Tag Archives: Canada

Reusable ‘sponge’ for soaking up marine oil spills—even in northern waters

A May 28, 2024 news item on phys.org announces some new research into sponges, a topic of some interest where oil spill cleanups are concerned,

Oil spills, if not cleaned up quickly and effectively, can cause lasting damage to marine and coastal environments. That’s why a team of North American researchers are developing a new sponge-like material that is not only effective at grabbing and holding oil on its surface (adsorption), but can be reused again and again—even in icy Canadian waters….

A May 27, 2024 Canadian Light Source (CLS) news release (also received via email) by Rowan Hollinger provides some details, Note: CNF can be cellulose nanofibers, cellulose nanofibrils, or, it’s sometimes called, nanofibrillated cellulose (NFC) (see Nanocellulose Wikipedia entry),,

The special material – called CNF-SP aerogel — combines a biodegradable cellulose-based material with a substance called spiropyran, a light-sensitive material. Spiropyran has a unique ‘switchable’ property that allows the aerogel to go between being oil-sorbent and oil-repellent, just like a kitchen sponge that can be used to soak up and squeeze out water.

“Once spiropyran has been added to the aerogel, after each usage we just switch the light condition,” explains Dr. Baiyu Helen Zhang, professor and Canada Research Chair at Memorial University, Newfoundland. “We used the aerogel as an oil sorbent under visible light. After oil adsorption, we switched the light condition to UV light. This switch helped the sponge to release the oil.”

And the material continues soaking up and releasing oil, even when the water temperature drops, according to Dr. Xiujuan Chen, an assistant professor at University of Texas – Arlington.

“We found that when we tested the oil sorbent’s performance under different kinds of environmental conditions, it had a very good performance in a cold environment. This is quite useful for cold winter seasons, particularly for Canada.”

The researchers used the CLS’s Mid-IR beamline to examine the characteristics of the aerogel before and after exposing it to visible and UV light. From here, the researchers are looking to scale up their research with large pilot studies and even testing the material in the field.

“The CLS has very unique infrastructure that supports students and researchers like us to conduct many kinds of very exciting research and to contribute to scientific knowledge and engineering applications,” says Zhang.

Here’s a link to and a citation for the paper,

Development of a spiropyran-assisted cellulose aerogel with switchable wettability as oil sorbent for oil spill cleanup by Hongjie Wang, Xiujuan Chen, Bing Chen, Yuming Zhao, Baiyu Zhang. Science of The Total Environment Volume 923, 1 May 2024, 171451 DOI: https://doi.org/10.1016/j.scitotenv.2024.171451 Available online: 2 March 2024 Version of Record: 8 March 2024

This paper is behind a paywall.

The CLS has made this video of the researchers available,

For the curious, I have many posts about sponges and, in particular, sponges for use in environmental cleanups.

Corporate venture capital (CVC) and the nanotechnology market plus 2023’s top 10 countries’ nanotechnolgy patents

I have two brief nanotechnology commercialization stories from the same publication.

Corporate venture capital (CVC) and the nano market

From a March 23, 2024 article on statnano.com, Note: Links have been removed,

Nanotechnology’s enormous potential across various sectors has long attracted the eye of investors, keen to capitalise on its commercial potency.

Yet the initial propulsion provided by traditional venture capital avenues was reined back when the reality of long development timelines, regulatory hurdles, and difficulty in translating scientific advances into commercially viable products became apparent.

While the initial flurry of activity declined in the early part of the 21st century, a new kid on the investing block has proved an enticing option beyond traditional funding methods.

Corporate venture capital has, over the last 10 years emerged as a key plank in turning ideas into commercial reality.

Simply put, corporate venture capital (CVC) has seen large corporations, recognising the strategic value of nanotechnology, establish their own VC arms to invest in promising start-ups.

The likes of Samsung, Johnson & Johnson and BASF have all sought to get an edge on their competition by sinking money into start-ups in nano and other technologies, which could deliver benefits to them in the long term.

Unlike traditional VC firms, CVCs invest with a strategic lens, aligning their investments with their core business goals. For instance, BASF’s venture capital arm, BASF Venture Capital, focuses on nanomaterials with applications in coatings, chemicals, and construction.

It has an evergreen EUR 250 million fund available and will consider everything from seed to Series B investment opportunities.

Samsung Ventures takes a similar approach, explaining: “Our major investment areas are in semiconductors, telecommunication, software, internet, bioengineering and the medical industry from start-ups to established companies that are about to be listed on the stock market.

While historically concentrated in North America and Europe, CVC activity in nanotechnology is expanding to Asia, with China being a major player.

China has, perhaps not surprisingly, seen considerable growth over the last decade in nano and few will bet against it being the primary driver of innovation over the next 10 years.

As ever, the long development cycles of emerging nano breakthroughs can frequently deter some CVCs with shorter investment horizons.

2023 Nanotechnology patent applications: which countries top the list?

A March 28, 2024 article from statnano.com provides interesting data concerning patent applications,

In 2023, a total of 18,526 nanotechnology patent applications were published at the United States Patent and Trademark Office (USPTO) and the European Patent Office (EPO). The United States accounted for approximately 40% of these nanotechnology patent publications, followed by China, South Korea, and Japan in the next positions.

According to a statistical analysis conducted by StatNano using data from the Orbit database, the USPTO published 84% of the 18,526 nanotechnology patent applications in 2023, which is more than five times the number published by the EPO. However, the EPO saw a nearly 17% increase in nanotechnology patent publications compared to the previous year, while the USPTO’s growth was around 4%.

Nanotechnology patents are defined based on the ISO/TS 18110 standard as those having at least one claim related to nanotechnology orpatents classified with an IPC classification code related to nanotechnology such as B82.

From the March 28, 2024 article,

Top 10 Countries Based on Published Patent Applications in the Field of Nanotechnology in USPTO in 2023

Rank1CountryNumber of nanotechnology published patent applications in USPTONumber of nanotechnology published patent applications in EPOGrowth rate in USPTOGrowth rate in EPO
1United States6,9264923.20%17.40%
2South Korea1,71547613.40%8.40%
3China1,6275694.20%47.40%
4Taiwan1,118615.00%-12.90%
5Japan1,113445-1.20%9.30%
6Germany484229-10.20%15.70%
7England331505.10%16.30%
8France323145-8.00%17.90%
9Canada290125.10%-14.30%
10Saudi Arabia268322.40%0.00%
1- Ranking based on the number of nanotechnology patent applications at the USPTO

If you have a bit of time and interest, I suggest reading the March 28, 2024 article in its entirety.

Hardware policies best way to manage AI safety?

Regulation of artificial intelligence (AI) has become very topical in the last couple of years. There was an AI safety summit in November 2023 at Bletchley Park in the UK (see my November 2, 2023 posting for more about that international meeting).

A very software approach?

This year (2024) has seen a rise in legislative and proposed legislative activity. I have some articles on a few of these activities. China was the first to enact regulations of any kind on AI according to Matt Sheehan’s February 27, 2024 paper for the Carnegie Endowment for International Peace,

In 2021 and 2022, China became the first country to implement detailed, binding regulations on some of the most common applications of artificial intelligence (AI). These rules formed the foundation of China’s emerging AI governance regime, an evolving policy architecture that will affect everything from frontier AI research to the functioning of the world’s second-largest economy, from large language models in Africa to autonomous vehicles in Europe.

The Chinese Communist Party (CCP) and the Chinese government started that process with the 2021 rules on recommendation algorithms, an omnipresent use of the technology that is often overlooked in international AI governance discourse. Those rules imposed new obligations on companies to intervene in content recommendations, granted new rights to users being recommended content, and offered protections to gig workers subject to algorithmic scheduling. The Chinese party-state quickly followed up with a new regulation on “deep synthesis,” the use of AI to generate synthetic media such as deepfakes. Those rules required AI providers to watermark AI-generated content and ensure that content does not violate people’s “likeness rights” or harm the “nation’s image.” Together, these two regulations also created and amended China’s algorithm registry, a regulatory tool that would evolve into a cornerstone of the country’s AI governance regime.

The UK has adopted a more generalized approach focused on encouraging innovation according to Valeria Gallo’s and Suchitra Nair’s February 21, 2024 article for Deloitte (a British professional services firm also considered one of the big four accounting firms worldwide),

At a glance

The UK Government has adopted a cross-sector and outcome-based framework for regulating AI, underpinned by five core principles. These are safety, security and robustness, appropriate transparency and explainability, fairness, accountability and governance, and contestability and redress.

