Tag Archives: France

Corporate venture capital (CVC) and the nanotechnology market plus 2023’s top 10 countries’ nanotechnolgy patents

I have two brief nanotechnology commercialization stories from the same publication.

Corporate venture capital (CVC) and the nano market

From a March 23, 2024 article on statnano.com, Note: Links have been removed,

Nanotechnology’s enormous potential across various sectors has long attracted the eye of investors, keen to capitalise on its commercial potency.

Yet the initial propulsion provided by traditional venture capital avenues was reined back when the reality of long development timelines, regulatory hurdles, and difficulty in translating scientific advances into commercially viable products became apparent.

While the initial flurry of activity declined in the early part of the 21st century, a new kid on the investing block has proved an enticing option beyond traditional funding methods.

Corporate venture capital has, over the last 10 years emerged as a key plank in turning ideas into commercial reality.

Simply put, corporate venture capital (CVC) has seen large corporations, recognising the strategic value of nanotechnology, establish their own VC arms to invest in promising start-ups.

The likes of Samsung, Johnson & Johnson and BASF have all sought to get an edge on their competition by sinking money into start-ups in nano and other technologies, which could deliver benefits to them in the long term.

Unlike traditional VC firms, CVCs invest with a strategic lens, aligning their investments with their core business goals. For instance, BASF’s venture capital arm, BASF Venture Capital, focuses on nanomaterials with applications in coatings, chemicals, and construction.

It has an evergreen EUR 250 million fund available and will consider everything from seed to Series B investment opportunities.

Samsung Ventures takes a similar approach, explaining: “Our major investment areas are in semiconductors, telecommunication, software, internet, bioengineering and the medical industry from start-ups to established companies that are about to be listed on the stock market.

While historically concentrated in North America and Europe, CVC activity in nanotechnology is expanding to Asia, with China being a major player.

China has, perhaps not surprisingly, seen considerable growth over the last decade in nano and few will bet against it being the primary driver of innovation over the next 10 years.

As ever, the long development cycles of emerging nano breakthroughs can frequently deter some CVCs with shorter investment horizons.

2023 Nanotechnology patent applications: which countries top the list?

A March 28, 2024 article from statnano.com provides interesting data concerning patent applications,

In 2023, a total of 18,526 nanotechnology patent applications were published at the United States Patent and Trademark Office (USPTO) and the European Patent Office (EPO). The United States accounted for approximately 40% of these nanotechnology patent publications, followed by China, South Korea, and Japan in the next positions.

According to a statistical analysis conducted by StatNano using data from the Orbit database, the USPTO published 84% of the 18,526 nanotechnology patent applications in 2023, which is more than five times the number published by the EPO. However, the EPO saw a nearly 17% increase in nanotechnology patent publications compared to the previous year, while the USPTO’s growth was around 4%.

Nanotechnology patents are defined based on the ISO/TS 18110 standard as those having at least one claim related to nanotechnology orpatents classified with an IPC classification code related to nanotechnology such as B82.

From the March 28, 2024 article,

Top 10 Countries Based on Published Patent Applications in the Field of Nanotechnology in USPTO in 2023

Rank1CountryNumber of nanotechnology published patent applications in USPTONumber of nanotechnology published patent applications in EPOGrowth rate in USPTOGrowth rate in EPO
1United States6,9264923.20%17.40%
2South Korea1,71547613.40%8.40%
3China1,6275694.20%47.40%
4Taiwan1,118615.00%-12.90%
5Japan1,113445-1.20%9.30%
6Germany484229-10.20%15.70%
7England331505.10%16.30%
8France323145-8.00%17.90%
9Canada290125.10%-14.30%
10Saudi Arabia268322.40%0.00%
1- Ranking based on the number of nanotechnology patent applications at the USPTO

If you have a bit of time and interest, I suggest reading the March 28, 2024 article in its entirety.

Seeing a single nanoparticle catalyst at work

https://www.desy.de/e409/e116959/e119238/media/9833/alloy_kat_np_close-up.jpg
Carbon monoxide oxidises to carbon dioxide on the surface of the nanoparticle. Credit: Science Communication Lab for DESY

An October 1, 2021 news item on ScienceDaily announces research enabling scientists to observe a single nanoparticle at work,

A DESY-led research team has been using high-intensity X-rays to observe a single catalyst nanoparticle at work. The experiment has revealed for the first time how the chemical composition of the surface of an individual nanoparticle changes under reaction conditions, making it more active. The team led by DESY’s Andreas Stierle is presenting its findings in the journal Science Advances. This study marks an important step towards a better understanding of real, industrial catalytic materials.

An October 1, 2021 Deutsches Elektronen-Synchrotron (DESY) press release (also on EurekAlert), which originated the news item, explains why this research is important and provides more technical details,

Catalysts are materials that promote chemical reactions without being consumed themselves. Today, catalysts are used in numerous industrial processes, from fertiliser production to manufacturing plastics. Because of this, catalysts are of huge economic importance. A very well-known example is the catalytic converter installed in the exhaust systems of cars. These contain precious metals such as platinum, rhodium and palladium, which allow highly toxic carbon monoxide (CO) to be converted into carbon dioxide (CO2) and reduce the amount of harmful nitrogen oxides (NOx).

“In spite of their widespread use and great importance, we are still ignorant of many important details of just how the various catalysts work,” explains Stierle, head of the DESY NanoLab. “That’s why we have long wanted to study real catalysts while in operation.” This is not easy, because in order to make the active surface as large as possible, catalysts are typically used in the form of tiny nanoparticles, and the changes that affect their activity occur on their surface.

