Tag Archives: Canada

Wearable electronic textiles from the UK, India, and Canada: two different carbon materials

It seems wearable electronic textiles may be getting nearer to the marketplace. I have three research items (two teams working with graphene and one working with carbon nanotubes) that appeared on my various feeds within two days of each other.

UK/China

This research study is the result of a collaboration between UK and Chinese scientists. From a May 15, 2019 news item on phys.org (Note: Links have been removed),


Wearable electronic components incorporated directly into fabrics have been developed by researchers at the University of Cambridge. The devices could be used for flexible circuits, healthcare monitoring, energy conversion, and other applications.

The Cambridge researchers, working in collaboration with colleagues at Jiangnan University in China, have shown how graphene – a two-dimensional form of carbon – and other related materials can be directly incorporated into fabrics to produce charge storage elements such as capacitors, paving the way to textile-based power supplies which are washable, flexible and comfortable to wear.

The research, published in the journal Nanoscale, demonstrates that graphene inks can be used in textiles able to store electrical charge and release it when required. The new textile electronic devices are based on low-cost, sustainable and scalable dyeing of polyester fabric. The inks are produced by standard solution processing techniques.

Building on previous work by the same team, the researchers designed inks which can be directly coated onto a polyester fabric in a simple dyeing process. The versatility of the process allows various types of electronic components to be incorporated into the fabric.

Schematic of the textile-based capacitor integrating GNP/polyesters as electrodes and h-BN/polyesters as dielectrics. Credit: Felice Torrisi

A May 16, 2019 University of Cambridge press release, which originated the news item, probes further,

Most other wearable electronics rely on rigid electronic components mounted on plastic or textiles. These offer limited compatibility with the skin in many circumstances, are damaged when washed and are uncomfortable to wear because they are not breathable.

“Other techniques to incorporate electronic components directly into textiles are expensive to produce and usually require toxic solvents, which makes them unsuitable to be worn,” said Dr Felice Torrisi from the Cambridge Graphene Centre, and the paper’s corresponding author. “Our inks are cheap, safe and environmentally-friendly, and can be combined to create electronic circuits by simply overlaying different fabrics made of two-dimensional materials on the fabric.”

The researchers suspended individual graphene sheets in a low boiling point solvent, which is easily removed after deposition on the fabric, resulting in a thin and uniform conducting network made up of multiple graphene sheets. The subsequent overlay of several graphene and hexagonal boron nitride (h-BN) fabrics creates an active region, which enables charge storage. This sort of ‘battery’ on fabric is bendable and can withstand washing cycles in a normal washing machine.

“Textile dyeing has been around for centuries using simple pigments, but our result demonstrates for the first time that inks based on graphene and related materials can be used to produce textiles that could store and release energy,” said co-author Professor Chaoxia Wang from Jiangnan University in China. “Our process is scalable and there are no fundamental obstacles to the technological development of wearable electronic devices both in terms of their complexity and performance.”

The work done by the Cambridge researchers opens a number of commercial opportunities for ink based on two-dimensional materials, ranging from personal health and well-being technology, to wearable energy and data storage, military garments, wearable computing and fashion.

“Turning textiles into functional energy storage elements can open up an entirely new set of applications, from body-energy harvesting and storage to the Internet of Things,” said Torrisi “In the future our clothes could incorporate these textile-based charge storage elements and power wearable textile devices.”

Here’s a link to and a citation for the paper,

Wearable solid-state capacitors based on two-dimensional material all-textile heterostructures by Siyu Qiang, Tian Carey, Adrees Arbab, Weihua Song, Chaoxia Wang and Felice Torris. Nanoscale, 2019, Advance Article DOI: 10.1039/C9NR00463G First published on 18 Apr 2019

This paper is behind a paywall.

India

Prior to graphene’s reign as the ‘it’ carbon material, carbon nanotubes (CNTs) ruled. It’s been quieter on the CNT front since graphene took over but a May 15, 2019 Nanowerk Spotlight article by Michael Berger highlights some of the latest CNT research coming out of India,


The most important technical challenge is to blend the chemical nature of raw materials with fabrication techniques and processability, all of which are diametrically conflicting for textiles and conventional energy storage devices. A team from Indian Institute of Technology Bombay has come out with a comprehensive approach involving simple and facile steps to fabricate a wearable energy storage device. Several scientific and technological challenges were overcome during this process.

First, to achieve user-comfort and computability with clothing, the scaffold employed was the the same as what a regular fabric is made up of – cellulose fibers. However, cotton yarns are electrical insulators and therefore practically useless for any electronics. Therefore, the yarns are coated with single-wall carbon nanotubes (SWNTs).

SWNTs are hollow, cylindrical allotropes of carbon and combine excellent mechanical strength with electrical conductivity and surface area. Such a coating converts the electrical insulating cotton yarn to a metallic conductor with high specific surface area. At the same time, using carbon-based materials ensures that the final material remains light-weight and does not cause user discomfort that can arise from metallic wires such as copper and gold. This CNT-coated cotton yarn (CNT-wires) forms the electrode for the energy storage device.

Next, the electrolyte is composed of solid-state electrolyte sheets since no liquid-state electrolytes can be used for this purpose. However, solid state electrolytes suffer from poor ionic conductivity – a major disadvantage for energy storage applications. Therefore, a steam-based infiltration approach that enhances the ionic conductivity of the electrolyte is adopted. Such enhancement of humidity significantly increases the energy storage capacity of the device.


The integration of the CNT-wire electrode with the electrolyte sheet was carried out by a simple and elegant approach of interweaving the CNT-wire through the electrolyte (see Figure 1). This resulted in cross-intersections which are actually junctions where the electrical energy can be stored. Each such junction is now an energy storage unit, referred to as sewcap.

The advantage of this process is that several 100s and 1000s of sewcaps can be made in a small area and integrated to increase the total amount of energy stored in the system. This scalability is unique and critical aspect of this work and stems from the approach of interweaving.

Further, this process is completely adaptable with current processes used in textile industries. Hence, a proportionately large energy-storage is achieved by creating sewcap-junctions in various combinations.

All components of the final sewcap device are flexible. However, they need to be protected from environmental effects such as temperature, humidity and sweat while retaining the mechanical flexibility. This is achieved by laminating the entire device between polymer sheets. The process is exactly similar to the one used for protecting documents and ID cards.

The laminated sewcap can be integrated easily on clothing and fabrics while retaining the flexibility and sturdiness. This is demonstrated by the unchanged performance of the device during extreme and harsh mechanical testing such as striking repeatedly with a hammer, complete flexing, bending and rolling and washing in a laundry machine.

In fact, this is the first device that has been proven to be stable under rigorous washing conditions in the presence of hot water, detergents and high torque (spinning action of washing machine). This provides the device with comprehensive mechanical stability.


CNTs have high surface area and electrical conductivity. The CNT-wire combines these properties of CNTs with stability and porosity of cellulose yarns. The junction created by interweaving is essentially comprised of two such CNT-wires that are sandwiching an electrolyte. Application of potential difference leads to polarization of the electrolyte thus enabling energy storage similar to the way in which a conventional capacitor acts.

“We use the advantage of the interweaving process and create several such junctions. So, with each junction being able to store a certain amount of electrical energy, all the junctions synchronized are able to store a large amount of energy. This provides high energy density to the device,” Prof. C. Subramaniam, Department of Chemistry, IIT Bombay and corresponding author of the paper points out.

The device has also been employed for lighting up an LED [light-emitting diode]. This can be potentially scaled to provide electrical energy demanded by the application.

This image accompanies the paper written by Prof. C. Subramaniam and his team,

Courtesy: IACS Applied Materials Interfaces

Here’s a link to and a citation for the paper,

Interwoven Carbon Nanotube Wires for High-Performing, Mechanically Robust, Washable, and Wearable Supercapacitors by Mihir Kumar Jha, Kenji Hata, and Chandramouli Subramaniam. ACS Appl. Mater. Interfaces, Article ASAP DOI: 10.1021/acsami.8b22233 Publication Date (Web): April 29, 2019 Copyright © 2019 American Chemical Society

This paper is behind a paywall.

Canada

A research team from the University of British Columbia (UBC at the Okanagan Campus) joined the pack with a May 16, 2019 news item on ScienceDaily,

Forget the smart watch. Bring on the smart shirt.

Researchers at UBC Okanagan’s School of Engineering have developed a low-cost sensor that can be interlaced into textiles and composite materials. While the research is still new, the sensor may pave the way for smart clothing that can monitor human movement.

A May 16, 2019 UBC news release (also on EurekAlert), which originated the news item, describes the work in more detail,


“Microscopic sensors are changing the way we monitor machines and humans,” says Hoorfar, lead researcher at the Advanced Thermo-Fluidic Lab at UBC’s Okanagan campus. “Combining the shrinking of technology along with improved accuracy, the future is very bright in this area.”

This ‘shrinking technology’ uses a phenomenon called piezo-resistivity—an electromechanical response of a material when it is under strain. These tiny sensors have shown a great promise in detecting human movements and can be used for heart rate monitoring or temperature control, explains Hoorfar.

Her research, conducted in partnership with UBC Okanagan’s Materials and Manufacturing Research Institute, shows the potential of a low-cost, sensitive and stretchable yarn sensor. The sensor can be woven into spandex material and then wrapped into a stretchable silicone sheath. This sheath protects the conductive layer against harsh conditions and allows for the creation of washable wearable sensors.

While the idea of smart clothing—fabrics that can tell the user when to hydrate, or when to rest—may change the athletics industry, UBC Professor Abbas Milani says the sensor has other uses. It can monitor deformations in fibre-reinforced composite fabrics currently used in advanced industries such as automotive, aerospace and marine manufacturing.

The low-cost stretchable composite sensor has also shown a high sensitivity and can detect small deformations such as yarn stretching as well as out-of-plane deformations at inaccessible places within composite laminates, says Milani, director of the UBC Materials and Manufacturing Research Institute.

The testing indicates that further improvements in its accuracy could be achieved by fine-tuning the sensor’s material blend and improving its electrical conductivity and sensitivity This can eventually make it able to capture major flaws like “fibre wrinkling” during the manufacturing of advanced composite structures such as those currently used in airplanes or car bodies.

“Advanced textile composite materials make the most of combining the strengths of different reinforcement materials and patterns with different resin options,” he says. “Integrating sensor technologies like piezo-resistive sensors made of flexible materials compatible with the host textile reinforcement is becoming a real game-changer in the emerging era of smart manufacturing and current automated industry trends.”

Here’s a link to and a citation for the paper,

Graphene‐Coated Spandex Sensors Embedded into Silicone Sheath for Composites Health Monitoring and Wearable Applications by Hossein Montazerian, Armin Rashidi, Arash Dalili, Homayoun Najjaran, Abbas S. Milani, Mina Hoorfar. Small Volume15, Issue17 April 26, 2019 1804991 DOI: https://doi.org/10.1002/smll.201804991 First published: 28 March 2019

This paper is behind a paywall.

Will there be one winner or will they find CNTs better for one type of wearable tech textile while graphene excels for another type of wearable tech textile?

Genes, intelligence, Chinese CRISPR (clustered regularly interspaced short palindromic repeats) babies, and other children

This started out as an update and now it’s something else. What follows is a brief introduction to the Chinese CRISPR twins; a brief examination of parents, children, and competitiveness; and, finally, a suggestion that genes may not be what we thought. I also include a discussion about how some think scientists should respond when they know beforehand that one of their kin is crossing an ethical line. Basically, this is a complex topic and I am attempting to interweave a number of competing lines of query into one narrative about human nature and the latest genetics obsession.

Introduction to the Chinese CRISPR twins

Back in November 2018 I covered the story about the Chinese scientist, He Jiankui , who had used CRISPR technology to edit genes in embryos that were subsequently implanted in a waiting mother (apparently there could be as many as eight mothers) with the babies being brought to term despite an international agreement (of sorts) not to do that kind of work. At this time, we know of the twins, Lulu and Nana but, by now, there may be more babies. (I have much more detail about the initial controversies in my November 28, 2018 posting.)

It seems the drama has yet to finish unfolding. There may be another consequence of He’s genetic tinkering.

Could the CRISPR babies, Lulu and Nana, have enhanced cognitive abilities?

Yes, according to Antonio Regalado’s February 21, 2019 article (behind a paywall) for MIT’s (Massachusetts Institute of Technology) Technology Review, those engineered babies may have enhanced abilities for learning and remembering.

For those of us who can’t get beyond the paywall, others have been successful. Josh Gabbatiss in his February 22, 2019 article for independent.co.uk provides some detail,

The world’s first gene edited babies may have had their brains unintentionally altered – and perhaps cognitively enhanced – as a result of the controversial treatment undertaken by a team of Chinese scientists.

Dr He Jiankui and his team allegedly deleted a gene from a number of human embryos before implanting them in their mothers, a move greeted with horror by the global scientific community. The only known successful birth so far is the case of twin girls Nana and Lulu.

The now disgraced scientist claimed that he removed a gene called CCR5 [emphasis mine] from their embroyos in an effort to make the twins resistant to infection by HIV.

But another twist in the saga has now emerged after a new paper provided more evidence that the impact of CCR5 deletion reaches far beyond protection against dangerous viruses – people who naturally lack this gene appear to recover more quickly from strokes, and even go further in school. [emphasis mine]

Dr Alcino Silva, a neurobiologist at the University of California, Los Angeles, who helped identify this role for CCR5 said the work undertaken by Dr Jiankui likely did change the girls’ brains.

“The simplest interpretation is that those mutations will probably have an impact on cognitive function in the twins,” he told the MIT Technology Review.

The connection immediately raised concerns that the gene was targeted due to its known links with intelligence, which Dr Silva said was his immediate response when he heard the news.

… there is no evidence that this was Dr Jiankui’s goal and at a press conference organised after the initial news broke, he said he was aware of the work but was “against using genome editing for enhancement”.

..

Claire Maldarelli’s February 22, 2019 article for Popular Science provides more information about the CCR5 gene/protein (Note: Links have been removed),

CCR5 is a protein that sits on the surface of white blood cells, a major component of the human immune system. There, it allows HIV to enter and infect a cell. A chunk of the human population naturally carries a mutation that makes CCR5 nonfunctional (one study found that 10 percent of Europeans have this mutation), which often results in a smaller protein size and one that isn’t located on the outside of the cell, preventing HIV from ever entering and infecting the human immune system.

The goal of the Chinese researchers’ work, led by He Jiankui of the Southern University of Science and Technology located in Shenzhen, was to tweak the embryos’ genome to lack CCR5, ensuring the babies would be immune to HIV.

But genetics is rarely that simple.

In recent years, the CCR5 gene has been a target of ongoing research, and not just for its relationship to HIV. In an attempt to understand what influences memory formation and learning in the brain, a group of researchers at UCLA found that lowering the levels of CCR5 production enhanced both learning and memory formation. This connection led those researchers to think that CCR5 could be a good drug target for helping stroke victims recover: Relearning how to move, walk, and talk is a key component to stroke rehabilitation.

