Tag Archives: Internet of Things

smARTcities SALON in Vaughan, Ontario, Canada on March 22, 2018

Thank goodness for the March 15, 2018 notice from the Art/Sci Salon in Toronto (received via email) announcing an event on smart cities being held in the nearby city of Vaughan (it borders Toronto to the north). It’s led me on quite the chase as I’ve delved into a reference to Smart City projects taking place across the country and the results follow after this bit about the event.

smARTcities SALON

From the announcement,

SMARTCITIES SALON

Smart City projects are currently underway across the country, including
Google SideWalk at Toronto Harbourfront. Canada’s first Smart Hospital
is currently under construction in the City of Vaughan. It’s an example
of the city working towards building a reputation as one of the world’s
leading Smart Cities, by adopting new technologies consistent with
priorities defined by citizen collaboration.

Hon. Maurizio Bevilacqua, P.C., Mayor chairs the Smart City Advisory
Task Force leading historic transformation in Vaughan. Working to become
a Smart City is a chance to encourage civic engagement, accelerate
economic growth, and generate efficiencies. His opening address will
outline some of the priorities and opportunities that our panel will
discuss.

PANELISTS

Lilian Radovac, PhD., Assistant Professor, Institute of Communication,
Culture, Information & Technology, University of Toronto. Lilian is a
historian of urban sounds and cultures and has a critical interest in
SmartCity initiatives in two of the cities she has called home: New York
City and Toronto..

Oren Berkovich is the CEO of Singularity University in Canada, an
educational institution and a global network of experts and
entrepreneurs that work together on solving the world’s biggest
challenges. As a catalyst for long-term growth Oren spends his time
connecting people with ideas to facilitate strategic conversations about
the future.

Frank Di Palma, the Chief Information Officer for the City of Vaughan,
is a graduate of York University with more than 20 years experience in
IT operations and services. Frank leads the many SmartCity initiatives
already underway at Vaughan City Hall.

Ron Wild, artist and Digital Art/Science Collaborator, will moderate the
discussion.

Audience Participation opportunities will enable attendees to forward
questions for consideration by the panel.

You can register for the smARTcities SALON here on Eventbrite,

Art Exhibition Reception

Following the panel discussion, the audience is invited to view the art exhibition ‘smARTcities; exploring the digital frontier.’ Works commissioned by Vaughan specifically for the exhibition, including the SmartCity Map and SmartHospital Map will be shown as well as other Art/Science-themed works. Many of these ‘maps’ were made by Ron in collaboration with mathematicians, scientists, and medical researchers, some of who will be in attendance. Further examples of Ron’s art can be found HERE

Please click through to buy a FREE ticket so we know how many guests to expect. Thank you.

This event can be reached by taking the subway up the #1 west line to the new Vaughan Metropolitan Centre terminal station. Take the #20 bus to the Vaughan Mills transfer loop; transfer there to the #4/A which will take you to the stop right at City Hall. Free parking is available for those coming by car. Car-pooling and ride-sharing is encouraged. The facility is fully accessible.

Here’s one of Wild’s pieces,

144×96″ triptych, Vaughan, 2018 Artist: mrowade (Ron Wild?)

I’m pretty sure that mrowade is Ron Wild.

Smart Cities, the rest of the country, and Vancouver

Much to my surprise, I covered the ‘Smart Cities’ story in its early (but not earliest) days (and before it was Smart Cities) in two posts: January 30, 2015 and January 27,2016 about the National Research Council of Canada (NRC) and its cities and technology public engagement exercises.

David Vogt in a July 12, 2016 posting on the Urban Opus website provides some catch up information,

Canada’s National Research Council (NRC) has identified Cities of the Future as a game-changing technology and economic opportunity.  Following a national dialogue, an Executive Summit was held in Toronto on March 31, 2016, resulting in an important summary report that will become the seed for Canadian R&D strategy in this sector.

The conclusion so far is that the opportunity for Canada is to muster leadership in the following three areas (in order):

  1. Better Infrastructure and Infrastructure Management
  2. Efficient Transportation; and
  3. Renewable Energy

The National Research Council (NRC) offers a more balanced view of the situation on its “NRC capabilities in smart infrastructure and cities of the future” webpage,

Key opportunities for Canada

North America is one of the most urbanised regions in the world (82 % living in urban areas in 2014).
With growing urbanisation, sustainable development challenges will be increasingly concentrated in cities, requiring technology solutions.
Smart cities are data-driven, relying on broadband and telecommunications, sensors, social media, data collection and integration, automation, analytics and visualization to provide real-time situational analysis.
Most infrastructure will be “smart” by 2030 and transportation systems will be intelligent, adaptive and connected.
Renewable energy, energy storage, power quality and load measurement will contribute to smart grid solutions that are integrated with transportation.
“Green”, sustainable and high-performing construction and infrastructure materials are in demand.

Canadian challenges

High energy use: Transportation accounts for roughly 23% of Canada’s total greenhouse gas emissions, followed closely by the energy consumption of buildings, which accounts for 12% of Canada’s greenhouse gas emissions (Canada’s United Nations Framework Convention on Climate Change report).
Traffic congestion in Canadian cities is increasing, contributing to loss of productivity, increased stress for citizens as well as air and noise pollution.
Canadian cities are susceptible to extreme weather and events related to climate change (e.g., floods, storms).
Changing demographics: aging population (need for accessible transportation options, housing, medical and recreational services) and diverse (immigrant) populations.
Financial and jurisdictional issues: the inability of municipalities (who have primary responsibility) to finance R&D or large-scale solutions without other government assistance.

Opportunities being examined
Living lab

Test bed for smart city technology in order to quantify and demonstrate the benefits of smart cities.
Multiple partnering opportunities (e.g. municipalities, other government organizations, industry associations, universities, social sciences, urban planning).

The integrated city

Efficient transportation: integration of personal mobility and freight movement as key city and inter-city infrastructure.
Efficient and integrated transportation systems linked to city infrastructure.
Planning urban environments for mobility while repurposing redundant infrastructures (converting parking to the food-water-energy nexus) as population shifts away from personal transportation.

FOOD-WATER-ENERGY NEXUS

Sustainable urban bio-cycling.
‎System approach to the development of the technology platforms required to address the nexus.

Key enabling platform technologies
Artificial intelligence

Computer vision and image understanding
Adaptive robots; future robotic platforms for part manufacturing
Understanding human emotions from language
Next generation information extraction using deep learning
Speech recognition
Artificial intelligence to optimize talent management for human resources

Nanomaterials

Nanoelectronics
Nanosensing
Smart materials
Nanocomposites
Self-assembled nanostructures
Nanoimprint
Nanoplasmonic
Nanoclay
Nanocoating

Big data analytics

Predictive equipment maintenance
Energy management
Artificial intelligence for optimizing energy storage and distribution
Understanding and tracking of hazardous chemical elements
Process and design optimization

Printed electronics for Internet of Things

Inks and materials
Printing technologies
Large area, flexible, stretchable, printed electronics components
Applications: sensors for Internet of Things, wearables, antenna, radio-frequency identification tags, smart surfaces, packaging, security, signage

If you’re curious about the government’s plan with regard to implementation, this NRC webpage provides some fascinating insight into their hopes if not the reality. (I have mentioned artificial intelligence and the federal government before in a March 16, 2018 posting about the federal budget and science; scroll down approximately 50% of the way to the subsection titled, Budget 2018: Who’s watching over us? and scan for Michael Karlin’s name.)

As for the current situation, there’s a Smart Cities Challenge taking place. Both Toronto and Vancouver have webpages dedicated to their response to the challenge. (You may want to check your own city’s website to find if it’s participating.)I have a preference for the Toronto page as they immediately state that they’re participating in this challenge and they provide an explanation for what they want from you. Vancouver’s page is by comparison a bit confusing with two videos being immediately presented to the reader and from there too many graphics competing for your attention. They do, however, offer something valuable, links to explanations for smart cities and for the challenge.

Here’s a description of the Smart Cities Challenge (from its webpage),

The Smart Cities Challenge

The Smart Cities Challenge is a pan-Canadian competition open to communities of all sizes, including municipalities, regional governments and Indigenous communities (First Nations, Métis and Inuit). The Challenge encourages communities to adopt a smart cities approach to improve the lives of their residents through innovation, data and connected technology.

  • One prize of up to $50 million open to all communities, regardless of population;
  • Two prizes of up to $10 million open to all communities with populations under 500,000 people; and
  • One prize of up to $5 million open to all communities with populations under 30,000 people.

Infrastructure Canada is engaging Indigenous leaders, communities and organizations to finalize the design of a competition specific to Indigenous communities that will reflect their unique realities and issues. Indigenous communities are also eligible to compete for all the prizes in the current competition.

The Challenge will be an open and transparent process. Communities that submit proposals will also post them online, so that residents and stakeholders can see them. An independent Jury will be appointed to select finalists and winners.

Applications are due by April 24, 2018. Communities interested in participating should visit the
Impact Canada Challenge Platform for the applicant guide and more information.

Finalists will be announced in the Summer of 2018 and winners in Spring 2019 according to the information on the Impact Canada Challenge Platform.

It’s not clear to me if she’s leading Vancouver’s effort to win the Smart Cities Challenge but Jessie Adcock’s (City of Vancouver Chief Digital Officer) Twitter feed certainly features information on the topic and, I suspect, if you’re looking for the most up-to-date information on Vancovuer’s participation, you’re more likely to find it on her feed than on the City of Vancouver’s Smart Cities Challenge webpage.