Surface strain relates to chemical composition

In the framework of the EU project Nanoscience Foundries and Fine Analysis (NFFA), the team from DESY NanoLab has developed a technique for labelling individual nanoparticles and thereby identifying them in a sample. “For the study, we grew nanoparticles of a platinum-rhodium alloy on a substrate in the lab and labelled one specific particle,” says co-author Thomas Keller from DESY NanoLab and in charge of the project at DESY. “The diameter of the labelled particle is around 100 nanometres, and it is similar to the particles used in a car’s catalytic converter.” A nanometre is a millionth of a millimetre.

Using X-rays from the European Synchrotron Radiation Facility ESRF in Grenoble, France, the team was not only able to create a detailed image of the nanoparticle; it also measured the mechanical strain within its surface. “The surface strain is related to the surface composition, in particular the ratio of platinum to rhodium atoms,” explains co-author Philipp Plessow from the Karlsruhe Institute of Technology (KIT), whose group computed strain as a function of surface composition. By comparing the observed and computed facet-dependent strain, conclusions can be drawn concerning the chemical composition at the particle surface. The different surfaces of a nanoparticle are called facets, just like the facets of a cut gemstone.

When the nanoparticle is grown, its surface consists mainly of platinum atoms, as this configuration is energetically favoured. However, the scientists studied the shape of the particle and its surface strain under different conditions, including the operating conditions of an automotive catalytic converter. To do this, they heated the particle to around 430 degrees Celsius and allowed carbon monoxide and oxygen molecules to pass over it. “Under these reaction conditions, the rhodium inside the particle becomes mobile and migrates to the surface because it interacts more strongly with oxygen than the platinum,” explains Plessow. This is also predicted by theory.

“As a result, the surface strain and the shape of the particle change,” reports co-author Ivan Vartaniants, from DESY, whose team converted the X-ray diffraction data into three-dimensional spatial images. “A facet-dependent rhodium enrichment takes place, whereby additional corners and edges are formed.” The chemical composition of the surface, and the shape and size of the particles have a significant effect on their function and efficiency. However, scientists are only just beginning to understand exactly how these are connected and how to control the structure and composition of the nanoparticles. The X-rays allow researchers to detect changes of as little as 0.1 in a thousand in the strain, which in this experiment corresponds to a precision of about 0.0003 nanometres (0.3 picometres).

Crucial step towards analysing industrial catalyst materials

“We can now, for the first time, observe the details of the structural changes in such catalyst nanoparticles while in operation,” says Stierle, Lead Scientist at DESY and professor for nanoscience at the University of Hamburg. “This is a major step forward and is helping us to understand an entire class of reactions that make use of alloy nanoparticles.” Scientists at KIT and DESY now want to explore this systematically at the new Collaborative Research Centre 1441, funded by the German Research Foundation (DFG) and entitled “Tracking the Active Sites in Heterogeneous Catalysis for Emission Control (TrackAct)”.

“Our investigation is an important step towards analysing industrial catalytic materials,” Stierle points out. Until now, scientists have had to grow model systems in the laboratory in order to conduct such investigations. “In this study, we have gone to the limit of what can be done. With DESY’s planned X-ray microscope PETRA IV, we will be able to look at ten times smaller individual particles in real catalysts, and under reaction conditions.”
 
DESY is one of the world’s leading particle accelerator centres and investigates the structure and function of matter – from the interaction of tiny elementary particles and the behaviour of novel nanomaterials and vital biomolecules to the great mysteries of the universe. The particle accelerators and detectors that DESY develops and builds at its locations in Hamburg and Zeuthen are unique research tools. They generate the most intense X-ray radiation in the world, accelerate particles to record energies and open up new windows onto the universe. DESY is a member of the Helmholtz Association, Germany’s largest scientific association, and receives its funding from the German Federal Ministry of Education and Research (BMBF) (90 per cent) and the German federal states of Hamburg and Brandenburg (10 per cent).

Here’s a link to and a citation for the paper,

Single alloy nanoparticle x-ray imaging during a catalytic reaction by Young Yong Kim, Thomas F. Keller, Tiago J. Goncalves, Manuel Abuin, Henning Runge, Luca Gelisio, Jerome Carnis, Vedran Vonk, Philipp N. Plessow, Ivan A. Vartaniants, Andreas Stierle. Science Advances • 1 Oct 2021 • Vol 7, Issue 40 • DOI: 10.1126/sciadv.abh0757

This paper is open access.

Key to quantum electronics could be germanium-bonded aluminium

I have not seen aluminum called aluminium in quite some time. (I’ve always had a fondness for that extra syllable.) I first saw notice of this work from Austria in an October 11, 2021 news item on Nanowerk,

A novel electronic component from TU Wien (Vienna) could be an important key to the era of quantum information technology: Using a special manufacturing process, pure germanium is bonded with aluminium in a way that atomically sharp interfaces are created. This results in a so-called monolithic metal-semiconductor-metal heterostructure.

This structure shows unique effects that are particularly evident at low temperatures. The aluminium becomes superconducting – but not only that, this property is also transferred to the adjacent germanium semiconductor and can be specifically controlled with electric fields. This makes it excellently suited for complex applications in quantum technology, such as processing quantum bits.

A particular advantage is that using this approach, it is not necessary to develop completely new technologies. Instead, mature and well established semiconductor fabrication techniqueses can be used to enable germanium-based quantum electronics.

An October 6, 2021 Technical University of Vienna (TU Wien) press release (also on EurekAlert but published October 12, 2021), which originated the news item, delves into the technical details and the importance of temperature,

Germanium: difficult to form high-quality contacts

“Germanium is a material which will definitely play an important role in semiconductor technology for the development of faster and more energy-efficient components,” says Dr. Masiar Sistani from the Institute for Solid State Electronics at TU Wien. However, if it is used to produce components on a nanometre scale, major problems arise: the material makes it extremely difficult to produce high-quality electrical contacts. This is related to the high impact of even smallest impurities at the contact points that significantly alter the electrical properties. “We have therefore set ourselves the task of developing a new manufacturing method that enables reliable and reproducible contact properties”, says Masiar Sistani.

