (USA)
2 hours, 2 minutes, 2 seconds (Wind at Walden Pond, March 12, 2007)
Image
Biography
Credits

Nathalie Miebach (USA)
Hurricane Noel III
Image
Biography
Credits

Chris Welsby (UK)
Wind Vane
Image
Biography
Credits

Hours
10:00am – 5:00pm Tuesday – Sunday
10:00am – 8:00pm Thursdays
Closed Monday

Address
New Media Gallery
3rd Floor Anvil Centre
777 Columbia Street
New Westminster, BC V3M 1B6

If you want to see the images and biographies for the artists participating in ‘winds’, please go here..

So there you have it, science events and an exhibition in the Vancouver* area for July 2019.

*July 23, 2019 Correction: The word ‘and’ was removed from the final sentence for grammatical correctness.

**July 23, 2019 Correction: I changed the word ‘cure’ to ‘treatment’ so as to be more accurate. The word ‘cure’ suggests permanence and Glybera is supposed to be effective for 10 years or longer but no one really knows.

***Added the word ‘be’ for grammatical correctness on Nov. 30, 2020.

Yes! Art, genetic modifications, gene editing, and xenotransplantation at the Vancouver Biennale (Canada)

Patricia Piccinini’s Curious Imaginings Courtesy: Vancouver Biennale [downloaded from http://dailyhive.com/vancouver/vancouver-biennale-unsual-public-art-2018/]

Up to this point, I’ve been a little jealous of the Art/Sci Salon’s (Toronto, Canada) January 2018 workshops for artists and discussions about CRISPR ((clustered regularly interspaced short palindromic repeats))/Cas9 and its social implications. (See my January 10, 2018 posting for more about the events.) Now, it seems Vancouver may be in line for its ‘own’ discussion about CRISPR and the implications of gene editing. The image you saw (above) represents one of the installations being hosted by the 2018 – 2020 edition of the Vancouver Biennale.

While this posting is mostly about the Biennale and Piccinini’s work, there is a ‘science’ subsection featuring the science of CRISPR and xenotransplantation. Getting back to the Biennale and Piccinini: A major public art event since 1988, the Vancouver Biennale has hosted over 91 outdoor sculptures and new media works by more than 78 participating artists from over 25 countries and from 4 continents.

Quickie description of the 2018 – 2020 Vancouver Biennale

The latest edition of the Vancouver Biennale was featured in a June 6, 2018 news item on the Daily Hive (Vancouver),

The Vancouver Biennale will be bringing new —and unusual— works of public art to the city beginning this June.

The theme for this season’s Vancouver Biennale exhibition is “re-IMAGE-n” and it kicks off on June 20 [2018] in Vanier Park with Saudi artist Ajlan Gharem’s Paradise Has Many Gates.

Gharem’s architectural chain-link sculpture resembles a traditional mosque, the piece is meant to challenge the notions of religious orthodoxy and encourages individuals to image a space free of Islamophobia.

Melbourne artist Patricia Piccinini’s Curious Imaginings is expected to be one of the most talked about installations of the exhibit. Her style of “oddly captivating, somewhat grotesque, human-animal hybrid creature” is meant to be shocking and thought-provoking.

Piccinini’s interactive [emphasis mine] experience will “challenge us to explore the social impacts of emerging biotechnology and our ethical limits in an age where genetic engineering and digital technologies are already pushing the boundaries of humanity.”

Piccinini’s work will be displayed in the 105-year-old Patricia Hotel in Vancouver’s Strathcona neighbourhood. The 90-day ticketed exhibition [emphasis mine] is scheduled to open this September [2018].

Given that this blog is focused on nanotechnology and other emerging technologies such as CRISPR, I’m focusing on Piccinini’s work and its art/science or sci-art status. This image from the GOMA Gallery where Piccinini’s ‘Curious Affection‘ installation is being shown from March 24 – Aug. 5, 2018 in Brisbane, Queensland, Australia may give you some sense of what one of her installations is like,

Courtesy: Queensland Art Gallery | Gallery of Modern Art (QAGOMA)

I spoke with Serena at the Vancouver Biennale office and asked about the ‘interactive’ aspect of Piccinini’s installation. She suggested the term ‘immersive’ as an alternative. In other words, you won’t be playing with the sculptures or pressing buttons and interacting with computer screens or robots. She also noted that the ticket prices have not been set yet and they are currently developing events focused on the issues raised by the installation. She knew that 2018 is the 200th anniversary of the publication of Mary Shelley’s Frankenstein but I’m not sure how the Biennale folks plan (or don’t plan)  to integrate any recognition of the novle’s impact on the discussions about ‘new’ technologies .They expect Piccinini will visit Vancouver. (Note 1: Piccinini’s work can  also be seen in a group exhibition titled: Frankenstein’s Birthday Party at the Hosfselt Gallery in San Francisco (California, US) from June 23 – August 11, 2018.  Note 2: I featured a number of international events commemorating the 200th anniversary of the publication of Mary Shelley’s novel, Frankenstein, in my Feb. 26, 2018 posting. Note 3: The term ‘Frankenfoods’ helped to shape the discussion of genetically modified organisms and food supply on this planet. It was a wildly successful campaign for activists affecting legislation in some areas of research. Scientists have not been as enthusiastic about the effects. My January 15, 2009 posting briefly traces a history of the term.)