Regulators will implement the framework in their sectors/domains by applying existing laws and issuing supplementary regulatory guidance. Selected regulators will publish their AI annual strategic plans by 30th April [2024], providing businesses with much-needed direction.

Voluntary safety and transparency measures for developers of highly capable AI models and systems will also supplement the framework and the activities of individual regulators.

The framework will not be codified into law for now, but the Government anticipates the need for targeted legislative interventions in the future. These interventions will address gaps in the current regulatory framework, particularly regarding the risks posed by complex General Purpose AI and the key players involved in its development.

Organisations must prepare for increased AI regulatory activity over the next year, including guidelines, information gathering, and enforcement. International firms will inevitably have to navigate regulatory divergence.

While most of the focus appears to be on the software (e.g., General Purpose AI), the UK framework does not preclude hardware.

The European Union (EU) is preparing to pass its own AI regulation act through the European Parliament in 2024 according to a December 19, 2023 “EU AI Act: first regulation on artificial intelligence” article update, Note: Links have been removed,

As part of its digital strategy, the EU wants to regulate artificial intelligence (AI) to ensure better conditions for the development and use of this innovative technology. AI can create many benefits, such as better healthcare; safer and cleaner transport; more efficient manufacturing; and cheaper and more sustainable energy.

In April 2021, the European Commission proposed the first EU regulatory framework for AI. It says that AI systems that can be used in different applications are analysed and classified according to the risk they pose to users. The different risk levels will mean more or less regulation.

The agreed text is expected to be finally adopted in April 2024. It will be fully applicable 24 months after entry into force, but some parts will be applicable sooner:

*The ban of AI systems posing unacceptable risks will apply six months after the entry into force

*Codes of practice will apply nine months after entry into force

*Rules on general-purpose AI systems that need to comply with transparency requirements will apply 12 months after the entry into force

High-risk systems will have more time to comply with the requirements as the obligations concerning them will become applicable 36 months after the entry into force.

This EU initiative, like the UK framework, seems largely focused on AI software and according to the Wikipedia entry “Regulation of artificial intelligence,”

… The AI Act is expected to come into effect in late 2025 or early 2026.[109

I do have a few postings about Canadian regulatory efforts, which also seem to be focused on software but don’t preclude hardware. While the January 20, 2024 posting is titled “Canada’s voluntary code of conduct relating to advanced generative AI (artificial intelligence) systems,” information about legislative efforts is also included although you might find my May 1, 2023 posting titled “Canada, AI regulation, and the second reading of the Digital Charter Implementation Act, 2022 (Bill C-27)” offers more comprehensive information about Canada’s legislative progress or lack thereof.

The US is always to be considered in these matters and I have a November 2023 ‘briefing’ by Müge Fazlioglu on the International Association of Privacy Professionals (IAPP) website where she provides a quick overview of the international scene before diving deeper into US AI governance policy through the Barack Obama, Donald Trump, and Joe Biden administrations. There’s also this January 29, 2024 US White House “Fact Sheet: Biden-⁠Harris Administration Announces Key AI Actions Following President Biden’s Landmark Executive Order.”

What about AI and hardware?

A February 15, 2024 news item on ScienceDaily suggests that regulating hardware may be the most effective way of regulating AI,

Chips and datacentres — the ‘compute’ power driving the AI revolution — may be the most effective targets for risk-reducing AI policies as they have to be physically possessed, according to a new report.

A global registry tracking the flow of chips destined for AI supercomputers is one of the policy options highlighted by a major new report calling for regulation of “compute” — the hardware that underpins all AI — to help prevent artificial intelligence misuse and disasters.

Other technical proposals floated by the report include “compute caps” — built-in limits to the number of chips each AI chip can connect with — and distributing a “start switch” for AI training across multiple parties to allow for a digital veto of risky AI before it feeds on data.

The experts point out that powerful computing chips required to drive generative AI models are constructed via highly concentrated supply chains, dominated by just a handful of companies — making the hardware itself a strong intervention point for risk-reducing AI policies.

The report, published 14 February [2024], is authored by nineteen experts and co-led by three University of Cambridge institutes — the Leverhulme Centre for the Future of Intelligence (LCFI), the Centre for the Study of Existential Risk (CSER) and the Bennett Institute for Public Policy — along with OpenAI and the Centre for the Governance of AI.

A February 14, 2024 University of Cambridge press release by Fred Lewsey (also on EurekAlert), which originated the news item, provides more information about the ‘hardware approach to AI regulation’,

“Artificial intelligence has made startling progress in the last decade, much of which has been enabled by the sharp increase in computing power applied to training algorithms,” said Haydn Belfield, a co-lead author of the report from Cambridge’s LCFI. 

“Governments are rightly concerned about the potential consequences of AI, and looking at how to regulate the technology, but data and algorithms are intangible and difficult to control.

“AI supercomputers consist of tens of thousands of networked AI chips hosted in giant data centres often the size of several football fields, consuming dozens of megawatts of power,” said Belfield.

“Computing hardware is visible, quantifiable, and its physical nature means restrictions can be imposed in a way that might soon be nearly impossible with more virtual elements of AI.”

The computing power behind AI has grown exponentially since the “deep learning era” kicked off in earnest, with the amount of “compute” used to train the largest AI models doubling around every six months since 2010. The biggest AI models now use 350 million times more compute than thirteen years ago.

Government efforts across the world over the past year – including the US Executive Order on AI, EU AI Act, China’s Generative AI Regulation, and the UK’s AI Safety Institute – have begun to focus on compute when considering AI governance.

Outside of China, the cloud compute market is dominated by three companies, termed “hyperscalers”: Amazon, Microsoft, and Google. “Monitoring the hardware would greatly help competition authorities in keeping in check the market power of the biggest tech companies, and so opening the space for more innovation and new entrants,” said co-author Prof Diane Coyle from Cambridge’s Bennett Institute. 

The report provides “sketches” of possible directions for compute governance, highlighting the analogy between AI training and uranium enrichment. “International regulation of nuclear supplies focuses on a vital input that has to go through a lengthy, difficult and expensive process,” said Belfield. “A focus on compute would allow AI regulation to do the same.”

Policy ideas are divided into three camps: increasing the global visibility of AI computing; allocating compute resources for the greatest benefit to society; enforcing restrictions on computing power.

For example, a regularly-audited international AI chip registry requiring chip producers, sellers, and resellers to report all transfers would provide precise information on the amount of compute possessed by nations and corporations at any one time.

The report even suggests a unique identifier could be added to each chip to prevent industrial espionage and “chip smuggling”.

“Governments already track many economic transactions, so it makes sense to increase monitoring of a commodity as rare and powerful as an advanced AI chip,” said Belfield. However, the team point out that such approaches could lead to a black market in untraceable “ghost chips”.

Other suggestions to increase visibility – and accountability – include reporting of large-scale AI training by cloud computing providers, and privacy-preserving “workload monitoring” to help prevent an arms race if massive compute investments are made without enough transparency.  

“Users of compute will engage in a mixture of beneficial, benign and harmful activities, and determined groups will find ways to circumvent restrictions,” said Belfield. “Regulators will need to create checks and balances that thwart malicious or misguided uses of AI computing.”

These might include physical limits on chip-to-chip networking, or cryptographic technology that allows for remote disabling of AI chips in extreme circumstances. One suggested approach would require the consent of multiple parties to unlock AI compute for particularly risky training runs, a mechanism familiar from nuclear weapons.

AI risk mitigation policies might see compute prioritised for research most likely to benefit society – from green energy to health and education. This could even take the form of major international AI “megaprojects” that tackle global issues by pooling compute resources.

The report’s authors are clear that their policy suggestions are “exploratory” rather than fully fledged proposals and that they all carry potential downsides, from risks of proprietary data leaks to negative economic impacts and the hampering of positive AI development.

They offer five considerations for regulating AI through compute, including the exclusion of small-scale and non-AI computing, regular revisiting of compute thresholds, and a focus on privacy preservation.

Added Belfield: “Trying to govern AI models as they are deployed could prove futile, like chasing shadows. Those seeking to establish AI regulation should look upstream to compute, the source of the power driving the AI revolution. If compute remains ungoverned it poses severe risks to society.”

You can find the report, “Computing Power and the Governance of Artificial Intelligence” on the University of Cambridge’s Centre for the Study of Existential Risk.