Diffusing atoms

The key is temperature: when nanometre-structured germanium and aluminium are brought into contact and heated, the atoms of both materials begin to diffuse into the neighbouring material – but to very different extents: the germanium atoms move rapidly into the aluminium, whereas aluminium hardly diffuses into the germanium at all. “Thus, if you connect two aluminium contacts to a thin germanium nanowire and raise the temperature to 350 degrees Celsius, the germanium atoms diffuse off the edge of the nanowire. This creates empty spaces into which the aluminium can then easily penetrate,” explains Masiar Sistani. “In the end, only a few nanometre area in the middle of the nanowire consists of germanium, the rest has been filled up by aluminium.”

Normally, aluminium is made up of tiny crystal grains, but this novel fabrication method forms a perfect single crystal in which the aluminium atoms are arranged in a uniform pattern. As can be seen under the transmission electron microscope, a perfectly clean and atomically sharp transition is formed between germanium and aluminium, with no disordered region in between. In contrast to conventional methods where electrical contacts are applied to a semiconductor, for example by evaporating a metal, no oxides can form at the boundary layer.

Quantum transport in Grenoble

In order to take a closer look at the properties of this monolithic metal-semiconductor heterostructure of germanium and aluminium at low temperature, we collaborated with Dr. Olivier Buisson and Dr. Cécile Naud from the quantum electronics circuits group at Néel Institute – CNRS-UGA [Centre National de la Recherche Scientifique; Université Grenoble Alpes] in Grenoble. It turned out that the novel structure indeed has quite remarkable properties: “Not only were we able to demonstrate superconductivity in pure, undoped germanium for the first time, we were also able to show that this structure can be switched between quite different operating states using electric fields. Such a germanium quantum dot device can not only be superconducting but also completely insulating, or it can behave like a Josephson transistor, an important basic element of quantum electronic circuits,” explains Masiar Sistani.

This new heterostructure combines a whole range of advantages: The structure has excellent physical properties needed for quantum technologies, such as high carrier mobility and excellent manipulability with electric fields, and it has the additional advantage of fitting well with already established microelectronics technologies: Germanium is already used in current chip architectures and the temperatures required for heterostructure formation are compatible with well-established semiconductor processing schemes. The novel structures not only have theoretically interesting quantum properties, but also opens up a technologically very realistic possibility of enabling further novel and energy-saving devices.

Here’s a link to and a citation for the paper,

Al–Ge–Al Nanowire Heterostructure: From Single-Hole Quantum Dot to Josephson Effect by Jovian Delaforce, Masiar Sistani, Roman B. G. Kramer, Minh A. Luong, Nicolas Roch, Walter M. Weber, Martien I. den Hertog, Eric Robin, Cecile Naud, Alois Lugstein, Olivier Buisson. Advanced Materials Volume 33, Issue 39 October 1, 2021 2101989 DOI: https://doi.org/10.1002/adma.202101989 First published [online]: 08 August 2021

This paper is behind a paywall.

Jean-Pierre Luminet awarded UNESCO’s Kalinga prize for Popularizing Science

Before getting to the news about Jean-Pierre Luminet, astrophysicist, poet, sculptor, and more, there’s the prize itself.

Established in 1951, a scant five years after UNESCO (United Nations Educational, Scientific and Cultural Organization) was founded in 1945, the Kalinga Prize for the Popularization of Science is the organization’s oldest prize. Here’s more from the UNESCO Kalinga Prize for the Popularization of Science webpage,

The UNESCO Kalinga Prize for the Popularization of Science is an international award to reward exceptional contributions made by individuals in communicating science to society and promoting the popularization of science. It is awarded to persons who have had a distinguished career as writer, editor, lecturer, radio, television, or web programme director, or film producer in helping interpret science, research and technology to the public. UNESCO Kalinga Prize winners know the potential power of science, technology, and research in improving public welfare, enriching the cultural heritage of nations and providing solutions to societal problems on the local, regional and global level.

The UNESCO Kalinga Prize for the Popularization of Science is UNESCO’s oldest prize, created in 1951 following a donation from Mr Bijoyanand Patnaik, Founder and President of the Kalinga Foundation(link is external) Trust in India. Today, the Prize is funded by the Kalinga Foundation Trust(link is external), the Government of the State of Orissa, India(link is external), and the Government of India (Department of Science and Technology(link is external)).

Jean-Pierre Luminet

From the November 4, 2021 UNESCO press release (also received via email),

French scientist and author Jean-Pierre Luminet will be awarded the 2021 UNESCO Kalinga Prize for the Popularization of Science. The prize-giving ceremony will take place online on 5 November as part of the celebration of World Science Day for Peace and Development.

An independent international jury selected Jean-Pierre Luminet recognizing his longstanding commitment to the popularization of science. Mr Luminet is a distinguished astrophysicist and cosmologist who has been promoting the values of scientific research through a wide variety of media: he has created popular science books and novels, beautifully illustrated exhibition catalogues, poetry, audiovisual materials for children and documentaries, notably “Du Big Bang au vivant” with Hubert Reeves. He is also an artist, engraver and sculptor and has collaborated with composers on musicals inspired by the sounds of the Universe.

His publications are model examples for communicating science to the public. Their scientific content is precise, rigorous and always state-of-the-art. He has written seven “scientific novels”, including “Le Secret de Copernic”, published in 2006. His recent book “Le destin de l’univers : trous noirs et énergie sombre”, about black holes and dark energy, was written for the general public and was praised for its outstanding scientific, historical, and literary qualities. Jean-Pierre Luminet’s work has been translated into a many languages including Chinese and Korean.

There is a page for Luminet in both the French language and English language wikipedias. If you have the language skills, you might want to check out the French language essay as I found it to be more stylishly written.

Compare,

De par ses activités de poète, essayiste, romancier et scénariste, dans une œuvre voulant lier science, histoire, musique et art, il est également Officier des Arts et des Lettres.