The 2018 – 2020 Vancouver Biennale and science

A June 7, 2018 Vancouver Biennale news release provides more detail about the current series of exhibitions,

The Biennale is also committed to presenting artwork at the cutting edge of discussion and in keeping with the STEAM (science, technology, engineering, arts, math[ematics]) approach to integrating the arts and sciences. In August [2018], Colombian/American visual artist Jessica Angel will present her monumental installation Dogethereum Bridge at Hinge Park in Olympic Village. Inspired by blockchain technology, the artwork’s design was created through the integration of scientific algorithms, new developments in technology, and the arts. This installation, which will serve as an immersive space and collaborative hub for artists and technologists, will host a series of activations with blockchain as the inspirational jumping-off point.

In what is expected to become one of North America’s most talked-about exhibitions of the year, Melbourne artist Patricia Piccinini’s Curious Imaginings will see the intersection of art, science, and ethics. For the first time in the Biennale’s fifteen years of creating transformative experiences, and in keeping with the 2018-2020 theme of “re-IMAGE-n,” the Biennale will explore art in unexpected places by exhibiting in unconventional interior spaces.  The hyperrealist “world of oddly captivating, somewhat grotesque, human-animal hybrid creatures” will be the artist’s first exhibit in a non-museum setting, transforming a wing of the 105-year-old Patricia Hotel. Situated in Vancouver’s oldest neighbourbood of Strathcona, Piccinini’s interactive experience will “challenge us to explore the social impacts of emerging bio-technology and our ethical limits in an age where genetic engineering and digital technologies are already pushing the boundaries of humanity.” In this intimate hotel setting located in a neighborhood continually undergoing its own change, Curious Imaginings will empower visitors to personally consider questions posed by the exhibition, including the promises and consequences of genetic research and human interference. …

There are other pieces being presented at the Biennale but my special interest is in the art/sci pieces and, at this point, CRISPR.

Piccinini in more depth

You can find out more about Patricia Piccinini in her biography on the Vancouver Biennale website but I found this Char Larsson April 7, 2018 article for the Independent (UK) more informative (Note: A link has been removed),

Patricia Piccinini’s sculptures are deeply disquieting. Walking through Curious Affection, her new solo exhibition at Brisbane’s Gallery of Modern Art, is akin to entering a science laboratory full of DNA experiments. Made from silicone, fibreglass and even human hair, her sculptures are breathtakingly lifelike, however, we can’t be sure what life they are like. The artist creates an exuberant parallel universe where transgenic experiments flourish and human evolution has given way to genetic engineering and DNA splicing.

Curious Affection is a timely and welcome recognition of Piccinini’s enormous contribution to reaching back to the mid-1990s. Working across a variety of mediums including photography, video and drawing, she is perhaps best known for her hyperreal creations.

As a genre, hyperrealism depends on the skill of the artist to create the illusion of reality. To be truly successful, it must convince the spectator of its realness. Piccinini acknowledges this demand, but with a delightful twist. The excruciating attention to detail deliberately solicits our desire to look, only to generate unease, as her sculptures are imbued with a fascinating otherness. Part human, part animal, the works are uncannily familiar, but also alarmingly “other”.

Inspired by advances in genetically modified pigs to generate replacement organs for humans [also known as xenotransplantation], we are reminded that Piccinini has always been at the forefront of debates concerning the possibilities of science, technology and DNA cloning. She does so, however, with a warm affection and sense of humour, eschewing the hysterical anxiety frequently accompanying these scientific developments.

Beyond the astonishing level of detail achieved by working with silicon and fibreglass, there is an ethics at work here. Piccinini is asking us not to avert our gaze from the other, and in doing so, to develop empathy and understanding through the encounter.

I encourage anyone who’s interested to read Larsson’s entire piece (April 7, 2018 article).

According to her Wikipedia entry, Piccinini works in a variety of media including video, sound, sculpture, and more. She also has her own website.

Gene editing and xenotransplantation

Sarah Zhang’s June 8, 2018 article for The Atlantic provides a peek at the extraordinary degree of interest and competition in the field of gene editing and CRISPR ((clustered regularly interspaced short palindromic repeats))/Cas9 research (Note: A link has been removed),

China Is Genetically Engineering Monkeys With Brain Disorders

Guoping Feng applied to college the first year that Chinese universities reopened after the Cultural Revolution. It was 1977, and more than a decade’s worth of students—5.7 million—sat for the entrance exams. Feng was the only one in his high school to get in. He was assigned—by chance, essentially—to medical school. Like most of his contemporaries with scientific ambitions, he soon set his sights on graduate studies in the United States. “China was really like 30 to 50 years behind,” he says. “There was no way to do cutting-edge research.” So in 1989, he left for Buffalo, New York, where for the first time he saw snow piled several feet high. He completed his Ph.D. in genetics at the State University of New York at Buffalo.

