Tag Archives: Norway

Tamarind shells turned into carbon nanosheets for supercapacitors

Fro anyone who needs a shot of happiness, this is a very happy scientist,

Caption: Assistant Professor (Steve) Cuong Dang, from NTU’s School of Electrical and Electronic Engineering, who led the study, displaying pieces of tamarind shell, which were integral to the study. Credit to NTU Singapore

A July 14, 2021 news item on ScienceDaily describes the source of assistant professor (Steve) Cuong Dang’s happiness,

Shells of tamarind, a tropical fruit consumed worldwide, are discarded during food production. As they are bulky, tamarind shells take up a considerable amount of space in landfills where they are disposed as agricultural waste.

However, a team of international scientists led by Nanyang Technological University, Singapore (NTU Singapore) has found a way to deal with the problem. By processing the tamarind shells which are rich in carbon, the scientists converted the waste material into carbon nanosheets, which are a key component of supercapacitors – energy storage devices that are used in automobiles, buses, electric vehicles, trains, and elevators.

The study reflects NTU’s commitment to address humanity’s grand challenges on sustainability as part of its 2025 strategic plan, which seeks to accelerate the translation of research discoveries into innovations that mitigate our impact on the environment.

A July 14, 2021 NTU press release (also here [scroll down to click on the link to the full press release] and on EurekAlert but published July 13, 2021), which originated the news item, delves further into the topic,

he team, made up of researchers from NTU Singapore, the Western Norway University of Applied Sciences in Norway, and Alagappa University in India, believes that these nanosheets, when scaled up, could be an eco-friendly alternative to their industrially produced counterparts, and cut down on waste at the same time.

Assistant Professor (Steve) Cuong Dang, from NTU’s School of Electrical and Electronic Engineering, who led the study, said: “Through a series of analysis, we found that the performance of our tamarind shell-derived nanosheets was comparable to their industrially made counterparts in terms of porous structure and electrochemical properties. The process to make the nanosheets is also the standard method to produce active carbon nanosheets.”

Professor G. Ravi, Head, Department of Physics, who co-authored the study with Asst Prof Dr R. Yuvakkumar, who are both from Alagappa University, said: “The use of tamarind shells may reduce the amount of space required for landfills, especially in regions in Asia such as India, one of the world’s largest producers of tamarind, which is also grappling with waste disposal issues.”

The study was published in the peer-reviewed scientific journal Chemosphere in June [2021].

The step-by-step recipe for carbon nanosheets

To manufacture the carbon nanosheets, the researchers first washed tamarind fruit shells and dried them at 100°C for around six hours, before grinding them into powder.

The scientists then baked the powder in a furnace for 150 minutes at 700-900 degrees Celsius in the absence of oxygen to convert them into ultrathin sheets of carbon known as nanosheets.

Tamarind shells are rich in carbon and porous in nature, making them an ideal material from which to manufacture carbon nanosheets.

A common material used to produce carbon nanosheets are industrial hemp fibres. However, they require to be heated at over 180°C for 24 hours – four times longer than that of tamarind shells, and at a higher temperature. This is before the hemp is further subjected to intense heat to convert them into carbon nanosheets.

Professor Dhayalan Velauthapillai, Head of the research group for Advanced Nanomaterials for Clean Energy and Health Applications at Western Norway University of Applied Sciences, who participated in the study, said: “Carbon nanosheets comprise of layers of carbon atoms arranged in interconnecting hexagons, like a honeycomb. The secret behind their energy storing capabilities lies in their porous structure leading to large surface area which help the material to store large amounts of electric charges.”

The tamarind shell-derived nanosheets also showed good thermal stability and electric conductivity, making them promising options for energy storage.

The researchers hope to explore larger scale production of the carbon nanosheets with agricultural partners. They are also working on reducing the energy needed for the production process, making it more environmentally friendly, and are seeking to improve the electrochemical properties of the nanosheets.

The team also hopes to explore the possibility of using different types of fruit skins or shells to produce carbon nanosheets.

Here’s a link to and a citation for the paper,

Cleaner production of tamarind fruit shell into bio-mass derived porous 3D-activated carbon nanosheets by CVD technique for supercapacitor applications by V. Thirumal, K. Dhamodharan, R. Yuvakkumar, G. Ravi, B. Saravanakumar, M. Thambidurai, Cuong Dang, Dhayalan Velauthapillai. Chemosphere Volume 282, November 2021, 131033 DOI: https://doi.org/10.1016/j.chemosphere.2021.131033 Available online 2 June 2021.

This paper is behind a paywall.

Because we could all do with a little more happiness these days,

Caption: (L-R) Senior Research Fellow Dr Thambidurai Mariyappan, also from NTU’s School of Electrical and Electronic Engineering, who was part of the study, and Asst Prof Dang, holding up tamarind pods. Credit to NTU Singapore

Toronto’s (Canada) ArtSci Salon offers: Naturalized Encounters (a series of international, networked meals known as “Follow the Spread” starting Sunday, October 3, 2021

My September 26, 2021 Art/Sci Salon notice (received via email) provides these details,

Naturalization = The ecological phenomenon in which a species, taxon, or population of exotic (as opposed to native) origin integrates into a given ecosystem, becoming capable of reproducing and growing in it, and proceeds to disseminate spontaneously. In some instances, the presence of a species in a given ecosystem is so ancient that it cannot be presupposed whether it is native or introduced
How does adaptation through naturalization occur? What happens to the native population? How does coexistence happen?

Our first event will revolve around the Solanum Melongena, a plant species in the nightshade family Solanaceae commonly known as the eggplant. This plant (and the many different names it goes by Aubergine, Melanzana, Brinjal, Berenjena, باذنجان, vânătă, 茄子,بادمجان) uncertain origins, grown worldwide for its edible fruit. Eggplants exist in many shapes, sizes and colors.

Our event will be a harvest potluck, with dialogues, storytelling, and exchanges about and beyond food. Our guests will engage in creative interventions to reflect on the many ways food, and food mobility affects all sentient beings, both humans and non-humans; peoples and civilizations; individuals’ health and collective traditions. Food is nourishment, care, medicine, and art. Food is political. Food is ultimately about our survival.

This is the first of a series of networked meals titled “FOLLOW THE SPREAD,” which will be staged around the world and across time zones throughout Fall 2021-Spring 2022 in Canada (October 3, Spring 2022), Norway (October 7), the Netherlands and Taiwan (Spring 2022).