With,

… Luminet has written fifteen science books,[4] seven historical novels,[4] TV documentaries,[5] and six poetry collections. He is an artist, an engraver, a sculptor, and a musician.

My rough translation of the French,

As a poet, essayaist, novelist, and a screenwriter in a body of work that brings together science, history, music and art, he is truly someone who has enriched the French cultural inheritance (which is what it means to be an Officer of Arts and Letters or Officier des Arts et des Lettres; see English language entry for Ordre des Arts et des Lettres).

In any event, congratulations to M. Luminet.

Canadian and Guadeloupean oysters: exposure to nanoplastics and arsenic

A May 27, 2021 news item on phys.org describes research into oysters and nanoplastics,

Oysters’ exposure to plastics is concerning, particularly because these materials can accumulate and release metals which are then absorbed by the mollusks. According to a recent study published in the journal Chemosphere, the combined presence of nanoplastics and arsenic affects the biological functions of oysters. This study was conducted by the Institut national de la recherche scientifique (INRS) in Québec City and the French National Centre for Scientific Research (CNRS) at the University of Bordeaux in France

A May 27, 2021 INRS news release (French language version here and an English language version on EurekAlert), which originated the news item, provides fascinating details,

The international research team chose to study arsenic, since it is one of the most common metals absorbed by the plastic debris collected from the beaches of Guadeloupe. “Oysters easily accumulate metals from the environment into their tissues. We therefore wanted to test whether the combined exposure to nanoplastics and arsenic would increase the bioaccumulation of this contaminant,” reported Marc Lebordais, the Master’s student in charge of the research.

The scientists proved that the bioaccumulation of arsenic does not increase when nanoplastics are also present. However, it remained higher in the gills of the Canadian Crassostrea virginica oyster [emphasis mine] than in the Isognomon alatus oyster, found in Guadeloupe. These results are the first to highlight the diverging sensitivity of different species. [emphasis mine]

Gene deregulation

In addition to bioaccumulation, the team also observed an overexpression of genes responsible for cell death and the number of mitochondria–a cell’s energy centres–in C. virginica. In I. alatus, the expression of these same genes was less significant.

“Evaluating the expression of genes involved in important functions, such as cell death and detoxification, gives us information on the toxicity of nanoplastics and arsenic on a cellular level,” explained the young researcher, who is co-directed by Professors Valérie Langlois of INRS and Magalie Baudrimont of the University of Bordeaux.

The food chain

The next step, after characterizing the presence of nanoplastics and arsenic in oysters, would be to study how these contaminants are transferred through the food chain.

“Analytical tools are currently being developed to quantify the presence of nanoplastics in biological tissues,” said Marc Lebordais. “Understanding the amount of nanoplastics in farmed oysters currently boils down to a technical issue.” ?

Here’s a link to and a citation for the paper,

Molecular impacts of dietary exposure to nanoplastics combined with arsenic in Canadian oysters (Crassostrea virginica) and bioaccumulation comparison with Caribbean oysters (Isognomon alatus) by Marc Lebordais, Juan Manuel Gutierrez-Villagomez, Julien Gigault, Magalie Baudrimont, and Valérie Langlois. Chemosphere Volume 277, August 2021, 130331 DOI: https://doi.org/10.1016/j.chemosphere.2021.130331 First published online 19 March 2021.

This paper is open access.

Science policy updates (INGSA in Canada and SCWIST)

I had just posted my Aug. 30, 2021 piece (4th International Conference on Science Advice to Governments (INGSA2021) August 30 – September 2, 2021) when the organization issued a news release, which was partially embargoed. By the time this is published (after 8 am ET on Wednesday, Sept. 1, 2021), the embargo will have lifted and i can announce that Rémi Quirion, Chief Scientist of Québec (Canada), has been selected to replace Sir Peter Gluckman (New Zealand) as President of INGSA.

Here’s the whole August 30, 2021 International Network for Government Science Advice (INGSA) news release on EurekAlert, Note: This looks like a direct translation from a French language news release, which may account for some unusual word choices and turns of phrase,

What? 4th International Conference on Science Advice to Governments, INGSA2021.

Where? Palais des Congrès de Montréal, Québec, Canada and online at www.ingsa2021.org

When? 30 August – 2 September, 2021.

CONTEXT: The largest ever independent gathering of interest groups, thought-leaders, science advisors to governments and global institutions, researchers, academics, communicators and diplomats is taking place in Montreal and online. Organized by Prof Rémi Quirion, Chief Scientist of Québec, speakers from over 50 countries[1] from Brazil to Burkina Faso and from Ireland to Indonesia, plus over 2000 delegates from over 130 countries, will spotlight what is really at stake in the relationship between science and policy-making, both during crises and within our daily lives. From the air we breathe, the food we eat and the cars we drive, to the medical treatments or the vaccines we take, and the education we provide to children, this relationship, and the decisions it can influence, matter immensely.  

Prof Rémi Quirion, Conference Organizer, Chief Scientist of Québec and incoming President of INGSA added: “For those of us who believe wholeheartedly in evidence and the integrity of science, the past 18 months have been challenging. Information, correct and incorrect, can spread like a virus. The importance of open science and access to data to inform our UN sustainable development goals discussions or domestically as we strengthen the role of cities and municipalities, has never been more critical. I have no doubt that this transparent and honest platform led from Montréal will act as a carrier-wave for greater engagement”.

Chief Science Advisor of Canada and Conference co-organizer, Dr Mona Nemer, stated that: “Rapid scientific advances in managing the Covid pandemic have generated enormous public interest in evidence-based decision making. This attention comes with high expectations and an obligation to achieve results. Overcoming the current health crisis and future challenges will require global coordination in science advice, and INGSA is well positioned to carry out this important work. Canada and our international peers can benefit greatly from this collaboration.”