Feng is short and slim, with a monk-like placidity and a quick smile, and he now holds an endowed chair in neuroscience at MIT, where he focuses on the genetics of brain disorders. His 45-person lab is part of the McGovern Institute for Brain Research, which was established in 2000 with the promise of a $350 million donation, the largest ever received by the university. In short, his lab does not lack for much.

Yet Feng now travels to China several times a year, because there, he can pursue research he has not yet been able to carry out in the United States. [emphasis mine] …

Feng had organized a symposium at SIAT [Shenzhen Institutes of Advanced Technology], and he was not the only scientist who traveled all the way from the United States to attend: He invited several colleagues as symposium speakers, including a fellow MIT neuroscientist interested in tree shrews, a tiny mammal related to primates and native to southern China, and Chinese-born neuroscientists who study addiction at the University of Pittsburgh and SUNY Upstate Medical University. Like Feng, they had left China in the ’80s and ’90s, part of a wave of young scientists in search of better opportunities abroad. Also like Feng, they were back in China to pursue a type of cutting-edge research too expensive and too impractical—and maybe too ethically sensitive—in the United States.

Here’s what precipitated Feng’s work in China, (from Zhang’s article; Note: Links have been removed)

At MIT, Feng’s lab worked on genetically engineering a monkey species called marmosets, which are very small and genuinely bizarre-looking. They are cheaper to keep due to their size, but they are a relatively new lab animal, and they can be difficult to train on lab tasks. For this reason, Feng also wanted to study Shank3 on macaques in China. Scientists have been cataloging the social behavior of macaques for decades, making it an obvious model for studies of disorders like autism that have a strong social component. Macaques are also more closely related to humans than marmosets, making their brains a better stand-in for those of humans.

The process of genetically engineering a macaque is not trivial, even with the advanced tools of CRISPR. Researchers begin by dosing female monkeys with the same hormones used in human in vitro fertilization. They then collect and fertilize the eggs, and inject the resulting embryos with CRISPR proteins using a long, thin glass needle. Monkey embryos are far more sensitive than mice embryos, and can be affected by small changes in the pH of the injection or the concentration of CRISPR proteins. Only some of the embryos will have the desired mutation, and only some will survive once implanted in surrogate mothers. It takes dozens of eggs to get to just one live monkey, so making even a few knockout monkeys required the support of a large breeding colony.

The first Shank3 macaque was born in 2015. Four more soon followed, bringing the total to five.

To visit his research animals, Feng now has to fly 8,000 miles across 12 time zones. It would be a lot more convenient to carry out his macaque research in the United States, of course, but so far, he has not been able to.

He originally inquired about making Shank3 macaques at the New England Primate Research Center, one of eight national primate research centers then funded by the National Institutes of Health in partnership with a local institution (Harvard Medical School, in this case). The center was conveniently located in Southborough, Massachusetts, just 20 miles west of the MIT campus. But in 2013, Harvard decided to shutter the center.

The decision came as a shock to the research community, and it was widely interpreted as a sign of waning interest in primate research in the United States. While the national primate centers have been important hubs of research on HIV, Zika, Ebola, and other diseases, they have also come under intense public scrutiny. Animal-rights groups like the Humane Society of the United States have sent investigators to work undercover in the labs, and the media has reported on monkey deaths in grisly detail. Harvard officially made its decision to close for “financial” reasons. But the announcement also came after the high-profile deaths of four monkeys from improper handling between 2010 and 2012. The deaths sparked a backlash; demonstrators showed up at the gates. The university gave itself two years to wind down their primate work, officially closing the center in 2015.

“They screwed themselves,” Michael Halassa, the MIT neuroscientist who spoke at Feng’s symposium, told me in Shenzhen. Wei-Dong Yao, another one of the speakers, chimed in, noting that just two years later CRISPR has created a new wave of interest in primate research. Yao was one of the researchers at Harvard’s primate center before it closed; he now runs a lab at SUNY Upstate Medical University that uses genetically engineered mouse and human stem cells, and he had come to Shenzhen to talk about restarting his addiction research on primates.

Here’s comes the competition (from Zhang’s article; Note: Links have been removed),

While the U.S. government’s biomedical research budget has been largely flat, both national and local governments in China are eager to raise their international scientific profiles, and they are shoveling money into research. A long-rumored, government-sponsored China Brain Project is supposed to give neuroscience research, and primate models in particular, a big funding boost. Chinese scientists may command larger salaries, too: Thanks to funding from the Shenzhen local government, a new principal investigator returning from overseas can get 3 million yuan—almost half a million U.S. dollars—over his or her first five years. China is even finding success in attracting foreign researchers from top U.S. institutions like Yale.

In the past few years, China has seen a miniature explosion of genetic engineering in monkeys. In Kunming, Shanghai, and Guangzhou, scientists have created monkeys engineered to show signs of Parkinson’s, Duchenne muscular dystrophy, autism, and more. And Feng’s group is not even the only one in China to have created Shank3 monkeys. Another group—a collaboration primarily between researchers at Emory University and scientists in China—has done the same.