Robots in Vancouver and in Canada (one of two)

This piece just started growing. It started with robot ethics, moved on to sexbots and news of an upcoming Canadian robotics roadmap. Then, it became a two-part posting with the robotics strategy (roadmap) moving to part two along with robots and popular culture and a further  exploration of robot and AI ethics issues..

What is a robot?

There are lots of robots, some are macroscale and others are at the micro and nanoscales (see my Sept. 22, 2017 posting for the latest nanobot). Here’s a definition from the Robot Wikipedia entry that covers all the scales. (Note: Links have been removed),

A robot is a machine—especially one programmable by a computer— capable of carrying out a complex series of actions automatically.[2] Robots can be guided by an external control device or the control may be embedded within. Robots may be constructed to take on human form but most robots are machines designed to perform a task with no regard to how they look.

Robots can be autonomous or semi-autonomous and range from humanoids such as Honda’s Advanced Step in Innovative Mobility (ASIMO) and TOSY’s TOSY Ping Pong Playing Robot (TOPIO) to industrial robots, medical operating robots, patient assist robots, dog therapy robots, collectively programmed swarm robots, UAV drones such as General Atomics MQ-1 Predator, and even microscopic nano robots. [emphasis mine] By mimicking a lifelike appearance or automating movements, a robot may convey a sense of intelligence or thought of its own.

We may think we’ve invented robots but the idea has been around for a very long time (from the Robot Wikipedia entry; Note: Links have been removed),

Many ancient mythologies, and most modern religions include artificial people, such as the mechanical servants built by the Greek god Hephaestus[18] (Vulcan to the Romans), the clay golems of Jewish legend and clay giants of Norse legend, and Galatea, the mythical statue of Pygmalion that came to life. Since circa 400 BC, myths of Crete include Talos, a man of bronze who guarded the Cretan island of Europa from pirates.

In ancient Greece, the Greek engineer Ctesibius (c. 270 BC) “applied a knowledge of pneumatics and hydraulics to produce the first organ and water clocks with moving figures.”[19][20] In the 4th century BC, the Greek mathematician Archytas of Tarentum postulated a mechanical steam-operated bird he called “The Pigeon”. Hero of Alexandria (10–70 AD), a Greek mathematician and inventor, created numerous user-configurable automated devices, and described machines powered by air pressure, steam and water.[21]

The 11th century Lokapannatti tells of how the Buddha’s relics were protected by mechanical robots (bhuta vahana yanta), from the kingdom of Roma visaya (Rome); until they were disarmed by King Ashoka. [22] [23]

In ancient China, the 3rd century text of the Lie Zi describes an account of humanoid automata, involving a much earlier encounter between Chinese emperor King Mu of Zhou and a mechanical engineer known as Yan Shi, an ‘artificer’. Yan Shi proudly presented the king with a life-size, human-shaped figure of his mechanical ‘handiwork’ made of leather, wood, and artificial organs.[14] There are also accounts of flying automata in the Han Fei Zi and other texts, which attributes the 5th century BC Mohist philosopher Mozi and his contemporary Lu Ban with the invention of artificial wooden birds (ma yuan) that could successfully fly.[17] In 1066, the Chinese inventor Su Song built a water clock in the form of a tower which featured mechanical figurines which chimed the hours.

The beginning of automata is associated with the invention of early Su Song’s astronomical clock tower featured mechanical figurines that chimed the hours.[24][25][26] His mechanism had a programmable drum machine with pegs (cams) that bumped into little levers that operated percussion instruments. The drummer could be made to play different rhythms and different drum patterns by moving the pegs to different locations.[26]

In Renaissance Italy, Leonardo da Vinci (1452–1519) sketched plans for a humanoid robot around 1495. Da Vinci’s notebooks, rediscovered in the 1950s, contained detailed drawings of a mechanical knight now known as Leonardo’s robot, able to sit up, wave its arms and move its head and jaw.[28] The design was probably based on anatomical research recorded in his Vitruvian Man. It is not known whether he attempted to build it.

In Japan, complex animal and human automata were built between the 17th to 19th centuries, with many described in the 18th century Karakuri zui (Illustrated Machinery, 1796). One such automaton was the karakuri ningyō, a mechanized puppet.[29] Different variations of the karakuri existed: the Butai karakuri, which were used in theatre, the Zashiki karakuri, which were small and used in homes, and the Dashi karakuri which were used in religious festivals, where the puppets were used to perform reenactments of traditional myths and legends.

The term robot was coined by a Czech writer (from the Robot Wikipedia entry; Note: Links have been removed)

‘Robot’ was first applied as a term for artificial automata in a 1920 play R.U.R. by the Czech writer, Karel Čapek. However, Josef Čapek was named by his brother Karel as the true inventor of the term robot.[6][7] The word ‘robot’ itself was not new, having been in Slavic language as robota (forced laborer), a term which classified those peasants obligated to compulsory service under the feudal system widespread in 19th century Europe (see: Robot Patent).[37][38] Čapek’s fictional story postulated the technological creation of artificial human bodies without souls, and the old theme of the feudal robota class eloquently fit the imagination of a new class of manufactured, artificial workers.

I’m particularly fascinated by how long humans have been imagining and creating robots.

Robot ethics in Vancouver

The Westender, has run what I believe is the first article by a local (Vancouver, Canada) mainstream media outlet on the topic of robots and ethics. Tessa Vikander’s Sept. 14, 2017 article highlights two local researchers, Ajung Moon and Mark Schmidt, and a local social media company’s (Hootsuite), analytics director, Nik Pai. Vikander opens her piece with an ethical dilemma (Note: Links have been removed),

Emma is 68, in poor health and an alcoholic who has been told by her doctor to stop drinking. She lives with a care robot, which helps her with household tasks.

Unable to fix herself a drink, she asks the robot to do it for her. What should the robot do? Would the answer be different if Emma owns the robot, or if she’s borrowing it from the hospital?

This is the type of hypothetical, ethical question that Ajung Moon, director of the Open Roboethics Initiative [ORI], is trying to answer.

According to an ORI study, half of respondents said ownership should make a difference, and half said it shouldn’t. With society so torn on the question, Moon is trying to figure out how engineers should be programming this type of robot.

A Vancouver resident, Moon is dedicating her life to helping those in the decision-chair make the right choice. The question of the care robot is but one ethical dilemma in the quickly advancing world of artificial intelligence.

At the most sensationalist end of the scale, one form of AI that’s recently made headlines is the sex robot, which has a human-like appearance. A report from the Foundation for Responsible Robotics says that intimacy with sex robots could lead to greater social isolation [emphasis mine] because they desensitize people to the empathy learned through human interaction and mutually consenting relationships.

I’ll get back to the impact that robots might have on us in part two but first,

Sexbots, could they kill?

For more about sexbots in general, Alessandra Maldonado wrote an Aug. 10, 2017 article for salon.com about them (Note: A link has been removed),

Artificial intelligence has given people the ability to have conversations with machines like never before, such as speaking to Amazon’s personal assistant Alexa or asking Siri for directions on your iPhone. But now, one company has widened the scope of what it means to connect with a technological device and created a whole new breed of A.I. — specifically for sex-bots.

Abyss Creations has been in the business of making hyperrealistic dolls for 20 years, and by the end of 2017, they’ll unveil their newest product, an anatomically correct robotic sex toy. Matt McMullen, the company’s founder and CEO, explains the goal of sex robots is companionship, not only a physical partnership. “Imagine if you were completely lonely and you just wanted someone to talk to, and yes, someone to be intimate with,” he said in a video depicting the sculpting process of the dolls. “What is so wrong with that? It doesn’t hurt anybody.”

Maldonado also embedded this video into her piece,

A friend of mine described it as creepy. Specifically we were discussing why someone would want to programme ‘insecurity’ as a  desirable trait in a sexbot.

Marc Beaulieu’s concept of a desirable trait in a sexbot is one that won’t kill him according to his Sept. 25, 2017 article on Canadian Broadcasting News (CBC) online (Note: Links have been removed),

Harmony has a charming Scottish lilt, albeit a bit staccato and canny. Her eyes dart around the room, her chin dips as her eyebrows raise in coquettish fashion. Her face manages expressions that are impressively lifelike. That face comes in 31 different shapes and 5 skin tones, with or without freckles and it sticks to her cyber-skull with magnets. Just peel it off and switch it out at will. In fact, you can choose Harmony’s eye colour, body shape (in great detail) and change her hair too. Harmony, of course, is a sex bot. A very advanced one. How advanced is she? Well, if you have $12,332 CAD to put towards a talkative new home appliance, REALBOTIX says you could be having a “conversation” and relations with her come January. Happy New Year.

Caveat emptor though: one novel bonus feature you might also get with Harmony is her ability to eventually murder you in your sleep. And not because she wants to.

Dr Nick Patterson, faculty of Science Engineering and Built Technology at Deakin University in Australia is lending his voice to a slew of others warning us to slow down and be cautious as we steadily approach Westworldian levels of human verisimilitude with AI tech. Surprisingly, Patterson didn’t regurgitate the narrative we recognize from the popular sci-fi (increasingly non-fi actually) trope of a dystopian society’s futile resistance to a robocalypse. He doesn’t think Harmony will want to kill you. He thinks she’ll be hacked by a code savvy ne’er-do-well who’ll want to snuff you out instead. …

Embedded in Beaulieu’s article is another video of the same sexbot profiled earlier. Her programmer seems to have learned a thing or two (he no longer inputs any traits as you’re watching),

I guess you could get one for Christmas this year if you’re willing to wait for an early 2018 delivery and aren’t worried about hackers turning your sexbot into a killer. While the killer aspect might seem farfetched, it turns out it’s not the only sexbot/hacker issue.