Join us online to meet 10 Canadian artists and scholars as they launch the series in Toronto and engage in a nourishing and inspiring feast

Amira Alamary
TBA

Antje Budde
Antje Budde is a conceptual, queer-feminist, interdisciplinary experimental scholar-artist and an Associate Professor of Theatre Studies, Cultural Communication and Modern Chinese Studies at the Centre for Drama, Theatre and Performance Studies, University of Toronto. Antje has created multi-disciplinary artistic works in Germany, China and Canada and works tri-lingually in German, English and Mandarin. She is the founder of a number of queerly feminist performing art projects including most recently the (DDL)2 or (Digital Dramaturgy Lab)Squared – a platform for experimental explorations of digital culture, creative labor, integration of arts and science, and technology in performance. She is interested in the intersections of natural sciences, the arts, engineering and computer science.

Charmaine Lurch
Charmaine Lurch is a multidisciplinary artist whose painting, sculpture, and social engagement reveal the intricacies and complexities of the relationships between us and our environments. Her sculptures, installations, and interventions produce enchantment as she skillfully contends with what is visible and present in conjunction with what remains unsaid or unnoticed. Lurch applies her experience in community arts and education to create inviting entry points into overwhelmingly complex and urgent racial, ecological, and historical reckonings.

Lurch’s work contends with both spatiality and temporality, enchanting her subject matter with multiple possibilities for engagement. This can be seen in the interplay between light, wire, and space in her intricate wire sculptures of bees and pollen grains, and in what scholar Tiffany Lethabo King refers to as the “open edgelessness” of Sycorax. A sensuous dynamism belies the everyday tasks reflected in her charcoal-on-parchment series Being, Belonging and Grace. Lurch’s particular evocations and explorations of space and time invite an analysis of their own, and her work has been engaged with by academics. These include King, who chose Sycorax Gesture, a charcoal illustration for the cover of her book The Black Shoals: Offshore Formations of Black and Native Studies, in which King discusses Lurch’s work in depth. Scholar Katherine McKittrick both inserted and engaged with Lurch’s work in her latest notable book, Dear Science & Other Stories.

Dave Kemp
Dave Kemp is a visual artist whose practice looks at the intersections and interactions between art, science and technology: particularly at how these fields shape our perception and understanding of the world. His artworks have been exhibited widely at venues such as at the McIntosh Gallery, The Agnes Etherington Art Centre, Art Gallery of Mississauga, The Ontario Science Centre, York Quay Gallery, Interaccess, Modern Fuel Artist-Run Centre, and as part of the Switch video festival in Nenagh, Ireland. His works are also included in the permanent collections of the Agnes Etherington Art Centre and the Canada Council Art Bank.

Dolores Steinman
Dolores Steinman is a trained pediatrician who holds a Ph.D. from the University of Toronto. She is very active in several Art/Science communities locally and internationally.

Elaine Whittaker
Elaine Whittaker is a Canadian visual artist working at the intersection of art, science, medicine, and ecology. She considers biology as contemporary art practice and as the basis for her installations, sculptures, paintings, drawings, and digital images. Whittaker has exhibited in art and science galleries and museums in Canada, France, Italy, UK, Ireland, Latvia, China, South Korea, Australia, Mexico, and the U.S. Artwork created as Artist-in-Residence with the Pelling Laboratory for Augmented Biology (University of Ottawa) was exhibited in La Fabrique du Vivant at the Pompidou Centre, Paris  in 2019.  She was one of the first Artists-in-Residence with the Ontario Science Centre in partnership with the Museum of Contemporary Art Toronto. Her work has also been featured in art, literary, and medical magazines, and books, including Bio Art: Altered Realities by William Myers (2015).

Elizabeth Littlejohn
Elizabeth Littlejohn is a communications professor, human rights activist, photojournalist, and documentary film-maker. She has written for Rabble.ca for the past thirteen years on social movements, sustainable urban planning, and climate change. As a running gun social movement videographer, she has filmed internationally. Her articles, photojournalism, and videos have documented Occupy, Idle No More, and climate change movements, and her photographs have been printed in NOW Magazine, the Toronto Star, and Our Times.

Recently Elizabeth Littlejohn has completed ‘The City Island’, a feature-length documentary she directed about the razing of homes on the Toronto Islands and the islanders’ stewardship of the park system, with the support of the Canada Council. Currently, Elizabeth is developing the Toronto Island Puzzle Tour, an augmented-reality smartphone application with five locales depicting hidden history of the Toronto Island, and funded by the City of Toronto’s Artworx Grant.

Gita Hashemi
Gita Hashemi works in visual and performance art, digital and net art, and language-based art including live embodied writing, and in publishing. Her transdisciplinary, multi-platform and often site-responsive projects explore historical, trans-border and marginalized narratives and their traces in contemporary contexts. She has received numerous project grants from Canadian arts councils, and won awards from Toronto Community Foundation, Baddeck International New Media Festival, American Ad Federation, and Ontario Association of Art Galleries among others. Hashemi is an Ontario Heritage Trust’s Doris McCarthy Artist in Residence in 2021 with a land-based project. Her work has been exhibited at many international venues including SIGGRAPH, Los Angeles; Center for Book Arts, New York; Yerba Buena Center for the Arts, San Francisco; Plug-In, Basel; Casoria Museum of Contemporary Art, Naples; Al Kahf Art Gallery, Bethlehem; Red House Centre for Culture, Sofia; Museo de Arte Contemporaneo de Yucatan, Merida; National Museum of Contemporary Art, Bucharest; Worth Ryder Gallery, Berkeley; Museo de Arte Contemporaneo de Santa Fe, Argentina; Museum of Movements, Malmo; and JolibaZWO, Berlin among others. In Canada her work has been presented at A Space Gallery, York Quay Gallery, YYZ, MAI, and Carlton University Art Gallery. She has exhibited in numerous festivals including Electroshock, France; VI Salon y coloquio internacional de art digital, Havana; New Media Art Festival, Bangkok; Biennale of Electronic Art, Perth; and New Music and Art Festival, Bowling Green and others.

Nina Czegledy
Toronto based artist, curator, educator, works internationally on collaborative art, science & technology projects. The changing perception of the human body and its environment, as well as paradigm shifts in the arts, inform her projects. She has exhibited and published widely, won awards for her artwork and has initiated, led and participated in workshops, forums and festivals worldwide at international events.

Roberta Buiani
Artistic Director of the ArtSci Salon at the Fields Institute for Research in Mathematical Sciences (Toronto). Her artistic work has travelled to art festivals (Transmediale; Hemispheric Institute Encuentro; Brazil), community centers and galleries (the Free Gallery Toronto; Immigrant Movement International, Queens, Museum of Toronto), and scientific institutions (RPI; the Fields Institute). She is a research associate at the Centre for Feminist Research and a Scholar in Residence at Sensorium: Centre for Digital Arts and Technology, at York University.