… promising research, but it begs the question: What does that mean for the babies who had their CCR5 genes edited via CRISPR prior to their birth? Researchers speculate that the alternation will have effects on the children’s cognitive functioning. …

John Loeffler’s February 22, 2019 article for interestingengineering.com notes that there are still many questions about He’s (scientist’s name) research including, did he (pronoun) do what he claimed? (Note: Links have been removed),

Considering that no one knows for sure whether He has actually done as he and his team claim, the swiftness of the condemnation of his work—unproven as it is—shows the sensitivity around this issue.

Whether He did in fact edit Lulu and Nana’s genes, it appears he didn’t intend to impact their cognitive capacities. According to MIT Technology Review, not a single researcher studying CCR5’s role in intelligence was contacted by He, even as other doctors and scientists were sought out for advice about his project.

This further adds to the alarm as there is every expectation that He should have known about the connection between CCR5 and cognition.

At a gathering of gene-editing researchers in Hong Kong two days after the birth of the potentially genetically-altered twins was announced, He was asked about the potential impact of erasing CCR5 from the twins DNA on their mental capacity.

He responded that he knew about the potential cognitive link shown in Silva’s 2016 research. “I saw that paper, it needs more independent verification,” He said, before adding that “I am against using genome editing for enhancement.”

The problem, as Silva sees it, is that He may be blazing the trail for exactly that outcome, whether He intends to or not. Silva says that after his 2016 research was published, he received an uncomfortable amount of attention from some unnamed, elite Silicon Valley leaders who seem to be expressing serious interest in using CRISPR to give their children’s brains a boost through gene editing. [emphasis mine]

As such, Silva can be forgiven for not quite believing He’s claims that he wasn’t intending to alter the human genome for enhancement. …

The idea of designer babies isn’t new. As far back as Plato, the thought of using science to “engineer” a better human has been tossed about, but other than selective breeding, there really hasn’t been a path forward.

In the late 1800s, early 1900s, Eugenics made a real push to accomplish something along these lines, and the results were horrifying, even before Nazism. After eugenics mid-wifed the Holocaust in World War II, the concept of designer children has largely been left as fodder for science fiction since few reputable scientists would openly declare their intention to dabble in something once championed and pioneered by the greatest monsters of the 20th century.

Memories have faded though, and CRISPR significantly changes this decades-old calculus. CRISPR makes it easier than ever to target specific traits in order to add or subtract them from an embryos genetic code. Embryonic research is also a diverse enough field that some scientist could see pioneering designer babies as a way to establish their star power in academia while getting their names in the history books, [emphasis mine] all while working in relative isolation. They only need to reveal their results after the fact and there is little the scientific community can do to stop them, unfortunately.

When He revealed his research and data two days after announcing the births of Lulu and Nana, the gene-scientists at the Hong Kong conference were not all that impressed with the quality of He’s work. He has not provided access for fellow researchers to either his data on Lulu, Nana, and their family’s genetic data so that others can verify that Lulu and Nana’s CCR5 genes were in fact eliminated.

This almost rudimentary verification and validation would normally accompany a major announcement such as this. Neither has He’s work undergone a peer-review process and it hasn’t been formally published in any scientific journal—possibly for good reason.

Researchers such as Eric Topol, a geneticist at the Scripps Research Institute, have been finding several troubling signs in what little data He has released. Topol says that the editing itself was not precise and show “all kinds of glitches.”

Gaetan Burgio, a geneticist at the Australian National University, is likewise unimpressed with the quality of He’s work. Speaking of the slides He showed at the conference to support his claim, Burgio calls it amateurish, “I can believe that he did it because it’s so bad.”

Worse of all, its entirely possible that He actually succeeded in editing Lulu and Nana’s genetic code in an ad hoc, unethical, and medically substandard way. Sadly, there is no shortage of families with means who would be willing to spend a lot of money to design their idea of a perfect child, so there is certainly demand for such a “service.”

It’s nice to know (sarcasm icon) that the ‘Silicon Valley elite’ are willing to volunteer their babies for scientific experimentation in a bid to enhance intelligence.

The ethics of not saying anything

Natalie Kofler, a molecular biologist, wrote a February 26, 2019 Nature opinion piece and call to action on the subject of why scientists who were ‘in the know’ remained silent about He’s work prior to his announcements,

Millions [?] were shocked to learn of the birth of gene-edited babies last year, but apparently several scientists were already in the know. Chinese researcher He Jiankui had spoken with them about his plans to genetically modify human embryos intended for pregnancy. His work was done before adequate animal studies and in direct violation of the international scientific consensus that CRISPR–Cas9 gene-editing technology is not ready or appropriate for making changes to humans that could be passed on through generations.

Scholars who have spoken publicly about their discussions with He described feeling unease. They have defended their silence by pointing to uncertainty over He’s intentions (or reassurance that he had been dissuaded), a sense of obligation to preserve confidentiality and, perhaps most consistently, the absence of a global oversight body. Others who have not come forward probably had similar rationales. But He’s experiments put human health at risk; anyone with enough knowledge and concern could have posted to blogs or reached out to their deans, the US National Institutes of Health or relevant scientific societies, such as the Association for Responsible Research and Innovation in Genome Editing (see page 440). Unfortunately, I think that few highly established scientists would have recognized an obligation to speak up.

I am convinced that this silence is a symptom of a broader scientific cultural crisis: a growing divide between the values upheld by the scientific community and the mission of science itself.

A fundamental goal of the scientific endeavour is to advance society through knowledge and innovation. As scientists, we strive to cure disease, improve environmental health and understand our place in the Universe. And yet the dominant values ingrained in scientists centre on the virtues of independence, ambition and objectivity. That is a grossly inadequate set of skills with which to support a mission of advancing society.

Editing the genes of embryos could change our species’ evolutionary trajectory. Perhaps one day, the technology will eliminate heritable diseases such as sickle-cell anaemia and cystic fibrosis. But it might also eliminate deafness or even brown eyes. In this quest to improve the human race, the strengths of our diversity could be lost, and the rights of already vulnerable populations could be jeopardized.

Decisions about how and whether this technology should be used will require an expanded set of scientific virtues: compassion to ensure its applications are designed to be just, humility to ensure its risks are heeded and altruism to ensure its benefits are equitably distributed.

Calls for improved global oversight and robust ethical frameworks are being heeded. Some researchers who apparently knew of He’s experiments are under review by their universities. Chinese investigators have said He skirted regulations and will be punished. But punishment is an imperfect motivator. We must foster researchers’ sense of societal values.

Fortunately, initiatives popping up throughout the scientific community are cultivating a scientific culture informed by a broader set of values and considerations. The Scientific Citizenship Initiative at Harvard University in Cambridge, Massachusetts, trains scientists to align their research with societal needs. The Summer Internship for Indigenous Peoples in Genomics offers genomics training that also focuses on integrating indigenous cultural perspectives into gene studies. The AI Now Institute at New York University has initiated a holistic approach to artificial-intelligence research that incorporates inclusion, bias and justice. And Editing Nature, a programme that I founded, provides platforms that integrate scientific knowledge with diverse cultural world views to foster the responsible development of environmental genetic technologies.

Initiatives such as these are proof [emphasis mine] that science is becoming more socially aware, equitable and just. …

I’m glad to see there’s work being done on introducing a broader set of values into the scientific endeavour. That said, these programmes seem to be voluntary, i.e., people self-select, and those most likely to participate in these programmes are the ones who might be inclined to integrate social values into their work in the first place.

This doesn’t address the issue of how to deal with unscrupulous governments pressuring scientists to create designer babies along with hypercompetitive and possibly unscrupulous individuals such as the members of the ‘Silicon Valley insiders mentioned in Loeffler’s article, teaming up with scientists who will stop at nothing to get their place in the history books.

Like Kofler, I’m encouraged to see these programmes but I’m a little less convinced that they will be enough. What form it might take I don’t know but I think something a little more punitive is also called for.

CCR5 and freedom from HIV

I’ve added this piece about the Berlin and London patients because, back in November 2018, I failed to realize how compelling the idea of eradicating susceptibility to AIDS/HIV might be. Reading about some real life remissions helped me to understand some of He’s stated motivations a bit better. Unfortunately, there’s a major drawback described here in a March 5, 2019 news item on CBC (Canadian Broadcasting Corporation) online news attributed to Reuters,

An HIV-positive man in Britain has become the second known adult worldwide to be cleared of the virus that causes AIDS after he received a bone marrow transplant from an HIV-resistant donor, his doctors said.

The therapy had an early success with a man known as “the Berlin patient,” Timothy Ray Brown, a U.S. man treated in Germany who is 12 years post-transplant and still free of HIV. Until now, Brown was the only person thought to have been cured of infection with HIV, the virus that causes AIDS.

Such transplants are dangerous and have failed in other patients. They’re also impractical to try to cure the millions already infected.

In the latest case, the man known as “the London patient” has no trace of HIV infection, almost three years after he received bone marrow stem cells from a donor with a rare genetic mutation that resists HIV infection — and more than 18 months after he came off antiretroviral drugs.

“There is no virus there that we can measure. We can’t detect anything,” said Ravindra Gupta, a professor and HIV biologist who co-led a team of doctors treating the man.

Gupta described his patient as “functionally cured” and “in remission,” but cautioned: “It’s too early to say he’s cured.”

Gupta, now at Cambridge University, treated the London patient when he was working at University College London. The man, who has asked to remain anonymous, had contracted HIV in 2003, Gupta said, and in 2012 was also diagnosed with a type of blood cancer called Hodgkin’s lymphoma.

In 2016, when he was very sick with cancer, doctors decided to seek a transplant match for him.

“This was really his last chance of survival,” Gupta told Reuters.

Doctors found a donor with a gene mutation known as CCR5 delta 32, which confers resistance to HIV. About one per cent of people descended from northern Europeans have inherited the mutation from both parents and are immune to most HIV. The donor had this double copy of the mutation.

That was “an improbable event,” Gupta said. “That’s why this has not been observed more frequently.”

Most experts say it is inconceivable such treatments could be a way of curing all patients. The procedure is expensive, complex and risky. To do this in others, exact match donors would have to be found in the tiny proportion of people who have the CCR5 mutation.

Specialists said it is also not yet clear whether the CCR5 resistance is the only key [emphasis mine] — or whether the graft-versus-host disease may have been just as important. Both the Berlin and London patients had this complication, which may have played a role in the loss of HIV-infected cells, Gupta said.

Not only is there some question as to what role the CCR5 gene plays, there’s also a question as to whether or not we know what role genes play.

A big question: are genes what we thought?

Ken Richardson’s January 3, 2019 article for Nautilus (I stumbled across it on May 14, 2019 so I’m late to the party) makes and supports a startling statement, It’s the End of the Gene As We Know It We are not nearly as determined by our genes as once thought (Note: A link has been removed),

We’ve all seen the stark headlines: “Being Rich and Successful Is in Your DNA” (Guardian, July 12); “A New Genetic Test Could Help Determine Children’s Success” (Newsweek, July 10); “Our Fortunetelling Genes” make us (Wall Street Journal, Nov. 16); and so on.

The problem is, many of these headlines are not discussing real genes at all, but a crude statistical model of them, involving dozens of unlikely assumptions. Now, slowly but surely, that whole conceptual model of the gene is being challenged.

We have reached peak gene, and passed it.

The preferred dogma started to appear in different versions in the 1920s. It was aptly summarized by renowned physicist Erwin Schrödinger in a famous lecture in Dublin in 1943. He told his audience that chromosomes “contain, in some kind of code-script, the entire pattern of the individual’s future development and of its functioning in the mature state.”

Around that image of the code a whole world order of rank and privilege soon became reinforced. These genes, we were told, come in different “strengths,” different permutations forming ranks that determine the worth of different “races” and of different classes in a class-structured society. A whole intelligence testing movement was built around that preconception, with the tests constructed accordingly.

The image fostered the eugenics and Nazi movements of the 1930s, with tragic consequences. Governments followed a famous 1938 United Kingdom education commission in decreeing that, “The facts of genetic inequality are something that we cannot escape,” and that, “different children … require types of education varying in certain important respects.”

Today, 1930s-style policy implications are being drawn once again. Proposals include gene-testing at birth for educational intervention, embryo selection for desired traits, identifying which classes or “races” are fitter than others, and so on. And clever marketizing now sees millions of people scampering to learn their genetic horoscopes in DNA self-testing kits.[emphasis mine]

So the hype now pouring out of the mass media is popularizing what has been lurking in the science all along: a gene-god as an entity with almost supernatural powers. Today it’s the gene that, in the words of the Anglican hymn, “makes us high and lowly and orders our estate.”

… at the same time, a counter-narrative is building, not from the media but from inside science itself.

So it has been dawning on us is that there is no prior plan or blueprint for development: Instructions are created on the hoof, far more intelligently than is possible from dumb DNA. That is why today’s molecular biologists are reporting “cognitive resources” in cells; “bio-information intelligence”; “cell intelligence”; “metabolic memory”; and “cell knowledge”—all terms appearing in recent literature.1,2 “Do cells think?” is the title of a 2007 paper in the journal Cellular and Molecular Life Sciences.3 On the other hand the assumed developmental “program” coded in a genotype has never been described.


It is such discoveries that are turning our ideas of genetic causation inside out. We have traditionally thought of cell contents as servants to the DNA instructions. But, as the British biologist Denis Noble insists in an interview with the writer Suzan Mazur,1 “The modern synthesis has got causality in biology wrong … DNA on its own does absolutely nothing [ emphasis mine] until activated by the rest of the system … DNA is not a cause in an active sense. I think it is better described as a passive data base which is used by the organism to enable it to make the proteins that it requires.”

I highly recommend reading Richardson’s article in its entirety. As well, you may want to read his book, ” Genes, Brains and Human Potential: The Science and Ideology of Intelligence .”

As for “DNA on its own doing absolutely nothing,” that might be a bit of a eye-opener for the Silicon Valley elite types investigating cognitive advantages attributed to the lack of a CCR5 gene. Meanwhile, there are scientists inserting a human gene associated with brain development into monkeys,

Transgenic monkeys and human intelligence

An April 2, 2019 news item on chinadaily.com describes research into transgenic monkeys,

Researchers from China and the United States have created transgenic monkeys carrying a human gene that is important for brain development, and the monkeys showed human-like brain development.

Scientists have identified several genes that are linked to primate brain size. MCPH1 is a gene that is expressed during fetal brain development. Mutations in MCPH1 can lead to microcephaly, a developmental disorder characterized by a small brain.

In the study published in the Beijing-based National Science Review, researchers from the Kunming Institute of Zoology, Chinese Academy of Sciences, the University of North Carolina in the United States and other research institutions reported that they successfully created 11 transgenic rhesus monkeys (eight first-generation and three second-generation) carrying human copies of MCPH1.

According to the research article, brain imaging and tissue section analysis showed an altered pattern of neuron differentiation and a delayed maturation of the neural system, which is similar to the developmental delay (neoteny) in humans.

Neoteny in humans is the retention of juvenile features into adulthood. One key difference between humans and nonhuman primates is that humans require a much longer time to shape their neuro-networks during development, greatly elongating childhood, which is the so-called “neoteny.”