Sexbots as spies

This Oct. 5, 2017 story by Karl Bode for Techdirt points out that sex toys that are ‘smart’ can easily be hacked for any reason including some mischief (Note: Links have been removed),

One “smart dildo” manufacturer was recently forced to shell out $3.75 million after it was caught collecting, err, “usage habits” of the company’s customers. According to the lawsuit, Standard Innovation’s We-Vibe vibrator collected sensitive data about customer usage, including “selected vibration settings,” the device’s battery life, and even the vibrator’s “temperature.” At no point did the company apparently think it was a good idea to clearly inform users of this data collection.

But security is also lacking elsewhere in the world of internet-connected sex toys. Alex Lomas of Pentest Partners recently took a look at the security in many internet-connected sex toys, and walked away arguably unimpressed. Using a Bluetooth “dongle” and antenna, Lomas drove around Berlin looking for openly accessible sex toys (he calls it “screwdriving,” in a riff off of wardriving). He subsequently found it’s relatively trivial to discover and hijack everything from vibrators to smart butt plugs — thanks to the way Bluetooth Low Energy (BLE) connectivity works:

“The only protection you have is that BLE devices will generally only pair with one device at a time, but range is limited and if the user walks out of range of their smartphone or the phone battery dies, the adult toy will become available for others to connect to without any authentication. I should say at this point that this is purely passive reconnaissance based on the BLE advertisements the device sends out – attempting to connect to the device and actually control it without consent is not something I or you should do. But now one could drive the Hush’s motor to full speed, and as long as the attacker remains connected over BLE and not the victim, there is no way they can stop the vibrations.”

Does that make you think twice about a sexbot?

Robots and artificial intelligence

Getting back to the Vikander article (Sept. 14, 2017), Moon or Vikander or both seem to have conflated artificial intelligence with robots in this section of the article,

As for the building blocks that have thrust these questions [care robot quandary mentioned earlier] into the spotlight, Moon explains that AI in its basic form is when a machine uses data sets or an algorithm to make a decision.

“It’s essentially a piece of output that either affects your decision, or replaces a particular decision, or supports you in making a decision.” With AI, we are delegating decision-making skills or thinking to a machine, she says.

Although we’re not currently surrounded by walking, talking, independently thinking robots, the use of AI [emphasis mine] in our daily lives has become widespread.

For Vikander, the conflation may have been due to concerns about maintaining her word count and for Moon, it may have been one of convenience or a consequence of how the jargon is evolving with ‘robot’ meaning a machine specifically or, sometimes, a machine with AI or AI only.

To be precise, not all robots have AI and not all AI is found in robots. It’s a distinction that may be more important for people developing robots and/or AI but it also seems to make a difference where funding is concerned. In a March 24, 2017 posting about the 2017 Canadian federal budget I noticed this,

… The Canadian Institute for Advanced Research will receive $93.7 million [emphasis mine] to “launch a Pan-Canadian Artificial Intelligence Strategy … (to) position Canada as a world-leading destination for companies seeking to invest in artificial intelligence and innovation.”

This brings me to a recent set of meetings held in Vancouver to devise a Canadian robotics roadmap, which suggests the robotics folks feel they need specific representation and funding.

See: part two for the rest.

Yarns that harvest and generate energy

The researchers involved in this work are confident enough about their prospects that they will be  patenting their research into yarns. From an August 25, 2017 news item on Nanowerk,

An international research team led by scientists at The University of Texas at Dallas and Hanyang University in South Korea has developed high-tech yarns that generate electricity when they are stretched or twisted.

In a study published in the Aug. 25 [2017] issue of the journal Science (“Harvesting electrical energy from carbon nanotube yarn twist”), researchers describe “twistron” yarns and their possible applications, such as harvesting energy from the motion of ocean waves or from temperature fluctuations. When sewn into a shirt, these yarns served as a self-powered breathing monitor.

“The easiest way to think of twistron harvesters is, you have a piece of yarn, you stretch it, and out comes electricity,” said Dr. Carter Haines, associate research professor in the Alan G. MacDiarmid NanoTech Institute at UT Dallas and co-lead author of the article. The article also includes researchers from South Korea, Virginia Tech, Wright-Patterson Air Force Base and China.

An August 25, 2017 University of Texas at Dallas news release, which originated the news item, expands on the theme,

Yarns Based on Nanotechnology

The yarns are constructed from carbon nanotubes, which are hollow cylinders of carbon 10,000 times smaller in diameter than a human hair. The researchers first twist-spun the nanotubes into high-strength, lightweight yarns. To make the yarns highly elastic, they introduced so much twist that the yarns coiled like an over-twisted rubber band.

In order to generate electricity, the yarns must be either submerged in or coated with an ionically conducting material, or electrolyte, which can be as simple as a mixture of ordinary table salt and water.

“Fundamentally, these yarns are supercapacitors,” said Dr. Na Li, a research scientist at the NanoTech Institute and co-lead author of the study. “In a normal capacitor, you use energy — like from a battery — to add charges to the capacitor. But in our case, when you insert the carbon nanotube yarn into an electrolyte bath, the yarns are charged by the electrolyte itself. No external battery, or voltage, is needed.”

When a harvester yarn is twisted or stretched, the volume of the carbon nanotube yarn decreases, bringing the electric charges on the yarn closer together and increasing their energy, Haines said. This increases the voltage associated with the charge stored in the yarn, enabling the harvesting of electricity.

Stretching the coiled twistron yarns 30 times a second generated 250 watts per kilogram of peak electrical power when normalized to the harvester’s weight, said Dr. Ray Baughman, director of the NanoTech Institute and a corresponding author of the study.

“Although numerous alternative harvesters have been investigated for many decades, no other reported harvester provides such high electrical power or energy output per cycle as ours for stretching rates between a few cycles per second and 600 cycles per second.”

Lab Tests Show Potential Applications

In the lab, the researchers showed that a twistron yarn weighing less than a housefly could power a small LED, which lit up each time the yarn was stretched.

To show that twistrons can harvest waste thermal energy from the environment, Li connected a twistron yarn to a polymer artificial muscle that contracts and expands when heated and cooled. The twistron harvester converted the mechanical energy generated by the polymer muscle to electrical energy.

“There is a lot of interest in using waste energy to power the Internet of Things, such as arrays of distributed sensors,” Li said. “Twistron technology might be exploited for such applications where changing batteries is impractical.”

The researchers also sewed twistron harvesters into a shirt. Normal breathing stretched the yarn and generated an electrical signal, demonstrating its potential as a self-powered respiration sensor.

“Electronic textiles are of major commercial interest, but how are you going to power them?” Baughman said. “Harvesting electrical energy from human motion is one strategy for eliminating the need for batteries. Our yarns produced over a hundred times higher electrical power per weight when stretched compared to other weavable fibers reported in the literature.”

Electricity from Ocean Waves

“In the lab we showed that our energy harvesters worked using a solution of table salt as the electrolyte,” said Baughman, who holds the Robert A. Welch Distinguished Chair in Chemistry in the School of Natural Sciences and Mathematics. “But we wanted to show that they would also work in ocean water, which is chemically more complex.”

In a proof-of-concept demonstration, co-lead author Dr. Shi Hyeong Kim, a postdoctoral researcher at the NanoTech Institute, waded into the frigid surf off the east coast of South Korea to deploy a coiled twistron in the sea. He attached a 10 centimeter-long yarn, weighing only 1 milligram (about the weight of a mosquito), between a balloon and a sinker that rested on the seabed.

Every time an ocean wave arrived, the balloon would rise, stretching the yarn up to 25 percent, thereby generating measured electricity.

Even though the investigators used very small amounts of twistron yarn in the current study, they have shown that harvester performance is scalable, both by increasing twistron diameter and by operating many yarns in parallel.

“If our twistron harvesters could be made less expensively, they might ultimately be able to harvest the enormous amount of energy available from ocean waves,” Baughman said. “However, at present these harvesters are most suitable for powering sensors and sensor communications. Based on demonstrated average power output, just 31 milligrams of carbon nanotube yarn harvester could provide the electrical energy needed to transmit a 2-kilobyte packet of data over a 100-meter radius every 10 seconds for the Internet of Things.”

Researchers from the UT Dallas Erik Jonsson School of Engineering and Computer Science and Lintec of America’s Nano-Science & Technology Center also participated in the study.

The investigators have filed a patent on the technology.

In the U.S., the research was funded by the Air Force, the Air Force Office of Scientific Research, NASA, the Office of Naval Research and the Robert A. Welch Foundation. In Korea, the research was supported by the Korea-U.S. Air Force Cooperation Program and the Creative Research Initiative Center for Self-powered Actuation of the National Research Foundation and the Ministry of Science.

Here’s a link to and a citation for the paper,

Harvesting electrical energy from carbon nanotube yarn twist by Shi Hyeong Kim, Carter S. Haines, Na Li, Keon Jung Kim, Tae Jin Mun, Changsoon Choi, Jiangtao Di, Young Jun Oh, Juan Pablo Oviedo, Julia Bykova, Shaoli Fang, Nan Jiang, Zunfeng Liu, Run Wang, Prashant Kumar, Rui Qiao, Shashank Priya, Kyeongjae Cho, Moon Kim, Matthew Steven Lucas, Lawrence F. Drummy, Benji Maruyama, Dong Youn Lee, Xavier Lepró, Enlai Gao, Dawood Albarq, Raquel Ovalle-Robles, Seon Jeong Kim, Ray H. Baughman. Science 25 Aug 2017: Vol. 357, Issue 6353, pp. 773-778 DOI: 10.1126/science.aam8771

This paper is behind a paywall.