Authors include: Girish Sastry, Lennart Heim, Haydn Belfield, Markus Anderljung, Miles Brundage, Julian Hazell, Cullen O’Keefe, Gillian K. Hadfield, Richard Ngo, Konstantin Pilz, George Gor, Emma Bluemke, Sarah Shoker, Janet Egan, Robert F. Trager, Shahar Avin, Adrian Weller, Yoshua Bengio, and Diane Coyle.

The authors are associated with these companies/agencies: OpenAI, Centre for the Governance of AI (GovAI), Leverhulme Centre for the Future of Intelligence at the Uni. of Cambridge, Oxford Internet Institute, Institute for Law & AI, University of Toronto Vector Institute for AI, Georgetown University, ILINA Program, Harvard Kennedy School (of Government), *AI Governance Institute,* Uni. of Oxford, Centre for the Study of Existential Risk at Uni. of Cambridge, Uni. of Cambridge, Uni. of Montreal / Mila, Bennett Institute for Public Policy at the Uni. of Cambridge.

“The ILINIA program is dedicated to providing an outstanding platform for Africans to learn and work on questions around maximizing wellbeing and responding to global catastrophic risks” according to the organization’s homepage.

*As for the AI Governance Institute, I believe that should be the Centre for the Governance of AI at Oxford University since the associated academic is Robert F. Trager from the University of Oxford.

As the months (years?) fly by, I guess we’ll find out if this hardware approach gains any traction where AI regulation is concerned.

Science journalism … ch-ch-ch-ch-changes

Not much has changed (!) since Christmas when this December 19, 2023 article by Rae Hodge for Salon about changes where science journalism is concerned was published, Note; Links have been removed,

Advance Publications is owned by a couple of billionaire families. Condé Nast is owned by Advance Publications. Wired magazine is owned by Condé Nast. And this week — as the world reaches the hottest temperatures on record, as another deadly COVID-19 variant steals into the public’s lungs, as owners of unregulated artificial intelligence threaten to unleash mass unemployment with their article-generating internet toys and the whole world needs increasingly complex topics explained — the science desk at Wired got gutted.

It’s not just Wired, of course. Recurrent Ventures axed 151-year-old Popular Science magazine this year, and presumably the last 13 staffers to steward its cultural legacy, leaving only five editorial staffers to crew the online-only ship. There are no full-time staff writers left at National Geographic after this year, and The Washington Post took a tough hit too. Climate desks at CNBC and Gizmodo got cut down. As did the climate team remaining at CNN, the select beat preserved in 2008 after the outlet axed the general science desk. 

Only a couple of years after buying it, billionaire-owned Red Ventures pummeled CNET with layoffs before making it one of the first major outlets to get caught pushing AI-generated articles. Short-sighted layoffs also hit the science desks at Inverse and FiveThirtyEight. Buzzfeed News, with its powerhouse science desk, was brought down. Fortress Investment Group laid off “under 100” Vice News staffers. And 74 journalists at the L.A. Times got the ax. Great Hill Partners owns G/O Media which burned Jezebel and its editorial staffers right when women’s health is facing greater attack in this country than it has since Roe v. Wade. 

“We stand in solidarity with you. You are valued. Your work matters,” wrote Cassandra Willyard, president of the National Association of Science Writers, in a May release. “​​Only five months in, 2023 has proven to be a year of layoffs and shrinking budgets, threatening science journalists and editors whose expertise is crucially important.”

Private equity catastrophes, faceless hedges and trusts, unchecked conglomerates and the ongoing shell game of parent companies — the wealthy gutted US science journalism in 2023 through a number of opaque and convoluted financial vehicles. And there’s no evidence to suggest that trend will stop. Rather, ad-reliant revenue models of wealthy digital proprietors are now failing so hard that their slash-and-burn newsroom tactics are likely to get more aggressive as short-selling the news ramps up to a fire-sale finale. One recent report holds that news outlets saw 2,681 job cuts this year. That’s more than the totals in 2021 or 2022. 

While it isn’t science-specific, the Canadian government has acted to funnel more money to traditional news organizations from digital platforms. The Canadian government passed the highly criticized Bill C-18, “Bill C-18: An Act respecting online communications platforms that make news content available to persons in Canada,” also known as, the “Online News Act” in June 2023.

I have two explanations of the act, (a) the Canadian federal government’s Explanatory Note (updated November 27, 2023) and (b) CTV news online’s Rachel Aiello and Alexandra Mae Jones wrote this July 20, 2023 article, “Understanding Bill C-18: Canada’s Online News Act and its proposed rules, explained” (updated [coincidentally] December 19, 2023).

Hopefully, some of this money will find its way to science writing/journalism and the legislation will provide a way forward for legislation in other countries.

Canadian scientists still being muzzled and a call for action on values and ethics in the Canadian federal public service

I’m starting with the older news about a survey finding that Canadian scientists are being muzzled before moving on to news about a recent survey where workers in the Canadian public services (and where most Canadian scientists are employed) criticizes the government’s values and ethics.

Muzzles, anyone?

It’s not exactly surprising to hear that Canadian scientists are still being muzzled for another recent story, (see my November 7, 2023 posting, “Money and its influence on Canada’s fisheries and oceans” for some specifics’ two of the authors are associated with Dalhousie University, Nova Scotia, Canada) .

This December 13, 2023 essay is by Alana Westwood, Manjulika E. Robertson and Samantha M. Chu (all of Dalhousie University but none were listed as authors on the ‘money, fisheries, and oceans paper) on The Conversation (h/t December 14, 2023 news item on phys.org). These authors describe some recent research into the Canadian situation, specifically since the 2015 election and the Liberals formed the government and ‘removed’ the muzzles placed on scientists by the previous Conservative government,

We recently surveyed 741 environmental researchers across Canada in two separate studies into interference. We circulated our survey through scientific societies related to environmental fields, as well as directly emailing Canadian authors of peer-reviewed research in environmental disciplines.

Researchers were asked (1) if they believed they had experienced interference in their work, (2) the sources and types of this interference, and (3) the subsequent effects on their career satisfaction and well-being.

We also asked demographic information to understand whether researchers’ perceptions of interference differed by career stage, research area or identity.

Although overall ability to communicate is improving, interference is a pervasive issue in Canada, including from government, private industry and academia. We found 92 per cent of the environmental researchers reported having experienced interference with their ability to communicate or conduct their research in some form.

Interference also manifested in different ways and already-marginalized researchers experienced worse outcomes.

The writers go on to offer a history of the interference (there’s also a more detailed history in this May 20, 2015 Canadian Broadcasting Corporation [CBC] online news article by Althea Manasan) before offering more information about results from the two recent surveys, Note: Links have been removed,

In our survey, respondents indicated that, overall, their ability to communicate with the public has improved in the recent years. Of the respondents aware of the government’s scientific integrity policies, roughly half of them attribute positive changes to them.

Others argued that the 2015 change in government [from Conservative to Liberal] had the biggest influence. In the first few months of their tenure, the Liberal government created a new cabinet position, the Minister of Science (this position was absorbed into the role of Minister of Innovation, Science, and Industry in 2019), and appointed a chief science advisor among other changes.

Though the ability to communicate has generally improved, many of the researchers argued interference still goes on in subtler ways. These included undue restriction on what kind of environmental research they can do, and funding to pursue them. Many respondents attributed those restrictions to the influence of private industry [emphasis mine].

Respondents identified the major sources of external interference as management, workplace policies, and external research partners. The chief motivations for interference, as the scientists saw it, included downplaying environmental risks, justifying an organization’s current position on an issue and avoiding contention.

Our most surprising finding was almost half of respondents said they limited their communications with the public and policymakers due to fears of negative backlash and reduced career opportunities.

In addition, interference had not been experienced equally. Early career and marginalized scientists — including those who identify as women, racialized, living with a disability and 2SLGBTQI+ — reported facing significantly more interference than their counterparts.

Scientists studying climate change, pollution, environmental impacted assessments and threatened species were also more likely to experience interference with their work than scientists in other disciplines.

The researchers used a single survey as the basis for two studies concerning interference in science,

Interference in science: scientists’ perspectives on their ability to communicate and conduct environmental research in Canada by Manjulika E. Robertson, Samantha M. Chu, Anika Cloutier, Philippe Mongeon, Don A. Driscoll, Tej Heer, and Alana R. Westwood. FACETS 8 (1) 30 November 2023 DOI: https://doi.org/10.1139/facets-2023-0005

This paper is open access.