Here’s a link to and a citation for the paper,

Transgenic rhesus monkeys carrying the human MCPH1 gene copies show human-like neoteny of brain development by Lei Shi, Xin Luo, Jin Jiang, Yongchang Chen, Cirong Liu, Ting Hu, Min Li, Qiang Lin, Yanjiao Li, Jun Huang Hong Wang, Yuyu Niu, Yundi Shi, Martin Styner, Jianhong Wang, Yi Lu, Xuejin Sun, Hualin Yu, Weizhi Ji, Bing Su. National Science Review, nwz043, https://doi.org/10.1093/nsr/nwz043 Published: 27 March 2019

This appears to be an open access paper,

Transgenic monkeys and an ethical uproar

Predictably, this research set off alarms as Sharon Kirkey’s April 12, 2019 article for the National Post describes in detail (Note: A link has been removed)l,

Their brains may not be bigger than normal, but monkeys created with human brain genes are exhibiting cognitive changes that suggest they might be smarter — and the experiments have ethicists shuddering.

In the wake of the genetically modified human babies scandal, Chinese scientists [as a scientist from the US] are drawing fresh condemnation from philosophers and ethicists, this time over the announcement they’ve created transgenic monkeys with elements of a human brain.

Six of the monkeys died, however the five survivors “exhibited better short-term memory and shorter reaction time” compared to their wild-type controls, the researchers report in the journa.

According to the researchers, the experiments represent the first attempt to study the genetic basis of human brain origin using transgenic monkeys. The findings, they insist, “have the potential to provide important — and potentially unique — insights into basic questions of what actually makes humans unique.”

For others, the work provokes a profoundly moral and visceral uneasiness. Even one of the collaborators — University of North Carolina computer scientist Martin Styner — told MIT Technology Review he considered removing his name from the paper, which he said was unable to find a publisher in the West.

“Now we have created this animal which is different than it is supposed to be,” Styner said. “When we do experiments, we have to have a good understanding of what we are trying to learn, to help society, and that is not the case here.” l

In an email to the National Post, Styner said he has an expertise in medical image analysis and was approached by the researchers back in 2011. He said he had no input on the science in the project, beyond how to best do the analysis of their MRI data. “At the time, I did not think deeply enough about the ethical consideration.”

….

When it comes to the scientific use of nonhuman primates, ethicists say the moral compass is skewed in cases like this.

Given the kind of beings monkeys are, “I certainly would have thought you would have had to have a reasonable expectation of high benefit to human beings to justify the harms that you are going to have for intensely social, cognitively complex, emotional animals like monkeys,” said Letitia Meynell, an associate professor in the department of philosophy at Dalhousie University in Halifax.

“It’s not clear that this kind of research has any reasonable expectation of having any useful application for human beings,” she said.

The science itself is also highly dubious and fundamentally flawed in its logic, she said.
“If you took Einstein as a baby and you raised him in the lab he wouldn’t turn out to be Einstein,” Meynell said. “If you’re actually interested in studying the cognitive complexity of these animals, you’re not going to get a good representation of that by raising them in labs, because they can’t develop the kind of cognitive and social skills they would in their normal environment.”

The Chinese said the MCPH1 gene is one of the strongest candidates for human brain evolution. But looking at a single gene is just bad genetics, Meynell said. Multiple genes and their interactions affect the vast majority of traits.

My point is that there’s a lot of research focused on intelligence and genes when we don’t really know what role genes actually play and when there doesn’t seem to be any serious oversight.

Global plea for moratorium on heritable genome editing

A March 13, 2019 University of Otago (New Zealand) press release (also on EurekAlert) describes a global plea for a moratorium,

A University of Otago bioethicist has added his voice to a global plea for a moratorium on heritable genome editing from a group of international scientists and ethicists in the wake of the recent Chinese experiment aiming to produce HIV immune children.

In an article in the latest issue of international scientific journal Nature, Professor Jing-Bao Nie together with another 16 [17] academics from seven countries, call for a global moratorium on all clinical uses of human germline editing to make genetically modified children.

They would like an international governance framework – in which nations voluntarily commit to not approve any use of clinical germline editing unless certain conditions are met – to be created potentially for a five-year period.

Professor Nie says the scientific scandal of the experiment that led to the world’s first genetically modified babies raises many intriguing ethical, social and transcultural/transglobal issues. His main personal concerns include what he describes as the “inadequacy” of the Chinese and international responses to the experiment.

“The Chinese authorities have conducted a preliminary investigation into the scientist’s genetic misadventure and issued a draft new regulation on the related biotechnologies. These are welcome moves. Yet, by putting blame completely on the rogue scientist individually, the institutional failings are overlooked,” Professor Nie explains.

“In the international discourse, partly due to the mentality of dichotomising China and the West, a tendency exists to characterise the scandal as just a Chinese problem. As a result, the global context of the experiment and Chinese science schemes have been far from sufficiently examined.”

The group of 17 [18] scientists and bioethicists say it is imperative that extensive public discussions about the technical, scientific, medical, societal, ethical and moral issues must be considered before germline editing is permitted. A moratorium would provide time to establish broad societal consensus and an international framework.

“For germline editing to even be considered for a clinical application, its safety and efficacy must be sufficient – taking into account the unmet medical need, the risks and potential benefits and the existence of alternative approaches,” the opinion article states.

Although techniques have improved in recent years, germline editing is not yet safe or effective enough to justify any use in the clinic with the risk of failing to make the desired change or of introducing unintended mutations still unacceptably high, the scientists and ethicists say.

“No clinical application of germline editing should be considered unless its long-term biological consequences are sufficiently understood – both for individuals and for the human species.”

The proposed moratorium does not however, apply to germline editing for research uses or in human somatic (non-reproductive) cells to treat diseases.

Professor Nie considers it significant that current presidents of the UK Royal Society, the US National Academy of Medicine and the Director and Associate Director of the US National Institute of Health have expressed their strong support for such a proposed global moratorium in two correspondences published in the same issue of Nature. The editorial in the issue also argues that the right decision can be reached “only through engaging more communities in the debate”.

“The most challenging questions are whether international organisations and different countries will adopt a moratorium and if yes, whether it will be effective at all,” Professor Nie says.

A March 14, 2019 news item on phys.org provides a précis of the Comment in Nature. Or, you ,can access the Comment with this link

Adopt a moratorium on heritable genome editing; Eric Lander, Françoise Baylis, Feng Zhang, Emmanuelle Charpentier, Paul Berg and specialists from seven countries call for an international governance framework.signed by: Eric S. Lander, Françoise Baylis, Feng Zhang, Emmanuelle Charpentier, Paul Berg, Catherine Bourgain, Bärbel Friedrich, J. Keith Joung, Jinsong Li, David Liu, Luigi Naldini, Jing-Bao Nie, Renzong Qiu, Bettina Schoene-Seifert, Feng Shao, Sharon Terry, Wensheng Wei, & Ernst-Ludwig Winnacker. Nature 567, 165-168 (2019) doi: 10.1038/d41586-019-00726-5

This Comment in Nature is open access.

World Health Organization (WHO) chimes in

Better late than never, eh? The World Health Organization has called heritable gene editing of humans ‘irresponsible’ and made recommendations. From a March 19, 2019 news item on the Canadian Broadcasting Corporation’s Online news webpage,

A panel convened by the World Health Organization said it would be “irresponsible” for scientists to use gene editing for reproductive purposes, but stopped short of calling for a ban.

The experts also called for the U.N. health agency to create a database of scientists working on gene editing. The recommendation was announced Tuesday after a two-day meeting in Geneva to examine the scientific, ethical, social and legal challenges of such research.

“At this time, it is irresponsible for anyone to proceed” with making gene-edited babies since DNA changes could be passed down to future generations, the experts said in a statement.

Germline editing has been on my radar since 2015 (see my May 14, 2015 posting) and the probability that someone would experiment with viable embryos and bring them to term shouldn’t be that much of a surprise.

Slow science from Canada

Canada has banned germline editing but there is pressure to lift that ban. (I touched on the specifics of the campaign in an April 26, 2019 posting.) This March 17, 2019 essay on The Conversation by Landon J Getz and Graham Dellaire, both of Dalhousie University (Nova Scotia, Canada) elucidates some of the discussion about whether research into germline editing should be slowed down.

Naughty (or Haughty, if you prefer) scientists

There was scoffing from some, if not all, members of the scientific community about the potential for ‘designer babies’ that can be seen in an excerpt from an article by Ed Yong for The Atlantic (originally published in my ,August 15, 2017 posting titled: CRISPR and editing the germline in the US (part 2 of 3): ‘designer babies’?),

Ed Yong in an Aug. 2, 2017 article for The Atlantic offered a comprehensive overview of the research and its implications (unusually for Yong, there seems to be mildly condescending note but it’s worth ignoring for the wealth of information in the article; Note: Links have been removed),

” … the full details of the experiment, which are released today, show that the study is scientifically important but much less of a social inflection point than has been suggested. “This has been widely reported as the dawn of the era of the designer baby, making it probably the fifth or sixth time people have reported that dawn,” says Alta Charo, an expert on law and bioethics at the University of Wisconsin-Madison. “And it’s not.”

Then about 15 months later, the possibility seemed to be realized.

Interesting that scientists scoffed at the public’s concerns (you can find similar arguments about robots and artificial intelligence not being a potentially catastrophic problem), yes? Often, nonscientists’ concerns are dismissed as being founded in science fiction.

To be fair, there are times when concerns are overblown, the difficulty is that it seems the scientific community’s default position is to uniformly dismiss concerns rather than approaching them in a nuanced fashion. If the scoffers had taken the time to think about it, germline editing on viable embryos seems like an obvious and inevitable next step (as I’ve noted previously).

At this point, no one seems to know if He actually succeeded at removing CCR5 from Lulu’s and Nana’s genomes. In November 2018, scientists were guessing that at least one of the twins was a ‘mosaic’. In other words, some of her cells did not include CCR5 while others did.

Parents, children, competition

A recent college admissions scandal in the US has highlighted the intense competition to get into high profile educational institutions. (This scandal brought to mind the Silicon Valey elite who wanted to know more about gene editing that might result in improved cognitive skills.)

Since it can be easy to point the finger at people in other countries, I’d like to note that there was a Canadian parent among these wealthy US parents attempting to give their children advantages by any means, legal or not. (Note: These are alleged illegalities.) From a March 12, 2019 news article by Scott Brown, Kevin Griffin, and Keith Fraser for the Vancouver Sun,

Vancouver businessman and former CFL [Canadian Football League] player David Sidoo has been charged with conspiracy to commit mail and wire fraud in connection with a far-reaching FBI investigation into a criminal conspiracy that sought to help privileged kids with middling grades gain admission to elite U.S. universities.

In a 12-page indictment filed March 5 [2019] in the U.S. District Court of Massachusetts, Sidoo is accused of making two separate US$100,000 payments to have others take college entrance exams in place of his two sons.

Sidoo is also accused of providing documents for the purpose of creating falsified identification cards for the people taking the tests.

In what is being called the biggest college-admissions scam ever prosecuted by the U.S. Justice Department, Sidoo has been charged with nearly 50 other people. Nine athletic coaches and 33 parents including Hollywood actresses Felicity Huffman and Lori Loughlin. are among those charged in the investigation, dubbed Operation Varsity Blues.

According to the indictment, an unidentified person flew from Tampa, Fla., to Vancouver in 2011 to take the Scholastic Aptitude Test (SAT) in place of Sidoo’s older son and was directed not to obtain too high a score since the older son had previously taken the exam, obtaining a score of 1460 out of a possible 2400.

A copy of the resulting SAT score — 1670 out of 2400 — was mailed to Chapman University, a private university in Orange, Calif., on behalf of the older son, who was admitted to and ultimately enrolled in the university in January 2012, according to the indictment.

It’s also alleged that Sidoo arranged to have someone secretly take the older boy’s Canadian high school graduation exam, with the person posing as the boy taking the exam in June 2012.

The Vancouver businessman is also alleged to have paid another $100,000 to have someone take the SAT in place of his younger son.

Sidoo, an investment banker currently serving as CEO of Advantage Lithium, was awarded the Order of B.C. in 2016 for his philanthropic efforts.

He is a former star with the UBC [University of British Columbia] Thunderbirds football team and helped the school win its first Vanier Cup in 1982. He went on to play five seasons in the CFL with the Saskatchewan Roughriders and B.C. Lions.

Sidoo is a prominent donor to UBC and is credited with spearheading an alumni fundraising campaign, 13th Man Foundation, that resuscitated the school’s once struggling football team. He reportedly donated $2 million of his own money to support the program.

Sidoo Field at UBC’s Thunderbird Stadium is named in his honour.

In 2016, he received the B.C. [British Columbia] Sports Hall of Fame’s W.A.C. Bennett Award for his contributions to the sporting life of the province.

The question of whether or not these people like the ‘Silicon Valley elite’ (mentioned in John Loeffler’s February 22, 2019 article) would choose to tinker with their children’s genome if it gave them an advantage, is still hypothetical but it’s easy to believe that at least some might seriously consider the possibility especially if the researcher or doctor didn’t fully explain just how little is known about the impact of tinkering with the genome. For example, there’s a big question about whether those parents in China fully understood what they signed up for.

By the way, cheating scandals aren’t new (see Vanity Fair’s Schools For Scandal; The Inside Dramas at 16 of America’s Most Elite Campuses—Plus Oxford! Edited by Graydon Carter, published in August 2018 and covering 25 years of the magazine’s reporting). On a similar line, there’s this March13, 2019 essay which picks apart some of the hierarchical and power issues at play in the US higher educational system which led to this latest (but likely not last) scandal.

Scientists under pressure

While Kofler’s February 26, 2019 Nature opinion piece and call to action seems to address the concerns regarding germline editing by advocating that scientists become more conscious of how their choices impact society, as I noted earlier, the ideas expressed seem a little ungrounded in harsh realities. Perhaps it’s time to give some recognition to the various pressures put on scientists from their own governments and from an academic environment that fosters ‘success’ at any cost to peer pressure, etc. (For more about the costs of a science culture focused on success, read this March 2, 2019 blog posting by Jon Tennant on digital-science.com for a breakdown.)

One other thing I should mention, for some scientists getting into the history books, winning Nobel prizes, etc. is a very important goal. Scientists are people too.

Some thoughts

There seems to be a great disjunction between what Richardson presents as an alternative narrative to the ‘gene-god’ and how genetic research is being performed and reported on. What is clear to me is that no one really understands genetics and this business of inserting and deleting genes is essentially research designed to satisfy curiosity and/or allay fears about being left behind in a great scientific race to a an unknown destination.

I’d like to see some better reporting and a more agile response by the scientific community, the various governments, and international agencies. What shape or form a more agile response might take, I don’t know but I’d like to see some efforts.

Back to the regular programme

There’s a lot about CRISPR here on this blog. A simple search of ‘CRISPR ‘in the blog’s search engine should get you more than enough information about the technology and the various issues ranging from intellectual property to risks and more.