Tune in on Oct 3 [2021] at 10:30 AM EDT; 4:30 PM CET; 10:30 PM CST [Note: For those of us on the West Coast, that will 7:30 am PDT]

To view the video on Sunday, Oct. 3, 2021, just go to the ‘Naturalized Encounters’ webpage on the ArtSci Salon website and scroll down.

Equality doesn’t necessarily lead to greater women’s STEM (science, technology, engineering, and mathematics) participation?

It seems counter-intuitive but societies where women have achieved greater equality see less participation by women in STEM (science, technology, engineering and mathematics) than countries where women are treated differently. This rather stunning research was released on February 14, 2018 (yes, Valentine’s Day).

Women, equality, STEM

Both universities involved in this research have made news/press releases available. First, there’s the February 14, 2018 Leeds Beckett University (UK) press release,

Countries with greater gender equality see a smaller proportion of women taking degrees in science, technology, engineering and mathematics (STEM), a new study by Leeds Beckett has found.

Dubbed the ‘gender equality paradox’, the research found that countries such as Albania and Algeria have a greater percentage of women amongst their STEM graduates than countries lauded for their high levels of gender equality, such as Finland, Norway or Sweden.

The researchers, from Leeds Beckett’s School of Social Sciences and the University of Missouri, believe this might be because countries with less gender equality often have little welfare support, making the choice of a relatively highly-paid STEM career more attractive.

The study, published in Psychological Science, also looked at what might motivate girls and boys to choose to study STEM subjects, including overall ability, interest or enjoyment in the subject and whether science subjects were a personal academic strength.

Using data on 475,000 adolescents across 67 countries or regions, the researchers found that while boys’ and girls’ achievement in STEM subjects was broadly similar, science was more likely to be boys’ best subject.

Girls, even when their ability in science equalled or excelled that of boys, were often likely to be better overall in reading comprehension, which relates to higher ability in non-STEM subjects.

Girls also tended to register a lower interest in science subjects. These differences were near-universal across all the countries and regions studied.

This could explain some of the gender disparity in STEM participation, according to Leeds Beckett Professor in Psychology Gijsbert Stoet.

“The further you get in secondary and then higher education, the more subjects you need to drop until you end with just one.

“We are inclined to choose what we are best at and also enjoy. This makes sense and matches common school advice.

“So, even though girls can match boys in terms of how well they do at science and mathematics in school, if those aren’t their best subjects and they are less interested in them, then they’re likely to choose to study something else.”

The researchers also looked at how many girls might be expected to choose further study in STEM based on these criteria.

They took the number of girls in each country who had the necessary ability in STEM and for whom it was also their best subject and compared this to the number of women graduating in STEM.

They found there was a disparity in all countries, but with the gap once again larger in more gender equal countries.

In the UK, 29 per cent of STEM graduates are female, whereas 48 per cent of UK girls might be expected to take those subjects based on science ability alone. This drops to 39 per cent when both science ability and interest in the subject are taken into account.

Countries with higher gender equality tend also to be welfare states, providing a high level of social security for their citizens.

Professor Stoet said: “STEM careers are generally secure and well-paid but the risks of not following such a path can vary.

“In more affluent countries where any choice of career feels relatively safe, women may feel able to make choices based on non-economic factors.

“Conversely, in countries with fewer economic opportunities, or where employment might be precarious, a well-paid and relatively secure STEM career can be more attractive to women.”

Despite extensive efforts to increase participation of women in STEM, levels have remained broadly stable for decades, but these findings could help target interventions to make them more effective, say the researchers.

“It’s important to take into account that girls are choosing not to study STEM for what they feel are valid reasons, so campaigns that target all girls may be a waste of energy and resources,” said Professor Stoet.

“If governments want to increase women’s participation in STEM, a more effective strategy might be to target the girls who are clearly being ‘lost’ from the STEM pathway: those for whom science and maths are their best subjects and who enjoy it but still don’t choose it.

“If we can understand their motivations, then interventions can be designed to help them change their minds.”

Then, there’s the February 14, 2018 University of Missouri news release, some of which will be repetitive,

The underrepresentation of girls and women in science, technology, engineering and mathematics (STEM) fields occurs globally. Although women currently are well represented in life sciences, they continue to be underrepresented in inorganic sciences, such as computer science and physics. Now, researchers from the University of Missouri and Leeds Beckett University in the United Kingdom have found that as societies become wealthier and more gender equal, women are less likely to obtain degrees in STEM. The researchers call this a “gender-equality paradox.” Researchers also discovered a near-universal sex difference in academic strengths and weaknesses that contributes to the STEM gap. Findings from the study could help refine education efforts and policies geared toward encouraging girls and women with strengths in science or math to participate in STEM fields.

The researchers found that, throughout the world, boys’ academic strengths tend to be in science or mathematics, while girls’ strengths are in reading. Students who have personal strengths in science or math are more likely to enter STEM fields, whereas students with reading as a personal strength are more likely to enter non-STEM fields, according to David Geary, Curators Professor of Psychological Sciences in the MU College of Arts and Science. These sex differences in academic strengths, as well as interest in science, may explain why the sex differences in STEM fields has been stable for decades, and why current approaches to address them have failed.

“We analyzed data on 475,000 adolescents across 67 countries or regions and found that while boys’ and girls’ achievements in STEM subjects were broadly similar in all countries, science was more likely to be boys’ best subject,” Geary said. “Girls, even when their abilities in science equaled or excelled that of boys, often were likely to be better overall in reading comprehension, which relates to higher ability in non-STEM subjects. As a result, these girls tended to seek out other professions unrelated to STEM fields.”

Surprisingly, this trend was larger for girls and women living in countries with greater gender equality. The authors call this a “gender-equality paradox,” because countries lauded for their high levels of gender equality, such as Finland, Norway or Sweden, have relatively few women among their STEM graduates. In contrast, more socially conservative countries such as Turkey or Algeria have a much larger percentage of women among their STEM graduates.

“In countries with greater gender equality, women are actively encouraged to participate in STEM; yet, they lose more girls because of personal academic strengths,” Geary said. “In more liberal and wealthy countries, personal preferences are more strongly expressed. One consequence is that sex differences in academic strengths and interests become larger and have a stronger influence college and career choices than in more conservative and less wealthy countries, creating the gender-equality paradox.”

The combination of personal academic strengths in reading, lower interest in science, and broader financial security explains why so few women choose a STEM career in highly developed nations.