Sir Peter Gluckman, founding Chair of INGSA stated that: “This is a timely conference as we are at a turning point not just in the pandemic, but globally in our management of longer-term challenges that affect us all. INGSA has helped build and elevate open and ongoing public and policy dialogue about the role of robust evidence in sound policy making”.

He added that: “Issues that were considered marginal seven years ago when the network was created are today rightly seen as central to our social, environmental and economic wellbeing. The pandemic highlights the strengths and weaknesses of evidence-based policy-making at all levels of governance. Operating on all continents, INGSA demonstrates the value of a well-networked community of emerging and experienced practitioners and academics, from countries at all levels of development. Learning from each other, we can help bring scientific evidence more centrally into policy-making. INGSA has achieved much since its formation in 2014, but the energy shown in this meeting demonstrates our potential to do so much more”.

Held previously in Auckland 2014, Brussels 2016, Tokyo 2018 and delayed for one year due to Covid, the advantage of the new hybrid and virtual format is that organizers have been able to involve more speakers, broaden the thematic scope and offer the conference as free to view online, reaching thousands more people. Examining the complex interactions between scientists, public policy and diplomatic relations at local, national, regional and international levels, especially in times of crisis, the overarching INGSA2021 theme is: “Build back wiser: knowledge, policy & publics in dialogue”.

The first three days will scrutinize everything from concrete case-studies outlining successes and failures in our advisory systems to how digital technologies and AI are reshaping the profession itself. The final day targets how expertize and action in the cultural context of the French-speaking world is encouraging partnerships and contributing to economic and social development. A highlight of the conference is the 2 September announcement of a new ‘Francophonie Science Advisory Network’.       

Prof. Salim Abdool Karim, a member of the World Health Organization’s Science Council, and the face of South Africa’s Covid-19 science, speaking in the opening plenary outlined that: “As a past anti-apartheid activist now providing scientific advice to policy-makers, I have learnt that science and politics share common features. Both operate at the boundaries of knowledge and uncertainty, but approach problems differently. We scientists constantly question and challenge our assumptions, constantly searching for empiric evidence to determine the best options. In contrast, politicians are most often guided by the needs or demands of voters and constituencies, and by ideology”.

He added: “What is changing is that grass-roots citizens worldwide are no longer ill-informed and passive bystanders. And they are rightfully demanding greater transparency and accountability. This has brought the complex contradictions between evidence and ideology into the public eye. Covid-19 is not just a disease, its social fabric exemplifies humanity’s interdependence in slowing global spread and preventing new viral mutations through global vaccine equity. This starkly highlights the fault-lines between the rich and poor countries, especially the maldistribution of life-saving public health goods like vaccines. I will explore some of the key lessons from Covid-19 to guide a better response to the next pandemic”.

Speaking on a panel analysing different advisory models, Prof. Mark Ferguson, Chair of the European Innovation Council’s Advisory Board and Chief Science Advisor to the Government of Ireland, sounded a note of optimism and caution in stating that: “Around the world, many scientists have become public celebrities as citizens engage with science like never before. Every country has a new, much followed advisory body. With that comes tremendous opportunities to advance the status of science and the funding of scientific research. On the flipside, my view is that we must also be mindful of the threat of science and scientists being viewed as a political force”.

Strength in numbers

What makes the 4th edition of this biennial event stand out is the perhaps never-before assembled range of speakers from all continents working at the boundary between science, society and policy willing to make their voices heard. In a truly ‘Olympics’ approach to getting all stakeholders on-board, organisers succeeded in involving, amongst others, the UN Office for Disaster Risk Reduction, the United Nations Development Programme, UNESCO and the OECD. The in-house science services of the European Commission and Parliament, plus many country-specific science advisors also feature prominently.

As organisers foster informed debate, we get a rare glimpse inside the science advisory worlds of the Comprehensive Nuclear Test Ban Treaty Organisation, the World Economic Forum and the Global Young Academy to name a few. From Canadian doctors, educators and entrepreneurs and charitable foundations like the Welcome Trust, to Science Europe and media organisations, the programme is rich in its diversity. The International Organisation of the Francophonie and a keynote address by H.E. Laurent Fabius, President of the Constitutional Council of the French Republic are just examples of two major draws on the final day dedicated to spotlighting advisory groups working through French. 

INGSA’s Elections: New Canadian President and Three Vice Presidents from Chile, Ethiopia, UK

The International Network for Government Science Advice has recently undertaken a series of internal reforms intended to better equip it to respond to the growing demands for support from its international partners, while realising the project proposals and ideas of its members.

Part of these reforms included the election in June, 2021 of a new President replacing Sir Peter Gluckman (2014 – 2021) and the creation of three new Vice President roles.

These results will be announced at 13h15 on Wednesday, 1st September during a special conference plenary and awards ceremony. While noting the election results below, media are asked to respect this embargo.

Professor Rémi Quirion, Chief Scientist of Québec (Canada), replaces Sir Peter Gluckman (New Zealand) as President of INGSA.
 

Professor Claire Craig (United Kingdom), CBE, Provost of Queen’s College Oxford and a member of the UK government’s AI Council, has been elected by members as the inaugural Vice President for Evidence.
 

Professor Binyam Sisay Mendisu (Egypt), PhD, Lecture at the University of Addis Ababa and Programme Advisor, UNESCO Institute for Building Capacity in Africa, has been elected by members as the inaugural Vice President for Capacity Building.
 

Professor Soledad Quiroz Valenzuela (Chile), Science Advisor on Climate Change to the Ministry of Science, Technology, Knowledge and Innovation of the government of Chile, has been elected by members as the Vice President for Policy.

Satellite Events: From 7 – 9 September, as part of INGSA2021, the conference is partnering with local,  national and international organisations to ignite further conversations about the science/policy/society interface. Six satellite events are planned to cover everything from climate science advice and energy policy, open science and publishing during a crisis, to the politicisation of science and pre-school scientific education. International delegates are equally encouraged to join in online. 