The three part series (CRISPR and editing the germline in the US …), mentioned previously, was occasioned by the publication of a study on germline editing research with nonviable embryos in the US. The 2017 research was done at the Oregon Health and Science University by Shoukhrat Mitalipov following similar research published by Chinese scientists in 2015. The series gives relatively complete coverage of the issues along with an introduction to CRISPR and embedded video describing the technique. Here’s part 1 to get you started..

The Art of Science (Juan Geuer) on May 18, 2019 at Canada’s Science and Technology Museum in Ottawa

If you’re in Ottawa on May 18, 2019 and available from 1 – 1:30 pm and have paid your entry fee to the Canada Science and Technology Museum, there’s a special talk. From a ‘Curiosity on Stage’ event page,

Have you ever wondered what it’s like to work in the fields of science, technology, engineering, and math? Curiosity on Stage is a series of short, interactive presentations that brings you face-to-face with researchers and innovators. Each week, a featured speaker delivers an engaging presentation followed by an interactive Q-and-A session. Curiosity on Stage invites you to learn directly from people working in the science and technology-related fields. Find out what they do and why it matters – and leave inspired by their stories of curiosity, overcoming obstacles, and innovation.

While everyone is welcome on the Demo Stage, this program is recommended for ages 10+.

This week: Juan Geuer: The Science of Art

Courtesy Canada Science and Technology Museum

[Speaker:] Wendy Moir, Ottawa Art Gallery

Wendy Moir earned her Master’s degree in art history from Carleton University and a Bachelor of Arts in art history and English literature at Queen’s University. She is passionate about art education and has taught visual literacy at galleries in Kingston, Halifax, and Ottawa since 2003.  Wendy currently teaches Canadian art history in the diploma program at the Ottawa School of Art and is an educator at the Ottawa Art Gallery.

This week, Wendy will be showcasing the work of Juan Geuer. Juan Geuer’s art, along with seven other artists he either collaborated with, influenced, or worked with in parallel, is showcased in the Ottawa Art Gallery exhibition Carbon + Light: Juan Geuer’s Luminous Precision. This presentation discusses his life in the National Capital Region and his ground-breaking artwork that sits at the threshold between science and art.

I’d never heard of Juan Geuer before but the title for the current exhibition of his work at the Ottawa Art Gallery immediately caught my attention, CARBON + LIGHT
JUAN GEUER’S LUMINOUS PRECISION. Here’s the description from the exhibition webpage,

March 9 – August 18, 2019

Canadian artist Juan Geuer’s groundbreaking work sits in the threshold between science and art.

It bridges the human condition, in all its various states, and the carbon-based ecosystems and oxygenated atmospheres upon which we depend.

The exhibition Carbon + Light celebrates this artist’s significant legacy as a fearless truth seeker. Through his inventive approach to installation, he pointed out the onset of the Anthropocene long before the term emerged to denote the geological period in which we now find ourselves embedded. Here, Geuer’s work will be in dialogue with artists with whom he either collaborated, influenced, or worked with in parallel, from Michael Snow to Catherine Richards.

The exhibition will also showcase the importance of Ottawa as the site within which Geuer’s surprising practice emerged, suggesting that time and location were instrumental to his ability to develop his unique investigation.

CURATOR
Caroline Seck Langill

Here’s one of the images and my favourite of those featured on the gallery’s Juan Geuer exhibition page,

Juan Geuer (1917-2009), Et Amor Fati (For the Love of Canada), 2007, aluminium frame, adjustment mechanisms and Mylar map. Collection of the Ottawa Art Gallery. Gift of Else Geuer-Vermeij, 2013
Juan Geuer (1917 – 2009) Et Amor Fati (For the Love of Canada), 2007 aluminum frame, adjustment mechanisms, and Mylar map. Courtesy: Ottawa Gallery of Art

It’s free and you can find out more about the Ottawa Art Gallery here.

The National Gallery of Canada (also in Ottawa) Has collected some of Geuer’s work and has a biography,

Juan Geuer’s goal is “to study our perception beyond science and art and to investigate our creative ability for adapting new visions”.

For Juan Geuer science is an activity as creative, inspired, and dependent upon perception as art. He is interested in the parallels between scientists and artists and their respective involvements with observation — their attempts to view nature in ways ever more complete, the scientist with apparatus, formulae and statistics, the artist by attention and understanding of the filters that colour perception.

Juan Geuer was brought up in a family of Dutch artists and became himself an artist, working first in glass in the 1940s and later turning to easel painting and murals. He left Holland with his family just before the beginning of World War II and immigrated to Bolivia.

By the time he came to Canada in 1954, he had traveled widely and tried his hand at several professions. In Canada, he worked as a draftsman at the Dominion Observatory of the National Research Council through the late 50s, the 60s and the70s, where he was exposed daily to the beauties and intricacies of science. Having only a little academic background in science, he learned from the scientists and, always an independent thinker, drew his own conclusions. Geuer maintains that both science and art are creative endeavours requiring of their practitioners an open-mindedness and a willingness to accept nature’s surprises.

By the 1960s, Geuer had become disenchanted with the idea of producing art as a commodity for sale to a limited public; he began to seek alternatives that might better reflect the creativity in everyday life. Eventually he began to view his scientific activity as inseparable from his art. He turned from painting to making more conceptual work in the early 1970s. Juan Geuer’s interest in finding a meeting ground between science and art is clearly stated as a mission of his company, The Truth-Seeker Company, formed in 1973. Geuer sees science as a theoretical network of systems that can only be verified by referral to the real world, or nature. But that which we know as nature is still only a concept based on the perceptions of our senses. Science can extend sensory perception by instruments that enable us to observe and analyze nature, thereby enriching our understanding of it.

Conversely, art for Geuer requires an open attitude to nature, a willingness to accept what is given, if the artist is to act “as the mirror which transmutes itself into as many colours as exist in the things placed before it,” (Leonardo da Vinci’s quote on an artist’s purpose). Geuer reaffirms in his art the necessity of humanity maintaining an honest dialogue with nature.

Some of Geuer’s works incorporate scientific apparatus. Other works use or analyze natural phenomena, like the colours of polarized light or earthquake activity. For Geuer, the equipment and methods of science can be useful to the artist who cares to understand them and to use them to allow the ordinary person entry into the universes that science can reveal.

In Karonhia, 1990, a work owned by the National Gallery, a simple scientific device is at work in aid of the observation of nature – mirrors. The mirrors are positioned with precision to reflect the sky, providing an opportunity for observation of its changing colours and weather conditions. Designed in response to the conditions of the architecture, Karonhia which means “sky” in the Mohawk language, frames and reflects the sky in four directions from four observation points, providing a constant daytime show of natural visual phenomena that draws visitors’ attention to an aspect of nature that is sometimes taken for granted.

H20, another work in the Gallery’s collection incorporates sophisticated and original equipment used for the observation of another natural phenomenon, water. Laser light is passed through a drop of water as it forms, swells and falls from a controlled source. The water drop acts as both lens and image. Its image is projected onto a wall by the laser light passing through it, where the viewer can watch it, large-scale. The magnification is itself fascinating – one can see the surface tension of the drop, a force that for Geuer is a dynamic and mysterious force, believed to be based on hydrogen bonding, that permeates all biological processes. One might also see bacteria and other matter if they are present – each drop becomes a unique microcosm, observable for the duration of its existence. In H​20, Geuer brings the unimaginable into a form that can be perceived and contemplated.

Geuer has extensively exhibited his work both within Canada and internationally, in solo and group exhibitions. Key among his exhibitions were his showing of several pieces at the List Visual Arts Centre of MIT in 1986 and his solo exhibition in Rotterdam at the Museum Boymans-van Beuningen in 1985.

I’m going to end this post with a link to a film made by Ed Folger about one of Geuer’s most seminal works, WIS (Water in Suspense) but first, there’s this excerpt from a May 7, 2009 obituary on Canadian Broadcasting Corporation (CBC) online news,

Ed Folger, who is finishing a video that documents one of Geuer’s pieces, said Geuer was intent on showing people the underlying rhythms of the earth and making the imperceptible visible.

Geuer saw art in lasers and swinging pendulums and used them, along with mirrors, in many of his creations.

“If you just look at a drop of water, you can’t see the movement of the molecules, but if you put a laser through it, these fabulous patterns are projected out,” said Folger.

One of Geuer’s seminal pieces — a seismometer that records motion — is permanently installed at the Ottawa Art Gallery.

“Wonderment! He kept using that word over and over again. Wonderment. It’s what people should feel,” said Folger.

Unfortunately, much of Geuer’s work is too complicated to be shown often, said Folger.

Geuer’s website describes one creation, Hellot Glasses, made in 1996, as small mirrors that allow viewers to “live vicariously in one another’s gaze.”

In an interview he gave at the age of 91, Geuer gave a hint of how it might feel to look through his own gaze.

“Every day, I get up with this wonderful feeling, and I think I can do something new today, something nobody else has done. I will find something,” he said.

Here’s a link to Folger’s film, Water, Light and Chaos: Art by Juan Geuer. It’s on Vimeo and it’s about 20 minutes long.

May 2019: Canada and science, science, science—events

It seems May 2019 is destined to be a big month where science events in Canada are concerned. I have three national science science promotion programmes, Science Odyssey, Science Rendezvous, and Pint of Science Festival Canada (part of an international effort); two local (Vancouver, Canada) events, an art/sci café from Curiosity Collider and a SciCats science communication workshop; a national/local event at Ingenium’s Canada Science and Technology Museum in Ottawa, and an international social media (Twitter) event called #Museum Week.

Science Odyssey 2019 (formerly Science and Technology Week)

In 2016 the federal Liberal government rebranded a longstanding science promotion/education programme known as Science and Technology Week to Science Odyseey and moved it from the autumn to the spring. (Should you be curious about this change, there’s a video on YouTube with Minister of Science Kirsty Duncan and Parliamentary Secretary for Science Terry Beech launching “Science Odyssey, 10 days of innovation and science discovery.” My May 10, 2016 posting provides more details about the change.)

Moving forward to the present day, the 2019 edition of Science Odyseey will run from May 4 – May 19, 2019 for a whopping16 days. The Science Odyssey website can be found here.

Once you get to the website and choose your language, on the page where you land, you’ll find if you scroll down, there’s an option to choose a location (ignore the map until after you’ve successfully chosen a location and clicked on the filter button (it took me at least twice before achieving success; this seems to be a hit and miss affair).

Once you have applied the filter, the map will change and make more sense but I liked using the text list which appears after the filer has been applied better. Should you click on the map, you will lose the filtered text list and have to start over.

Science Rendezvous 2019

I’m not sure I’d call Science Rendezvous the largest science festival in Canada (it seems to me Beakerhead might have a chance at that title) but it did start in 2008 as its Wikipedia entry mentions (Note: Links have been removed),

Science Rendezvous is the largest [emphasis mine] science festival in Canada; its inaugural event happened across the Greater Toronto Area (GTA) on Saturday, May 10, 2008. By 2011 the event had gone national, with participation from research institutes, universities, science groups and the public from all across Canada – from Vancouver to St. John’s to Inuvik. Science Rendezvous is a registered not-for-profit organization dedicated to making great science accessible to the public. The 2017 event took place on Saturday May 13 at more than 40 simultaneous venues.

This free all-day event aims to highlight and promote great science in Canada. The target audience is the general public, parents, children and youth, with an ultimate aim of improving enrollment and investment in sciences and technology in the future.

Science Rendezvous is being held on May 11, 2019 and its website can be found here.You can find events listed by province here. There are no entries for Alberta, Nunavut, or Prince Edward Island this year.

Science Rendezvous seems to have a relationship to Science Odyssey, my guess is that they are receiving funds. In any case , you may find that an event on the Science Rendezvous site is also on the Science Odyssey site or vice versa, depending on where you start.

Pint of Science Festival (Canada)

The 2019 Pint of Science Festival will be in 25 cities across Canada from May 20 – 22, 2019. Reminiscent of the Café Scientifique events (Vancouver, Canada) where science and beer are closely interlinked, so it is with the Pint of Science Festival, which has its roots in the UK. (Later, I have something about Guelph, Ontario and its ‘beery’ 2019 Pint event.)

Here’s some history about the Canadian inception and its UK progenitor. From he Pint of Science of Festival Canada website, the About Us page,

About Us
Pint of Science is a non-profit organisation that brings some of the most brilliant scientists to your local pub to discuss their latest research and findings with you. You don’t need any prior knowledge, and this is your chance to meet the people responsible for the future of science (and have a pint with them). Our festival runs over a few days in May every year,but we occasionally run events during other months. 
 
A propos de nous 
Pinte de Science est une organisation à but non lucratif qui amène quelques brillants scientifiques dans un bar près de chez vous pour discuter de leurs dernières recherches et découvertes avec le public. Vous n’avez besoin d’aucune connaissance préalable, et c’est l’occasion de rencontrer les responsables de l’avenir de la science (et de prendre une pinte avec eux). Notre festival se déroule sur quelques jours au mois de mai chaque année, mais nous organisons parfois quelques événements exceptionnels en dehors des dates officielles du festival.
 
History 
In 2012 Dr Michael Motskin and Dr Praveen Paul were two research scientists at Imperial College London in the UK. They started and organised an event called ‘Meet the Researchers’. It brought people affected by Parkinson’s, Alzheimer’s, motor neurone disease and multiple sclerosis into their labs to show them the kind of research they do. It was inspirational for both visitors and researchers. They thought if people want to come into labs to meet scientists, why not bring the scientists out to the people? And so Pint of Science was born. In May 2013 they held the first Pint of Science festival in just three UK cities. It quickly took off around the world and is now in nearly 300 cities. Read more here. Pint of Science Canada held its first events in 2016, a full list of locations can be found here.
 
L’Histoire
 En 2012, Dr Michael Motskin et Dr Praveen Paul étaient deux chercheurs à l’Imperial College London, au Royaume-Uni. Ils ont organisé un événement intitulé «Rencontrez les chercheurs» et ont amené les personnes atteintes de la maladie de Parkinson, d’Alzheimer, de neuropathie motrice et de sclérose en plaques dans leurs laboratoires pour leur montrer le type de recherche qu’ils menaient. C’était une source d’inspiration pour les visiteurs et les chercheurs. Ils ont pensé que si les gens voulaient se rendre dans les laboratoires pour rencontrer des scientifiques, pourquoi ne pas les faire venir dans des bars? Et ainsi est née une Pinte de Science. En mai 2013, ils ont organisé le premier festival Pinte de Science dans trois villes britanniques. Le festival a rapidement décollé dans le monde entier et se trouve maintenant dans près de 300 villes. Lire la suite ici . Pinte de Science Canada a organisé ses premiers événements en 2016. Vous trouverez une liste complète des lieux ici.

Tickets and programme are available as of today, May 1, 2019. Just go here: https://pintofscience.ca/locations/

I clicked on ‘Vancouver’ and found a range of bars, dates, and topics. It’s worth checking out every topic because the title doesn’t necessarily get the whole story across. Kudos to the team putting this together. Where these things are concderned, I don’t get surprised often. Here’s how it happened, I was expecting another space travel story when I saw this title: ‘Above and beyond: planetary science’. After clicking on the arrow,

Geology isn’t just about the Earth beneath our feet. Join us for an evening out of this world to discover what we know about the lumps of rock above our heads too!