Dexter Johnson in an Aug. 25, 2017 posting on his Nanoclast blog (on the IEEE [Institute of Electrical and Electronics Engineers] website) delves further into the research,

“Basically what’s happening is when we stretch the yarn, we’re getting a change in capacitance of the yarn. It’s that change that allows us to get energy out,” explains Carter Haines, associate research professor at UT Dallas and co-lead author of the paper describing the research, in an interview with IEEE Spectrum.

This makes it similar in many ways to other types of energy harvesters. For instance, in other research, it has been demonstrated—with sheets of rubber with coated electrodes on both sides—that you can increase the capacitance of a material when you stretch it and it becomes thinner. As a result, if you have charge on that capacitor, you can change the voltage associated with that charge.

“We’re more or less exploiting the same effect but what we’re doing differently is we’re using an electric chemical cell to do this,” says Haines. “So we’re not changing double layer capacitance in normal parallel plate capacitors. But we’re actually changing the electric chemical capacitance on the surface of a super capacitor yarn.”

While there are other capacitance-based energy harvesters, those other devices require extremely high voltages to work because they’re using parallel plate capacitors, according to Haines.

Dexter asks good questions and his post is very informative.

Internet of toys, the robotification of childhood, and privacy issues

Leave it to the European Commission’s (EC) Joint Research Centre (JRC) to look into the future of toys. As far as I’m aware there are no such moves in either Canada or the US despite the ubiquity of robot toys and other such devices. From a March 23, 2017 EC JRC  press release (also on EurekAlert),

Action is needed to monitor and control the emerging Internet of Toys, concludes a new JRC report. Privacy and security are highlighted as main areas of concern.

Large numbers of connected toys have been put on the market over the past few years, and the turnover is expected to reach €10 billion by 2020 – up from just €2.6 billion in 2015.

Connected toys come in many different forms, from smart watches to teddy bears that interact with their users. They are connected to the internet and together with other connected appliances they form the Internet of Things, which is bringing technology into our daily lives more than ever.

However, the toys’ ability to record, store and share information about their young users raises concerns about children’s safety, privacy and social development.

A team of JRC scientists and international experts looked at the safety, security, privacy and societal questions emerging from the rise of the Internet of Toys. The report invites policymakers, industry, parents and teachers to study connected toys more in depth in order to provide a framework which ensures that these toys are safe and beneficial for children.

Robotification of childhood

Robots are no longer only used in industry to carry out repetitive or potentially dangerous tasks. In the past years, robots have entered our everyday lives and also children are more and more likely to encounter robotic or artificial intelligence-enhanced toys.

We still know relatively little about the consequences of children’s interaction with robotic toys. However, it is conceivable that they represent both opportunities and risks for children’s cognitive, socio-emotional and moral-behavioural development.

For example, social robots may further the acquisition of foreign language skills by compensating for the lack of native speakers as language tutors or by removing the barriers and peer pressure encountered in class room. There is also evidence about the benefits of child-robot interaction for children with developmental problems, such as autism or learning difficulties, who may find human interaction difficult.

However, the internet-based personalization of children’s education via filtering algorithms may also increase the risk of ‘educational bubbles’ where children only receive information that fits their pre-existing knowledge and interest – similar to adult interaction on social media networks.

Safety and security considerations

The rapid rise in internet connected toys also raises concerns about children’s safety and privacy. In particular, the way that data gathered by connected toys is analysed, manipulated and stored is not transparent, which poses an emerging threat to children’s privacy.

The data provided by children while they play, i.e the sounds, images and movements recorded by connected toys is personal data protected by the EU data protection framework, as well as by the new General Data Protection Regulation (GDPR). However, information on how this data is stored, analysed and shared might be hidden in long privacy statements or policies and often go unnoticed by parents.

Whilst children’s right to privacy is the most immediate concern linked to connected toys, there is also a long term concern: growing up in a culture where the tracking, recording and analysing of children’s everyday choices becomes a normal part of life is also likely to shape children’s behaviour and development.

Usage framework to guide the use of connected toys

The report calls for industry and policymakers to create a connected toys usage framework to act as a guide for their design and use.

This would also help toymakers to meet the challenge of complying with the new European General Data Protection Regulation (GDPR) which comes into force in May 2018, which will increase citizens’ control over their personal data.

The report also calls for the connected toy industry and academic researchers to work together to produce better designed and safer products.

Advice for parents

The report concludes that it is paramount that we understand how children interact with connected toys and which risks and opportunities they entail for children’s development.

“These devices come with really interesting possibilities and the more we use them, the more we will learn about how to best manage them. Locking them up in a cupboard is not the way to go. We as adults have to understand how they work – and how they might ‘misbehave’ – so that we can provide the right tools and the right opportunities for our children to grow up happy in a secure digital world”, Stéphane Chaudron, the report’s lead researcher at the Joint Research Centre (JRC).).

The authors of the report encourage parents to get informed about the capabilities, functions, security measures and privacy settings of toys before buying them. They also urge parents to focus on the quality of play by observing their children, talking to them about their experiences and playing alongside and with their children.

Protecting and empowering children

Through the Alliance to better protect minors online and with the support of UNICEF, NGOs, Toy Industries Europe and other industry and stakeholder groups, European and global ICT and media companies  are working to improve the protection and empowerment of children when using connected toys. This self-regulatory initiative is facilitated by the European Commission and aims to create a safer and more stimulating digital environment for children.

There’s an engaging video accompanying this press release,

You can find the report (Kaleidoscope on the Internet of Toys: Safety, security, privacy and societal insights) here and both the PDF and print versions are free (although I imagine you’ll have to pay postage for the print version). This report was published in 2016; the authors are Stéphane Chaudron, Rosanna Di Gioia, Monica Gemo, Donell Holloway , Jackie Marsh , Giovanna Mascheroni , Jochen Peter, Dylan Yamada-Rice and organizations involved include European Cooperation in Science and Technology (COST), Digital Literacy and Multimodal Practices of Young Children (DigiLitEY), and COST Action IS1410. DigiLitEY is a European network of 33 countries focusing on research in this area (2015-2019).

Emerging technology and the law

I have three news bits about legal issues that are arising as a consequence of emerging technologies.

Deep neural networks, art, and copyright

Caption: The rise of automated art opens new creative avenues, coupled with new problems for copyright protection. Credit: Provided by: Alexander Mordvintsev, Christopher Olah and Mike Tyka

Presumably this artwork is a demonstration of automated art although they never really do explain how in the news item/news release. An April 26, 2017 news item on ScienceDaily announces research into copyright and the latest in using neural networks to create art,

In 1968, sociologist Jean Baudrillard wrote on automatism that “contained within it is the dream of a dominated world […] that serves an inert and dreamy humanity.”

With the growing popularity of Deep Neural Networks (DNN’s), this dream is fast becoming a reality.

Dr. Jean-Marc Deltorn, researcher at the Centre d’études internationales de la propriété intellectuelle in Strasbourg, argues that we must remain a responsive and responsible force in this process of automation — not inert dominators. As he demonstrates in a recent Frontiers in Digital Humanities paper, the dream of automation demands a careful study of the legal problems linked to copyright.

An April 26, 2017 Frontiers (publishing) news release on EurekAlert, which originated the news item, describes the research in more detail,

For more than half a century, artists have looked to computational processes as a way of expanding their vision. DNN’s are the culmination of this cross-pollination: by learning to identify a complex number of patterns, they can generate new creations.

These systems are made up of complex algorithms modeled on the transmission of signals between neurons in the brain.

DNN creations rely in equal measure on human inputs and the non-human algorithmic networks that process them.

Inputs are fed into the system, which is layered. Each layer provides an opportunity for a more refined knowledge of the inputs (shape, color, lines). Neural networks compare actual outputs to expected ones, and correct the predictive error through repetition and optimization. They train their own pattern recognition, thereby optimizing their learning curve and producing increasingly accurate outputs.

The deeper the layers are, the higher the level of abstraction. The highest layers are able to identify the contents of a given input with reasonable accuracy, after extended periods of training.

Creation thus becomes increasingly automated through what Deltorn calls “the arcane traceries of deep architecture”. The results are sufficiently abstracted from their sources to produce original creations that have been exhibited in galleries, sold at auction and performed at concerts.

The originality of DNN’s is a combined product of technological automation on one hand, human inputs and decisions on the other.

DNN’s are gaining popularity. Various platforms (such as DeepDream) now allow internet users to generate their very own new creations . This popularization of the automation process calls for a comprehensive legal framework that ensures a creator’s economic and moral rights with regards to his work – copyright protection.

Form, originality and attribution are the three requirements for copyright. And while DNN creations satisfy the first of these three, the claim to originality and attribution will depend largely on a given country legislation and on the traceability of the human creator.

Legislation usually sets a low threshold to originality. As DNN creations could in theory be able to create an endless number of riffs on source materials, the uncurbed creation of original works could inflate the existing number of copyright protections.

Additionally, a small number of national copyright laws confers attribution to what UK legislation defines loosely as “the person by whom the arrangements necessary for the creation of the work are undertaken.” In the case of DNN’s, this could mean anybody from the programmer to the user of a DNN interface.

Combined with an overly supple take on originality, this view on attribution would further increase the number of copyrightable works.

The risk, in both cases, is that artists will be less willing to publish their own works, for fear of infringement of DNN copyright protections.

In order to promote creativity – one seminal aim of copyright protection – the issue must be limited to creations that manifest a personal voice “and not just the electric glint of a computational engine,” to quote Deltorn. A delicate act of discernment.

DNN’s promise new avenues of creative expression for artists – with potential caveats. Copyright protection – a “catalyst to creativity” – must be contained. Many of us gently bask in the glow of an increasingly automated form of technology. But if we want to safeguard the ineffable quality that defines much art, it might be a good idea to hone in more closely on the differences between the electric and the creative spark.