Do environmental researchers from marginalized groups experience greater interference? Understanding scientists’ perceptions by Samantha M. Chu, Manjulika E. Robertson, Anika Cloutier, Suchinta Arif, and Alana R. Westwood.
FACETS 30 November 2023 DOI: https://doi.org/10.1139/facets-2023-0006

This paper is open access.

This next bit is on a somewhat related topic.

The Canadian government’s public service: values and ethics

Before launching into the latest news, here’s a little background. In 2016 the newly elected Liberal government implemented a new payroll system for the Canadian civil/public service. it was a débacle, which continues to this day (for the latest news I could find, see this September 1, 2023 article by Sam Konnert for CBC online news).

It was preventable and both the Conservative and Liberal governments of the day are responsible. You can get more details from my December 27, 2019 posting; scroll down to “The Minister of Digital Government and a bureaucratic débacle” and read on from there. In short, elected officials of both the Liberal and Conservative governments refused to listen when employees (both from the government and from the contractor) expressed grave concerns about the proposed pay system.

Now for public service employee morale, from a February 7, 2024 article by Robyn Miller for CBC news online, Note: Links have been removed,

Unions representing federal public servants say the government needs to do more to address dissatisfaction among the workforce after a recent report found some employees are unable to feel pride in their work.

“It’s more difficult now to be proud to be a public servant because of people’s perceptions of the institution and because of Canada’s role on the global stage,” said one participant who testified as part of the Deputy Ministers’ Task Team on Values and Ethics Report.

The report was published in late December [2023] by members of a task force assembled by Privy Council Clerk John Hannaford.

It’s the first major values and ethics review since an earlier report titled A Strong Foundation was released nearly 30 years ago.

Alex Silas, a regional executive vice-president of the Public Service Alliance of Canada, said the union supports the recommendations in the report but wants to see action.

“What we’ve seen historically, unfortunately, is that the values and ethics proposed by the federal government are not implemented in the workplaces of the federal government,” Silas said.

According to the report, it drew its findings from more than 90 conversations with public servants and external stakeholders starting in September 2023.

The report notes “public servants must provide frank and professional advice, without partisan considerations or fear of criticism or political reprisals.” [emphasis mine]

“The higher up the food chain you go, the less accountability seems to exist,” said one participant.

So, either elected officials and/or higher ups don’t listen when you speak up or you’re afraid to speak up for fear of criticism and/or reprisals. Plus, there’s outright interference as noted in the survey of scientists.

For the curious, here’s a link to the Deputy Ministers’ Task Team on Values and Ethics Report to the Clerk of the Privy Council (Canada 2023).

Let’s hope this airing of dirty laundry leads to some changes.

Virtual panel discussion: Canadian Strategies for Responsible Neurotechnology Innovation on May 16, 2023

The Canadian Science Policy Centre (CSPC) sent a May 11, 2023 notice (via email) about an upcoming event but first, congratulations (Bravo!) are in order,

The Science Meets Parliament [SMP] Program 2023 is now complete and was a huge success. 43 Delegates from across Canada met with 62 Parliamentarians from across the political spectrum on the Hill on May 1-2, 2023.

The SMP Program is championed by CSPC and Canada’s Chief Science Advisor, Dr. Mona Nemer [through the Office of the Chief Science Advisor {OCSA}].

This Program would not have been possible without the generous support of our sponsors: The Royal Military College of Canada, The Stem Cell Network, and the University of British Columbia.

There are 443 seats in Canada’s Parliament with 338 in the House of Commons and 105 in the Senate and 2023 is the third time the SMP programme has been offered. (It was previously held in 2018 and 2022 according to the SMP program page.)

The Canadian programme is relatively new compared to Australia where they’ve had a Science Meets Parliament programme since 1999 (according to a March 20, 2017 essay by Ken Baldwin, Director of Energy Change Institute at Australian National University for The Conversation). The Scottish have had a Science and the Parliament programme since 2000 (according to this 2022 event notice on the Royal Society of Chemistry’s website).

By comparison to the other two, the Canadian programme is a toddler. (We tend not to recognize walking for the major achievement it is.) So, bravo to the CSPC and OCSA on getting 62 Parliamentarians to make time in their schedules to meet a scientist.

Responsible neurotechnology innovation?

From the Canadian Strategies for Responsible Neurotechnology Innovation event page on the CSPC website,

Advances in neurotechnology are redefining the possibilities of improving neurologic health and mental wellbeing, but related ethical, legal, and societal concerns such as privacy of brain data, manipulation of personal autonomy and agency, and non-medical and dual uses are increasingly pressing concerns [emphasis mine]. In this regard, neurotechnology presents challenges not only to Canada’s federal and provincial health care systems, but to existing laws and regulations that govern responsible innovation. In December 2019, just before the pandemic, the OECD [Organisation for Economic Cooperation and Development] Council adopted a Recommendation on Responsible Innovation in Neurotechnology. It is now urging that member states develop right-fit implementation strategies.

What should these strategies look like for Canada? We will propose and discuss opportunities that balance and leverage different professional and governance approaches towards the goal of achieving responsible innovation for the current state of the art, science, engineering, and policy, and in anticipation of the rapid and vast capabilities expected for neurotechnology in the future by and for this country.

Link to the full OECD Recommendation on Responsible Innovation in Neurotechnology

Date: May 16 [2023]

Time: 12:00 pm – 1:30 pm EDT

Event Category: Virtual Session [on Zoom]

Registration Page: https://us02web.zoom.us/webinar/register/WN_-g8d1qubRhumPSCQi6WUtA

The panelists are:

Dr. Graeme Moffat
Neurotechnology entrepreneur & Senior Fellow, Munk School of Global Affairs & Public Policy [University of Toronto]

Dr. Graeme Moffat is a co-founder and scientist with System2 Neurotechnology. He previously was Chief Scientist and VP of Regulatory Affairs at Interaxon, Chief Scientist with ScienceScape (later Chan-Zuckerberg Meta), and a research engineer at Neurelec (a division of Oticon Medical). He served as Managing Editor of Frontiers in Neuroscience, the largest open access scholarly journal series in the field of neuroscience. Dr. Moffat is a Senior Fellow at the Munk School of Global Affairs and Public Policy and an advisor to the OECD’s neurotechnology policy initiative.

Professor Jennifer Chandler
Professor of Law at the Centre for Health Law, Policy and Ethics, University of Ottawa

Jennifer Chandler is Professor of Law at the Centre for Health Law, Policy and Ethics, University of Ottawa. She leads the “Neuroethics Law and Society” Research Pillar for the Brain Mind Research Institute and sits on its Scientific Advisory Council. Her research focuses on the ethical, legal and policy issues in brain sciences and the law. She teaches mental health law and neuroethics, tort law, and medico-legal issues. She is a member of the advisory board for CIHR’s Institute for Neurosciences, Mental Health and Addiction (IMNA) and serves on international editorial boards in the field of law, ethics and neuroscience, including Neuroethics, the Springer Book Series Advances in Neuroethics, and the Palgrave-MacMillan Book Series Law, Neuroscience and Human Behavior. She has published widely in legal, bioethical and health sciences journals and is the co-editor of the book Law and Mind: Mental Health Law and Policy in Canada (2016). Dr. Chandler brings a unique perspective to this panel as her research focuses on the ethical, legal and policy issues at the intersection of the brain sciences and the law. She is active in Canadian neuroscience research funding policy, and regularly contributes to Canadian governmental policy on contentious matters of biomedicine.

Ian Burkhart
Neurotech Advocate and Founder of BCI [brain-computer interface] Pioneers Coalition

Ian is a C5 tetraplegic [also known as quadriplegic] from a diving accident in 2010. He participated in a ground-breaking clinical trial using a brain-computer interface to control muscle stimulation. He is the founder of the BCI Pioneers Coalition, which works to establish ethics, guidelines and best practices for future patients, clinicians, and commercial entities engaging with BCI research. Ian serves as Vice President of the North American Spinal Cord Injury Consortium and chairs their project review committee. He has also worked with Unite2Fight Paralysis to advocate for $9 million of SCI research in his home state of Ohio. Ian has been a Reeve peer mentor since 2015 and helps lead two local SCI networking groups. As the president of the Ian Burkhart Foundation, he raises funds for accessible equipment for the independence of others with SCI. Ian is also a full-time consultant working with multiple medical device companies.