Chinese scientists’ enthusiasm for CRISPR also extends to studies of humans, which are moving much more quickly, and in some cases under less oversight, than in the West. The first studies to edit human embryos and first clinical trials for cancer therapies using CRISPR have all happened in China. [emphases mine]

Some ethical issues are also covered (from Zhang’s article),

Parents with severely epileptic children had asked him if it would be possible to study the condition in a monkey. Feng told them what he thought would be technically possible. “But I also said, ‘I’m not sure I want to generate a model like this,’” he recalled. Maybe if there were a drug to control the monkeys’ seizures, he said: “I cannot see them seizure all the time.”

But is it ethical, he continued, to let these babies die without doing anything? Is it ethical to generate thousands or millions of mutant mice for studies of brain disorders, even when you know they will not elucidate much about human conditions?

Primates should only be used if other models do not work, says Feng, and only if a clear path forward is identified. The first step in his work, he says, is to use the Shank3 monkeys to identify the changes the mutations cause in the brain. Then, researchers might use that information to find targets for drugs, which could be tested in the same monkeys. He’s talking with the Oregon National Primate Research Center about carrying out similar work in the United States. ….[Note: I have a three-part series about CRISPR and germline editing* in the US, precipitated by research coming out of Oregon, Part 1, which links to the other parts, is here.]

Zhang’s June 8, 2018 article is excellent and I highly recommend reading it.

I touched on the topic of xenotransplanttaion in a commentary on a book about the science  of the television series, Orphan Black in a January 31,2018 posting (Note: A chimera is what you use to incubate a ‘human’ organ for transplantation or, more accurately, xenotransplantation),

On the subject of chimeras, the Canadian Broadcasting Corporation (CBC) featured a January 26, 2017 article about the pig-human chimeras on its website along with a video,

The end

I am very excited to see Piccinini’s work come to Vancouver. There have been a number of wonderful art and art/science installations and discussions here but this is the first one (I believe) to tackle the emerging gene editing technologies and the issues they raise. (It also fits in rather nicely with the 200th anniversary of the publication of Mary Shelley’s Frankenstein which continues to raise issues and stimulate discussion.)

In addition to the ethical issues raised in Zhang’s article, there are some other philosophical questions:

  • what does it mean to be human
  • if we are going to edit genes to create hybrid human/animals, what are they and how do they fit into our current animal/human schema
  • are you still human if you’ve had an organ transplant where the organ was incubated in a pig

There are also going to be legal issues. In addition to any questions about legal status, there are also fights about intellectual property such as the one involving Harvard & MIT’s [Massachusetts Institute of Technology] Broad Institute vs the University of California at Berkeley (March 15, 2017 posting)..

While I’m thrilled about the Piccinini installation, it should be noted the issues raised by other artworks hosted in this version of the Biennale are important. Happily, they have been broached here in Vancouver before and I suspect this will result in more nuanced  ‘conversations’ than are possible when a ‘new’ issue is introduced.

Bravo 2018 – 2020 Vancouver Biennale!

* Germline editing is when your gene editing will affect subsequent generations as opposed to editing out a mutated gene for the lifetime of a single individual.

Art/sci and CRISPR links

This art/science posting may prove of some interest:

The connectedness of living things: an art/sci project in Saskatchewan: evolutionary biology (February 16, 2018)

A selection of my CRISPR posts:

CRISPR and editing the germline in the US (part 1 of 3): In the beginning (August 15, 2017)

NOTE: An introductory CRISPR video describing how CRISPR/Cas9 works was embedded in part1.

Why don’t you CRISPR yourself? (January 25, 2018)

Editing the genome with CRISPR ((clustered regularly interspaced short palindromic repeats)-carrying nanoparticles (January 26, 2018)

Immune to CRISPR? (April 10, 2018)

Tractor beams for humans?

I got excited for a moment before realizing that, if tractor beams for humans result from this work, it will be many years in the future. Still, one can dream, eh? Here’s more about the current state of tractor beams (the acoustic kind) from a January 21, 2018 news item on ScienceDaily,

Acoustic tractor beams use the power of sound to hold particles in mid-air, and unlike magnetic levitation, they can grab most solids or liquids. For the first time University of Bristol engineers have shown it is possible to stably trap objects larger than the wavelength of sound in an acoustic tractor beam. This discovery opens the door to the manipulation of drug capsules or micro-surgical implements within the body. Container-less transportation of delicate larger samples is now also a possibility and could lead to levitating humans.

A January 22, 2018 University of Bristol press release (also on EurekAlert but dated January 21, 2018), which originated the news item, expands on the theme,

Researchers previously thought that acoustic tractor beams were fundamentally limited to levitating small objects as all the previous attempts to trap particles larger than the wavelength had been unstable, with objects spinning uncontrollably. This is because rotating sound field transfers some of its spinning motion to the objects causing them to orbit faster and faster until they are ejected.

The new approach, published in Physical Review Letters today [Monday 22 January]{2018}], uses rapidly fluctuating acoustic vortices, which are similar to tornadoes of sound, made of a twister-like structure with loud sound surrounding a silent core.