This research is and be will part of a broader Frontiers Research Topic collection of articles on Deep Learning and Digital Humanities.

Here’s a link to and a citation for the paper,

Deep Creations: Intellectual Property and the Automata by Jean-Marc Deltorn. Front. Digit. Humanit., 01 February 2017 | https://doi.org/10.3389/fdigh.2017.00003

This paper is open access.

Conference on governance of emerging technologies

I received an April 17, 2017 notice via email about this upcoming conference. Here’s more from the Fifth Annual Conference on Governance of Emerging Technologies: Law, Policy and Ethics webpage,

The Fifth Annual Conference on Governance of Emerging Technologies:

Law, Policy and Ethics held at the new

Beus Center for Law & Society in Phoenix, AZ

May 17-19, 2017!

Call for Abstracts – Now Closed

The conference will consist of plenary and session presentations and discussions on regulatory, governance, legal, policy, social and ethical aspects of emerging technologies, including (but not limited to) nanotechnology, synthetic biology, gene editing, biotechnology, genomics, personalized medicine, human enhancement technologies, telecommunications, information technologies, surveillance technologies, geoengineering, neuroscience, artificial intelligence, and robotics. The conference is premised on the belief that there is much to be learned and shared from and across the governance experience and proposals for these various emerging technologies.

Keynote Speakers:

Gillian HadfieldRichard L. and Antoinette Schamoi Kirtland Professor of Law and Professor of Economics USC [University of Southern California] Gould School of Law

Shobita Parthasarathy, Associate Professor of Public Policy and Women’s Studies, Director, Science, Technology, and Public Policy Program University of Michigan

Stuart Russell, Professor at [University of California] Berkeley, is a computer scientist known for his contributions to artificial intelligence

Craig Shank, Vice President for Corporate Standards Group in Microsoft’s Corporate, External and Legal Affairs (CELA)

Plenary Panels:

Innovation – Responsible and/or Permissionless

Ellen-Marie Forsberg, Senior Researcher/Research Manager at Oslo and Akershus University College of Applied Sciences

Adam Thierer, Senior Research Fellow with the Technology Policy Program at the Mercatus Center at George Mason University

Wendell Wallach, Consultant, ethicist, and scholar at Yale University’s Interdisciplinary Center for Bioethics

 Gene Drives, Trade and International Regulations

Greg Kaebnick, Director, Editorial Department; Editor, Hastings Center Report; Research Scholar, Hastings Center

Jennifer Kuzma, Goodnight-North Carolina GlaxoSmithKline Foundation Distinguished Professor in Social Sciences in the School of Public and International Affairs (SPIA) and co-director of the Genetic Engineering and Society (GES) Center at North Carolina State University

Andrew Maynard, Senior Sustainability Scholar, Julie Ann Wrigley Global Institute of Sustainability Director, Risk Innovation Lab, School for the Future of Innovation in Society Professor, School for the Future of Innovation in Society, Arizona State University

Gary Marchant, Regents’ Professor of Law, Professor of Law Faculty Director and Faculty Fellow, Center for Law, Science & Innovation, Arizona State University

Marc Saner, Inaugural Director of the Institute for Science, Society and Policy, and Associate Professor, University of Ottawa Department of Geography

Big Data

Anupam Chander, Martin Luther King, Jr. Professor of Law and Director, California International Law Center, UC Davis School of Law

Pilar Ossorio, Professor of Law and Bioethics, University of Wisconsin, School of Law and School of Medicine and Public Health; Morgridge Institute for Research, Ethics Scholar-in-Residence

George Poste, Chief Scientist, Complex Adaptive Systems Initiative (CASI) (http://www.casi.asu.edu/), Regents’ Professor and Del E. Webb Chair in Health Innovation, Arizona State University

Emily Shuckburgh, climate scientist and deputy head of the Polar Oceans Team at the British Antarctic Survey, University of Cambridge

 Responsible Development of AI

Spring Berman, Ira A. Fulton Schools of Engineering, Arizona State University

John Havens, The IEEE [Institute of Electrical and Electronics Engineers] Global Initiative for Ethical Considerations in Artificial Intelligence and Autonomous Systems

Subbarao Kambhampati, Senior Sustainability Scientist, Julie Ann Wrigley Global Institute of Sustainability, Professor, School of Computing, Informatics and Decision Systems Engineering, Ira A. Fulton Schools of Engineering, Arizona State University

Wendell Wallach, Consultant, Ethicist, and Scholar at Yale University’s Interdisciplinary Center for Bioethics

Existential and Catastrophic Ricks [sic]

Tony Barrett, Co-Founder and Director of Research of the Global Catastrophic Risk Institute

Haydn Belfield,  Academic Project Administrator, Centre for the Study of Existential Risk at the University of Cambridge

Margaret E. Kosal Associate Director, Sam Nunn School of International Affairs, Georgia Institute of Technology

Catherine Rhodes,  Academic Project Manager, Centre for the Study of Existential Risk at CSER, University of Cambridge

These were the panels that are of interest to me; there are others on the homepage.

Here’s some information from the Conference registration webpage,

Early Bird Registration – $50 off until May 1! Enter discount code: earlybirdGETs50

New: Group Discount – Register 2+ attendees together and receive an additional 20% off for all group members!

Click Here to Register!

Conference registration fees are as follows:

  • General (non-CLE) Registration: $150.00
  • CLE Registration: $350.00
  • *Current Student / ASU Law Alumni Registration: $50.00
  • ^Cybsersecurity sessions only (May 19): $100 CLE / $50 General / Free for students (registration info coming soon)

There you have it.

Neuro-techno future laws

I’m pretty sure this isn’t the first exploration of potential legal issues arising from research into neuroscience although it’s the first one I’ve stumbled across. From an April 25, 2017 news item on phys.org,

New human rights laws to prepare for advances in neurotechnology that put the ‘freedom of the mind’ at risk have been proposed today in the open access journal Life Sciences, Society and Policy.

The authors of the study suggest four new human rights laws could emerge in the near future to protect against exploitation and loss of privacy. The four laws are: the right to cognitive liberty, the right to mental privacy, the right to mental integrity and the right to psychological continuity.

An April 25, 2017 Biomed Central news release on EurekAlert, which originated the news item, describes the work in more detail,

Marcello Ienca, lead author and PhD student at the Institute for Biomedical Ethics at the University of Basel, said: “The mind is considered to be the last refuge of personal freedom and self-determination, but advances in neural engineering, brain imaging and neurotechnology put the freedom of the mind at risk. Our proposed laws would give people the right to refuse coercive and invasive neurotechnology, protect the privacy of data collected by neurotechnology, and protect the physical and psychological aspects of the mind from damage by the misuse of neurotechnology.”

Advances in neurotechnology, such as sophisticated brain imaging and the development of brain-computer interfaces, have led to these technologies moving away from a clinical setting and into the consumer domain. While these advances may be beneficial for individuals and society, there is a risk that the technology could be misused and create unprecedented threats to personal freedom.

Professor Roberto Andorno, co-author of the research, explained: “Brain imaging technology has already reached a point where there is discussion over its legitimacy in criminal court, for example as a tool for assessing criminal responsibility or even the risk of reoffending. Consumer companies are using brain imaging for ‘neuromarketing’, to understand consumer behaviour and elicit desired responses from customers. There are also tools such as ‘brain decoders’ which can turn brain imaging data into images, text or sound. All of these could pose a threat to personal freedom which we sought to address with the development of four new human rights laws.”

The authors explain that as neurotechnology improves and becomes commonplace, there is a risk that the technology could be hacked, allowing a third-party to ‘eavesdrop’ on someone’s mind. In the future, a brain-computer interface used to control consumer technology could put the user at risk of physical and psychological damage caused by a third-party attack on the technology. There are also ethical and legal concerns over the protection of data generated by these devices that need to be considered.

International human rights laws make no specific mention to neuroscience, although advances in biomedicine have become intertwined with laws, such as those concerning human genetic data. Similar to the historical trajectory of the genetic revolution, the authors state that the on-going neurorevolution will force a reconceptualization of human rights laws and even the creation of new ones.

Marcello Ienca added: “Science-fiction can teach us a lot about the potential threat of technology. Neurotechnology featured in famous stories has in some cases already become a reality, while others are inching ever closer, or exist as military and commercial prototypes. We need to be prepared to deal with the impact these technologies will have on our personal freedom.”

Here’s a link to and a citation for the paper,

Towards new human rights in the age of neuroscience and neurotechnology by Marcello Ienca and Roberto Andorno. Life Sciences, Society and Policy201713:5 DOI: 10.1186/s40504-017-0050-1 Published: 26 April 2017

©  The Author(s). 2017

This paper is open access.

Graphene Flagship high points

The European Union’s Graphene Flagship project has provided a series of highlights in place of an overview for the project’s ramp-up phase (in 2013 the Graphene Flagship was announced as one of two winners of a science competition, the other winner was the Human Brain Project, with two prizes of 1B Euros for each project). Here are the highlights from the April 19, 2016 Graphene Flagship press release,

Graphene and Neurons – the Best of Friends

Flagship researchers have shown that it is possible to interface untreated graphene with neuron cells whilst maintaining the integrity of these vital cells [1]. This result is a significant first step towards using graphene to produce better deep brain implants which can both harness and control the brain.

Graphene and Neurons
 

This paper emerged from the Graphene Flagship Work Package Health and Environment. Prof. Prato, the WP leader from the University of Trieste in Italy, commented that “We are currently involved in frontline research in graphene technology towards biomedical applications, exploring the interactions between graphene nano- and micro-sheets with the sophisticated signalling machinery of nerve cells. Our work is a first step in that direction.”