Andrew Atkinson
Manager, Emerging Science Policy, Health Canada

Andrew Atkinson is the Manager of the Emerging Sciences Policy Unit under the Strategic Policy Branch of Health Canada. He oversees coordination of science policy issues across the various regulatory and research programs under the mandate of Health Canada. Prior to Health Canada, he was a manager under Environment Canada’s CEPA new chemicals program, where he oversaw chemical and nanomaterial risk assessments, and the development of risk assessment methodologies. In parallel to domestic work, he has been actively engaged in ISO [International Organization for Standardization and OECD nanotechnology efforts.

Andrew is currently a member of the Canadian delegation to the OECD Working Party on Biotechnology, Nanotechnology and Converging Technologies (BNCT). BNCT aims to contribute original policy analysis on emerging science and technologies, such as gene editing and neurotechnology, including messaging to the global community, convening key stakeholders in the field, and making ground-breaking proposals to policy makers.

Professor Judy Illes
Professor, Division of Neurology, Department of Medicine, Faculty of Medicine, UBC [University of British Columbia]

Dr. Illes is Professor of Neurology and Distinguished Scholar in Neuroethics at the University of British Columbia. She is the Director of Neuroethics Canada, and among her many leadership positions in Canada, she is Vice Chair of the Canadian Institutes of Health Research (CIHR) Advisory Board of the Institute on Neuroscience, Mental Health and Addiction (INMHA), and chair of the International Brain Initiative (www.internationalbraininitiative.org; www.canadianbrain.ca), Director at Large of the Canadian Academy of Health Sciences, and a member of the Board of Directors of the Council of Canadian Academies.

Dr. Illes is a world-renown expert whose research, teaching and outreach are devoted to ethical, legal, social and policy challenges at the intersection of the brain sciences and biomedical ethics. She has made ground breaking contributions to neuroethical thinking for neuroscience discovery and clinical translation across the life span, including in entrepreneurship and in the commercialization of health care. Dr. Illes has a unique and comprehensive overview of the field of neurotechnology and the relevant sectors in Canada.

One concern I don’t see mentioned is bankruptcy (in other words, what happens if the company that made your neural implant goes bankrupt?) either in the panel description or in the OECD recommendation. My April 5, 2022 posting “Going blind when your neural implant company flirts with bankruptcy (long read)” explored that topic and while many of the excerpted materials present a US perspective, it’s easy to see how it could also apply in Canada and elsewhere.

For those of us on the West Coast, this session starts at 9 am. Enjoy!

*June 20, 2023: This sentence changed (We tend not to recognize that walking for the major achievement it is.) to We tend not to recognize walking for the major achievement it is.

FrogHeart’s 2022 comes to an end as 2023 comes into view

I look forward to 2023 and hope it will be as stimulating as 2022 proved to be. Here’s an overview of the year that was on this blog:

Sounds of science

It seems 2022 was the year that science discovered the importance of sound and the possibilities of data sonification. Neither is new but this year seemed to signal a surge of interest or maybe I just happened to stumble onto more of the stories than usual.

This is not an exhaustive list, you can check out my ‘Music’ category for more here. I have tried to include audio files with the postings but it all depends on how accessible the researchers have made them.

Aliens on earth: machinic biology and/or biological machinery?

When I first started following stories in 2008 (?) about technology or machinery being integrated with the human body, it was mostly about assistive technologies such as neuroprosthetics. You’ll find most of this year’s material in the ‘Human Enhancement’ category or you can search the tag ‘machine/flesh’.

However, the line between biology and machine became a bit more blurry for me this year. You can see what’s happening in the titles listed below (you may recognize the zenobot story; there was an earlier version of xenobots featured here in 2021):

This was the story that shook me,

Are the aliens going to come from outer space or are we becoming the aliens?

Brains (biological and otherwise), AI, & our latest age of anxiety

As we integrate machines into our bodies, including our brains, there are new issues to consider:

  • Going blind when your neural implant company flirts with bankruptcy (long read) April 5, 2022 posting
  • US National Academies Sept. 22-23, 2022 workshop on techno, legal & ethical issues of brain-machine interfaces (BMIs) September 21, 2022 posting

I hope the US National Academies issues a report on their “Brain-Machine and Related Neural Interface Technologies: Scientific, Technical, Ethical, and Regulatory Issues – A Workshop” for 2023.

Meanwhile the race to create brainlike computers continues and I have a number of posts which can be found under the category of ‘neuromorphic engineering’ or you can use these search terms ‘brainlike computing’ and ‘memristors’.

On the artificial intelligence (AI) side of things, I finally broke down and added an ‘artificial intelligence (AI) category to this blog sometime between May and August 2021. Previously, I had used the ‘robots’ category as a catchall. There are other stories but these ones feature public engagement and policy (btw, it’s a Canadian Science Policy Centre event), respectively,

  • “The “We are AI” series gives citizens a primer on AI” March 23, 2022 posting
  • “Age of AI and Big Data – Impact on Justice, Human Rights and Privacy Zoom event on September 28, 2022 at 12 – 1:30 pm EDT” September 16, 2022 posting

These stories feature problems, which aren’t new but seem to be getting more attention,

While there have been issues over AI, the arts, and creativity previously, this year they sprang into high relief. The list starts with my two-part review of the Vancouver Art Gallery’s AI show; I share most of my concerns in part two. The third post covers intellectual property issues (mostly visual arts but literary arts get a nod too). The fourth post upends the discussion,

  • “Mad, bad, and dangerous to know? Artificial Intelligence at the Vancouver (Canada) Art Gallery (1 of 2): The Objects” July 28, 2022 posting
  • “Mad, bad, and dangerous to know? Artificial Intelligence at the Vancouver (Canada) Art Gallery (2 of 2): Meditations” July 28, 2022 posting
  • “AI (artificial intelligence) and art ethics: a debate + a Botto (AI artist) October 2022 exhibition in the Uk” October 24, 2022 posting
  • Should AI algorithms get patents for their inventions and is anyone talking about copyright for texts written by AI algorithms? August 30, 2022 posting

Interestingly, most of the concerns seem to be coming from the visual and literary arts communities; I haven’t come across major concerns from the music community. (The curious can check out Vancouver’s Metacreation Lab for Artificial Intelligence [located on a Simon Fraser University campus]. I haven’t seen any cautionary or warning essays there; it’s run by an AI and creativity enthusiast [professor Philippe Pasquier]. The dominant but not sole focus is art, i.e., music and AI.)

There is a ‘new kid on the block’ which has been attracting a lot of attention this month. If you’re curious about the latest and greatest AI anxiety,

  • Peter Csathy’s December 21, 2022 Yahoo News article (originally published in The WRAP) makes this proclamation in the headline “Chat GPT Proves That AI Could Be a Major Threat to Hollywood Creatives – and Not Just Below the Line | PRO Insight”
  • Mouhamad Rachini’s December 15, 2022 article for the Canadian Broadcasting Corporation’s (CBC) online news overs a more generalized overview of the ‘new kid’ along with an embedded CBC Radio file which runs approximately 19 mins. 30 secs. It’s titled “ChatGPT a ‘landmark event’ for AI, but what does it mean for the future of human labour and disinformation?” The chat bot’s developer, OpenAI, has been mentioned here many times including the previously listed July 28, 2022 posting (part two of the VAG review) and the October 24, 2022 posting.

Opposite world (quantum physics in Canada)

Quantum computing made more of an impact here (my blog) than usual. it started in 2021 with the announcement of a National Quantum Strategy in the Canadian federal government budget for that year and gained some momentum in 2022:

  • “Quantum Mechanics & Gravity conference (August 15 – 19, 2022) launches Vancouver (Canada)-based Quantum Gravity Institute and more” July 26, 2022 posting Note: This turned into one of my ‘in depth’ pieces where I comment on the ‘Canadian quantum scene’ and highlight the appointment of an expert panel for the Council of Canada Academies’ report on Quantum Technologies.
  • “Bank of Canada and Multiverse Computing model complex networks & cryptocurrencies with quantum computing” July 25, 2022 posting
  • “Canada, quantum technology, and a public relations campaign?” December 29, 2022 posting

This one was a bit of a puzzle with regard to placement in this end-of-year review, it’s quantum but it’s also about brainlike computing

It’s getting hot in here

Fusion energy made some news this year.