“STEM careers are generally secure and well-paid but the risks of not following such a path can vary,” said Gijsbert Stoet, Professor in Psychology at Leeds Beckett University. “In more affluent countries where any choice of career feels relatively safe, women may feel able to make choices based on non-economic factors. Conversely, in countries with fewer economic opportunities, or where employment might be precarious, a well-paid and relatively secure STEM career can be more attractive to women.”

Findings from this study could help target interventions to make them more effective, say the researchers. Policymakers should reconsider failing national policies focusing on decreasing the gender imbalance in STEM, the researchers add.

The University of Missouri also produced a brief video featuring Professor David Geary discussing the work,

Here’s a link to and a citation for the paper,

The Gender-Equality Paradox in Science, Technology, Engineering, and Mathematics Education by Gijsbert Stoet, David C. Geary. Psychological Studies https://doi.org/10.1177/0956797617741719 First Published February 14, 2018 Research Article

This paper is behind a paywall.

Gender equality and STEM: a deeper dive

Olga Khazan in a February 18, 2018 article for The Atlantic provides additional insight (Note: Links have been removed),

Though their numbers are growing, only 27 percent of all students taking the AP Computer Science exam in the United States are female. The gender gap only grows worse from there: Just 18 percent of American computer-science college degrees go to women. This is in the United States, where many college men proudly describe themselves as “male feminists” and girls are taught they can be anything they want to be.

Meanwhile, in Algeria, 41 percent of college graduates in the fields of science, technology, engineering, and math—or “STEM,” as its known—are female. There, employment discrimination against women is rife and women are often pressured to make amends with their abusive husbands.

According to a report I covered a few years ago, Jordan, Qatar, and the United Arab Emirates were the only three countries in which boys are significantly less likely to feel comfortable working on math problems than girls are. In all of the other nations surveyed, girls were more likely to say they feel “helpless while performing a math problem.”

… this line of research, if it’s replicated, might hold useful takeaways for people who do want to see more Western women entering STEM fields. In this study, the percentage of girls who did excel in science or math was still larger than the number of women who were graduating with STEM degrees. That means there’s something in even the most liberal societies that’s nudging women away from math and science, even when those are their best subjects. The women-in-STEM advocates could, for starters, focus their efforts on those would-be STEM stars.

Final thoughts

This work upends notions (mine anyway) about equality and STEM with regard to women’s participation in countries usually described as ‘developed’ as opposed to ‘developing’. I am thankful to have my ideas shaken up and being forced to review my assumptions about STEM participation and equality of opportunity.

John Timmer in a February 19, 2018 posting on the Ars Technica blog offers a critique of the research and its conclusions,

… The countries where the science-degree gender gap is smaller tend to be less socially secure. The researchers suggest that the economic security provided by fields like engineering may have a stronger draw in these countries, pulling more women into the field.

They attempt to use a statistical pathway analysis to see if the data is consistent with this being the case, but the results are inconclusive. It may be right, but there would be at least one other strong factor that they have not identified involved.

Timmer’s piece is well worth reading.

For some reason the discussion about a lack of social safety nets and precarious conditions leading women to greater STEM participation reminds me of a truism about the arts. Constraints can force you into greater creativity. Although balance is necessary as you don’t want to destroy what you’re trying to encourage. In this case, it seems that comfortable lifestyles can lead women to pursue that which comes more easily whereas women trying to make a better life in difficult circumstance will pursue a more challenging path.

Europe’s cathedrals get a ‘lift’ with nanoparticles

That headline is a teensy bit laboured but I couldn’t resist the levels of wordplay available to me. They’re working on a cathedral close to the leaning Tower of Pisa in this video about the latest in stone preservation in Europe.

*ETA August 7, 2019: Video reinserted today.*

I have covered the topic of preserving stone monuments before (most recently in my Oct. 21, 2014 posting). The action in this field seems to be taking place mostly in Europe, specifically Italy, although other countries are also quite involved.

Finally, getting to the European Commission’s latest stone monument preservation project, Nano-Cathedral, a Sept. 26, 2017 news item on Nanowerk announces the latest developments,

Just a few meters from Pisa’s famous Leaning Tower, restorers are defying scorching temperatures to bring back shine to the city’s Cathedral.

Ordinary restoration techniques like laser are being used on much of the stonework that dates back to the 11th century. But a brand new technique is also being used: a new material made of innovative nanoparticles. The aim is to consolidate the inner structure of the stones. It’s being applied mainly on marble.

A March 7, 2017 item on the Euro News website, which originated the Nanowerk news item, provides more detail,

“Marble has very low porosity, which means we have to use nanometric particles in order to go deep inside the stone, to ensure that the treatment is both efficient while still allowing the stone to breathe,” explains Roberto Cela, civil engineer at Opera Della Primaziale Pisana.

The material developed by the European research team includes calcium carbonate, which is a mix of calcium oxide, water and carbon dioxide.

The nano-particles penetrate the stone cementing its decaying structure.

“It is important that these particles have the same chemical nature as the stones that are being treated, so that the physical and mechanical processes that occur over time don’t lead to the break-up of the stones,” says Dario Paolucci, chemist at the University of Pisa.

Vienna’s St Stephen’s is another of the five cathedrals where the new restoration materials are being tested.

The first challenge for researchers is to determine the mechanical characteristics of the cathedral’s stones. Since there are few original samples to work on, they had to figure out a way of “ageing” samples of stones of similar nature to those originally used.

“We tried different things: we tried freeze storage, we tried salts and acids, and we decided to go for thermal ageing,” explains Matea Ban, material scientist at the University of Technology in Vienna. “So what happens is that we heat the stone at certain temperatures. Minerals inside then expand in certain directions, and when they expand they build up stresses to neighbouring minerals and then they crack, and we need those cracks in order to consolidate them.”

Consolidating materials were then applied on a variety of limestones, sandstones and marble – a selection of the different types of stones that were used to build cathedrals around Europe.

What researchers are looking for are very specific properties.

“First of all, the consolidating material has to be well absorbed by the stone,” says petrologist Johannes Weber of the University of Applied Arts in Vienna. “Then, as it evaporates, it has to settle properly within the stone structure. It should not shrink too much. All materials shrink when drying, including consolidating materials. They should adhere to the particles of the stone but shouldn’t completely obstruct its pores.”

Further tests are underway in cathedrals across Europe in the hope of better protecting our invaluable cultural heritage.

There’s a bit more detail about Nano-Cathedral on the Opera della Primaziale Pisana (O₽A) website (from their Nano-Cathedral project page),

With the meeting of June 3 this year the Nano Cathedral project kicked off, supported by the European Union within the nanotechnology field applied to Horizon 2020 cultural heritage with a fund of about 6.5 million euro.