[1] Fabbro A., et al., Graphene-Based Interfaces do not Alter Target Nerve Cells. ACS Nano, 10 (1), 615 (2016).

Pressure Sensing with Graphene: Quite a Squeeze

The Graphene Flagship developed a small, robust, highly efficient squeeze film pressure sensor [2]. Pressure sensors are present in most mobile handsets and by replacing current sensor membranes with a graphene membrane they allow the sensor to decrease in size and significantly increase its responsiveness and lifetime.

Discussing this work which emerged from the Graphene Flagship Work Package Sensors is the paper’s lead author, Robin Dolleman from the Technical University of Delft in The Netherlands “After spending a year modelling various systems the idea of the squeeze-film pressure sensor was formed. Funding from the Graphene Flagship provided the opportunity to perform the experiments and we obtained very good results. We built a squeeze-film pressure sensor from 31 layers of graphene, which showed a 45 times higher response than silicon based devices, while reducing the area of the device by a factor of 25. Currently, our work is focused on obtaining similar results on monolayer graphene.”

 

[2] Dolleman R. J. et al., Graphene Squeeze-Film Pressure Sensors. Nano Lett., 16, 568 (2016)

Frictionless Graphene


Image caption: A graphene nanoribbon was anchored at the tip of a atomic force microscope and dragged over a gold surface. The observed friction force was extremely low.

Image caption: A graphene nanoribbon was anchored at the tip of a atomic force microscope and dragged over a gold surface. The observed friction force was extremely low.

Research done within the Graphene Flagship, has observed the onset of superlubricity in graphene nanoribbons sliding on a surface, unravelling the role played by ribbon size and elasticity [3]. This important finding opens up the development potential of nanographene frictionless coatings. This research lead by the Graphene Flagship Work Package Nanocomposites also involved researchers from Work Package Materials and Work Package Health and the Environment, a shining example of the inter-disciplinary, cross-collaborative approach to research undertaken within the Graphene Flagship. Discussing this further is the Work Package Nanocomposites Leader, Dr Vincenzo Palermo from CNR National Research Council, Italy “Strengthening the collaboration and interactions with other Flagship Work Packages created added value through a strong exchange of materials, samples and information”.

[3] Kawai S., et al., Superlubricity of graphene nanoribbons on gold surfaces. Science. 351, 6276, 957 (2016) 

​Graphene Paddles Forward

Work undertaken within the Graphene Flagship saw Spanish automotive interiors specialist, and Flagship partner, Grupo Antolin SA work in collaboration with Roman Kayaks to develop an innovative kayak that incorporates graphene into its thermoset polymeric matrices. The use of graphene and related materials results in a significant increase in both impact strength and stiffness, improving the resistance to breakage in critical areas of the boat. Pushing the graphene canoe well beyond the prototype demonstration bubble, Roman Kayaks chose to use the K-1 kayak in the Canoe Marathon World Championships held in September in Gyor, Hungary where the Graphene Canoe was really put through its paces.

Talking further about this collaboration from the Graphene Flagship Work Package Production is the WP leader, Dr Ken Teo from Aixtron Ltd., UK “In the Graphene Flagship project, Work Package Production works as a technology enabler for real-world applications. Here we show the worlds first K-1 kayak (5.2 meters long), using graphene related materials developed by Grupo Antolin. We are very happy to see that graphene is creating value beyond traditional industries.” 

​Graphene Production – a Kitchen Sink Approach

Researchers from the Graphene Flagship have devised a way of producing large quantities of graphene by separating graphite flakes in liquids with a rotating tool that works in much the same way as a kitchen blender [4]. This paves the way to mass production of high quality graphene at a low cost.

The method was produced within the Graphene Flagship Work Package Production and is talked about further here by the WP deputy leader, Prof. Jonathan Coleman from Trinity College Dublin, Ireland “This technique produced graphene at higher rates than most other methods, and produced sheets of 2D materials that will be useful in a range of applications, from printed electronics to energy generation.” 

[4] Paton K.R., et al., Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat. Mater. 13, 624 (2014).

Flexible Displays – Rolled Up in your Pocket

Working with researchers from the Graphene Flagship the Flagship partner, FlexEnable, demonstrated the world’s first flexible display with graphene incorporated into its pixel backplane. Combined with an electrophoretic imaging film, the result is a low-power, durable display suitable for use in many and varied environments.

Emerging from the Graphene Flagship Work Package Flexible Electronics this illustrates the power of collaboration.  Talking about this is the WP leader Dr Henrik Sandberg from the VTT Technical Research Centre of Finland Ltd., Finland “Here we show the power of collaboration. To deliver these flexible demonstrators and prototypes we have seen materials experts working together with components manufacturers and system integrators. These devices will have a potential impact in several emerging fields such as wearables and the Internet of Things.”

​Fibre-Optics Data Boost from Graphene

A team of researches from the Graphene Flagship have demonstrated high-performance photo detectors for infrared fibre-optic communication systems based on wafer-scale graphene [5]. This can increase the amount of information transferred whilst at the same time make the devises smaller and more cost effective.

Discussing this work which emerged from the Graphene Flagship Work Package Optoelectronics is the paper’s lead author, Daniel Schall from AMO, Germany “Graphene has outstanding properties when it comes to the mobility of its electric charge carriers, and this can increase the speed at which electronic devices operate.”

[5] Schall D., et al., 50 GBit/s Photodetectors Based on Wafer-Scale Graphene for Integrated Silicon Photonic Communication Systems. ACS Photonics. 1 (9), 781 (2014)

​Rechargeable Batteries with Graphene

A number of different research groups within the Graphene Flagship are working on rechargeable batteries. One group has developed a graphene-based rechargeable battery of the lithium-ion type used in portable electronic devices [6]. Graphene is incorporated into the battery anode in the form of a spreadable ink containing a suspension of graphene nanoflakes giving an increased energy efficiency of 20%. A second group of researchers have demonstrated a lithium-oxygen battery with high energy density, efficiency and stability [7]. They produced a device with over 90% efficiency that may be recharged more than 2,000 times. Their lithium-oxygen cell features a porous, ‘fluffy’ electrode made from graphene together with additives that alter the chemical reactions at work in the battery.

Graphene Flagship researchers show how the 2D material graphene can improve the energy capacity, efficiency and stability of lithium-oxygen batteries.

Both devices were developed in different groups within the Graphene Flagship Work Package Energy and speaking of the technology further is Prof. Clare Grey from Cambridge University, UK “What we’ve achieved is a significant advance for this technology, and suggests whole new areas for research – we haven’t solved all the problems inherent to this chemistry, but our results do show routes forward towards a practical device”.

[6] Liu T., et al. Cycling Li-O2 batteries via LiOH formation and decomposition. Science. 350, 6260, 530 (2015)

[7] Hassoun J., et al., An Advanced Lithium-Ion Battery Based on a Graphene Anode and a Lithium Iron Phosphate Cathode. Nano Lett., 14 (8), 4901 (2014)

Graphene – What and Why?

Graphene is a two-dimensional material formed by a single atom-thick layer of carbon, with the carbon atoms arranged in a honeycomb-like lattice. This transparent, flexible material has a number of unique properties. For example, it is 100 times stronger than steel, and conducts electricity and heat with great efficiency.

A number of practical applications for graphene are currently being developed. These include flexible and wearable electronics and antennas, sensors, optoelectronics and data communication systems, medical and bioengineering technologies, filtration, super-strong composites, photovoltaics and energy storage.

Graphene and Beyond

The Graphene Flagship also covers other layered materials, as well as hybrids formed by combining graphene with these complementary materials, or with other materials and structures, ranging from polymers, to metals, cement, and traditional semiconductors such as silicon. Graphene is just the first of thousands of possible single layer materials. The Flagship plans to accelerate their journey from laboratory to factory floor.

Especially exciting is the possibility of stacking monolayers of different elements to create materials not found in nature, with properties tailored for specific applications. Such composite layered materials could be combined with other nanomaterials, such as metal nanoparticles, in order to further enhance their properties and uses.​

Graphene – the Fruit of European Scientific Excellence

Europe, North America and Asia are all active centres of graphene R&D, but Europe has special claim to be at the centre of this activity. The ground-breaking experiments on graphene recognised in the award of the 2010 Nobel Prize in Physics were conducted by European physicists, Andre Geim and Konstantin Novoselov, both at Manchester University. Since then, graphene research in Europe has continued apace, with major public funding for specialist centres, and the stimulation of academic-industrial partnerships devoted to graphene and related materials. It is European scientists and engineers who as part of the Graphene Flagship are closely coordinating research efforts, and accelerating the transfer of layered materials from the laboratory to factory floor.

For anyone who would like links to the published papers, you can check out an April 20, 2016 news item featuring the Graphene Flagship highlights on Nanowerk.

KAIST (Korea Advanced Institute of Science and Technology) will lead an Ideas Lab at 2016 World Economic Forum

The theme for the 2016 World Economic Forum (WEF) is ‘Mastering the Fourth Industrial Revolution’. I’m losing track of how many industrial revolutions we’ve had and this seems like a vague theme. However, there is enlightenment to be had in this Nov. 17, 2015 Korea Advanced Institute of Science and Technology (KAIST) news release on EurekAlert,

KAIST researchers will lead an IdeasLab on biotechnology for an aging society while HUBO, the winner of the 2015 DARPA Robotics Challenge, will interact with the forum participants, offering an experience of state-of-the-art robotics technology

Moving on from the news release’s subtitle, there’s more enlightenment,

Representatives from the Korea Advanced Institute of Science and Technology (KAIST) will attend the 2016 Annual Meeting of the World Economic Forum to run an IdeasLab and showcase its humanoid robot.