About INGSA: Founded in 2014 with regional chapters in Africa, Asia and Latin America and the Caribbean, INGSA has quicky established an important reputation as aa collaborative platform for policy exchange, capacity building and research across diverse global science advisory organisations and national systems. Currently, over 5000 individuals and institutions are listed as members. Science communicators and members of the media are warmly welcomed to join.

As the body of work detailed on its website shows (www.ingsa.org) through workshops, conferences and a growing catalogue of tools and guidance, the network aims to enhance the global science-policy interface to improve the potential for evidence-informed policy formation at sub-national, national and transnational levels. INGSA operates as an affiliated body of the International Science Council which acts as trustee of INGSA funds and hosts its governance committee. INGSA’s secretariat is based in Koi Tū: The Centre for Informed Futures at the University of Auckland in New Zealand.

Conference Programme: 4th International Conference on Science Advice to Government (ingsa2021.org)

Newly released compendium of Speaker Viewpoints: Download Essays From The Cutting Edge Of Science Advice – Viewpoints

[1] Argentina, Australia, Austria, Barbados, Belgium, Benin, Brazil, Burkina Faso, Cameroon, Canada, Chad, Colombia, Costa Rica, Côte D’Ivoire, Denmark, Estonia, Finland, France, Germany, Hong Kong, Indonesia, Ireland, Japan, Lebanon, Luxembourg, Malaysia, Mexico, Morocco, Netherlands, New Zealand, Pakistan, Papua New Guinea, Rwanda, Senegal, Singapore, Slovakia, South Africa, Spain, Sri Lanka, Sweden, Switzerland, Thailand, UK, USA. 

Society for Canadian Women in Science and Technology (SCWIST)

As noted earlier this year in my January 28, 2021 posting, it’s SCWIST’s 40th anniversary and the organization is celebrating with a number of initiatives, here are some of the latest including as talk on science policy (from the August 2021 newsletter received via email),

SCWIST “STEM Forward Project”
Receives Federal Funding

SCWIST’s “STEM Forward for Economic Prosperity” project proposal was among 237 projects across the country to receive funding from the $100 million Feminist Response Recovery Fund of the Government of Canada through the Women and Gender Equality Canada (WAGE) federal department.

Read more. 

iWIST and SCWIST Ink Affiliate MOU [memorandum of understanding]

Years in planning, the Island Women in Science and Technology (iWIST) of Victoria, British Columbia and SCWIST finally signed an Affiliate MOU (memorandum of understanding) on Aug 11, 2021.

The MOU strengthens our commitment to collaborate on advocacy (e.g. grants, policy and program changes at the Provincial and Federal level), events (networking, workshops, conferences), cross promotion ( event/ program promotion via digital media), and membership growth (discounts for iWIST members to join SCWIST and vice versa).

Dr. Khristine Carino, SCWIST President, travelled to Victoria to sign the MOU in person. She was invited as an honoured guest to the iWIST annual summer picnic by Claire Skillen, iWIST President. Khristine’s travel expenses were paid from her own personal funds.

Discovery Foundation x SBN x SCWIST Business Mentorship Program: Enhancing Diversity in today’s Biotechnology Landscape

The Discovery Foundation, Student Biotechnology Network, and Society for Canadian Women in Science and Technology are proud to bring you the first-ever “Business Mentorship Program: Enhancing Diversity in today’s Biotechnology Landscape”. 

The Business Mentorship Program aims to support historically underrepresented communities (BIPOC, Women, LGBTQIAS+ and more) in navigating the growth of the biotechnology industry. The program aims to foster relationships between individuals and professionals through networking and mentorship, providing education and training through workshops and seminars, and providing 1:1 consultation with industry leaders. Participants will be paired with mentors throughout the week and have the opportunity to deliver a pitch for the chance to win prizes at the annual Building Biotechnology Expo. 

This is a one week intensive program running from September 27th – October 1st, 2021 and is limited to 10 participants. Please apply early. 

Events

September 10

Art of Science and Policy-Making Go Together

Science and policy-making go together. Acuitas’ [emphasis mine] Molly Sung shares her journey and how more scientists need to engage in this important area.

September 23

Au-delà de l’apparence :

des femmes de courage et de résilience en STIM

Dans le cadre de la semaine de l’égalité des sexes au Canada, ce forum de la division québécoise de la Société pour les femmes canadiennes en science et technologie (la SCWIST) mettra en vedette quatre panélistes inspirantes avec des parcours variés qui étudient ou travaillent en science, technologie, ingénierie et mathématiques (STIM) au Québec. Ces femmes immigrantes ont laissé leurs proches et leurs pays d’origine pour venir au Québec et contribuer activement à la recherche scientifique québécoise. 

….

The ‘Art and Science Policy-Making Go Together’ talk seems to be aimed at persuasion and is not likely to offer any insider information as to how the BC life sciences effort is progressing. For a somewhat less rosy view of science and policy efforts, you can check out my August 23, 2021 posting, Who’s running the life science companies’ public relations campaign in British Columbia (Vancouver, Canada)?; scroll down to ‘The BC biotech gorillas’ subhead for more about Acuitas and some of the other life sciences companies in British Columbia (BC).

For some insight into how competitive the scene is here in BC, you can see my August 20, 2021 posting (Getting erased from the mRNA/COVID-19 story) about Ian MacLachlan.

You can check out more at the SCWIST website and I’m not sure when the August issue will be placed there but they do have a Newsletter Archive.

Congratulations to winners of 2020 Nobel Prize for Chemistry: Dr. Emmanuelle Charpentier & Dr. Jennifer A. Doudna (CRISPR-cas9)

It’s possible there’s a more dramatic development in the field of contemporary gene-editing but it’s indisputable that CRISPR (clustered regularly interspaced short palindromic repeats) -cas9 (CRISPR-associated 9 [protein]) ranks very highly indeed.