There’s a Vancouver area company, General Fusion, highlighted in both postings and the October posting includes an embedded video of Canadian-born rapper Baba Brinkman’s “You Must LENR” [L ow E nergy N uclear R eactions or sometimes L attice E nabled N anoscale R eactions or Cold Fusion or CANR (C hemically A ssisted N uclear R eactions)].

BTW, fusion energy can generate temperatures up to 150 million degrees Celsius.

Ukraine, science, war, and unintended consequences

Here’s what you might expect,

These are the unintended consequences (from Rachel Kyte’s, Dean of the Fletcher School, Tufts University, December 26, 2022 essay on The Conversation [h/t December 27, 2022 news item on phys.org]), Note: Links have been removed,

Russian President Vladimir Putin’s war on Ukraine has reverberated through Europe and spread to other countries that have long been dependent on the region for natural gas. But while oil-producing countries and gas lobbyists are arguing for more drilling, global energy investments reflect a quickening transition to cleaner energy. [emphasis mine]

Call it the Putin effect – Russia’s war is speeding up the global shift away from fossil fuels.

In December [2022?], the International Energy Agency [IEA] published two important reports that point to the future of renewable energy.

First, the IEA revised its projection of renewable energy growth upward by 30%. It now expects the world to install as much solar and wind power in the next five years as it installed in the past 50 years.

The second report showed that energy use is becoming more efficient globally, with efficiency increasing by about 2% per year. As energy analyst Kingsmill Bond at the energy research group RMI noted, the two reports together suggest that fossil fuel demand may have peaked. While some low-income countries have been eager for deals to tap their fossil fuel resources, the IEA warns that new fossil fuel production risks becoming stranded, or uneconomic, in the next 20 years.

Kyte’s essay is not all ‘sweetness and light’ but it does provide a little optimism.

Kudos, nanotechnology, culture (pop & otherwise), fun, and a farewell in 2022

This one was a surprise for me,

Sometimes I like to know where the money comes from and I was delighted to learn of the Ărramăt Project funded through the federal government’s New Frontiers in Research Fund (NFRF). Here’s more about the Ărramăt Project from the February 14, 2022 posting,

“The Ărramăt Project is about respecting the inherent dignity and interconnectedness of peoples and Mother Earth, life and livelihood, identity and expression, biodiversity and sustainability, and stewardship and well-being. Arramăt is a word from the Tamasheq language spoken by the Tuareg people of the Sahel and Sahara regions which reflects this holistic worldview.” (Mariam Wallet Aboubakrine)

Over 150 Indigenous organizations, universities, and other partners will work together to highlight the complex problems of biodiversity loss and its implications for health and well-being. The project Team will take a broad approach and be inclusive of many different worldviews and methods for research (i.e., intersectionality, interdisciplinary, transdisciplinary). Activities will occur in 70 different kinds of ecosystems that are also spiritually, culturally, and economically important to Indigenous Peoples.

The project is led by Indigenous scholars and activists …

Kudos to the federal government and all those involved in the Salmon science camps, the Ărramăt Project, and other NFRF projects.

There are many other nanotechnology posts here but this appeals to my need for something lighter at this point,

  • “Say goodbye to crunchy (ice crystal-laden) in ice cream thanks to cellulose nanocrystals (CNC)” August 22, 2022 posting

The following posts tend to be culture-related, high and/or low but always with a science/nanotechnology edge,

Sadly, it looks like 2022 is the last year that Ada Lovelace Day is to be celebrated.

… this year’s Ada Lovelace Day is the final such event due to lack of financial backing. Suw Charman-Anderson told the BBC [British Broadcasting Corporation] the reason it was now coming to an end was:

You can read more about it here:

In the rearview mirror

A few things that didn’t fit under the previous heads but stood out for me this year. Science podcasts, which were a big feature in 2021, also proliferated in 2022. I think they might have peaked and now (in 2023) we’ll see what survives.

Nanotechnology, the main subject on this blog, continues to be investigated and increasingly integrated into products. You can search the ‘nanotechnology’ category here for posts of interest something I just tried. It surprises even me (I should know better) how broadly nanotechnology is researched and applied.

If you want a nice tidy list, Hamish Johnston in a December 29, 2022 posting on the Physics World Materials blog has this “Materials and nanotechnology: our favourite research in 2022,” Note: Links have been removed,

“Inherited nanobionics” makes its debut

The integration of nanomaterials with living organisms is a hot topic, which is why this research on “inherited nanobionics” is on our list. Ardemis Boghossian at EPFL [École polytechnique fédérale de Lausanne] in Switzerland and colleagues have shown that certain bacteria will take up single-walled carbon nanotubes (SWCNTs). What is more, when the bacteria cells split, the SWCNTs are distributed amongst the daughter cells. The team also found that bacteria containing SWCNTs produce a significantly more electricity when illuminated with light than do bacteria without nanotubes. As a result, the technique could be used to grow living solar cells, which as well as generating clean energy, also have a negative carbon footprint when it comes to manufacturing.

Getting to back to Canada, I’m finding Saskatchewan featured more prominently here. They do a good job of promoting their science, especially the folks at the Canadian Light Source (CLS), Canada’s synchrotron, in Saskatoon. Canadian live science outreach events seeming to be coming back (slowly). Cautious organizers (who have a few dollars to spare) are also enthusiastic about hybrid events which combine online and live outreach.

After what seems like a long pause, I’m stumbling across more international news, e.g. “Nigeria and its nanotechnology research” published December 19, 2022 and “China and nanotechnology” published September 6, 2022. I think there’s also an Iran piece here somewhere.

With that …

Making resolutions in the dark

Hopefully this year I will catch up with the Council of Canadian Academies (CCA) output and finally review a few of their 2021 reports such as Leaps and Boundaries; a report on artificial intelligence applied to science inquiry and, perhaps, Powering Discovery; a report on research funding and Natural Sciences and Engineering Research Council of Canada.

Given what appears to a renewed campaign to have germline editing (gene editing which affects all of your descendants) approved in Canada, I might even reach back to a late 2020 CCA report, Research to Reality; somatic gene and engineered cell therapies. it’s not the same as germline editing but gene editing exists on a continuum.

For anyone who wants to see the CCA reports for themselves they can be found here (both in progress and completed).

I’m also going to be paying more attention to how public relations and special interests influence what science is covered and how it’s covered. In doing this 2022 roundup, I noticed that I featured an overview of fusion energy not long before the breakthrough. Indirect influence on this blog?

My post was precipitated by an article by Alex Pasternak in Fast Company. I’m wondering what precipitated Alex Pasternack’s interest in fusion energy since his self-description on the Huffington Post website states this “… focus on the intersections of science, technology, media, politics, and culture. My writing about those and other topics—transportation, design, media, architecture, environment, psychology, art, music … .”

He might simply have received a press release that stimulated his imagination and/or been approached by a communications specialist or publicists with an idea. There’s a reason for why there are so many public relations/media relations jobs and agencies.

Que sera, sera (Whatever will be, will be)

I can confidently predict that 2023 has some surprises in store. I can also confidently predict that the European Union’s big research projects (1B Euros each in funding for the Graphene Flagship and Human Brain Project over a ten year period) will sunset in 2023, ten years after they were first announced in 2013. Unless, the powers that be extend the funding past 2023.

I expect the Canadian quantum community to provide more fodder for me in the form of a 2023 report on Quantum Technologies from the Council of Canadian academies, if nothing else otherwise.

I’ve already featured these 2023 science events but just in case you missed them,

  • 2023 Preview: Bill Nye the Science Guy’s live show and Marvel Avengers S.T.A.T.I.O.N. (Scientific Training And Tactical Intelligence Operative Network) coming to Vancouver (Canada) November 24, 2022 posting
  • September 2023: Auckland, Aotearoa New Zealand set to welcome women in STEM (science, technology, engineering, and mathematics) November 15, 2022 posting

Getting back to this blog, it may not seem like a new year during the first few weeks of 2023 as I have quite the stockpile of draft posts. At this point I have drafts that are dated from June 2022 and expect to be burning through them so as not to fall further behind but will be interspersing them, occasionally, with more current posts.

Most importantly: a big thank you to everyone who drops by and reads (and sometimes even comments) on my posts!!! it’s very much appreciated and on that note: I wish you all the best for 2023.

Canada’s exploratory talks about joining the European Union’s science funding programme (Horizon Europe)

Thanks to Dr. Mona Nemer, Canada’s Chief Science Advisor, for the update (via an April 21, 2022 tweet) on the talks concerning Canada’s possible association with the European Union’s Horizon Europe science funding programme.