With over 2,500 leaders from business, government, international organizations, civil society, academia, media, and the arts expected to participate, the 2016 Annual Meeting will take place on Jan. 20-23, 2016 in Davos-Klosters, Switzerland. Under the theme of ‘Mastering the Fourth Industrial Revolution,’ [emphasis mine] global leaders will discuss the period of digital transformation [emphasis mine] that will have profound effects on economies, societies, and human behavior.

President Sung-Mo Steve Kang of KAIST will join the Global University Leaders Forum (GULF), a high-level academic meeting to foster collaboration among experts on issues of global concern for the future of higher education and the role of science in society. He will discuss how the emerging revolution in technology will affect the way universities operate and serve society. KAIST is the only Korean university participating in GULF, which is composed of prestigious universities invited from around the world.

Four KAIST professors, including Distinguished Professor Sang Yup Lee of the Chemical and Biomolecular Engineering Department, will lead an IdeasLab on ‘Biotechnology for an Aging Society.’

Professor Lee said, “In recent decades, much attention has been paid to the potential effect of the growth of an aging population and problems posed by it. At our IdeasLab, we will introduce some of our research breakthroughs in biotechnology to address the challenges of an aging society.”

In particular, he will present his latest research in systems biotechnology and metabolic engineering. His research has explained the mechanisms of how traditional Oriental medicine works in our bodies by identifying structural similarities between effective compounds in traditional medicine and human metabolites, and has proposed more effective treatments by employing such compounds.

KAIST will also display its networked mobile medical service system, ‘Dr. M.’ Built upon a ubiquitous and mobile Internet, such as the Internet of Things, wearable electronics, and smart homes and vehicles, Dr. M will provide patients with a more affordable and accessible healthcare service.

In addition, Professor Jun-Ho Oh of the Mechanical Engineering Department will showcase his humanoid robot, ‘HUBO,’ during the Annual Meeting. His research team won the International Humanoid Robotics Challenge hosted by the United States Defense Advanced Research Projects Agency (DARPA), which was held in Pomona, California, on June 5-6, 2015. With 24 international teams participating in the finals, HUBO completed all eight tasks in 44 minutes and 28 seconds, 6 minutes earlier than the runner-up, and almost 11 minutes earlier than the third-place team. Team KAIST walked away with the grand prize of USD 2 million.

Professor Oh said, “Robotics technology will grow exponentially in this century, becoming a real driving force to expedite the Fourth Industrial Revolution. I hope HUBO will offer an opportunity to learn about the current advances in robotics technology.”

President Kang pointed out, “KAIST has participated in the Annual Meeting of the World Economic Forum since 2011 and has engaged with a broad spectrum of global leaders through numerous presentations and demonstrations of our excellence in education and research. Next year, we will choreograph our first robotics exhibition on HUBO and present high-tech research results in biotechnology, which, I believe, epitomizes how science and technology breakthroughs in the Fourth Industrial Revolution will shape our future in an unprecedented way.”

Based on what I’m reading in the KAIST news release, I think the conversation about the ‘Fourth revolution’ may veer toward robotics and artificial intelligence (referred to in code as “digital transformation”) as developments in these fields are likely to affect various economies.  Before proceeding with that thought, take a look at this video showcasing HUBO at the DARPA challenge,


I’m quite impressed with how the robot can recalibrate its grasp so it can pick things up and plug an electrical cord into an outlet and knowing whether wheels or legs will be needed to complete a task all due to algorithms which give the robot a type of artificial intelligence. While it may seem more like a machine than anything else, there’s also this version of a HUBO,

Description English: Photo by David Hanson Date 26 October 2006 (original upload date) Source Transferred from en.wikipedia to Commons by Mac. Author Dayofid at English Wikipedia

Description
English: Photo by David Hanson
Date 26 October 2006 (original upload date)
Source Transferred from en.wikipedia to Commons by Mac.
Author Dayofid at English Wikipedia

It’ll be interesting to note if the researchers make the HUBO seem more humanoid by giving it a face for its interactions with WEF attendees. It would be more engaging but also more threatening since there is increasing concern over robots taking work away from humans with implications for various economies. There’s more about HUBO in its Wikipedia entry.

As for the IdeasLab, that’s been in place at the WEF since 2009 according to this WEF July 19, 2011 news release announcing an ideasLab hub (Note: A link has been removed),

The World Economic Forum is publicly launching its biannual interactive IdeasLab hub on 19 July [2011] at 10.00 CEST. The unique IdeasLab hub features short documentary-style, high-definition (HD) videos of preeminent 21st century ideas and critical insights. The hub also provides dynamic Pecha Kucha presentations and visual IdeaScribes that trace and package complex strategic thinking into engaging and powerful images. All videos are HD broadcast quality.

To share the knowledge captured by the IdeasLab sessions, which have been running since 2009, the Forum is publishing 23 of the latest sessions, seen as the global benchmark of collaborative learning and development.

So while you might not be able to visit an IdeasLab presentation at the WEF meetings, you could get a it to see them later.

Getting back to the robotics and artificial intelligence aspect of the 2016 WEF’s ‘digital’ theme, I noticed some reluctance to discuss how the field of robotics is affecting work and jobs in a broadcast of Canadian television show, ‘Conversations with Conrad’.

For those unfamiliar with the interviewer, Conrad Black is somewhat infamous in Canada for a number of reasons (from the Conrad Black Wikipedia entry), Note: Links have been removed,

Conrad Moffat Black, Baron Black of Crossharbour, KSG (born 25 August 1944) is a Canadian-born British former newspaper publisher and author. He is a non-affiliated life peer, and a convicted felon in the United States for fraud.[n 1] Black controlled Hollinger International, once the world’s third-largest English-language newspaper empire,[3] which published The Daily Telegraph (UK), Chicago Sun Times (U.S.), The Jerusalem Post (Israel), National Post (Canada), and hundreds of community newspapers in North America, before he was fired by the board of Hollinger in 2004.[4]

In 2004, a shareholder-initiated prosecution of Black began in the United States. Over $80 million in assets claimed to have been improperly taken or inappropriately spent by Black.[5] He was convicted of three counts of fraud and one count of obstruction of justice in a U.S. court in 2007 and sentenced to six and a half years’ imprisonment. In 2011 two of the charges were overturned on appeal and he was re-sentenced to 42 months in prison on one count of mail fraud and one count of obstruction of justice.[6] Black was released on 4 May 2012.[7]

Despite or perhaps because of his chequered past, he is often a good interviewer and he definitely attracts interesting guests. n an Oct. 26, 2015 programme, he interviewed both former Canadian astronaut, Chris Hadfield, and Canadian-American David Frum who’s currently editor of Atlantic Monthly and a former speechwriter for George W. Bush.

It was Black’s conversation with Frum which surprised me. They discuss robotics without ever once using the word. In a section where Frum notes that manufacturing is returning to the US, he also notes that it doesn’t mean more jobs and cites a newly commissioned plant in the eastern US employing about 40 people where before it would have employed hundreds or thousands. Unfortunately, the video has not been made available as I write this (Nov. 20, 2015) but that situation may change. You can check here.

Final thought, my guess is that economic conditions are fragile and I don’t think anyone wants to set off panic by mentioning robotics and disappearing jobs.

Royal Institution, science, and nanotechnology 101 and #RE_IMAGINE at the London College of Fashion

I’m featuring two upcoming events in London (UK).

Nanotechnology 101: The biggest thing you’ve never seen

 Gold Nanowire Array Credit: lacomj via Flickr: www.flickr.com/photos/40137058@N07/3790862760

Gold Nanowire Array
Credit: lacomj via Flickr: www.flickr.com/photos/40137058@N07/3790862760 [downloaded from http://www.rigb.org/whats-on/events-2015/october/public-nanotechnology-101-the-biggest-thing-you]

Already sold out, this event is scheduled for Oct. 20, 2015. Here’s why you might want to put yourself on a waiting list, from the Royal Institution’s Nanotechnology 101 event page,

How could nanotechnology be used to create smart and extremely resilient materials? Or to boil water three times faster? Join former NASA Nanotechnology Project Manager Michael Meador to learn about the fundamentals of nanotechnology—what it is and why it’s unique—and how this emerging, disruptive technology will change the world. From invisibility cloaks to lightweight fuel-efficient vehicles and a cure for cancer, nanotechnology might just be the biggest thing you can’t see.

About the speaker

Michael Meador is currently Director of the U.S. National Nanotechnology Coordination Office, on secondment from NASA where he had been managing the Nanotechnology Project in the Game Changing Technology Program, working to mature nanotechnologies with high potential for impact on NASA missions. One part of his current job is to communicate nanotechnology research to policy-makers and the public.

Here’s some logistical information from the event page,

7.00pm to 8.30pm, Tuesday 20 October
The Theatre

Standard £12
Concession £8
Associate £6
Free to Members, Faraday Members and Fellows

For anyone who may not know offhand where the Royal Institution and its theatre is located,

The Royal Institution of Great Britain
21 Albemarle Street
London
W1S 4BS

+44 (0) 20 7409 2992
(9.00am – 6.00pm Mon – Fri)

Here’s a description of the Royal Institution from its Wikipedia entry (Note: Links have been removed),

The Royal Institution of Great Britain (often abbreviated as the Royal Institution or RI) is an organisation devoted to scientific education and research, based in London.