The technique, first discovered (or developed) in 2012, has brought recognition in the form of the 2020 Nobel Prize for Chemistry to CRISPR’s two discoverers, Emanuelle Charpentier and Jennifer Doudna.

An October 7, 2020 news item on phys.org announces the news,

The Nobel Prize in chemistry went to two researchers Wednesday [October 7, 2020] for a gene-editing tool that has revolutionized science by providing a way to alter DNA, the code of life—technology already being used to try to cure a host of diseases and raise better crops and livestock.

Emmanuelle Charpentier of France and Jennifer A. Doudna of the United States won for developing CRISPR-cas9, a very simple technique for cutting a gene at a specific spot, allowing scientists to operate on flaws that are the root cause of many diseases.

“There is enormous power in this genetic tool,” said Claes Gustafsson, chair of the Nobel Committee for Chemistry.

More than 100 clinical trials are underway to study using CRISPR to treat diseases, and “many are very promising,” according to Victor Dzau, president of the [US] National Academy of Medicine.

“My greatest hope is that it’s used for good, to uncover new mysteries in biology and to benefit humankind,” said Doudna, who is affiliated with the University of California, Berkeley, and is paid by the Howard Hughes Medical Institute, which also supports The Associated Press’ Health and Science Department.

The prize-winning work has opened the door to some thorny ethical issues: When editing is done after birth, the alterations are confined to that person. Scientists fear CRISPR will be misused to make “designer babies” by altering eggs, embryos or sperm—changes that can be passed on to future generations.

Unusually for phys.org, this October 7, 2020 news item is not a simple press/news release reproduced in its entirety but a good overview of the researchers’ accomplishments and a discussion of some of the issues associated with CRISPR along with the press release at the end.

I have covered some CRISPR issues here including intellectual property (see my March 15, 2017 posting titled, “CRISPR patent decision: Harvard’s and MIT’s Broad Institute victorious—for now‘) and designer babies (as exemplified by the situation with Dr. He Jiankui; see my July 28, 2020 post titled, “July 2020 update on Dr. He Jiankui (the CRISPR twins) situation” for more details about it).

An October 7, 2020 article by Michael Grothaus for Fast Company provides a business perspective (Note: A link has been removed),

Needless to say, research by the two scientists awarded the Nobel Prize in Chemistry today has the potential to change the course of humanity. And with that potential comes lots of VC money and companies vying for patents on techniques and therapies derived from Charpentier’s and Doudna’s research.

One such company is Doudna’s Editas Medicine [according to my search, the only company associated with Doudna is Mammoth Biosciences, which she co-founded], while others include Caribou Biosciences, Intellia Therapeutics, and Casebia Therapeutics. Given the world-changing applications—and the amount of revenue such CRISPR therapies could bring in—it’s no wonder that such rivalry is often heated (and in some cases has led to lawsuits over the technology and its patents).

As Doudna explained in her book, A Crack in Creation: Gene Editing and the Unthinkable Power to Control Evolution, cowritten by Samuel H. Sternberg …, “… —but we could also have woolly mammoths, winged lizards, and unicorns.” And as for that last part, she made clear, “No, I am not kidding.”

Everybody makes mistakes and the reference to Editas Medicine is the only error I spotted. You can find out more about Mammoth Biosciences here and while Dr. Doudna’s comment, “My greatest hope is that it’s used for good, to uncover new mysteries in biology and to benefit humankind,” is laudable it would seem she wishes to profit from the discovery. Mammoth Biosciences is a for-profit company as can be seen at the end of the Mammoth Biosciences’ October 7, 2020 congratulatory news release,

About Mammoth Biosciences

Mammoth Biosciences is harnessing the diversity of nature to power the next-generation of CRISPR products. Through the discovery and development of novel CRISPR systems, the company is enabling the full potential of its platform to read and write the code of life. By leveraging its internal research and development and exclusive licensing to patents related to Cas12, Cas13, Cas14 and Casɸ, Mammoth Biosciences can provide enhanced diagnostics and genome editing for life science research, healthcare, agriculture, biodefense and more. Based in San Francisco, Mammoth Biosciences is co-founded by CRISPR pioneer Jennifer Doudna and Trevor Martin, Janice Chen, and Lucas Harrington. The firm is backed by top institutional investors [emphasis mine] including Decheng, Mayfield, NFX, and 8VC, and leading individual investors including Brook Byers, Tim Cook, and Jeff Huber.

An October 7, 2029 Nobel Prize press release, which unleashed all this interest in Doudna and Charpentier, notes this,

Prize amount: 10 million Swedish kronor, to be shared equally between the Laureates.

In Canadian money that amount is $1,492,115.03 (as of Oct. 9, 2020 12:40 PDT when I checked a currency converter).

Ordinarily there’d be a mildly caustic comment from me about business opportunities and medical research but this is a time for congratulations to both Dr. Emanuelle Charpentier and Dr. Jennifer Doudna.

Get better protection from a sunscreen with a ‘flamenco dancing’ molecule?

Caption: illustrative image for the University of Warwick research on ‘Flamenco dancing’ molecule could lead to better-protecting sunscreen created by Dr. Michael Horbury. Credit:: created by Dr Michael Horbury

There are high hopes (more about why later) for a plant-based ‘flamenco dancing molecule’ and its inclusion in sunscreens as described in an October 18, 2019 University of Warwick press release (also on EurekAlert),

A molecule that protects plants from overexposure to harmful sunlight thanks to its flamenco-style twist could form the basis for a new longer-lasting sunscreen, chemists at the University of Warwick have found, in collaboration with colleagues in France and Spain. Research on the green molecule by the scientists has revealed that it absorbs ultraviolet light and then disperses it in a ‘flamenco-style’ dance, making it ideal for use as a UV filter in sunscreens.