I’ve done some digging and found this February 6, 2019 article by Michael Rogers for mairecuriealumni.eu which describes the first expressions of interest,

The EU’s biggest ever R&D programme, which will run for seven years from 2021, will offer “more flexible” entry terms for foreign countries, the European Commission’s director-general for research and innovation said Tuesday [February 5, 2019].

Successive EU R&D programmes have welcomed outside participation, but the offer of association membership to Horizon Europe, a status that allows countries to participate in EU research under the same conditions as member states, will be much wider than in the past, said Jean-Eric Paquet.

“Our goal for association is very ambitious and aimed at making it much more agile and palatable for a broader range of partners,” Paquet told a Science|Business conference in Brussels.

Already, there is interest. “I want us to be an associate member,” said Rémi Quirion, chief scientist of Québec. He was speaking for his own province but said he believes the Canadian federal government shares this ambition.

“What’s happening in the US with the current president is an opportunity for us. We need new friends,” Quirion said. “Our Prime Minister Justin Trudeau says, ‘Canada is back on the global scene’, and we want to play with you.”

Negotiations to associate with Horizon Europe, which will be one of the largest funding initiatives in the world for scientific research with a proposed budget of €94.1 billion, haven’t yet begun, though there have been some preliminary discussions.

Then, there was this June 15, 2021 article by Goda Naujokaitytė for Science Business,

Canada: doors open to Horizon Europe association

The EU is making moves to welcome Canada as an associated country in the new €95.5 billion R&D programme, Horizon Europe, European Commission president Ursula von der Leyen said in a statement following the EU-Canada summit in Brussels on Monday [June 14, 2021].

“We invited Canadian researchers to participate in our programmes. We want them with us to intensify the exchanges between our innovators, for example in bioeconomy, advanced manufacturing, clean energy, digital technologies, you just name it,” said von der Leyen. “And our Canadian friends were happy about this invitation.”

Following the summit “exploratory discussions” towards “a possible association of Canada” to Horizon Europe will begin. There will be a particular focus on supporting the green and digital transitions, including green hydrogen, artificial intelligence and quantum cooperation.

The Commission has been sounding out to Canada about possible membership for a while, but serious talks on an enhanced level of cooperation with Canada as an associated country under Horizon Europe stalled as EU officials focused on tying up loose ends with Brexit.

Following this, the row on the terms of associated country participation in sensitive quantum and space research projects led to further delays.

Beyond Horizon Europe, the Commission hopes to strengthen cooperation with Canada in a number of other areas.

As the COVID-19 pandemic drags on, the two sides hope to ensure uninterrupted vaccine flows between the countries and intensify cooperation in health.

One initiative will be a new health alliance. Details are yet to be revealed, but the alliance will have a global dimension, working to ensure that new technologies, such as mRNA, can reach other parts of the world, like Africa and Latin America. “We will share expertise; we will share lessons learnt and best practices to be better prepared and work closely together on these issues,” said von der Leyen.

Another area of cooperation will be in raw materials. Guaranteed supplies of certain minerals and metals [emphasis mine] are essential to the European economy and currently the EU is too dependent on China.

“We, as Europeans, want to diversify our imports away from producers like China. Because we want more sustainability, we want less environmental damage and we want transparency on labour conditions,” von der Leyen said.

It’s not unusual to see raw materials, such as minerals, prove to be one of Canada’s substantive attractions. Interestingly, critical minerals played a starring role in our latest federal budget (see my April 19, 2022 posting and scroll down about 50% of the way to the ‘Mining’ subhead).

Here’s the latest news from an April 21, 2022 news update (titled: Conclusion of exploratory talks on the association of New Zealand and Canada to Horizon Europe: towards formal negotiations) on the European Commission website (as mentioned on Dr. Nemer’s April 21, 2022 tweet),

The informal exploratory talks launched on 10 February 2022 between the European Commission, DG Research and Innovation, and New Zealand’s Ministry of Business, Innovation and Employment, and on 15 July 2021 between DG Research and Innovation and Innovation, Science and Economic Development Canada (ISED), have reached a conclusion.

These exploratory talks have paved the way to move towards the next stage of the process, the formal negotiation of the association agreement. They provided all parties with the opportunity to discuss the technical aspects of the envisaged association, including the prospective terms and conditions for participation in Horizon Europe actions and in the Programme’s governance.

The Commission will now prepare recommendations to the Council to launch the two negotiation processes and seek negotiating directives. Once the Council adopts such directives, the formal negotiations could commence upon readiness of New Zealand and of Canada. All parties expressed the hope that New Zealand and Canada could be associated to Horizon Europe as from 2023.

Although it’s dated December 21, 2021 this news update from the European Commission (titled: Updates on the association of third countries to Horizon Europe) is being continuously updated with the latest being dated April 25, 2022,

As of 25 April 2022, Armenia, Bosnia and Herzegovina, Georgia, Iceland, Israel, Kosovo*, Moldova, Montenegro, North Macedonia, Norway, Serbia and Turkey have applicable association agreements in place. Association agreements have also been signed with Albania, Tunisia, Ukraine. They are currently undergoing national ratification procedures and are expected to enter into force shortly.

It gives you an idea of the international scope.

Toronto’s (Canada) ArtSci Salon offers: Naturalized Encounters (a series of international, networked meals known as “Follow the Spread” starting Sunday, October 3, 2021

My September 26, 2021 Art/Sci Salon notice (received via email) provides these details,

Naturalization = The ecological phenomenon in which a species, taxon, or population of exotic (as opposed to native) origin integrates into a given ecosystem, becoming capable of reproducing and growing in it, and proceeds to disseminate spontaneously. In some instances, the presence of a species in a given ecosystem is so ancient that it cannot be presupposed whether it is native or introduced
How does adaptation through naturalization occur? What happens to the native population? How does coexistence happen?

Our first event will revolve around the Solanum Melongena, a plant species in the nightshade family Solanaceae commonly known as the eggplant. This plant (and the many different names it goes by Aubergine, Melanzana, Brinjal, Berenjena, باذنجان, vânătă, 茄子,بادمجان) uncertain origins, grown worldwide for its edible fruit. Eggplants exist in many shapes, sizes and colors.

Our event will be a harvest potluck, with dialogues, storytelling, and exchanges about and beyond food. Our guests will engage in creative interventions to reflect on the many ways food, and food mobility affects all sentient beings, both humans and non-humans; peoples and civilizations; individuals’ health and collective traditions. Food is nourishment, care, medicine, and art. Food is political. Food is ultimately about our survival.

This is the first of a series of networked meals titled “FOLLOW THE SPREAD,” which will be staged around the world and across time zones throughout Fall 2021-Spring 2022 in Canada (October 3, Spring 2022), Norway (October 7), the Netherlands and Taiwan (Spring 2022).

Join us online to meet 10 Canadian artists and scholars as they launch the series in Toronto and engage in a nourishing and inspiring feast

Amira Alamary
TBA

Antje Budde
Antje Budde is a conceptual, queer-feminist, interdisciplinary experimental scholar-artist and an Associate Professor of Theatre Studies, Cultural Communication and Modern Chinese Studies at the Centre for Drama, Theatre and Performance Studies, University of Toronto. Antje has created multi-disciplinary artistic works in Germany, China and Canada and works tri-lingually in German, English and Mandarin. She is the founder of a number of queerly feminist performing art projects including most recently the (DDL)2 or (Digital Dramaturgy Lab)Squared – a platform for experimental explorations of digital culture, creative labor, integration of arts and science, and technology in performance. She is interested in the intersections of natural sciences, the arts, engineering and computer science.

Charmaine Lurch
Charmaine Lurch is a multidisciplinary artist whose painting, sculpture, and social engagement reveal the intricacies and complexities of the relationships between us and our environments. Her sculptures, installations, and interventions produce enchantment as she skillfully contends with what is visible and present in conjunction with what remains unsaid or unnoticed. Lurch applies her experience in community arts and education to create inviting entry points into overwhelmingly complex and urgent racial, ecological, and historical reckonings.