The Bristol researchers discovered that the rate of rotation can be finely controlled by rapidly changing the twisting direction of the vortices, this stabilises the tractor beam. They were then able to increase the size of the silent core allowing it to hold larger objects. Working with ultrasonic waves at a pitch of 40kHz, a similar pitch to that which only bats can hear, the researchers held a two-centimetre polystyrene sphere in the tractor beam. This sphere measures over two acoustic wavelengths in size and is the largest yet trapped in a tractor beam. The research suggests that, in the future much larger objects could be levitated in this way.

Dr Asier Marzo, lead author on the paper from Bristol’s Department of Mechanical Engineering, said: “Acoustic researchers had been frustrated by the size limit for years, so its satisfying to find a way to overcome it. I think it opens the door to many new applications.”

Dr Mihai Caleap, Senior Research Associate, who developed the simulations, explained: “In the future, with more acoustic power it will be possible to hold even larger objects. This was only thought to be possible using lower pitches making the experiment audible and dangerous for humans.”

Bruce Drinkwater, Professor of Ultrasonics from the Department of Mechanical Engineering, who supervised the work, added: “Acoustic tractor beams have huge potential in many applications. I’m particularly excited by the idea of contactless production lines where delicate objects are assembled without touching them.”

The researchers have included a video representing their work,

I always liked the tractor beams on Star Trek as they seemed very useful. For those who can dream in more technical language, here’s a link to and a citation for the paper,

Acoustic Virtual Vortices with Tunable Orbital Angular Momentum for Trapping of Mie Particles by Asier Marzo, Mihai Caleap, and Bruce W. Drinkwater. Phys. Rev. Lett. Vol. 120, Iss. 4 — 26 January 2018 DOI:https://doi.org/10.1103/PhysRevLett.120.044301 Published 22 January 2018

This paper is open access.

Evolution of literature as seen by a classicist, a biologist and a computer scientist

Studying intertextuality shows how books are related in various ways and are reorganized and recombined over time. Image courtesy of Elena Poiata.

I find the image more instructive when I read it from the bottom up. For those who prefer to prefer to read from the top down, there’s this April 5, 2017 University of Texas at Austin news release (also on EurekAlert),

A classicist, biologist and computer scientist all walk into a room — what comes next isn’t the punchline but a new method to analyze relationships among ancient Latin and Greek texts, developed in part by researchers from The University of Texas at Austin.

Their work, referred to as quantitative criticism, is highlighted in a study published in the Proceedings of the National Academy of Sciences. The paper identifies subtle literary patterns in order to map relationships between texts and more broadly to trace the cultural evolution of literature.

“As scholars of the humanities well know, literature is a system within which texts bear a multitude of relationships to one another. Understanding what is distinctive about one text entails knowing how it fits within that system,” said Pramit Chaudhuri, associate professor in the Department of Classics at UT Austin. “Our work seeks to harness the power of quantification and computation to describe those relationships at macro and micro levels not easily achieved by conventional reading alone.”

In the study, the researchers create literary profiles based on stylometric features, such as word usage, punctuation and sentence structure, and use techniques from machine learning to understand these complex datasets. Taking a computational approach enables the discovery of small but important characteristics that distinguish one work from another — a process that could require years using manual counting methods.

“One aspect of the technical novelty of our work lies in the unusual types of literary features studied,” Chaudhuri said. “Much computational text analysis focuses on words, but there are many other important hallmarks of style, such as sound, rhythm and syntax.”

Another component of their work builds on Matthew Jockers’ literary “macroanalysis,” which uses machine learning to identify stylistic signatures of particular genres within a large body of English literature. Implementing related approaches, Chaudhuri and his colleagues have begun to trace the evolution of Latin prose style, providing new, quantitative evidence for the sweeping impact of writers such as Caesar and Livy on the subsequent development of Roman prose literature.

“There is a growing appreciation that culture evolves and that language can be studied as a cultural artifact, but there has been less research focused specifically on the cultural evolution of literature,” said the study’s lead author Joseph Dexter, a Ph.D. candidate in systems biology at Harvard University. “Working in the area of classics offers two advantages: the literary tradition is a long and influential one well served by digital resources, and classical scholarship maintains a strong interest in close linguistic study of literature.”

Unusually for a publication in a science journal, the paper contains several examples of the types of more speculative literary reading enabled by the quantitative methods introduced. The authors discuss the poetic use of rhyming sounds for emphasis and of particular vocabulary to evoke mood, among other literary features.

“Computation has long been employed for attribution and dating of literary works, problems that are unambiguous in scope and invite binary or numerical answers,” Dexter said. “The recent explosion of interest in the digital humanities, however, has led to the key insight that similar computational methods can be repurposed to address questions of literary significance and style, which are often more ambiguous and open ended. For our group, this humanist work of criticism is just as important as quantitative methods and data.”

The paper is the work of the Quantitative Criticism Lab (www.qcrit.org), co-directed by Chaudhuri and Dexter in collaboration with researchers from several other institutions. It is funded in part by a 2016 National Endowment for the Humanities grant and the Andrew W. Mellon Foundation New Directions Fellowship, awarded in 2016 to Chaudhuri to further his education in statistics and biology. Chaudhuri was one of 12 scholars selected for the award, which provides humanities researchers the opportunity to train outside of their own area of special interest with a larger goal of bridging the humanities and social sciences.