A total of six monumental buildings will be for three years under the eyes and hands of petrographers, geologists, chemists and restorers of the institutes belonging to the Consortium: five cathedrals have been selected to represent the cultural diversity within Europe from the perspective of developing shared values and transnational identity, and a contemporary monumental building entirely clad in Carrara marble, the Opera House of Oslo.

Purpose: the testing of nanomaterials for the conservation of marble and the outer surfaces of our ‘cathedrals’.
The field of investigation to check degradation, testing new consolidating and protective products is the Cathedral of Pisa together with the Cathedrals of Cologne, Vienna, Ghent and Vitoria.
For the selection of case studies we have crosschecked requirements for their historical and architectural value but also for the different types of construction materials – marble, limestone and sandstone – as well as the relocation of six monumental buildings according to European climates.

The Cathedral of Pisa is the most southern, fully positioned in Mediterranean climate, therefore subject to degradation and very different from those which the weather conditions of the Scandinavian peninsula recorded; all the intermediate climate phases are modulated through Ghent, Vitoria, Cologne and Vienna.

At the conclusion of the three-year project, once the analysis in situ and in the laboratory are completed and all the experiments are tested on each different identified portion in each monumental building, an intervention protocol will be defined in detail in order to identify the mineralogical and petrographic characteristics of stone materials and of their degradation, the assessment of the causes and mechanisms of associated alteration, including interactions with factors of environmental pollution. Then we will be able to identify the most appropriate method of restoration and testing of nanotechnology products for the consolidation and protection of different stone materials.

In 2018 we hope to have new materials to protect and safeguard the ‘skin’ of our historic buildings and monuments for a long time.

Back to my headline and the second piece of wordplay, ‘lift’ as in ‘skin lift’ in that last sentence.

I realize this is a bit off topic but it’s worth taking a look at ORA’s home page,

Gabriele D’Annunzio effectively condenses the wonder and admiration that catch whoever visits the Duomo Square of Pisa.

The Opera della Primaziale Pisana (O₽A) is a non-profit organisation which was established in order to oversee the first works for the construction of the monuments in the Piazza del Duomo, subject to its own charter which includes the protection, promotion and enhancement of its heritage, in order to pass the religious and artistic meaning onto future generations.

«L’Ardea roteò nel cielo di Cristo, sul prato dei Miracoli.»
Gabriele d’Annunzio in Forse che sì forse che no (1910)

If you go to the home page, you can buy tickets to visit the monuments surrounding the square and there are other notices including one for a competition (it’s too late to apply but the details are interesting) to construct four stained glass windows for the Pisa cathedral.

A jellyfish chat on November 28, 2017 at Café Scientifique Vancouver get together

Café Scientifique Vancouver sent me an announcement (via email) about their upcoming event,

We are pleased to announce our next café which will happen on TUESDAY,
NOVEMBER 28TH at 7:30PM in the back room of YAGGER'S DOWNTOWN (433 W
Pender).

JELLYFISH – FRIEND, FOE, OR FOOD?

Did you know that in addition to stinging swimmers, jellyfish also cause
extensive damage to fisheries and coastal power plants? As threats such
as overfishing, pollution, and climate change alter the marine
environment, recent media reports are proclaiming that jellyfish are
taking over the oceans. Should we hail to our new jellyfish overlords or
do we need to examine the evidence behind these claims? Join Café
Scientifique on Nov. 28, 2017 to learn everything you ever wanted to
know about jellyfish, and find out if jelly burgers are coming soon to a
menu near you.

Our speaker for the evening will be DR. LUCAS BROTZ, a Postdoctoral
Research Fellow with the Sea Around Us at UBC’s Institute for the
Oceans and Fisheries. Lucas has been studying jellyfish for more than a
decade, and has been called “Canada’s foremost jellyfish
researcher” by CBC Nature of Things host Dr. David Suzuki. Lucas has
participated in numerous international scientific collaborations, and
his research has been featured in more than 100 media outlets including
Nature News, The Washington Post, and The New York Times. He recently
received the Michael A. Bigg award for highly significant student
research as part of the Coastal Ocean Awards at the Vancouver Aquarium.

We hope to see you there!

You can find out more about Lucas Brotz here and about Sea Around Us here.

For anyone who’s curious about the jellyfish ‘issue’, there’s a November 8, 2017 Norwegian University of Science and Technology press release on AlphaGallileo or on EurekAlert, which provides insight into the problems and the possibilities,

Jellyfish could be a resource in producing microplastic filters, fertilizer or fish feed. A new 6 million euro project called GoJelly, funded by the EU and coordinated by the GEOMAR Helmholtz Centre for Ocean Research, Germany and including partners at the Norwegian University of Science and Technology (NTNNU) and SINTEF [headquartered in Trondheim, Norway, is the largest independent research organisation in Scandinavia; more about SINTEF in its Wikipedia entry], hopes to turn jellyfish from a nuisance into a useful product.

Global climate change and the human impact on marine ecosystems has led to dramatic decreases in the number of fish in the ocean. It has also had an unforseen side effect: because overfishing decreases the numbers of jellyfish competitors, their blooms are on the rise.

The GoJelly project, coordinated by the GEOMAR Helmholtz Centre for Ocean Research, Germany, would like to transform problematic jellyfish into a resource that can be used to produce microplastic filter, fertilizer or fish feed. The EU has just approved funding of EUR 6 million over 4 years to support the project through its Horizon 2020 programme.

Rising water temperatures, ocean acidification and overfishing seem to favour jellyfish blooms. More and more often, they appear in huge numbers that have already destroyed entire fish farms on European coasts and blocked cooling systems of power stations near the coast. A number of jellyfish species are poisonous, while some tropical species are even among the most toxic animals on earth.

“In Europe alone, the imported American comb jelly has a biomass of one billion tons. While we tend to ignore the jellyfish there must be other solutions,” says Jamileh Javidpour of GEOMAR, initiator and coordinator of the GoJelly project, which is a consortium of 15 scientific institutions from eight countries led by the GEOMAR Helmholtz Centre for Ocean Research in Kiel.

The project will first entail exploring the life cycle of a number of jellyfish species. A lack of knowledge about life cycles makes it is almost impossible to predict when and why a large jellyfish bloom will occur. “This is what we want to change so that large jellyfish swarms can be caught before they reach the coasts,” says Javidpour.

At the same time, the project partners will also try to answer the question of what to do with jellyfish once they have been caught. One idea is to use the jellyfish to battle another, man-made threat.

“Studies have shown that mucus of jellyfish can bind microplastic. Therefore, we want to test whether biofilters can be produced from jellyfish. These biofilters could then be used in sewage treatment plants or in factories where microplastic is produced,” the GoJelly researchers say.