Lurch’s work contends with both spatiality and temporality, enchanting her subject matter with multiple possibilities for engagement. This can be seen in the interplay between light, wire, and space in her intricate wire sculptures of bees and pollen grains, and in what scholar Tiffany Lethabo King refers to as the “open edgelessness” of Sycorax. A sensuous dynamism belies the everyday tasks reflected in her charcoal-on-parchment series Being, Belonging and Grace. Lurch’s particular evocations and explorations of space and time invite an analysis of their own, and her work has been engaged with by academics. These include King, who chose Sycorax Gesture, a charcoal illustration for the cover of her book The Black Shoals: Offshore Formations of Black and Native Studies, in which King discusses Lurch’s work in depth. Scholar Katherine McKittrick both inserted and engaged with Lurch’s work in her latest notable book, Dear Science & Other Stories.

Dave Kemp
Dave Kemp is a visual artist whose practice looks at the intersections and interactions between art, science and technology: particularly at how these fields shape our perception and understanding of the world. His artworks have been exhibited widely at venues such as at the McIntosh Gallery, The Agnes Etherington Art Centre, Art Gallery of Mississauga, The Ontario Science Centre, York Quay Gallery, Interaccess, Modern Fuel Artist-Run Centre, and as part of the Switch video festival in Nenagh, Ireland. His works are also included in the permanent collections of the Agnes Etherington Art Centre and the Canada Council Art Bank.

Dolores Steinman
Dolores Steinman is a trained pediatrician who holds a Ph.D. from the University of Toronto. She is very active in several Art/Science communities locally and internationally.

Elaine Whittaker
Elaine Whittaker is a Canadian visual artist working at the intersection of art, science, medicine, and ecology. She considers biology as contemporary art practice and as the basis for her installations, sculptures, paintings, drawings, and digital images. Whittaker has exhibited in art and science galleries and museums in Canada, France, Italy, UK, Ireland, Latvia, China, South Korea, Australia, Mexico, and the U.S. Artwork created as Artist-in-Residence with the Pelling Laboratory for Augmented Biology (University of Ottawa) was exhibited in La Fabrique du Vivant at the Pompidou Centre, Paris  in 2019.  She was one of the first Artists-in-Residence with the Ontario Science Centre in partnership with the Museum of Contemporary Art Toronto. Her work has also been featured in art, literary, and medical magazines, and books, including Bio Art: Altered Realities by William Myers (2015).

Elizabeth Littlejohn
Elizabeth Littlejohn is a communications professor, human rights activist, photojournalist, and documentary film-maker. She has written for Rabble.ca for the past thirteen years on social movements, sustainable urban planning, and climate change. As a running gun social movement videographer, she has filmed internationally. Her articles, photojournalism, and videos have documented Occupy, Idle No More, and climate change movements, and her photographs have been printed in NOW Magazine, the Toronto Star, and Our Times.

Recently Elizabeth Littlejohn has completed ‘The City Island’, a feature-length documentary she directed about the razing of homes on the Toronto Islands and the islanders’ stewardship of the park system, with the support of the Canada Council. Currently, Elizabeth is developing the Toronto Island Puzzle Tour, an augmented-reality smartphone application with five locales depicting hidden history of the Toronto Island, and funded by the City of Toronto’s Artworx Grant.

Gita Hashemi
Gita Hashemi works in visual and performance art, digital and net art, and language-based art including live embodied writing, and in publishing. Her transdisciplinary, multi-platform and often site-responsive projects explore historical, trans-border and marginalized narratives and their traces in contemporary contexts. She has received numerous project grants from Canadian arts councils, and won awards from Toronto Community Foundation, Baddeck International New Media Festival, American Ad Federation, and Ontario Association of Art Galleries among others. Hashemi is an Ontario Heritage Trust’s Doris McCarthy Artist in Residence in 2021 with a land-based project. Her work has been exhibited at many international venues including SIGGRAPH, Los Angeles; Center for Book Arts, New York; Yerba Buena Center for the Arts, San Francisco; Plug-In, Basel; Casoria Museum of Contemporary Art, Naples; Al Kahf Art Gallery, Bethlehem; Red House Centre for Culture, Sofia; Museo de Arte Contemporaneo de Yucatan, Merida; National Museum of Contemporary Art, Bucharest; Worth Ryder Gallery, Berkeley; Museo de Arte Contemporaneo de Santa Fe, Argentina; Museum of Movements, Malmo; and JolibaZWO, Berlin among others. In Canada her work has been presented at A Space Gallery, York Quay Gallery, YYZ, MAI, and Carlton University Art Gallery. She has exhibited in numerous festivals including Electroshock, France; VI Salon y coloquio internacional de art digital, Havana; New Media Art Festival, Bangkok; Biennale of Electronic Art, Perth; and New Music and Art Festival, Bowling Green and others.

Nina Czegledy
Toronto based artist, curator, educator, works internationally on collaborative art, science & technology projects. The changing perception of the human body and its environment, as well as paradigm shifts in the arts, inform her projects. She has exhibited and published widely, won awards for her artwork and has initiated, led and participated in workshops, forums and festivals worldwide at international events.

Roberta Buiani
Artistic Director of the ArtSci Salon at the Fields Institute for Research in Mathematical Sciences (Toronto). Her artistic work has travelled to art festivals (Transmediale; Hemispheric Institute Encuentro; Brazil), community centers and galleries (the Free Gallery Toronto; Immigrant Movement International, Queens, Museum of Toronto), and scientific institutions (RPI; the Fields Institute). She is a research associate at the Centre for Feminist Research and a Scholar in Residence at Sensorium: Centre for Digital Arts and Technology, at York University.

Tune in on Oct 3 [2021] at 10:30 AM EDT; 4:30 PM CET; 10:30 PM CST [Note: For those of us on the West Coast, that will 7:30 am PDT]

To view the video on Sunday, Oct. 3, 2021, just go to the ‘Naturalized Encounters’ webpage on the ArtSci Salon website and scroll down.

Canadian and Guadeloupean oysters: exposure to nanoplastics and arsenic

A May 27, 2021 news item on phys.org describes research into oysters and nanoplastics,

Oysters’ exposure to plastics is concerning, particularly because these materials can accumulate and release metals which are then absorbed by the mollusks. According to a recent study published in the journal Chemosphere, the combined presence of nanoplastics and arsenic affects the biological functions of oysters. This study was conducted by the Institut national de la recherche scientifique (INRS) in Québec City and the French National Centre for Scientific Research (CNRS) at the University of Bordeaux in France

A May 27, 2021 INRS news release (French language version here and an English language version on EurekAlert), which originated the news item, provides fascinating details,

The international research team chose to study arsenic, since it is one of the most common metals absorbed by the plastic debris collected from the beaches of Guadeloupe. “Oysters easily accumulate metals from the environment into their tissues. We therefore wanted to test whether the combined exposure to nanoplastics and arsenic would increase the bioaccumulation of this contaminant,” reported Marc Lebordais, the Master’s student in charge of the research.

The scientists proved that the bioaccumulation of arsenic does not increase when nanoplastics are also present. However, it remained higher in the gills of the Canadian Crassostrea virginica oyster [emphasis mine] than in the Isognomon alatus oyster, found in Guadeloupe. These results are the first to highlight the diverging sensitivity of different species. [emphasis mine]

Gene deregulation

In addition to bioaccumulation, the team also observed an overexpression of genes responsible for cell death and the number of mitochondria–a cell’s energy centres–in C. virginica. In I. alatus, the expression of these same genes was less significant.

“Evaluating the expression of genes involved in important functions, such as cell death and detoxification, gives us information on the toxicity of nanoplastics and arsenic on a cellular level,” explained the young researcher, who is co-directed by Professors Valérie Langlois of INRS and Magalie Baudrimont of the University of Bordeaux.

The food chain

The next step, after characterizing the presence of nanoplastics and arsenic in oysters, would be to study how these contaminants are transferred through the food chain.

“Analytical tools are currently being developed to quantify the presence of nanoplastics in biological tissues,” said Marc Lebordais. “Understanding the amount of nanoplastics in farmed oysters currently boils down to a technical issue.” ?

Here’s a link to and a citation for the paper,

Molecular impacts of dietary exposure to nanoplastics combined with arsenic in Canadian oysters (Crassostrea virginica) and bioaccumulation comparison with Caribbean oysters (Isognomon alatus) by Marc Lebordais, Juan Manuel Gutierrez-Villagomez, Julien Gigault, Magalie Baudrimont, and Valérie Langlois. Chemosphere Volume 277, August 2021, 130331 DOI: https://doi.org/10.1016/j.chemosphere.2021.130331 First published online 19 March 2021.

This paper is open access.