Here’s another link to the paper along with a citation,

Quantitative criticism of literary relationships by Joseph P. Dexter, Theodore Katz, Nilesh Tripuraneni, Tathagata Dasgupta, Ajay Kannan, James A. Brofos, Jorge A. Bonilla Lopez, Lea A. Schroeder, Adriana Casarez, Maxim Rabinovich, Ayelet Haimson Lushkov, and Pramit Chaudhuri. PNAS Published online before print April 3, 2017, doi: 10.1073/pnas.1611910114

This paper appears to be open access.

Curiosity Collider (Vancouver, Canada) presents Neural Constellations: Exploring Connectivity

I think of Curiosity Collider as an informal art/science  presenter but I gather the organizers’ ambitions are more grand. From the Curiosity Collider’s About Us page,

Curiosity Collider provides an inclusive community [emphasis mine] hub for curious innovators from any discipline. Our non-profit foundation, based in Vancouver, Canada, fosters participatory partnerships between science & technology, art & culture, business communities, and educational foundations to inspire new ways to experience science. The Collider’s growing community supports and promotes the daily relevance of science with our events and projects. Curiosity Collider is a catalyst for collaborations that seed and grow engaging science communication projects.

Be inspired by the curiosity of others. Our Curiosity Collider events cross disciplinary lines to promote creative inspiration. Meet scientists, visual and performing artists, culinary perfectionists, passionate educators, and entrepreneurs who share a curiosity for science.

Help us create curiosity for science. Spark curiosity in others with your own ideas and projects. Get in touch with us and use our curiosity events to showcase how your work creates innovative new ways to experience science.

I wish they hadn’t described themselves as an “inclusive community.” This often means exactly the opposite.

Take for example the website. The background is in black, the heads are white, and the text is grey. This is a website for people under the age of 40. If you want to be inclusive, you make your website legible for everyone.

That said, there’s an upcoming Curiosity Collider event which looks promising (from a July 20, 2016 email notice),

Neural Constellations: Exploring Connectivity

An Evening of Art, Science and Performance under the Dome

“We are made of star stuff,” Carl Sagan once said. From constellations to our nervous system, from stars to our neurons. We’re colliding neuroscience and astronomy with performance art, sound, dance, and animation for one amazing evening under the planetarium dome. Together, let’s explore similar patterns at the macro (astronomy) and micro (neurobiology) scale by taking a tour through both outer and inner space.

This show is curated by Curiosity Collider’s Creative Director Char Hoyt, along with Special Guest Curator Naila Kuhlmann, and developed in collaboration with the MacMillan Space Centre. There will also be an Art-Science silent auction to raise funding for future Curiosity Collider activities.

Participating performers include:

The July 20, 2016 notice also provides information about date, time, location, and cost,

When
7:30pm on Thursday, August 18th 2016. Join us for drinks and snacks when doors open at 6:30pm.

Where
H. R. MacMillan Space Centre (1100 Chestnut Street, Vancouver, BC)

Cost
$20.00 sliding scale. Proceeds will be used to cover the cost of running this event, and to fund future Curiosity Collider events. Curiosity Collider is a registered BC non-profit organization. Purchase tickets on our Eventbrite page.

Head to the Facebook event page: Let us know you are coming and share this event with others! We will also share event updates and performer profiles on the Facebook page.

There is a pretty poster,

CuriostiytCollider_AugEvent_NeuralConstellations

[downloaded from http://www.curiositycollider.org/events/]

Enjoy!

Café Scientifique (Vancouver, Canada) and noise on Oct. 27, 2015

On Tuesday, October 27, 2015  Café Scientifique, in the back room of The Railway Club (2nd floor of 579 Dunsmuir St. [at Seymour St.]), will be hosting a talk on the history of noise (from the Oct. 13, 2015 announcement),

Our speaker for the evening will be Dr. Shawn Bullock.  The title of his talk is:

The History of Noise: Perspectives from Physics and Engineering

The word “noise” is often synonymous with “nuisance,” which implies something to be avoided as much as possible. We label blaring sirens, the space between stations on the radio dial and the din of a busy street as “noise.” Is noise simply a sound we don’t like? We will consider the evolution of how scientists and engineers have thought about noise, beginning in the 19th-century and continuing to the present day. We will explore the idea of noise both as a social construction and as a technological necessity. We’ll also touch on critical developments in the study of sound, the history of physics and engineering, and the development of communications technology.

This description is almost identical to the description Bullock gave for a November 2014 talk he titled: Snap, Crackle, Pop!: A Short History of Noise which he summarizes this way after delivering the talk,

I used ideas from the history of physics, the history of music, the discipline of sound studies, and the history of electrical engineering to make the point that understanding “noise” is essential to understanding advancements in physics and engineering in the last century. We began with a discussion of 19th-century attitudes toward noise (and its association with “progress” and industry) before moving on to examine the early history of recorded sound and music, early attempts to measure noise, and the noise abatement movement. I concluded with a brief overview of my recent work on the role of noise in the development of the modem during the early Cold War.