Jellyfish can also be used as fertilizers for agriculture or as aquaculture feed. “Fish in fish farms are currently fed with captured wild fish, which does not reduce the problem of overfishing, but increases it. Jellyfish as feed would be much more sustainable and would protect natural fish stocks,” says the GoJelly team.

Another option is using jellyfish as food for humans. “In some cultures, jellyfish are already on the menu. As long as the end product is no longer slimy, it could also gain greater general acceptance,” said Javidpour. Finally yet importantly, jellyfish contain collagen, a substance very much sought after in the cosmetics industry.

Project partners from the Norwegian University of Science and Technology, led by Nicole Aberle-Malzahn, and SINTEF Ocean, led by Rachel Tiller, will analyse how abiotic (hydrography, temperature), biotic (abundance, biomass, ecology, reproduction) and biochemical parameters (stoichiometry, food quality) affect the initiation of jellyfish blooms.

Based on a comprehensive analysis of triggering mechanisms, origin of seed populations and ecological modelling, the researchers hope to be able to make more reliable predictions on jellyfish bloom formation of specific taxa in the GoJelly target areas. This knowledge will allow sustainable harvesting of jellyfish communities from various Northern and Southern European populations.

This harvest will provide a marine biomass of unknown potential that will be explored by researchers at SINTEF Ocean, among others, to explore the possible ways to use the material.

A team from SINTEF Ocean’s strategic program Clean Ocean will also work with European colleagues on developing a filter from the mucus of the jellyfish that will catch microplastics from household products (which have their source in fleece sweaters, breakdown of plastic products or from cosmetics, for example) and prevent these from entering the marine ecosystem.

Finally, SINTEF Ocean will examine the socio-ecological system and games, where they will explore the potentials of an emerging international management regime for a global effort to mitigate the negative effects of microplastics in the oceans.

“Jellyfish can be used for many purposes. We see this as an opportunity to use the potential of the huge biomass drifting right in front of our front door,” Javidpour said.

You can find out more about GoJelly on their Twitter account.

Emerging technology and the law

I have three news bits about legal issues that are arising as a consequence of emerging technologies.

Deep neural networks, art, and copyright

Caption: The rise of automated art opens new creative avenues, coupled with new problems for copyright protection. Credit: Provided by: Alexander Mordvintsev, Christopher Olah and Mike Tyka

Presumably this artwork is a demonstration of automated art although they never really do explain how in the news item/news release. An April 26, 2017 news item on ScienceDaily announces research into copyright and the latest in using neural networks to create art,

In 1968, sociologist Jean Baudrillard wrote on automatism that “contained within it is the dream of a dominated world […] that serves an inert and dreamy humanity.”

With the growing popularity of Deep Neural Networks (DNN’s), this dream is fast becoming a reality.

Dr. Jean-Marc Deltorn, researcher at the Centre d’études internationales de la propriété intellectuelle in Strasbourg, argues that we must remain a responsive and responsible force in this process of automation — not inert dominators. As he demonstrates in a recent Frontiers in Digital Humanities paper, the dream of automation demands a careful study of the legal problems linked to copyright.

An April 26, 2017 Frontiers (publishing) news release on EurekAlert, which originated the news item, describes the research in more detail,

For more than half a century, artists have looked to computational processes as a way of expanding their vision. DNN’s are the culmination of this cross-pollination: by learning to identify a complex number of patterns, they can generate new creations.

These systems are made up of complex algorithms modeled on the transmission of signals between neurons in the brain.

DNN creations rely in equal measure on human inputs and the non-human algorithmic networks that process them.

Inputs are fed into the system, which is layered. Each layer provides an opportunity for a more refined knowledge of the inputs (shape, color, lines). Neural networks compare actual outputs to expected ones, and correct the predictive error through repetition and optimization. They train their own pattern recognition, thereby optimizing their learning curve and producing increasingly accurate outputs.

The deeper the layers are, the higher the level of abstraction. The highest layers are able to identify the contents of a given input with reasonable accuracy, after extended periods of training.

Creation thus becomes increasingly automated through what Deltorn calls “the arcane traceries of deep architecture”. The results are sufficiently abstracted from their sources to produce original creations that have been exhibited in galleries, sold at auction and performed at concerts.

The originality of DNN’s is a combined product of technological automation on one hand, human inputs and decisions on the other.

DNN’s are gaining popularity. Various platforms (such as DeepDream) now allow internet users to generate their very own new creations . This popularization of the automation process calls for a comprehensive legal framework that ensures a creator’s economic and moral rights with regards to his work – copyright protection.

Form, originality and attribution are the three requirements for copyright. And while DNN creations satisfy the first of these three, the claim to originality and attribution will depend largely on a given country legislation and on the traceability of the human creator.

Legislation usually sets a low threshold to originality. As DNN creations could in theory be able to create an endless number of riffs on source materials, the uncurbed creation of original works could inflate the existing number of copyright protections.

Additionally, a small number of national copyright laws confers attribution to what UK legislation defines loosely as “the person by whom the arrangements necessary for the creation of the work are undertaken.” In the case of DNN’s, this could mean anybody from the programmer to the user of a DNN interface.

Combined with an overly supple take on originality, this view on attribution would further increase the number of copyrightable works.

The risk, in both cases, is that artists will be less willing to publish their own works, for fear of infringement of DNN copyright protections.

In order to promote creativity – one seminal aim of copyright protection – the issue must be limited to creations that manifest a personal voice “and not just the electric glint of a computational engine,” to quote Deltorn. A delicate act of discernment.

DNN’s promise new avenues of creative expression for artists – with potential caveats. Copyright protection – a “catalyst to creativity” – must be contained. Many of us gently bask in the glow of an increasingly automated form of technology. But if we want to safeguard the ineffable quality that defines much art, it might be a good idea to hone in more closely on the differences between the electric and the creative spark.

This research is and be will part of a broader Frontiers Research Topic collection of articles on Deep Learning and Digital Humanities.

Here’s a link to and a citation for the paper,

Deep Creations: Intellectual Property and the Automata by Jean-Marc Deltorn. Front. Digit. Humanit., 01 February 2017 | https://doi.org/10.3389/fdigh.2017.00003

This paper is open access.

Conference on governance of emerging technologies

I received an April 17, 2017 notice via email about this upcoming conference. Here’s more from the Fifth Annual Conference on Governance of Emerging Technologies: Law, Policy and Ethics webpage,

The Fifth Annual Conference on Governance of Emerging Technologies:

Law, Policy and Ethics held at the new

Beus Center for Law & Society in Phoenix, AZ

May 17-19, 2017!