Thank you for the geology surprise. As for the international part of this festival, you can find at least one bar in Europe, Asia and Australasia, the Americas, and Africa.

Beer and Guelph (Ontario)

I also have to tip my hat to Science Borealis (Canada’s science blog aggregator) for the tweet which led me to Pint of Science Guelph and a very special beer/science ffestival announcement,


Pint of Science Guelph will be held over three nights (May 20, 21, and 22) at six different venues, and will feature twelve different speakers. Each venue will host two speakers with talks ranging from bridging the digital divide to food fraud to the science of bubbles and beer. There will also be trivia and lots of opportunity to chat with the various researchers to learn more about what they do, and why they do it.

But wait! There’s more! Pint of Science Guelph is (as far as I’m aware) the first Pint of Science (2019) in Canada to have its own beer. Thanks to the awesome folks at Wellington Brewery, a small team of Pint of Science Guelph volunteers and speakers spent last Friday at the brewery learning about the brewing process by making a Brut IPA. This tasty beverage will be available as part of the Pint of Science celebration. Just order it by name – Brain Storm IPA.

Curiosity Collider (Vancouver, Canada)

The (Curiosity) Collider Café being held on May 8, 2019 is affiliated with Science Odyssey. From the Collider Café event webpage,

Credit: Michael Markowsky

Details,

Collider Cafe: Art. Science. Journeys.

Date/Time
Date(s) – 08/05/2019
8:00 pm – 9:30 pm
Location
Pizzeria Barbarella [links to address information]
654 E Broadway , Vancouver, BC

#ColliderCafe is a space for artists, scientists, makers, and anyone interested in art+science. Meet. Discover. Connect. Create. Are you curious?

Join us at “Collider Cafe: Art. Science. Journeys.” to explore how art and science intersect in the exploration of curiosity

//New location! Special thanks to Pizzeria Barbarella for hosting this upcoming Collider Cafe!//
 
* Michael Markowsky (visual art): The Dawn of the Artist-Astronaut
* Jacqueline Firkins (costume design): Fashioning Cancer: The Correlation between Destruction and Beauty
* Garvin Chinnia (visual art): Triops Journey
* Bob Pritchard (music technology): A Moving Experience: Gesture Tracking for Performance
 
The event starts promptly at 8pm (doors open at 7:30pm). $5.00-10.00 (sliding scale) cover at the door. Proceeds will be used to cover the cost of running this event, and to fund future Curiosity Collider events. Curiosity Collider is a registered BC non-profit organization.

Visit our Facebook page to let us know you are coming, and see event updates and speaker profiles.

You can find a map and menu information for Pizzeria Barbarella here. If memory serves, the pizzeria was named after the owner’s mother. I can’t recall if Barbarella was a nickname or a proper name.

I thought I recognized Jacqueline Firkins’ name and it turns out that I profiled her work on cancer fashion in a March 21, 2014 posting.

SciCats and a science communication workshop (in Vancouver)

I found the workshop announcement in a May 1, 2019 Curiosity Collider newsletter received via email,


May 5 [2019] Join the Fundamentals of Science Communication Workshop by SciCATs, and network with other scicomm enthusiasts. Free for grad students!

I found more information about the workshop on the SciCATs’ Fundamentals of Science Communication registration page (I’ve highlighted the portions that tell you the time commitement, the audience, and the contents),

SciCATs (Science Communication Action Team, uh, something) is a collective of science communicators (and cat fans) providing free, open source, online, skills-based science communication training, resources, and in-person workshops.

We believe that anyone, anywhere should be able to learn the why and the how of science communication!

For the past two years, SciCATs has been developing online resources and delivering science communication workshops to diverse groups of those interested in science communication. We are now hosting an open, public event to help a broader audience of those passionate about science to mix, mingle, and build their science communication skills – all while having fun.

SciCATs’ Fundamentals of Science Communication is a three-hour interactive workshop [emphasis mine] followed by one hour of networking.

For this event, our experienced SciCATs facilitators will lead the audience through our most-requested science communication modules:
Why communicate science
Finding your message
Telling your science as a story
Understanding your audience
[emphasis mine]

This workshop is ideal for people who are new to science communication [empahsis mine] or those who are more experienced. You might be an undergraduate or graduate student, researcher, technician, or other roles that have an interest in talking to the public about what you do. Perhaps you just want to hang out and meet some local science communicators. This is a great place to do it!

After the workshop we have a reservation at Chaqui Grill (1955 Cornwall), it will be a great opportunity to continue to network with all of the Sci-Cats and science communicators that attend over a beverage! They do have a full dinner menu as well.

Date and Time
Sun, May 5, 2019
2:00 PM – 5:00 PM PDT

Location
H.R. MacMillan Space Centre
1100 Chestnut Street
Vancouver, BC V6J 3J9

Refund Policy
Refunds up to 1 day before event

You can find out more about SciCats and its online resources here.

da Vinci in Canada from May 2 to September 2, 2019

This show is a big deal and it’s about to open in Ottawa in our national Science and Technology Museum (one of the Ingenium museums of science), which makes it national in name and local in practice since most of us will not make it to Ottawa during the show’s run.

Here’s more from the Leonardo da Vinci – 500 Years of Genius exhibition webpage, (Note: A transcript is included)

Canada Science and Technology Museum from May 2 to September 2, 2019.

For the first time in Canada, the Canada Science and Technology Museum presents Leonardo da Vinci – 500 Years of Genius, the most comprehensive exhibition experience on Leonardo da Vinci to tour the world. Created by Grande Exhibitions in collaboration with the Museo Leonardo da Vinci in Rome and a number of experts and historians from Italy and France, this interactive experience commemorates 500 years of Leonardo’s legacy, immersing visitors in his extraordinary life like never before.

Transcript

Demonstrating the full scope of Leonardo da Vinci’s achievements, Leonardo da Vinci – 500 Years of Genius celebrates one of the most revered and dynamic intellects of all time. Revolutionary SENSORY4™ technology allows visitors to take a journey into the mind of the ultimate Renaissance man for the very first time.

Discover for yourself the true genius of Leonardo as an inventor, artist, scientist, anatomist, engineer, architect, sculptor and philosopher. See and interact with over 200 unique displays, including machine inventions, life-size reproductions of Leonardo’s Renaissance art, entertaining animations giving insight into his most notable works, and touchscreen versions of his actual codices.

Leonardo da Vinci – 500 Years of Genius also includes the world’s exclusive Secrets of Mona Lisa exhibition – an analysis of the world’s most famous painting, conducted at the Louvre Museum by renowned scientific engineer, examiner and photographer of fine art Pascal Cotte.

Whether you are a history aficionado or discovering Leonardo for the first time, Leonardo da Vinci – 500 Years of Genius is an entertaining, educational and enlightening experience the whole family will love.

For a change I’ve placed the video after its transcript,

The April 30, 2019 Ingenium announcement (received via email) hints at something a little more exciting than walking around and looking at cases,

Discover the true genius of Leonardo as an inventor, artist, scientist, anatomist, engineer, architect, sculptor, and philosopher. See and interact with more than 200 unique displays, including machine inventions, life-size reproductions of Leonardo’s Renaissance art, touchscreen versions of his life’s work, and an immersive, walkthrough cinematic experience. Leonardo da Vinci – 500 Years of Genius [includes information about entry fees] the exclusive Secrets of Mona Lisa exhibition – an analysis of the world’s most famous painting.

I imagine there will be other events associated with this exhbition but for now there’s an opening night event, which is part of the museum’s Curiosity on Stage series (ticket purchase here),

Curiosity on Stage: Evening Edition – Leonardo da Vinci: 500 Years of Genius

Join the Italian Embassy and the Canada Science and Technology Museum for an evening of discussion and discovery on the quintessential Renaissance man, Leonardo da Vinci.
Invited speakers from the Galileo Museum in Italy, Carleton University, and the University of Ottawa will explore the historical importance of da Vinci’s diverse body of work, as well as the lasting impact of his legacy on science, technology, and art in our age.

Be among the first to visit the all-new exhibition “Leonardo da Vinci – 500 Years of Genius”! Your Curiosity on Stage ticket will grant you access to the exhibit in its entirety, which includes life-size reproductions of Leonardo’s art, touchscreen versions of his codices, and so much more!

Speakers:
Andrea Bernardoni (Galileo Museum) – Senior Researcher
Angelo Mingarelli (Carleton University) – Mathematician
Hanan Anis (University of Ottawa) – Professor in Electrical and Computer Engineering
Lisa Leblanc (Canada Science and Technology Museum) – Director General; Panel Moderator

Read about their careers here.

Join the conversation and share your thoughts using the hashtag #CuriosityOnStage.

Agenda:
5:00 – 6:30 pm: Explore the “Leonardo da Vinci: 500 Years of Genius” exhibit. Light refreshments and networking opportunities.
6:30 – 8:30 pm: Presentations and Panel discussion
Cost:
Members: $7
Students: $7 with discount code “SALAI” (valid student ID required on night of event)
Non-members: $10
*Parking fees are included with admission.

Tickets are not yet sold out.

#Museum Week 2019

#Museum Week (website) is being billed as “The first worldwide cultural event on social networks. The latest edition is being held from May 13 – 19, 2019. As far as I’m aware, it’s held on Twitter exclusively. You can check out the hash tag feed (#Museum Week) as it’s getting quite active even now.

They don’t have a list of participants for this year which leaves me feeling a little sad. It’s kind of fun to check out how many and which institutions in your country are planning to participate. I would have liked to have seen whether or not the Canada Science and Technology Museum and Science World Vancouver will be there. (I think both participated last year.) Given how busy the hash tag feed becomes during the event, I’m not likely to see them on it even if they’re tweeting madly.

May 2019 looks to be a very busy month for Canadian science enthusiasts! No matter where you are there is something for you.

Gene editing and personalized medicine: Canada

Back in the fall of 2018 I came across one of those overexcited pieces about personalized medicine and gene editing tha are out there. This one came from an unexpected source, an author who is a “PhD Scientist in Medical Science (Blood and Vasculature” (from Rick Gierczak’s LinkedIn profile).

It starts our promisingly enough although I’m beginning to dread the use of the word ‘precise’  where medicine is concerned, (from a September 17, 2018 posting on the Science Borealis blog by Rick Gierczak (Note: Links have been removed),

CRISPR-Cas9 technology was accidentally discovered in the 1980s when scientists were researching how bacteria defend themselves against viral infection. While studying bacterial DNA called clustered regularly interspaced short palindromic repeats (CRISPR), they identified additional CRISPR-associated (Cas) protein molecules. Together, CRISPR and one of those protein molecules, termed Cas9, can locate and cut precise regions of bacterial DNA. By 2012, researchers understood that the technology could be modified and used more generally to edit the DNA of any plant or animal. In 2015, the American Association for the Advancement of Science chose CRISPR-Cas9 as science’s “Breakthrough of the Year”.

Today, CRISPR-Cas9 is a powerful and precise gene-editing tool [emphasis mine] made of two molecules: a protein that cuts DNA (Cas9) and a custom-made length of RNA that works like a GPS for locating the exact spot that needs to be edited (CRISPR). Once inside the target cell nucleus, these two molecules begin editing the DNA. After the desired changes are made, they use a repair mechanism to stitch the new DNA into place. Cas9 never changes, but the CRISPR molecule must be tailored for each new target — a relatively easy process in the lab. However, it’s not perfect, and occasionally the wrong DNA is altered [emphasis mine].

Note that Gierczak makes a point of mentioning that CRISPR/Cas9 is “not perfect.” And then, he gets excited (Note: Links have been removed),

CRISPR-Cas9 has the potential to treat serious human diseases, many of which are caused by a single “letter” mutation in the genetic code (A, C, T, or G) that could be corrected by precise editing. [emphasis mine] Some companies are taking notice of the technology. A case in point is CRISPR Therapeutics, which recently developed a treatment for sickle cell disease, a blood disorder that causes a decrease in oxygen transport in the body. The therapy targets a special gene called fetal hemoglobin that’s switched off a few months after birth. Treatment involves removing stem cells from the patient’s bone marrow and editing the gene to turn it back on using CRISPR-Cas9. These new stem cells are returned to the patient ready to produce normal red blood cells. In this case, the risk of error is eliminated because the new cells are screened for the correct edit before use.

The breakthroughs shown by companies like CRISPR Therapeutics are evidence that personalized medicine has arrived. [emphasis mine] However, these discoveries will require government regulatory approval from the countries where the treatment is going to be used. In the US, the Food and Drug Administration (FDA) has developed new regulations allowing somatic (i.e., non-germ) cell editing and clinical trials to proceed. [emphasis mine]

The potential treatment for sickle cell disease is exciting but Gierczak offers no evidence that this treatment or any unnamed others constitute proof that “personalized medicine has arrived.” In fact, Goldman Sachs, a US-based investment bank, makes the case that it never will .

Cost/benefit analysis

Edward Abrahams, president of the Personalized Medicine Coalition (US-based), advocates for personalized medicine while noting in passing, market forces as represented by Goldman Sachs in his May 23, 2018 piece for statnews.com (Note: A link has been removed),

One of every four new drugs approved by the Food and Drug Administration over the last four years was designed to become a personalized (or “targeted”) therapy that zeros in on the subset of patients likely to respond positively to it. That’s a sea change from the way drugs were developed and marketed 10 years ago.

Some of these new treatments have extraordinarily high list prices. But focusing solely on the cost of these therapies rather than on the value they provide threatens the future of personalized medicine.

… most policymakers are not asking the right questions about the benefits of these treatments for patients and society. Influenced by cost concerns, they assume that prices for personalized tests and treatments cannot be justified even if they make the health system more efficient and effective by delivering superior, longer-lasting clinical outcomes and increasing the percentage of patients who benefit from prescribed treatments.

Goldman Sachs, for example, issued a report titled “The Genome Revolution.” It argues that while “genome medicine” offers “tremendous value for patients and society,” curing patients may not be “a sustainable business model.” [emphasis mine] The analysis underlines that the health system is not set up to reap the benefits of new scientific discoveries and technologies. Just as we are on the precipice of an era in which gene therapies, gene-editing, and immunotherapies promise to address the root causes of disease, Goldman Sachs says that these therapies have a “very different outlook with regard to recurring revenue versus chronic therapies.”

Let’s just chew on this one (contemplate)  for a minute”curing patients may not be ‘sustainable business model’!”

Coming down to earth: policy

While I find Gierczak to be over-enthused, he, like Abrahams, emphasizes the importance of new policy, in his case, the focus is Canadian policy. From Gierczak’s September 17, 2018 posting (Note: Links have been removed),

In Canada, companies need approval from Health Canada. But a 2004 law called the Assisted Human Reproduction Act (AHR Act) states that it’s a criminal offence “to alter the genome of a human cell, or in vitroembryo, that is capable of being transmitted to descendants”. The Actis so broadly written that Canadian scientists are prohibited from using the CRISPR-Cas9 technology on even somatic cells. Today, Canada is one of the few countries in the world where treating a disease with CRISPR-Cas9 is a crime.