You can find out more about Dr. Bullock who is an assistant professor of science education at Simon Fraser University here at his website.

On the subject of noise, although not directly related to Bullock’s work, there’s some research suggesting that noise may be having a serious impact on marine life. From an Oct. 8, 2015 Elsevier press release on EurekAlert,

Quiet areas should be sectioned off in the oceans to give us a better picture of the impact human generated noise is having on marine animals, according to a new study published in Marine Pollution Bulletin. By assigning zones through which ships cannot travel, researchers will be able to compare the behavior of animals in these quiet zones to those living in noisier areas, helping decide the best way to protect marine life from harmful noise.

The authors of the study, from the University of St Andrews, UK, the Oceans Initiative, Cornell University, USA, and Curtin University, Australia, say focusing on protecting areas that are still quiet will give researchers a better insight into the true impact we are having on the oceans.

Almost all marine organisms, including mammals like whales and dolphins, fish and even invertebrates, use sound to find food, avoid predators, choose mates and navigate. Chronic noise from human activities such as shipping can have a big impact on these animals, since it interferes with their acoustic signaling – increased background noise can mean animals are unable to hear important signals, and they tend to swim away from sources of noise, disrupting their normal behavior.

The number of ships in the oceans has increased fourfold since 1992, increasing marine noise dramatically. Ships are also getting bigger, and therefore noisier: in 2000 the biggest cargo ships could carry 8,000 containers; today’s biggest carry 18,000.

“Marine animals, especially whales, depend on a naturally quiet ocean for survival, but humans are polluting major portions of the ocean with noise,” said Dr. Christopher Clark from the Bioacoustics Research Program, Cornell University. “We must make every effort to protect quiet ocean regions now, before they grow too noisy from the din of our activities.”

For the new study, lead author Dr. Rob Williams and the team mapped out areas of high and low noise pollution in the oceans around Canada. Using shipping route and speed data from Environment Canada, the researchers put together a model of noise based on ships’ location, size and speed, calculating the cumulative sound they produce over the course of a year. They used the maps to predict how noisy they thought a particular area ought to be.

To test their predictions, in partnership with Cornell University, they deployed 12 autonomous hydrophones – devices that can measure noise in water – and found a correlation in terms of how the areas ranked from quietest to noisiest. The quiet areas are potential noise conservation zones.

“We tend to focus on problems in conservation biology. This was a fun study to work on, because we looked for opportunities to protect species by working with existing patterns in noise and animal distribution, and found that British Colombia offers many important habitat for whales that are still quiet,” said Dr. Rob Williams, lead author of the study. “If we think of quiet, wild oceans as a natural resource, we are lucky that Canada is blessed with globally rare pockets of acoustic wilderness. It makes sense to talk about protecting acoustic sanctuaries before we lose them.”

Although it is clear that noise has an impact on marine organisms, the exact effect is still not well understood. By changing their acoustic environment, we could be inadvertently choosing winners and losers in terms of survival; researchers are still at an early stage of predicting who will win or lose under different circumstances. The quiet areas the team identified could serve as experimental control sites for research like the International Quiet Ocean Experiment to see what effects ocean noise is having on marine life.

“Sound is perceived differently by different species, and some are more affected by noise than others,” said Christine Erbe, co-author of the study and Director of the Marine Science Center, Curtin University, Australia.

So far, the researchers have focused on marine mammals – whales, dolphins, porpoises, seals and sea lions. With a Pew Fellowship in Marine Conservation, Dr. Williams now plans to look at the effects of noise on fish, which are less well understood. By starting to quantify that and let people know what the likely economic effect on fisheries or on fish that are culturally important, Dr. Williams hopes to get the attention of the people who make decisions that affect ocean noise.

“When protecting highly mobile and migratory species that are poorly studied, it may make sense to focus on threats rather than the animals themselves. Shipping patterns decided by humans are often more predictable than the movements of whales and dolphins,” said Erin Ashe, co-author of the study and co-founder of the Oceans Initiative from the University of St Andrews.

Keeping areas of the ocean quiet is easier than reducing noise in already busy zones, say the authors of the study. However, if future research that stems from noise protected zones indicates that overall marine noise should be reduced, there are several possible approaches to reducing noise. The first is speed reduction: the faster a ship goes, the noisier it gets, so slowing down would reduce overall noise. The noisiest ships could also be targeted for replacement: by reducing the noise produced by the noisiest 10% of ships in use today, overall marine noise could be reduced by more than half. The third, more long-term, option would be to build quieter ships from the outset.

I can’t help wondering why Canadian scientists aren’t involved in this research taking place off our shores. Regardless, here’s a link to and a citation for the paper,

Quiet(er) marine protected areas by Rob Williams, Christine Erbe, Erin Ashe, & Christopher W. Clark. Marine Pollution Bulletin Available online 16 September 2015 In Press, Corrected Proof doi:10.1016/j.marpolbul.2015.09.012

This is an open access paper.

“Ears like a bat” could come true for humans?