The team of scientists report today, Friday 18th October 2019, in the journal Nature Communications that, as well as being plant-inspired, this molecule is also among a small number of suitable substances that are effective in absorbing light in the Ultraviolet A (UVA) region of wavelengths. It opens up the possibility of developing a naturally-derived and eco-friendly sunscreen that protects against the full range of harmful wavelengths of light from the sun.

The UV filters in a sunscreen are the ingredients that predominantly provide the protection from the sun’s rays. In addition to UV filters, sunscreens will typically also include:

Emollients, used for moisturising and lubricating the skin
Thickening agents
Emulsifiers to bind all the ingredients
Water
Other components that improve aesthetics, water resistance, etc.

The researchers tested a molecule called diethyl sinapate, a close mimic to a molecule that is commonly found in the leaves of plants, which is responsible for protecting them from overexposure to UV light while they absorb visible light for photosynthesis.

They first exposed the molecule to a number of different solvents to determine whether that had any impact on its (principally) light absorbing behaviour. They then deposited a sample of the molecule on an industry standard human skin mimic (VITRO-CORNEUM®) where it was irradiated with different wavelengths of UV light. They used the state-of-the-art laser facilities within the Warwick Centre for Ultrafast Spectroscopy to take images of the molecule at extremely high speeds, to observe what happens to the light’s energy when it’s absorbed in the molecule in the very early stages (millionths of millionths of a second). Other techniques were also used to establish longer term (many hours) properties of diethyl sinapate, such as endocrine disruption activity and antioxidant potential.

Professor Vasilios Stavros from the University of Warwick, Department of Chemistry, who was part of the research team, explains: “A really good sunscreen absorbs light and converts it to harmless heat. A bad sunscreen is one that absorbs light and then, for example, breaks down potentially inducing other chemistry that you don’t want. Diethyl sinapate generates lots of heat, and that’s really crucial.”

When irradiated the molecule absorbs light and goes into an excited state but that energy then has to be disposed of somehow. The team of researchers observed that it does a kind of molecular ‘dance’ a mere 10 picoseconds (ten millionths of a millionth of a second) long: a twist in a similar fashion to the filigranas and floreos hand movements of flamenco dancers. That causes it to come back to its original ground state and convert that energy into vibrational energy, or heat.

It is this ‘flamenco dance’ that gives the molecule its long-lasting qualities. When the scientists bombarded the molecule with UVA light they found that it degraded only 3% over two hours, compared to the industry requirement of 30%.

Dr Michael Horbury, who was a Postgraduate Research Fellow at The University Warwick when he undertook this research (and now at the University of Leeds) adds: “We have shown that by studying the molecular dance on such a short time-scale, the information that you gain can have tremendous repercussions on how you design future sunscreens.
Emily Holt, a PhD student in the Department of Chemistry at the University of Warwick who was part of the research team, said: “The next step would be to test it on human skin, then to mix it with other ingredients that you find in a sunscreen to see how those affect its characteristics.”

Professor Florent Allais and Dr Louis Mouterde, URD Agro-Biotechnologies Industrielles at AgroParisTech (Pomacle, France) commented: “What we have developed together is a molecule based upon a UV photoprotective molecule found in the surface of leaves on a plant and refunctionalised it using greener synthetic procedures. Indeed, this molecule has excellent long-term properties while exhibiting low endocrine disruption and valuable antioxidant properties.”

Professor Laurent Blasco, Global Technical Manager (Skin Essentials) at Lubrizol and Honorary Professor at the University of Warwick commented: “In sunscreen formulations at the moment there is a lack of broad-spectrum protection from a single UV filter. Our collaboration has gone some way towards developing a next generation broad-spectrum UV filter inspired by nature. Our collaboration has also highlighted the importance of academia and industry working together towards a common goal.”

Professor Vasilios Stavros added, “Amidst escalating concerns about their impact on human toxicity (e.g. endocrine disruption) and ecotoxicity (e.g. coral bleaching), developing new UV filters is essential. We have demonstrated that a highly attractive avenue is ‘nature-inspired’ UV filters, which provide a front-line defence against skin cancer and premature skin aging.”

Here’s a link to and a citation for the paper,

Towards symmetry driven and nature inspired UV filter design by Michael D. Horbury, Emily L. Holt, Louis M. M. Mouterde, Patrick Balaguer, Juan Cebrián, Laurent Blasco, Florent Allais & Vasilios G. Stavros. Nature Communications volume 10, Article number: 4748 (2019) DOI: https://doi.org/10.1038/s41467-019-12719-z

This paper is open access.

Why the high hopes?

Briefly (the long story stretches over 10 years), the most recommended sunscreens today (2020) are ‘mineral-based’. This is painfully amusing because civil society groups (activists) such as Friends of the Earth (in particular the Australia chapter under Georgia Miller’s leadership) and Canada’s own ETC Group had campaigned against these same sunscreen when they were billed as being based on metal oxide nanoparticles such zinc oxide and/or titanium oxide. The ETC Group under Pat Roy Mooney’s leadership didn’t press the campaign after an initial push. As for Australia and Friend of the Earth, their anti-metallic oxide nanoparticle sunscreen campaign didn’t work out well as I noted in a February 9, 2012 posting and with a follow-up in an October 31, 2012 posting.

The only civil society group to give approval (very reluctantly) was the Environmental Working Group (EWG) as I noted in a July 9, 2009 posting. They had concerns about the fact that these ingredients are metallic but after a thorough of then available research, EWG gave the sunscreens a passing grade and noted, in their report, that they had more concerns about the use of oxybenzone in sunscreens. That latter concern has since been flagged by others (e.g., the state of Hawai’i) as noted in my July 6, 2018 posting.

So, rebranding metallic oxides as minerals has allowed the various civil society groups to support the very same sunscreens many of them were advocating against.

In the meantime, scientists continue work on developing plant-based sunscreens as an improvement to the ‘mineral-based’ sunscreens used now.