The Royal Institution was founded in 1799 by the leading British scientists of the age, including Henry Cavendish and its first president, George Finch, the 9th Earl of Winchilsea,[1] for

diffusing the knowledge, and facilitating the general introduction, of useful mechanical inventions and improvements; and for teaching, by courses of philosophical lectures and experiments, the application of science to the common purposes of life.
— [2]

Much of its initial funding and the initial proposal for its founding were given by the Society for Bettering the Conditions and Improving the Comforts of the Poor, under the guidance of philanthropist Sir Thomas Bernard and American-born British scientist Sir Benjamin Thompson, Count Rumford. Since its founding it has been based at 21 Albemarle Street in Mayfair. Its Royal Charter was granted in 1800. The Institution announced in January 2013 that it was considering sale of its Mayfair headquarters to meet its mounting debts.[3]

#RE_IMAGINE

While this isn’t a nanotechnology event, it does touch on topics discussed here many times: wearable technology, futuristic fashion, and the integration of technology into the body. The Digital Anthropology Lab (of the  London College of Fashion, which is part of the University of the Arts London) is being officially launched with a special event on Oct. 16, 2015. Before describing the event, here’s more about the Digital Anthropology Lab from its homepage,

Crafting fashion experience digitally

The Digital Anthropology Lab, launching in Autumn 2015, London College of Fashion, University of the Arts London is a research studio bringing industry and academia together to develop a new way of making smarter with technology.

The Digital Anthropology Lab, London College of Fashion, experiments with artefacts, communities, consumption and making in the digital space, using 3D printing, body scanning, code and electronics. We focus on an experimental approach to digital anthropology, allowing us to practically examine future ways in which digital collides with the human experience. We connect commercial partners to leading research academics and graduate students, exploring seed ideas for fashion tech.

Now

WEARABLES
We radically re-imagine this emerging fashion- tech space, exploring both the beautification of technology for wearables and critically explore the ‘why.’

Near

IoT BIG DATA
Join us to experiment with, ‘The Internet of Fashion Things.’ Where the Internet of Things, invisible big data technologies, virtual fit and meta-data collide.

Future

DESIGN FICTIONS
With the luxury of the imagination, we aim to re- wire our digital ambitions and think again about designing future digital fashion experiences for generation 2050.

Here’s information I received from the Sept. 30, 2015 announcement I received via email,

The Digital Anthropology Lab at London College of Fashion, UAL invites you to #RE_IMAGINE: A forum exploring the now, near and future of fashion technology.

#RE_IMAGINE, the Digital Anthropology Lab’s launch event, will present a fantastically diverse range of digital speakers and ask them to respond to the question – ‘Where are our digital selves heading?’

Join us to hear from pioneers, risk takers, entrepreneurs, designers and inventors including Ian Livingston CBE, Luke Robert Mason from New Bionics, Katie Baron from Stylus, J. Meejin Yoon from MIT among others. Also come to see what happened when we made fashion collide with the Internet of Things, they are wearable but not as you know it…

#RE_IMAGINE aims to be an informative, networked and enlightening brainstorm of a day. To book your place please follow this link.

To coincide with the exhibition Digital Disturbances, Fashion Space Gallery presents a late night opening event. Alongside a curator tour will be a series of interactive demonstrations and displays which bring together practitioners working across design, science and technology to investigate possible human and material futures. We’d encourage you to stay and enjoy this networking opportunity.

Friday 16th October 2015

9.30am – 5pm – Forum event 

5pm – 8.30pm – Digital Disturbances networking event

London College of Fashion

20 John Princes Street
London
W1G 0BJ 

Ticket prices are £75.00 for a standard ticket and £35.00 for concession tickets (more details here).

For more #RE_IMAGINE specifics, there’s the event’s Agenda page. As for Digital Disturbances, here’s more from the Fashion Space Gallery’s Exhibition homepage,

Digital Disturbances

11th September – 12th December 2015

Digital Disturbances examines the influence of digital concepts and tools on fashion. It provides a lens onto the often strange effects that emerge from interactions across material and virtual platforms – information both lost and gained in the process of translation. It presents the work of seven designers and creative teams whose work documents these interactions and effects, both in the design and representation of fashion. They can be traced across the surfaces of garments, through the realisation of new silhouettes, in the remixing of images and bodies in photography and film, and into the nuances of identity projected into social and commercial spaces.

Designers include: ANREALAGE, Bart Hess, POSTmatter, Simone C. Niquille and Alexander Porter, Flora Miranda, Texturall and Tigran Avetisyan.

Digital Disturbances is curated by Leanne Wierzba.

Two events—two peeks into the future.

Solar-powered sensors to power the Internet of Things?

As a June 23, 2015 news item on Nanowerk notes, the ‘nternet of things’, will need lots and lots of power,

The latest buzz in the information technology industry regards “the Internet of things” — the idea that vehicles, appliances, civil-engineering structures, manufacturing equipment, and even livestock would have their own embedded sensors that report information directly to networked servers, aiding with maintenance and the coordination of tasks.

Realizing that vision, however, will require extremely low-power sensors that can run for months without battery changes — or, even better, that can extract energy from the environment to recharge.

Last week, at the Symposia on VLSI Technology and Circuits, MIT [Massachusetts Institute of Technology] researchers presented a new power converter chip that can harvest more than 80 percent of the energy trickling into it, even at the extremely low power levels characteristic of tiny solar cells. [emphasis mine] Previous experimental ultralow-power converters had efficiencies of only 40 or 50 percent.

A June 22, 2015 MIT news release (also on EurekAlert), which originated the news item, describes some additional capabilities,

Moreover, the researchers’ chip achieves those efficiency improvements while assuming additional responsibilities. Where its predecessors could use a solar cell to either charge a battery or directly power a device, this new chip can do both, and it can power the device directly from the battery.

All of those operations also share a single inductor — the chip’s main electrical component — which saves on circuit board space but increases the circuit complexity even further. Nonetheless, the chip’s power consumption remains low.

“We still want to have battery-charging capability, and we still want to provide a regulated output voltage,” says Dina Reda El-Damak, an MIT graduate student in electrical engineering and computer science and first author on the new paper. “We need to regulate the input to extract the maximum power, and we really want to do all these tasks with inductor sharing and see which operational mode is the best. And we want to do it without compromising the performance, at very limited input power levels — 10 nanowatts to 1 microwatt — for the Internet of things.”

The prototype chip was manufactured through the Taiwan Semiconductor Manufacturing Company’s University Shuttle Program.

The MIT news release goes on to describe chip specifics,

The circuit’s chief function is to regulate the voltages between the solar cell, the battery, and the device the cell is powering. If the battery operates for too long at a voltage that’s either too high or too low, for instance, its chemical reactants break down, and it loses the ability to hold a charge.

To control the current flow across their chip, El-Damak and her advisor, Anantha Chandrakasan, the Joseph F. and Nancy P. Keithley Professor in Electrical Engineering, use an inductor, which is a wire wound into a coil. When a current passes through an inductor, it generates a magnetic field, which in turn resists any change in the current.

Throwing switches in the inductor’s path causes it to alternately charge and discharge, so that the current flowing through it continuously ramps up and then drops back down to zero. Keeping a lid on the current improves the circuit’s efficiency, since the rate at which it dissipates energy as heat is proportional to the square of the current.

Once the current drops to zero, however, the switches in the inductor’s path need to be thrown immediately; otherwise, current could begin to flow through the circuit in the wrong direction, which would drastically diminish its efficiency. The complication is that the rate at which the current rises and falls depends on the voltage generated by the solar cell, which is highly variable. So the timing of the switch throws has to vary, too.

Electric hourglass

To control the switches’ timing, El-Damak and Chandrakasan use an electrical component called a capacitor, which can store electrical charge. The higher the current, the more rapidly the capacitor fills. When it’s full, the circuit stops charging the inductor.

The rate at which the current drops off, however, depends on the output voltage, whose regulation is the very purpose of the chip. Since that voltage is fixed, the variation in timing has to come from variation in capacitance. El-Damak and Chandrakasan thus equip their chip with a bank of capacitors of different sizes. As the current drops, it charges a subset of those capacitors, whose selection is determined by the solar cell’s voltage. Once again, when the capacitor fills, the switches in the inductor’s path are flipped.

“In this technology space, there’s usually a trend to lower efficiency as the power gets lower, because there’s a fixed amount of energy that’s consumed by doing the work,” says Brett Miwa, who leads a power conversion development project as a fellow at the chip manufacturer Maxim Integrated. “If you’re only coming in with a small amount, it’s hard to get most of it out, because you lose more as a percentage. [El-Damak’s] design is unusually efficient for how low a power level she’s at.”

“One of the things that’s most notable about it is that it’s really a fairly complete system,” he adds. “It’s really kind of a full system-on-a chip for power management. And that makes it a little more complicated, a little bit larger, and a little bit more comprehensive than some of the other designs that might be reported in the literature. So for her to still achieve these high-performance specs in a much more sophisticated system is also noteworthy.”

I wonder how close they are to commercializing this chip (see below),

The MIT researchers' prototype for a chip measuring 3 millimeters by 3 millimeters. The magnified detail shows the chip's main control circuitry, including the startup electronics; the controller that determines whether to charge the battery, power a device, or both; and the array of switches that control current flow to an external inductor coil. This active area measures just 2.2 millimeters by 1.1 millimeters. (click on image to enlarge) Read more: Toward tiny, solar-powered sensors. Courtesy: MIT

The MIT researchers’ prototype for a chip measuring 3 millimeters by 3 millimeters. The magnified detail shows the chip’s main control circuitry, including the startup electronics; the controller that determines whether to charge the battery, power a device, or both; and the array of switches that control current flow to an external inductor coil. This active area measures just 2.2 millimeters by 1.1 millimeters. (click on image to enlarge)
Courtesy: MIT