Call for Abstracts – Now Closed

The conference will consist of plenary and session presentations and discussions on regulatory, governance, legal, policy, social and ethical aspects of emerging technologies, including (but not limited to) nanotechnology, synthetic biology, gene editing, biotechnology, genomics, personalized medicine, human enhancement technologies, telecommunications, information technologies, surveillance technologies, geoengineering, neuroscience, artificial intelligence, and robotics. The conference is premised on the belief that there is much to be learned and shared from and across the governance experience and proposals for these various emerging technologies.

Keynote Speakers:

Gillian HadfieldRichard L. and Antoinette Schamoi Kirtland Professor of Law and Professor of Economics USC [University of Southern California] Gould School of Law

Shobita Parthasarathy, Associate Professor of Public Policy and Women’s Studies, Director, Science, Technology, and Public Policy Program University of Michigan

Stuart Russell, Professor at [University of California] Berkeley, is a computer scientist known for his contributions to artificial intelligence

Craig Shank, Vice President for Corporate Standards Group in Microsoft’s Corporate, External and Legal Affairs (CELA)

Plenary Panels:

Innovation – Responsible and/or Permissionless

Ellen-Marie Forsberg, Senior Researcher/Research Manager at Oslo and Akershus University College of Applied Sciences

Adam Thierer, Senior Research Fellow with the Technology Policy Program at the Mercatus Center at George Mason University

Wendell Wallach, Consultant, ethicist, and scholar at Yale University’s Interdisciplinary Center for Bioethics

 Gene Drives, Trade and International Regulations

Greg Kaebnick, Director, Editorial Department; Editor, Hastings Center Report; Research Scholar, Hastings Center

Jennifer Kuzma, Goodnight-North Carolina GlaxoSmithKline Foundation Distinguished Professor in Social Sciences in the School of Public and International Affairs (SPIA) and co-director of the Genetic Engineering and Society (GES) Center at North Carolina State University

Andrew Maynard, Senior Sustainability Scholar, Julie Ann Wrigley Global Institute of Sustainability Director, Risk Innovation Lab, School for the Future of Innovation in Society Professor, School for the Future of Innovation in Society, Arizona State University

Gary Marchant, Regents’ Professor of Law, Professor of Law Faculty Director and Faculty Fellow, Center for Law, Science & Innovation, Arizona State University

Marc Saner, Inaugural Director of the Institute for Science, Society and Policy, and Associate Professor, University of Ottawa Department of Geography

Big Data

Anupam Chander, Martin Luther King, Jr. Professor of Law and Director, California International Law Center, UC Davis School of Law

Pilar Ossorio, Professor of Law and Bioethics, University of Wisconsin, School of Law and School of Medicine and Public Health; Morgridge Institute for Research, Ethics Scholar-in-Residence

George Poste, Chief Scientist, Complex Adaptive Systems Initiative (CASI) (http://www.casi.asu.edu/), Regents’ Professor and Del E. Webb Chair in Health Innovation, Arizona State University

Emily Shuckburgh, climate scientist and deputy head of the Polar Oceans Team at the British Antarctic Survey, University of Cambridge

 Responsible Development of AI

Spring Berman, Ira A. Fulton Schools of Engineering, Arizona State University

John Havens, The IEEE [Institute of Electrical and Electronics Engineers] Global Initiative for Ethical Considerations in Artificial Intelligence and Autonomous Systems

Subbarao Kambhampati, Senior Sustainability Scientist, Julie Ann Wrigley Global Institute of Sustainability, Professor, School of Computing, Informatics and Decision Systems Engineering, Ira A. Fulton Schools of Engineering, Arizona State University

Wendell Wallach, Consultant, Ethicist, and Scholar at Yale University’s Interdisciplinary Center for Bioethics

Existential and Catastrophic Ricks [sic]

Tony Barrett, Co-Founder and Director of Research of the Global Catastrophic Risk Institute

Haydn Belfield,  Academic Project Administrator, Centre for the Study of Existential Risk at the University of Cambridge

Margaret E. Kosal Associate Director, Sam Nunn School of International Affairs, Georgia Institute of Technology

Catherine Rhodes,  Academic Project Manager, Centre for the Study of Existential Risk at CSER, University of Cambridge

These were the panels that are of interest to me; there are others on the homepage.

Here’s some information from the Conference registration webpage,

Early Bird Registration – $50 off until May 1! Enter discount code: earlybirdGETs50

New: Group Discount – Register 2+ attendees together and receive an additional 20% off for all group members!

Click Here to Register!

Conference registration fees are as follows:

  • General (non-CLE) Registration: $150.00
  • CLE Registration: $350.00
  • *Current Student / ASU Law Alumni Registration: $50.00
  • ^Cybsersecurity sessions only (May 19): $100 CLE / $50 General / Free for students (registration info coming soon)

There you have it.

Neuro-techno future laws

I’m pretty sure this isn’t the first exploration of potential legal issues arising from research into neuroscience although it’s the first one I’ve stumbled across. From an April 25, 2017 news item on phys.org,

New human rights laws to prepare for advances in neurotechnology that put the ‘freedom of the mind’ at risk have been proposed today in the open access journal Life Sciences, Society and Policy.

The authors of the study suggest four new human rights laws could emerge in the near future to protect against exploitation and loss of privacy. The four laws are: the right to cognitive liberty, the right to mental privacy, the right to mental integrity and the right to psychological continuity.

An April 25, 2017 Biomed Central news release on EurekAlert, which originated the news item, describes the work in more detail,

Marcello Ienca, lead author and PhD student at the Institute for Biomedical Ethics at the University of Basel, said: “The mind is considered to be the last refuge of personal freedom and self-determination, but advances in neural engineering, brain imaging and neurotechnology put the freedom of the mind at risk. Our proposed laws would give people the right to refuse coercive and invasive neurotechnology, protect the privacy of data collected by neurotechnology, and protect the physical and psychological aspects of the mind from damage by the misuse of neurotechnology.”

Advances in neurotechnology, such as sophisticated brain imaging and the development of brain-computer interfaces, have led to these technologies moving away from a clinical setting and into the consumer domain. While these advances may be beneficial for individuals and society, there is a risk that the technology could be misused and create unprecedented threats to personal freedom.

Professor Roberto Andorno, co-author of the research, explained: “Brain imaging technology has already reached a point where there is discussion over its legitimacy in criminal court, for example as a tool for assessing criminal responsibility or even the risk of reoffending. Consumer companies are using brain imaging for ‘neuromarketing’, to understand consumer behaviour and elicit desired responses from customers. There are also tools such as ‘brain decoders’ which can turn brain imaging data into images, text or sound. All of these could pose a threat to personal freedom which we sought to address with the development of four new human rights laws.”