On the other hand, some countries provide little regulatory oversight for editing either germ or somatic cells. In China, a company often only needs to satisfy the requirements of the local hospital where the treatment is being performed. And, if germ-cell editing goes wrong, there is little recourse for the future generations affected.

The AHR Act was introduced to regulate the use of reproductive technologies like in vitrofertilization and research related to cloning human embryos during the 1980s and 1990s. Today, we live in a time when medical science, and its role in Canadian society, is rapidly changing. CRISPR-Cas9 is a powerful tool, and there are aspects of the technology that aren’t well understood and could potentially put patients at risk if we move ahead too quickly. But the potential benefits are significant. Updated legislation that acknowledges both the risks and current realities of genomic engineering [emphasis mine] would relieve the current obstacles and support a path toward the introduction of safe new therapies.

Criminal ban on human gene-editing of inheritable cells (in Canada)

I had no idea there was a criminal ban on the practice until reading this January 2017 editorial by Bartha Maria Knoppers, Rosario Isasi, Timothy Caulfield, Erika Kleiderman, Patrick Bedford, Judy Illes, Ubaka Ogbogu, Vardit Ravitsky, & Michael Rudnicki for (Nature) npj Regenerative Medicine (Note: Links have been removed),

Driven by the rapid evolution of gene editing technologies, international policy is examining which regulatory models can address the ensuing scientific, socio-ethical and legal challenges for regenerative and personalised medicine.1 Emerging gene editing technologies, including the CRISPR/Cas9 2015 scientific breakthrough,2 are powerful, relatively inexpensive, accurate, and broadly accessible research tools.3 Moreover, they are being utilised throughout the world in a wide range of research initiatives with a clear eye on potential clinical applications. Considering the implications of human gene editing for selection, modification and enhancement, it is time to re-examine policy in Canada relevant to these important advances in the history of medicine and science, and the legislative and regulatory frameworks that govern them. Given the potential human reproductive applications of these technologies, careful consideration of these possibilities, as well as ethical and regulatory scrutiny must be a priority.4

With the advent of human embryonic stem cell research in 1978, the birth of Dolly (the cloned sheep) in 1996 and the Raelian cloning hoax in 2003, the environment surrounding the enactment of Canada’s 2004 Assisted Human Reproduction Act (AHRA) was the result of a decade of polarised debate,5 fuelled by dystopian and utopian visions for future applications. Rightly or not, this led to the AHRA prohibition on a wide range of activities, including the creation of embryos (s. 5(1)(b)) or chimeras (s. 5(1)(i)) for research and in vitro and in vivo germ line alterations (s. 5(1)(f)). Sanctions range from a fine (up to $500,000) to imprisonment (up to 10 years) (s. 60 AHRA).

In Canada, the criminal ban on gene editing appears clear, the Act states that “No person shall knowingly […] alter the genome of a cell of a human being or in vitro embryo such that the alteration is capable of being transmitted to descendants;” [emphases mine] (s. 5(1)(f) AHRA). This approach is not shared worldwide as other countries such as the United Kingdom, take a more regulatory approach to gene editing research.1 Indeed, as noted by the Law Reform Commission of Canada in 1982, criminal law should be ‘an instrument of last resort’ used solely for “conduct which is culpable, seriously harmful, and generally conceived of as deserving of punishment”.6 A criminal ban is a suboptimal policy tool for science as it is inflexible, stifles public debate, and hinders responsiveness to the evolving nature of science and societal attitudes.7 In contrast, a moratorium such as the self-imposed research moratorium on human germ line editing called for by scientists in December 20158 can at least allow for a time limited pause. But like bans, they may offer the illusion of finality and safety while halting research required to move forward and validate innovation.

On October 1st, 2016, Health Canada issued a Notice of Intent to develop regulations under the AHRA but this effort is limited to safety and payment issues (i.e. gamete donation). Today, there is a need for Canada to revisit the laws and policies that address the ethical, legal and social implications of human gene editing. The goal of such a critical move in Canada’s scientific and legal history would be a discussion of the right of Canadians to benefit from the advancement of science and its applications as promulgated in article 27 of the Universal Declaration of Human Rights9 and article 15(b) of the International Covenant on Economic, Social and Cultural Rights,10 which Canada has signed and ratified. Such an approach would further ensure the freedom of scientific endeavour both as a principle of a liberal democracy and as a social good, while allowing Canada to be engaged with the international scientific community.

Even though it’s a bit old, I still recommend reading the open access editorial in full, if you have the time.

One last thing abut the paper, the acknowledgements,

Sponsored by Canada’s Stem Cell Network, the Centre of Genomics and Policy of McGill University convened a ‘think tank’ on the future of human gene editing in Canada with legal and ethics experts as well as representatives and observers from government in Ottawa (August 31, 2016). The experts were Patrick Bedford, Janetta Bijl, Timothy Caulfield, Judy Illes, Rosario Isasi, Jonathan Kimmelman, Erika Kleiderman, Bartha Maria Knoppers, Eric Meslin, Cate Murray, Ubaka Ogbogu, Vardit Ravitsky, Michael Rudnicki, Stephen Strauss, Philip Welford, and Susan Zimmerman. The observers were Geneviève Dubois-Flynn, Danika Goosney, Peter Monette, Kyle Norrie, and Anthony Ridgway.

Competing interests

The authors declare no competing interests.

Both McGill and the Stem Cell Network pop up again. A November 8, 2017 article about the need for new Canadian gene-editing policies by Tom Blackwell for the National Post features some familiar names (Did someone have a budget for public relations and promotion?),

It’s one of the most exciting, and controversial, areas of health science today: new technology that can alter the genetic content of cells, potentially preventing inherited disease — or creating genetically enhanced humans.

But Canada is among the few countries in the world where working with the CRISPR gene-editing system on cells whose DNA can be passed down to future generations is a criminal offence, with penalties of up to 10 years in jail.

This week, one major science group announced it wants that changed, calling on the federal government to lift the prohibition and allow researchers to alter the genome of inheritable “germ” cells and embryos.

The potential of the technology is huge and the theoretical risks like eugenics or cloning are overplayed, argued a panel of the Stem Cell Network.

The step would be a “game-changer,” said Bartha Knoppers, a health-policy expert at McGill University, in a presentation to the annual Till & McCulloch Meetings of stem-cell and regenerative-medicine researchers [These meetings were originally known as the Stem Cell Network’s Annual General Meeting {AGM}]. [emphases mine]

“I’m completely against any modification of the human genome,” said the unidentified meeting attendee. “If you open this door, you won’t ever be able to close it again.”

If the ban is kept in place, however, Canadian scientists will fall further behind colleagues in other countries, say the experts behind the statement say; they argue possible abuses can be prevented with good ethical oversight.

“It’s a human-reproduction law, it was never meant to ban and slow down and restrict research,” said Vardit Ravitsky, a University of Montreal bioethicist who was part of the panel. “It’s a sort of historical accident … and now our hands are tied.”

There are fears, as well, that CRISPR could be used to create improved humans who are genetically programmed to have certain facial or other features, or that the editing could have harmful side effects. Regardless, none of it is happening in Canada, good or bad.

In fact, the Stem Cell Network panel is arguably skirting around the most contentious applications of the technology. It says it is asking the government merely to legalize research for its own sake on embryos and germ cells — those in eggs and sperm — not genetic editing of embryos used to actually get women pregnant.

The highlighted portions in the last two paragraphs of the excerpt were written one year prior to the claims by a Chinese scientist that he had run a clinical trial resulting in gene-edited twins, Lulu and Nana. (See my my November 28, 2018 posting for a comprehensive overview of the original furor). I have yet to publish a followup posting featuring the news that the CRISPR twins may have been ‘improved’ more extensively than originally realized. The initial reports about the twins focused on an illness-related reason (making them HIV ‘immune’) but made no mention of enhanced cognitive skills a side effect of eliminating the gene that would make them HIV ‘immune’. To date, the researcher has not made the bulk of his data available for an in-depth analysis to support his claim that he successfully gene-edited the twins. As well, there were apparently seven other pregnancies coming to term as part of the researcher’s clinical trial and there has been no news about those births.

Risk analysis innovation

Before moving onto the innovation of risk analysis, I want to focus a little more on at least one of the risks that gene-editing might present. Gierczak noted that CRISPR/Cas9 is “not perfect,” which acknowledges the truth but doesn’t convey all that much information.

While the terms ‘precision’ and ‘scissors’ are used frequently when describing the CRISPR technique, scientists actually mean that the technique is significantly ‘more precise’ than other techniques but they are not referencing an engineering level of precision. As for the ‘scissors’, it’s an analogy scientists like to use but in fact CRISPR is not as efficient and precise as a pair of scissors.

Michael Le Page in a July 16, 2018 article for New Scientist lays out some of the issues (Note: A link has been removed),

A study of CRIPSR suggests we shouldn’t rush into trying out CRISPR genome editing inside people’s bodies just yet. The technique can cause big deletions or rearrangements of DNA [emphasis mine], says Allan Bradley of the Wellcome Sanger Institute in the UK, meaning some therapies based on CRISPR may not be quite as safe as we thought.

The CRISPR genome editing technique is revolutionising biology, enabling us to create new varieties of plants and animals and develop treatments for a wide range of diseases.

The CRISPR Cas9 protein works by cutting the DNA of a cell in a specific place. When the cell repairs the damage, a few DNA letters get changed at this spot – an effect that can be exploited to disable genes.

At least, that’s how it is supposed to work. But in studies of mice and human cells, Bradley’s team has found that in around a fifth of cells, CRISPR causes deletions or rearrangements more than 100 DNA letters long. These surprising changes are sometimes thousands of letters long.

“I do believe the findings are robust,” says Gaetan Burgio of the Australian National University, an expert on CRISPR who has debunked previous studies questioning the method’s safety. “This is a well-performed study and fairly significant.”

I covered the Bradley paper and the concerns in a July 17, 2018 posting ‘The CRISPR ((clustered regularly interspaced short palindromic repeats)-CAS9 gene-editing technique may cause new genetic damage kerfuffle‘. (The ‘kerfufle’ was in reference to a report that the CRISPR market was affected by the publication of Bradley’s paper.)

Despite Health Canada not moving swiftly enough for some researchers, they have nonetheless managed to release an ‘outcome’ report about a consultation/analysis started in October 2016. Before getting to the consultation’s outcome, it’s interesting to look at how the consultation’s call for response was described (from Health Canada’s Toward a strengthened Assisted Human Reproduction Act ; A Consultation with Canadians on Key Policy Proposals webpage),

In October 2016, recognizing the need to strengthen the regulatory framework governing assisted human reproduction in Canada, Health Canada announced its intention to bring into force the dormant sections of the Assisted Human Reproduction Act  and to develop the necessary supporting regulations.

This consultation document provides an overview of the key policy proposals that will help inform the development of regulations to support bringing into force Section 10, Section 12 and Sections 45-58 of the Act. Specifically, the policy proposals describe the Department’s position on the following:

Section 10: Safety of Donor Sperm and Ova

  • Scope and application
  • Regulated parties and their regulatory obligations
  • Processing requirements, including donor suitability assessment
  • Record-keeping and traceability

Section 12: Reimbursement

  • Expenditures that may be reimbursed
  • Process for reimbursement
  • Creation and maintenance of records

Sections 45-58: Administration and Enforcement

  • Scope of the administration and enforcement framework
  • Role of inspectors designated under the Act

The purpose of the document is to provide Canadians with an opportunity to review the policy proposals and to provide feedback [emphasis mine] prior to the Department finalizing policy decisions and developing the regulations. In addition to requesting stakeholders’ general feedback on the policy proposals, the Department is also seeking input on specific questions, which are included throughout the document.

It took me a while to find the relevant section (in particular, take note of ‘Federal Regulatory Oversight’),

3.2. AHR in Canada Today

Today, an increasing number of Canadians are turning to AHR technologies to grow or build their families. A 2012 Canadian studyFootnote 1 found that infertility is on the rise in Canada, with roughly 16% of heterosexual couples experiencing infertility. In addition to rising infertility, the trend of delaying marriage and parenthood, scientific advances in cryopreserving ova, and the increasing use of AHR by LGBTQ2 couples and single parents to build a family are all contributing to an increase in the use of AHR technologies.

The growing use of reproductive technologies by Canadians to help build their families underscores the need to strengthen the AHR Act. While the approach to regulating AHR varies from country to country, Health Canada has considered international best practices and the need for regulatory alignment when developing the proposed policies set out in this document. …

3.2.1 Federal Regulatory Oversight

Although the scope of the AHR Act was significantly reduced in 2012 and some of the remaining sections have not yet been brought into force, there are many important sections of the Act that are currently administered and enforced by Health Canada, as summarized generally below:

Section 5: Prohibited Scientific and Research Procedures
Section 5 prohibits certain types of scientific research and clinical procedures that are deemed unacceptable, including: human cloning, the creation of an embryo for non-reproductive purposes, maintaining an embryo outside the human body beyond the fourteenth day, sex selection for non-medical reasons, altering the genome in a way that could be transmitted to descendants, and creating a chimera or a hybrid. [emphasis mine]

….

It almost seems as if the they were hiding the section that broached the human gene-editing question. It doesn’t seem to have worked as it appears, there are some very motivated parties determined to reframe the discussion. Health Canada’s ‘outocme’ report, published March 2019, What we heard: A summary of scanning and consultations on what’s next for health product regulation reflects the success of those efforts,

1.0 Introduction and Context

Scientific and technological advances are accelerating the pace of innovation. These advances are increasingly leading to the development of health products that are better able to predict, define, treat, and even cure human diseases. Globally, many factors are driving regulators to think about how to enable health innovation. To this end, Health Canada has been expanding beyond existing partnerships and engaging both domestically and internationally. This expanding landscape of products and services comes with a range of new challenges and opportunities.

In keeping up to date with emerging technologies and working collaboratively through strategic partnerships, Health Canada seeks to position itself as a regulator at the forefront of health innovation. Following the targeted sectoral review of the Health and Biosciences Sector Regulatory Review consultation by the Treasury Board Secretariat, Health Canada held a number of targeted meetings with a broad range of stakeholders.

This report outlines the methodologies used to look ahead at the emerging health technology environment, [emphasis mine] the potential areas of focus that resulted, and the key findings from consultations.

… the Department identified the following key drivers that are expected to shape the future of health innovation:

  1. The use of “big data” to inform decision-making: Health systems are generating more data, and becoming reliant on this data. The increasing accuracy, types, and volume of data available in real time enable automation and machine learning that can forecast activity, behaviour, or trends to support decision-making.
  2. Greater demand for citizen agency: Canadians increasingly want and have access to more information, resources, options, and platforms to manage their own health (e.g., mobile apps, direct-to-consumer services, decentralization of care).
  3. Increased precision and personalization in health care delivery: Diagnostic tools and therapies are increasingly able to target individual patients with customized therapies (e.g., individual gene therapy).
  4. Increased product complexity: Increasingly complex products do not fit well within conventional product classifications and standards (e.g., 3D printing).
  5. Evolving methods for production and distribution: In some cases, manufacturers and supply chains are becoming more distributed, challenging the current framework governing production and distribution of health products.
  6. The ways in which evidence is collected and used are changing: The processes around new drug innovation, research and development, and designing clinical trials are evolving in ways that are more flexible and adaptive.