That old saying which describes people with exceptional hearing as having “ears like a bat” may come true if University of California at Berkeley (UC Berkeley) researchers have their way. From a July 7, 2015 news item on Nanowerk,

University of California, Berkeley, physicists have used graphene to build lightweight ultrasonic loudspeakers and microphones, enabling people to mimic bats or dolphins’ ability to use sound to communicate and gauge the distance and speed of objects around them.

A July 6, 2015 UC Berkeley news release by Robert Sanders (also on EurekAlert), which originated the news item, describes the problem addressed by the research and the new approach taken,

More practically, the wireless ultrasound devices complement standard radio transmission using electromagnetic waves in areas where radio is impractical, such as underwater, but with far more fidelity than current ultrasound or sonar devices. They can also be used to communicate through objects, such as steel, that electromagnetic waves can’t penetrate.

“Sea mammals and bats use high-frequency sound for echolocation and communication, but humans just haven’t fully exploited that before, in my opinion, because the technology has not been there,” said UC Berkeley physicist Alex Zettl. “Until now, we have not had good wideband ultrasound transmitters or receivers. These new devices are a technology opportunity.”

Speakers and microphones both use diaphragms, typically made of paper or plastic, that vibrate to produce or detect sound, respectively. The diaphragms in the new devices are graphene sheets a mere one atom thick that have the right combination of stiffness, strength and light weight to respond to frequencies ranging from subsonic (below 20 hertz) to ultrasonic (above 20 kilohertz). Humans can hear from 20 hertz up to 20,000 hertz, whereas bats hear only in the kilohertz range, from 9 to 200 kilohertz. The grapheme loudspeakers and microphones operate from well below 20 hertz to over 500 kilohertz.

Graphene consists of carbon atoms laid out in a hexagonal, chicken-wire arrangement, which creates a tough, lightweight sheet with unique electronic properties that have excited the physics world for the past 20 or more years.

“There’s a lot of talk about using graphene in electronics and small nanoscale devices, but they’re all a ways away,” said Zettl, who is a senior scientist at Lawrence Berkeley National Laboratory and a member of the Kavli Energy NanoSciences Institute, operated jointly by UC Berkeley and Berkeley Lab. “The microphone and loudspeaker are some of the closest devices to commercial viability, because we’ve worked out how to make the graphene and mount it, and it’s easy to scale up.”

Zettl, UC Berkeley postdoctoral fellow Qin Zhou and colleagues describe their graphene microphone and ultrasonic radio in a paper appearing online this week in the Proceedings of the National Academy of Sciences.

Radios and rangefinders

Two years ago, Zhou built loudspeakers using a sheet of graphene for the diaphragm, and since then has been developing the electronic circuitry to build a microphone with a similar graphene diaphragm.

One big advantage of graphene is that the atom-thick sheet is so lightweight that it responds well to the different frequencies of an electronic pulse, unlike today’s piezoelectric microphones and speakers. This comes in handy when using ultrasonic transmitters and receivers to transmit large amounts of information through many different frequency channels simultaneously, or to measure distance, as in sonar applications.

“Because our membrane is so light, it has an extremely wide frequency response and is able to generate sharp pulses and measure distance much more accurately than traditional methods,” Zhou said.

Graphene membranes are also more efficient, converting over 99 percent of the energy driving the device into sound, whereas today’s conventional loudspeakers and headphones convert only 8 percent into sound. Zettl anticipates that in the future, communications devices like cellphones will utilize not only electromagnetic waves – radio – but also acoustic or ultrasonic sound, which can be highly directional and long-range.

“Graphene is a magical material; it hits all the sweet spots for a communications device,” he said.

You never know who can give you a new idea for your research, from the news release,

When Zhou told his wife, Jinglin Zheng [also a physicist], about the ultrasound microphone, she suggested he try to capture the sound of bats chirping at frequencies too high for humans to hear. So they hauled the microphone to a park in Livermore and turned it on. When they slowed down the recording to one-tenth normal speed, converting the high frequencies to an audio range humans can hear, they were amazed at the quality and fidelity of the bat vocalizations.

“This is lightweight enough to mount on a bat and record what the bat can hear,” Zhou said.

Bat expert Michael Yartsev, a newly hired UC Berkeley assistant professor of bioengineering and member of the Helen Wills Neuroscience Institute, said, “These new microphones will be incredibly valuable for studying auditory signals at high frequencies, such as the ones used by bats. The use of graphene allows the authors to obtain very flat frequency responses in a wide range of frequencies, including ultrasound, and will permit a detailed study of the auditory pulses that are used by bats.”

Zettl noted that audiophiles would also appreciate the graphene loudspeakers and headphones, which have a flat response across the entire audible frequency range.

“A number of years ago, this device would have been darn near impossible to build because of the difficulty of making free-standing graphene sheets,” Zettl said. “But over the past decade the graphene community has come together to develop techniques to grow, transport and mount graphene, so building a device like this is now very straightforward; the design is simple.”

Here’s a link to and a citation for the paper,

Graphene electrostatic microphone and ultrasonic radio by Qin Zhou, Jinglin Zheng, Seita Onishi, M. F. Crommie, Alex K. Zettl. Proceedings of the National Academy of Sciences, 2015; 201505800 DOI: 10.1073/pnas.1505800112

This paper is behind a paywall.