The authors explain that as neurotechnology improves and becomes commonplace, there is a risk that the technology could be hacked, allowing a third-party to ‘eavesdrop’ on someone’s mind. In the future, a brain-computer interface used to control consumer technology could put the user at risk of physical and psychological damage caused by a third-party attack on the technology. There are also ethical and legal concerns over the protection of data generated by these devices that need to be considered.

International human rights laws make no specific mention to neuroscience, although advances in biomedicine have become intertwined with laws, such as those concerning human genetic data. Similar to the historical trajectory of the genetic revolution, the authors state that the on-going neurorevolution will force a reconceptualization of human rights laws and even the creation of new ones.

Marcello Ienca added: “Science-fiction can teach us a lot about the potential threat of technology. Neurotechnology featured in famous stories has in some cases already become a reality, while others are inching ever closer, or exist as military and commercial prototypes. We need to be prepared to deal with the impact these technologies will have on our personal freedom.”

Here’s a link to and a citation for the paper,

Towards new human rights in the age of neuroscience and neurotechnology by Marcello Ienca and Roberto Andorno. Life Sciences, Society and Policy201713:5 DOI: 10.1186/s40504-017-0050-1 Published: 26 April 2017

©  The Author(s). 2017

This paper is open access.

Environmentally sustainable electromobility

Researchers at the Norwegian University of Science and Technology pose an interesting question in a Dec. 8, 2016 news item on Nanowerk,

Does it really help to drive an electric car if the electricity you use to charge the batteries come from a coal mine in Germany, or if the batteries were manufactured in China using coal?

Researchers at the Norwegian University of Science and Technology’s Industrial Ecology Programme have looked at all of the environmental costs of electric vehicles to determine the cradle-to-grave environmental footprint of building and operating these vehicles.

Increasingly, researchers are examining not just immediate environmental impacts but the impact a product has throughout its life cycle as this Dec. 8, 2016 Norwegian University of Science and Technology press release on EurekAlert notes,

In the 6 December [2016] issue of Nature Nanotechnology, the researchers report on a model that can help guide developers as they consider new nanomaterials for batteries or fuel cells. The goal is to create the most environmentally sustainable vehicle fleet possible, which is no small challenge given that there are already an estimated 1 billion cars and light trucks on the world’s roads, a number that is expected to double by 2035.

With this in mind, the researchers created an environmental life-cycle screening framework that looked at the environmental and other impacts of extraction, refining, synthesis, performance, durability and recyclablility of materials.

This allowed the researchers to evaluate the most promising nanomaterials for lithium-ion batteries (LIB) and proton exchange membrane hydrogen fuel cells (PEMFC) as power sources for electric vehicles. “Our analysis of the current situation clearly outlines the challenge,” the researchers wrote. “The materials with the best potential environmental profiles during the material extraction and production phase…. often present environmental disadvantages during their use phase… and vice versa.”

The hope is that by identifying all the environmental costs of different materials used to build electric cars, designers and engineers can “make the right design trade-offs that optimize LIB and PEMFC nanomaterials for EV usage towards mitigating climate change,” the authors wrote.

They encouraged material scientists and those who conduct life-cycle assessments to work together so that electric cars can be a key contributor to mitigating the effects of transportation on climate change.

Here’s a link to and a citation for the paper,

Nanotechnology for environmentally sustainable electromobility by Linda Ager-Wick Ellingsen, Christine Roxanne Hung, Guillaume Majeau-Bettez, Bhawna Singh, Zhongwei Chen, M. Stanley Whittingham, & Anders Hammer Strømman. Nature Nanotechnology 11, 1039–1051 (2016)  doi:10.1038/nnano.2016.237 Published online 06 December 2016 Corrected online 14 December 2016

This paper is behind a paywall.

Natural nanoparticles and perfluorinated compounds in soil

The claim in a Sept. 9, 2015 news item on Nanowerk is that ‘natural’ nanoparticles are being used to remove perfluorinated compounds (PFC) from soil,

Perfluorinated compounds (PFC) are a new type of pollutants found in contaminated soils from industrial sites, airports and other sites worldwide.

In Norway, The Environment Agency has published a plan to eliminate PFOS [perfluorooctanesulfonic acid or perfluorooctane sulfonate] from the environment by 2020. In other countries such as China and the United States, the levels are far higher, and several studies show accumulation of PFOS in fish and animals, however no concrete measures have been taken.

The Norwegian company, Fjordforsk AS, which specializes in nanosciences and environmental methods, has developed a method to remove PFOS from soil by binding them to natural minerals. This method can be used to extract PFOS from contaminated soil and prevent leakage of PFOS to the groundwater.

Electron microscopy images show that the minerals have the ability to bind PFOS on the surface of the natural nanoparticles. [emphasis mine] The proprietary method does not contaminate the treated grounds with chemicals or other parts from remediation process and uses only natural components.

Electron microscopy images and more detail can be found in the Nanowerk news item.

I can’t find the press release, which originated the news item but there is a little additional information about Fjoorkforsk’s remediation efforts on the company’s “Purification of perfluorinated compounds from soil samples” project page,

Project duration: 2014 –

Project leader: Manzetti S.

Collaborators: Prof Lutz Ahrens. Swedish Agricultural University. Prof David van der Spoel, Uppsala University.

Project description:

Perfluorinated compounds (PFCs) are emerging pollutants used in flame retardants on a large scale on airports and other sites of heavy industrial activity. Perfluroinated compounds are toxic and represent an ultra-persistent class of chemicals which can accumulate in animals and humans and have been found to remain in the body for over 5 years after uptake. Perfluorinated compounds can also affect the nerve-system and have recently been associated with high- priority pollutants to be discontinued and to be removed from the environment. Using non-toxic methods, this project develops an approach to sediment perfluorinated compounds from contaminated soil samples using nanoparticles, in order to remove the ecotoxic and ground-water contaminating potential of PFCs from afflicted sites and environments.

The only mineral that I know is used for soil remediation is nano zero-valent iron (nZVI). A very fast search for more information yielded a 2010 EMPA [Swiss Federal Laboratories for Materials Science and Technology] report titled “Nano zero valent iron – THE solution for water and soil remediation? ” (32 pp. pdf) published by ObservatoryNANO.

As for the claim that the company is using ‘natural’ nanoparticles for their remediation efforts, it’s not clear what they mean by that. I suspect they’re using the term ‘natural’ to mean that engineered nanoparticles are being derived from a naturally occurring material, e.g. iron.