With these key drivers in mind, the Department selected the following six emerging technologies for further investigation to better understand how the health product space is evolving:

  1. Artificial intelligence, including activities such as machine learning, neural networks, natural language processing, and robotics.
  2. Advanced cell therapies, such as individualized cell therapies tailor-made to address specific patient needs.
  3. Big data, from sources such as sensors, genetic information, and social media that are increasingly used to inform patient and health care practitioner decisions.
  4. 3D printing of health products (e.g., implants, prosthetics, cells, tissues).
  5. New ways of delivering drugs that bring together different product lines and methods (e.g., nano-carriers, implantable devices).
  6. Gene editing, including individualized gene therapies that can assist in preventing and treating certain diseases.

Next, to test the drivers identified and further investigate emerging technologies, the Department consulted key organizations and thought leaders across the country with expertise in health innovation. To this end, Health Canada held seven workshops with over 140 representatives from industry associations, small-to-medium sized enterprises and start-ups, larger multinational companies, investors, researchers, and clinicians in Ottawa, Toronto, Montreal, and Vancouver. [emphases mine]

The ‘outocme’ report, ‘What we heard …’, is well worth reading in its entirety; it’s about 9 pp.

I have one comment, ‘stakeholders’ don’t seem to include anyone who isn’t “from industry associations, small-to-medium sized enterprises and start-ups, larger multinational companies, investors, researchers, and clinician” or from “Ottawa, Toronto, Montreal, and Vancouver.” Aren’t the rest of us stakeholders?

Innovating risk analysis

This line in the report caught my eye (from Health Canada’s Toward a strengthened Assisted Human Reproduction Act ; A Consultation with Canadians on Key Policy Proposals webpage),

There is increasing need to enable innovation in a flexible, risk-based way, with appropriate oversight to ensure safety, quality, and efficacy. [emphases mine]

It reminded me of the 2019 federal budget (from my March 22, 2019 posting). One comment before proceeding, regulation and risk are tightly linked and, so, by innovating regulation they are by exttension alos innovating risk analysis,

… Budget 2019 introduces the first three “Regulatory Roadmaps” to specifically address stakeholder issues and irritants in these sectors, informed by over 140 responses [emphasis mine] from businesses and Canadians across the country, as well as recommendations from the Economic Strategy Tables.

Introducing Regulatory Roadmaps

These Roadmaps lay out the Government’s plans to modernize regulatory frameworks, without compromising our strong health, safety, and environmental protections. They contain proposals for legislative and regulatory amendments as well as novel regulatory approaches to accommodate emerging technologies, including the use of regulatory sandboxes and pilot projects—better aligning our regulatory frameworks with industry realities.

Budget 2019 proposes the necessary funding and legislative revisions so that regulatory departments and agencies can move forward on the Roadmaps, including providing the Canadian Food Inspection Agency, Health Canada and Transport Canada with up to $219.1 million over five years, starting in 2019–20, (with $0.5 million in remaining amortization), and $3.1 million per year on an ongoing basis.

In the coming weeks, the Government will be releasing the full Regulatory Roadmaps for each of the reviews, as well as timelines for enacting specific initiatives, which can be grouped in the following three main areas:

What Is a Regulatory Sandbox? Regulatory sandboxes are controlled “safe spaces” in which innovative products, services, business models and delivery mechanisms can be tested without immediately being subject to all of the regulatory requirements.
– European Banking Authority, 2017

Establishing a regulatory sandbox for new and innovative medical products
The regulatory approval system has not kept up with new medical technologies and processes. Health Canada proposes to modernize regulations to put in place a regulatory sandbox for new and innovative products, such as tissues developed through 3D printing, artificial intelligence, and gene therapies targeted to specific individuals. [emphasis mine]

Modernizing the regulation of clinical trials
Industry and academics have expressed concerns that regulations related to clinical trials are overly prescriptive and inconsistent. Health Canada proposes to implement a risk-based approach [emphasis mine] to clinical trials to reduce costs to industry and academics by removing unnecessary requirements for low-risk drugs and trials. The regulations will also provide the agri-food industry with the ability to carry out clinical trials within Canada on products such as food for special dietary use and novel foods.

Does the government always get 140 responses from a consultation process? Moving on, I agree with finding new approaches to regulatory processes and oversight and, by extension, new approaches to risk analysis.

Earlier in this post, I asked if someone had a budget for public relations/promotion. I wasn’t joking. My March 22, 2019 posting also included these line items in the proposed 2019 budget,

Budget 2019 proposes to make additional investments in support of the following organizations:
Stem Cell Network: Stem cell research—pioneered by two Canadians in the 1960s [James Till and Ernest McCulloch]—holds great promise for new therapies and medical treatments for respiratory and heart diseases, spinal cord injury, cancer, and many other diseases and disorders. The Stem Cell Network is a national not-for-profit organization that helps translate stem cell research into clinical applications and commercial products. To support this important work and foster Canada’s leadership in stem cell research, Budget 2019 proposes to provide the Stem Cell Network with renewed funding of $18 million over three years, starting in 2019–20.

Genome Canada: The insights derived from genomics—the study of the entire genetic information of living things encoded in their DNA and related molecules and proteins—hold the potential for breakthroughs that can improve the lives of Canadians and drive innovation and economic growth. Genome Canada is a not-for-profit organization dedicated to advancing genomics science and technology in order to create economic and social benefits for Canadians. To support Genome Canada’s operations, Budget 2019 proposes to provide Genome Canada with $100.5 million over five years, starting in 2020–21. This investment will also enable Genome Canada to launch new large-scale research competitions and projects, in collaboration with external partners, ensuring that Canada’s research community continues to have access to the resources needed to make transformative scientific breakthroughs and translate these discoveries into real-world applications.

Years ago, I managed to find a webpage with all of the proposals various organizations were submitting to a government budget committee. It was eye-opening. You can tell which organizations were able to hire someone who knew the current government buzzwords and the things that a government bureaucrat would want to hear and the organizations that didn’t.

Of course, if the government of the day is adamantly against or uninterested, no amount of persusasion will work to get your organization more money in the budget.

Finally

Reluctantly, I am inclined to explore the topic of emerging technologies such as gene-editing not only in the field of agriculture (for gene-editing of plants, fish, and animals see my November 28, 2018 posting) but also with humans. At the very least, it needs to be discussed whether we choose to participate or not.

If you are interested in the arguments against changing Canada’s prohibition against gene-editing of humans, there’s an Ocotber 2, 2017 posting on Impact Ethics by Françoise Baylis, Professor and Canada Research Chair in Bioethics and Philosophy at Dalhousie University, and Alana Cattapan, Johnson Shoyama Graduate School of Public Policy at the University of Saskatchewan, which makes some compelling arguments. Of course, it was written before the CRISPR twins (my November 28, 2018 posting).

Recaliing CRISPR Therapeutics (mentioned by Gierczak), the company received permission to run clinical trials in the US in October 2018 after the FDA (US Food and Drug Administration) lifted an earlier ban on their trials according to an Oct. 10, 2018 article by Frank Vinhuan for exome,

The partners also noted that their therapy is making progress outside of the U.S. They announced that they have received regulatory clearance in “multiple countries” to begin tests of the experimental treatment in both sickle cell disease and beta thalassemia, …

It seems to me that the quotes around “multiple countries” are meant to suggest doubt of some kind. Generally speaking, company representatives make those kinds of generalizations when they’re trying to pump up their copy. E.g., 50% increase in attendance  but no whole numbers to tell you what that means. It could mean two people attended the first year and then brought a friend the next year or 100 people attended and the next year there were 150.

Despite attempts to declare personalized medicine as having arrived, I think everything is still in flux with no preordained outcome. The future has yet to be determined but it will be and I , for one, would like to have some say in the matter.

A biotech talk: Re – [Generating, Creating, Interpreting] on Tuesday, April 30, 2019 at 5:30 pm in Toronto, Ontario (Canada)

[downloaded from https://artscisalon.com/re-generating-creating-interpreting-tuesday-april-30-530-pm-ocadu/]

This image is intriguing as it’s being used to illustrate an ArtSci Salon April 30, 2019 event about biotechnology (from the Re – [Generating, Creating, Interpreting] event webpage),

Re – [Generating, Creating, Interpreting]

Conversations about Life

We live in strange times. We mourn for the countless lives we are losing to extinction, famine, severe weather and disease; we celebrate the possibility that science may assist us in preserving what we have and in regenerating what is no more. We aspire to re-create long gone species and proceed to create new one. Biotechnologies both terrify and invigorate us. We are torn between creating risk free futures and taking exciting Promethean risks. We claim that biotech can create a more democratic society; yet, we are increasingly racist, sexist and classist.

What’s at stake? How can life unfold from here? How do we reinterpret and re-imagine it? Join us for a series of brief presentations and a following juicy discussion. There will be refreshments. …And juice

With:

Joana Magalhães
Institute of Biomedical Research, A Coruña (INIBIC)

Polona Tratnik
Research Institute for Humanities, Alma Mater Europaea, Ljubljana

Roberta Buiani
Centre for Feminist Research, York University, Toronto

Moderated by:

Dolores Steinman
Biomedical Simulation Lab (BSL)

Tuesday, April 30
5.30 pm

OCADU (Ontario College of Art and Design University)
DF Salon, Room 701K  (7th floor)
205 Richmond St W

RSVP  https://www.facebook.com/events/811144362603498/

For the curious, here are the bios (also from the Re – [Generating, Creating, Interpreting] event webpage),

Roberta Buiani (PhD Communication and Culture, YorkU) is an interdisciplinary artist, media scholar and curator based in Toronto. She is the co-founder of the ArtSci Salon at the Fields Institute for Research in Mathematical Sciences (Toronto) and co-organizer of LASER Toronto. Her recent SSHRC-funded research creation project draws on feminist technoscience and on collaborative encounters across the sciences and the arts to investigate emerging life forms exceeding the categories defined by traditional methods of classification. Her artistic work has travelled to art festivals (Transmediale; Hemispheric Institute Encuentro; Brazil), community centres and galleries (the Free Gallery Toronto; Immigrant Movement International, Queens, Myseum of Toronto), and science institutions (RPI; the Fields Institute). Her writing has appeared on Space and Culture, Cultural Studies and The Canadian Journal of Communication among others. With the ArtSci Salon she has launched a series of experiments in “squatting academia”, by re-populating abandoned spaces and cabinets across university campuses with SciArt installations. Currently, she is a research associate at the Centre for Feminist Research at York University. ArtSci Salon website: https://artscisalon.com Personal http://atomarborea.net

Joana Magalhães holds a B.Sc. in Biology and a Ph.D. in Biochemistry and Molecular Biology. She is a Postdoctoral Researcher at the Institute of Biomedical Research of A Coruña, Spain, working in the field of regenerative medicine strategies for osteoarthritis. Previous positions include a Postdoctoral Fellowship at the Spanish Networking Biomedical Center and a Marie Curie PhD Fellowship at the Spanish Council for Scientific Research. In parallel with her scientific career, she develops STEAM-for-health media strategies from a gender perspective that received several national and international awards (Science on Stage 2017 for Radio, Press and TV or SCI-DOC Festival Mention of honour Women in Science Category 2018). Currently, she is Correspondent for “Women in Science” at Efervesciencia Radio Program. Moreover, she was a scientist-in-residence at Fundación Luis Seoane and Artesacía Theatrical Company for “TRANSCÉNICA” – I Transmedia Creators Meeting (2015). She is the Spanish Representative at the Young Scientist Forum – European Society of Biomaterials and Board Member of the Association of Women in Science and Technology (AMIT) – Galician Node. http://jomagellan.tumblr.com

Dolores Steinman Biomedical Simulation Lab, University of Toronto.

Dr. Steinman’s involvement with the Biomedical Simulation Laboratory (BSL), at the University of Toronto, is based on her experience as an MD (Romania) and PhD in Cell Biology (Canada) that led her to contribute in situating the BSL’s “patient-specific” computer-based simulations in the socio-historical, ethical and aesthetic context of medical imaging and imagery.

Polona Tratnik, Ph.D., is Dean of Alma Mater Europaea – Institutum Studiorum Humanitatis, Faculty and Research Institute for Humanities, Ljubljana [Slovenia], where she is a Professor and Head of Research as well. She also teaches courses at the Faculty for Media and Communication at Singidunum University in Serbia, at the Academy of Fine Arts and Design of the University of Ljubljana, at the Faculty of Education of the University of Maribor and at the Faculty for Design of the University of Primorska. She used to be the Head of the Department for Cultural Studies at the Faculty for Humanities of the University of Primorska. In 2012 she was a Fulbright Visiting Scholar, as well as a Guest Professor at the University of California Santa Cruz. She was a Guest Professor also at the Capital Normal University Bejing (China), at the Faculty for Art and Design Helsinki TAIK (Finland), and at the Universidad Nacional Autónoma de México(Mexico City). She is president of the Slovenian Society of Aesthetics (since 2011) and an Executive Committee Member of the International Association of Aesthetics. She has authored seven monographs and one proceeding as single author, including the Hacer-vivir más allá del cuerpo y del medio (Mexico City: Herder, 2013), Art as Intervention(Sophia, 2017) and Conquest of Body. Biopower with Biotechnology (Springer, 2017). Polona Tratnik is a pioneer bio artist exhibiting worldwide at shows such as Ars Electronica festival and BEAP festival in Perth .http://www.polona-tratnik.si

It should be a stimulating discussion although I am curious as to about omission from this list: “… biotech can create a more democratic society; yet, we are increasingly racist, sexist and classist. ” What about age or, more specifically, ageism? Maybe next time, eh?

Wizards wanted for Canadian federal government positions

The final (you may want to apply as soon as possible) deadline for applying is August 30, 2019 and the salary range is from $57,000 $61,000. (H/T: Liz Haq’s March 27, 2019 article for Huffington Post Canada.) While this might seem like a departure from my usual fare, it’s possible there’s some science involved since the Treasury Board President, Joyce Murray, is also the Minister of Digital Government and that ‘ministry’ is tightly interwoven with the Treasury Board Secretariat. Other than having a deputy minister and chief information office, Alex Benay, who reports to the Treasury Board President, there doesn’t appear to be an office or even a webpage dedicated to this ‘ministry’. You can find the Office of the Chief Information Officer in the Treasury Board’s Organizational Structure webpage. Moving on.

Has there been anything this whimsical from any Canadian government (pick your jurisdiction, federal, provincial, or municipal) job posting since the fabled 1960s and 70s? From the Government of Canada Jobs webpage hosting: AS-02 Various Administrative Wizardry Positions – INVENTORY (Note: I’ve changed some of the formatting),

Work environment
Are you a Gryffindor (brave, loyal, courageous and adventurous), a Ravenclaw (wise, creative, clever and knowledgeable) a Hufflepuff (hard working, dedicated, fair, patient) or a Slytherin (resourceful, ambitious, determined and crave leadership)?

No matter what ‘house’ you belong to, Treasury Board of Canada Secretariat (TBS) has various teams that we would love to use our ‘sorting hat’ to place you into. We are looking for strong and motivated candidates that are interested in making an impact on Canadian citizens. With our Talent Management Program, we will help you grow, learn and further develop your magical career within the Public Service. Come and let TBS become your home away from home!

Intent of the process
We will conduct the first random selection of applicants – also known as “wizards” – on April 8, 2019. Therefore, if you would like to increase your chance of being considered in this first group, please ensure to submit your application by April 7, 2019.

A pool of partially qualified persons resulting from this process WILL be created and WILL be used to fill similar positions with linguistic profiles (Bilingual Imperative BBB/BBB and CBC/CBC. In order to continue creating a diverse workforce, some positions may be filled on a bilingual Non-Imperative BBB/BBB and CBC/CBC basis for the following Employment Equity groups: Indigenous Persons, Visible Minorities and Persons with Disabilities) as well as tenures (please refer to Employment Tenure section of this poster) that may vary according to the position being staffed. This pool may be used to staff similar positions in other organizations within the core public administration (http://www.psc-cfp.gc.ca/plcy-pltq/rfli-lirf/index-eng.htm). By applying to this process, you consent to your personal application-related information being shared with other government departments interested in staffing similar positions.

Positions to be filled: Number to be determined
Information you must provide
Your résumé.
In order to be considered, your application must clearly explain how you meet the following (essential qualifications)
Education:
• A secondary school diploma or an acceptable combination of education, training and/or experience.
Degree equivalency
Experience:
• Significant* experience in providing administrative support services;
• Significant* experience in processing, tracking and proof reading documents such as reports, letters, briefing notes, memos or correspondence;
• Experience liaising with and providing advice or guidance to management, staff or clients.

*Significant experience is defined as having performed the duties for a minimum of one (1) year.
The following will be applied / assessed at a later date (essential for the job)
Various language requirements
Bilingual Imperative BBB/BBB and CBC/CBC
Bilingual Non-Imperative BBB/BBB and CBC/CBC. In order to continue creating a diverse workforce, some positions may be filled on a bilingual Non-Imperative BBB/BBB and CBC/CBC basis for the following Employment Equity groups: Indigenous Persons, Visible Minorities and Persons with Disabilities
Information on language requirements
Second Language Writing Skills Self-Assessment
In order to help you decide if you should apply to a bilingual position, an optional self-assessment of your writing skills in your second official language is available for you to take before completing your application.
For more information, please consult:
Unsupervised Internet Test of Second Language Writing Skills
Competencies:
• Demonstrates integrity and respect;
• Thinking things through;
• Working effectively with others;
• Showing initiative and being action-oriented.
Abilities:
• Ability to communicate effectively in writing;
• Ability to communicate effectively orally.
Personal Suitability:
• Reliability;
• Attention to detail.
The following may be applied / assessed at a later date (may be needed for the job)
Asset Qualifications (Although these are not mandatory to be found qualified in this appointment process, you must clearly demonstrate in your resume how you meet the asset criterion if you respond yes.)

Experience:
• Experience working in a legal environment;
• Experience working in a Human Resources environment;
• Experience in using a human resources information management system;
• Experience providing functional support and advice to clients on systems;
• Experience working with advanced Excel functions (for example: macros, pivot tables, formulas, etc.);
• Experience working in a security environment or related field;
• Experience in scheduling and coordinating an Executives calendar (EX-01 level or equivalent or above);
• Experience supervising/managing a team;
• Experience in providing budget support and financial services;
• Experience organizing events or government travel arrangements;
• Experience working on a project or program;
• Experience working in a communication environment;
• Experience working in accommodations or facilities management.
Other information

The Public Service of Canada is committed to building a skilled and diverse workforce that reflects the Canadians we serve. We promote employment equity and encourage you to indicate if you belong to one of the designated groups when you apply.
Information on employment equity

We will communicate with you about this process by email. As a result, you must update your Public Service Resourcing System profile if it changes as well as advise us of these changes via email. Applicants should use an email address that accepts messages from unknown senders (some email systems block such messages).

Come join TBS the “Hogwarts” of the Public Service!
Preference
Preference will be given to veterans and to Canadian citizens, in that order, with the exception of a job located in Nunavut, where Nunavut Inuit will be appointed first.
Information on the preference to veterans
We thank all those who apply. Only those selected for further consideration will be contacted.
Contact information
AS-02 Inventory team / “Dumbledore’s army”
AS02.TBS-AS02.SCT@tbs-sct.gc.ca

Apply online

Here are a few more details that might help you decide if you want to ‘throw your hat in’, from the Government of Canada Jobs webpage hosting: AS-02 Various Administrative Wizardry Positions – INVENTORY (Note: I’ve changed some of the formatting),

Treasury Board of Canada Secretariat
Ottawa (Ontario)
AS-02
Permanent, acting and temporary
$57,430 to $61,877

For further information on the organization, please visit Treasury Board of Canada Secretariat
The Cracking the Code video helps people who are looking for a new career with the Government of Canada to navigate the application process step by step.
Closing date: 30 August 2019 – 23:59, Pacific Time
Who can apply: Persons residing in Canada and Canadian citizens residing abroad. Apply online

I think they’re trying to introduce some fresh air into the federal civil service (or public service, if you prefer) . It is badly needed if the about-to-be former Clerk of the Privy Council (Canada’s top ranking bureaucrat), Michael Wernick is any indication of the state of our government bureaucracy (from a March 18, 2019 news item on CTV [Canadian Television] news online),

He [Martin Wernick] was directly named by Jody Wilson-Raybould [former Attorney General and Justice Minister] as one of the senior officials who she alleges was involved in a “sustained effort” to politically interfere in the criminal prosecution of SNC-Lavalin. She accused Wernick of issuing “veiled threats” if she did not change her mind about instructing federal prosecutors to pursue a remediation agreement rather than continuing with the criminal trial.

During his two appearances before the House Justice Committee on this matter, Wernick delivered direct and sometimes terse responses to MPs’ questions about his alleged involvement. He denied ever making any threats in relation to Wilson-Raybould’s handling of the criminal case against the Quebec company, as she had alleged.

He also raised eyebrows during his first round of testimony when he offered off-topic opening remarks on the state of online discourse, partisanship and the prospect of political assassinations in the upcoming campaign. [emphases mine]

In addition to concerns over his behaviour and perceived partisan comments as part of the SNC-Lavalin affair, MPs have also registered their discomfort with a related role he held: being part of a high-level panel responsible for deciding when and how to inform Canadians about concerning online behaviour during an election campaign.

NDP MP and ethics critic Charlie Angus sent an open letter to Prime Minister Justin Trudeau prior to Wernick’s second round of testimony, saying that Wernick was “deeply compromised,” has “overstepped his role,” and could not remain in his position

In the video clips I’ve seen of Wernick’s testimony before the Justice Committee , he seemed a little condescending and arrogant. If you want to see for yourself, there’s an embedded video of the CTV report on Wernick’s resignation in the March 18, 2019 CTV news item, which includes some of his testimony.

Altered virus spins gold into beads

They’re not calling this synthetic biology but I’ m pretty sure that altering a virus gene so the virus can spin gold (Rumpelstiltskin anyone?) qualifies. From an August 24, 2018 news item on ScienceDaily,

The race is on to find manufacturing techniques capable of arranging molecular and nanoscale objects with precision.

Engineers at the University of California, Riverside, have altered a virus to arrange gold atoms into spheroids measuring a few nanometers in diameter. The finding could make production of some electronic components cheaper, easier, and faster.

An August 23, 2018 University of California at Riverside (UCR) news release (also on EurekAlett) by Holly Ober, which originated the news item, adds detail,

“Nature has been assembling complex, highly organized nanostructures for millennia with precision and specificity far superior to the most advanced technological approaches,” said Elaine Haberer, a professor of electrical and computer engineering in UCR’s Marlan and Rosemary Bourns College of Engineering and senior author of the paper describing the breakthrough. “By understanding and harnessing these capabilities, this extraordinary nanoscale precision can be used to tailor and build highly advanced materials with previously unattainable performance.”

Viruses exist in a multitude of shapes and contain a wide range of receptors that bind to molecules. Genetically modifying the receptors to bind to ions of metals used in electronics causes these ions to “stick” to the virus, creating an object of the same size and shape. This procedure has been used to produce nanostructures used in battery electrodes, supercapacitors, sensors, biomedical tools, photocatalytic materials, and photovoltaics.

The virus’ natural shape has limited the range of possible metal shapes. Most viruses can change volume under different scenarios, but resist the dramatic alterations to their basic architecture that would permit other forms.

The M13 bacteriophage, however, is more flexible. Bacteriophages are a type of virus that infects bacteria, in this case, gram-negative bacteria, such as Escherichia coli, which is ubiquitous in the digestive tracts of humans and animals. M13 bacteriophages genetically modified to bind with gold are usually used to form long, golden nanowires.

Studies of the infection process of the M13 bacteriophage have shown the virus can be converted to a spheroid upon interaction with water and chloroform. Yet, until now, the M13 spheroid has been completely unexplored as a nanomaterial template.

Haberer’s group added a gold ion solution to M13 spheroids, creating gold nanobeads that are spiky and hollow.

“The novelty of our work lies in the optimization and demonstration of a viral template, which overcomes the geometric constraints associated with most other viruses,” Haberer said. “We used a simple conversion process to make the M13 virus synthesize inorganic spherical nanoshells tens of nanometers in diameter, as well as nanowires nearly 1 micron in length.”

The researchers are using the gold nanobeads to remove pollutants from wastewater through enhanced photocatalytic behavior.

The work enhances the utility of the M13 bacteriophage as a scaffold for nanomaterial synthesis. The researchers believe the M13 bacteriophage template transformation scheme described in the paper can be extended to related bacteriophages.

Here’s a link to and a citation for the paper,

M13 bacteriophage spheroids as scaffolds for directed synthesis of spiky gold nanostructures by Tam-Triet Ngo-Duc, Joshua M. Plank, Gongde Chen, Reed E. S. Harrison, Dimitrios Morikis, Haizhou Liu, and Elaine D. Haberer. Nanoscale, 2018,10, 13055-13063 DOI: 10.1039/C8NR03229G First published on 25 Jun 2018

This paper is behind a paywall.

For another example of genetic engineering and synthetic biology, see my July 18, 2018 posting: Genetic engineering: an eggplant in Bangladesh and a synthetic biology grant at Concordia University (Canada).

For anyone unfamiliar with the Rumpelstiltskin fairytale about spinning straw into gold, see its Wikipedida entry.

FrogHeart and the year ending/beginning—2018 into 2019

I’m not sure I’m ready to take another look at my Friday, December 28, 2018 posting; at this point, I’m feeling embarrassed at being so cranky that I forgot to note how much I have appreciated WordPress software over the years. It should also be noted that the updated ‘linki’ function in WordPress 5.0 is easier to use. Unfortunately, that’s all I can find to praise but my fingers are crossed in hope that the issues I’ve identified are resolved or on the way to resolution at some point in the next six months or so. Meanwhile, I’m going to change things here and my first thought is: less frequent posting.

To be fair, I have been considering a change in frequency for some months now and this WordPress 5.0 imbroglio may be just what I needed to kickstart my vague plan into action.

2018 in review

Rough roundup of site statistics

For some reason readership from the Ukraine has skyrocketed into one of my top five countries for readers in December 2018. Over the last few years, Canadian readership has finally cracked into the top five although it doesn’t happen every month. The French have shown an unprecedented level of interest by creeping into my top five and the Brits after being a mainstay in my top five have become a little less interested thereby sliding out of a regular spot in the top five but remaining in the top 10. China and the US readerships after intermittently competing for the top position for several months have been overtaken, as noted earlier, by the Ukrainians with the Russians in second place. Meanwhile, China has slipped to the 10th spot in this last month of 2018.

Musings on the Canadian scene

I don’t have a lot to say about the Canadian science scene other than we seem to be getting better about making news about research more publicly available. Also, the Canadian art/science (also known as sciart) community taking form. Perhaps would be that there’s a nascent community that appears to be reaching a critical mass.

  • A Dec. 10, 2018 posting on the Science Borealis blog lists residencies for artists who want to work with scientists.
  • Beakerhead is an art/science/engineering festival held in Calgary, Alberta.
  • ArtSci Salon at the University of Toronto has organized a number of art/sci events.
  • Tech Art Fair being held at the Ontario Science Centre (see my December 20, 2018 posting about the call for submissions)
  • Curiosity Collider in Vancouver regularly holds art/sci events and they have a calendar of other local art/sci events. They are planning a larger than usual event, Collisions Festival (see more about the proposed festivel in my November 14, 2018 posting; scroll down)

There’s a lot more too. You can try ‘art/sci’ as a search term on this blog and there’s always Duck Duck, Bing, Google, etc. where I’d also use ‘art/sci’, ‘art/science’, ‘sciart’, and any other variant that I could imagine along with ‘Canada’ to find other Canadian organizations and events.

Happy New Year 2019!

Joyeux Noël! Science raps for Christmas 2018!

I received a December 17, 2018 email from Baba Brinkman, a Canadian rapper who lives in New York City these days and who has often graced this blog. He has an offer for those of us lucky enough to be in New York City from December 27, 2018 to mid-February 2019 ,

If you’re looking for a last minute present for someone you know in New York, get them the gift of thought-provoking entertainment with a Rap Guide Gift Card, good for any one of my three off-Broadway shows set to open on December 27th at the Soho Playhouse. Don’t know if you have any friends in New York? Just type “my friends who live in new york” into a Facebook search and be enlightened.

To recap, in 2011 I moved to NYC to perform Rap Guide to Evolution off-Broadway. The show was a hit, nominated for a Drama Desk Award with a glowing review in the New York Times, and I started working with Soho Playhouse artistic director Darren Lee Cole to develop several new hip-hop theatre productions that tackle major topics in science. A series was born.

In 2015 I had the opportunity to perform Rap Guide to Climate Chaos at the UN Paris Climate Conference, followed by a six month off-Broadway run, and earlier this year we presented Rap Guide to Consciousness for an eight-month run, exploring the latest neuroscience research on human thoughts and experiences. This year alone I have performed Consciousness more than 90 times, so I’m ready for a break!

Too bad. The Soho Playhouse recently offered me the chance to present three of my shows in rotation, with 32 performances scheduled through late February. How could I say no?

So all this week I’m in rehearsals, then a brief respite for Christmas cheer, and then next Thursday [Dec. 27, 2018] it’s off to the races. This three show assembly is a grand experiment, designed around the principle that my overall project is more than the sum of its parts. What project is that? Simply the challenge of creatively sharing the findings of science that help us answer the big questions: who are we, where did we come from, and where might we go?

Got any friends who might be interested in that? Send them my way!

Enjoy and to all, a Merry Christmas, Happy Hanukkah, Happy Solstice, Happy Saturnalia, Happy Kwanzaa, and all other winter celebrations!