Category Archives: nanotechnology

Highly scalable neuromorphic (brainlike) computing hardware

This work comes from Korea (or South Korea, if you prefer). An August 5, 2021 news item on ScienceDaily announces a step forward in the future production of neuromorphic hardware,

KAIST [The Korea Advanced Institute of Science and Technology] researchers fabricated a brain-inspired highly scalable neuromorphic hardware by co-integrating single transistor neurons and synapses. Using standard silicon complementary metal-oxide-semiconductor (CMOS) technology, the neuromorphic hardware is expected to reduce chip cost and simplify fabrication procedures.

Caption: Single transistor neurons and synapses fabricated using a standard silicon CMOS process. They are co-integrated on the same 8-inch wafer. Credit: KAIST

An August 5, 2021 The Korea Advanced Institute of Science and Technology (KAIST) press release (also on EurekAlert), which originated the news item, provides more detail about the research,

The research team led by Yang-Kyu Choi and Sung-Yool Choi produced a [sic] neurons and synapses based on single transistor for highly scalable neuromorphic hardware and showed the ability to recognize text and face images. This research was featured in Science Advances on August 4 [2021].

Neuromorphic hardware has attracted a great deal of attention because of its artificial intelligence functions, but consuming ultra-low power of less than 20 watts by mimicking the human brain. To make neuromorphic hardware work, a neuron that generates a spike when integrating a certain signal, and a synapse remembering the connection between two neurons are necessary, just like the biological brain. However, since neurons and synapses constructed on digital or analog circuits occupy a large space, there is a limit in terms of hardware efficiency and costs. Since the human brain consists of about 1011 neurons and 1014 synapses, it is necessary to improve the hardware cost in order to apply it to mobile and IoT devices.

To solve the problem, the research team mimicked the behavior of biological neurons and synapses with a single transistor, and co-integrated them onto an 8-inch wafer. The manufactured neuromorphic transistors have the same structure as the transistors for memory and logic that are currently mass-produced. In addition, the neuromorphic transistors proved for the first time that they can be implemented with a ‘Janus structure’ that functions as both neuron and synapse, just like coins have heads and tails.

Professor Yang-Kyu Choi said that this work can dramatically reduce the hardware cost by replacing the neurons and synapses that were based on complex digital and analog circuits with a single transistor. “We have demonstrated that neurons and synapses can be implemented using a single transistor,” said Joon-Kyu Han, the first author. “By co-integrating single transistor neurons and synapses on the same wafer using a standard CMOS process, the hardware cost of the neuromorphic hardware has been improved, which will accelerate the commercialization of neuromorphic hardware,” Han added.This research was supported by the National Research Foundation (NRF) and IC Design Education Center (IDEC). 

Here’s a link to and a citation for the paper,

Cointegration of single-transistor neurons and synapses by nanoscale CMOS fabrication for highly scalable neuromorphic hardware by Joon-Kyu Han, Jungyeop Oh, Gyeong-Jun Yun, Dongeun Yoo, Myung-Su Kim, Ji-Man Yu, Sung-Yool Choi, and Yang-Kyu Choi. Science Advances 04 Aug 2021: Vol. 7, no. 32, eabg8836 DOI: 10.1126/sciadv.abg8836

This article appears to be open access.

Night of ideas/Nuit des idées 2022: (Re)building Together on January 27, 2022 (7th edition in Canada)

Vancouver and other Canadian cities are participating in an international culture event, Night of ideas/Nuit des idées, organized by the French Institute (Institut de France), a French Learned society first established in 1795 (during the French Revolution, which ran from 1789 to 1799 [Wikipedia entry]).

Before getting to the Canadian event, here’s more about the Night of Ideas from the event’s About Us page,

Initiated in 2016 during an exceptional evening that brought together in Paris foremost French and international thinkers invited to discuss the major issues of our time, the Night of Ideas has quickly become a fixture of the French and international agenda. Every year, on the last Thursday of January, the French Institute invites all cultural and educational institutions in France and on all five continents to celebrate the free flow of ideas and knowledge by offering, on the same evening, conferences, meetings, forums and round tables, as well as screenings, artistic performances and workshops, around a theme each one of them revisits in its own fashion.

“(Re)building together

For the 7th Night of Ideas, which will take place on 27 January 2022, the theme “(Re)building together” has been chosen to explore the resilience and reconstruction of societies faced with singular challenges, solidarity and cooperation between individuals, groups and states, the mobilisation of civil societies and the challenges of building and making our objects. This Nuit des Idées will also be marked by the beginning of the French Presidency of the Council of the European Union.

According to the About Us page, the 2021 event counted participants in 104 countries/190 cities/with other 200 events.

The French embassy in Canada (Ambassade de France au Canada) has a Night of Ideas/Nuit des idées 2022 webpage listing the Canadian events (Note: The times are local, e.g., 5 pm in Ottawa),

Ottawa: (Re)building through the arts, together

Moncton: (Re)building Together: How should we (re)think and (re)habilitate the post-COVID world?

Halifax: (Re)building together: Climate change — Building bridges between the present and future

Toronto: A World in Common

Edmonton: Introduction of the neutral pronoun “iel” — Can language influence the construction of identity?

Vancouver: (Re)building together with NFTs

Victoria: Committing in a time of uncertainty

Here’s a little more about the Vancouver event, from the Night of Ideas/Nuit des idées 2022 webpage,

Vancouver: (Re)building together with NFTs [non-fungible tokens]

NFTs, or non-fungible tokens, can be used as blockchain-based proofs of ownership. The new NFT “phenomenon” can be applied to any digital object: photos, videos, music, video game elements, and even tweets or highlights from sporting events.

Millions of dollars can be on the line when it comes to NFTs granting ownership rights to “crypto arts.” In addition to showing the signs of being a new speculative bubble, the market for NFTs could also lead to new experiences in online video gaming or in museums, and could revolutionize the creation and dissemination of works of art.

This evening will be an opportunity to hear from artists and professionals in the arts, technology and academia and to gain a better understanding of the opportunities that NFTs present for access to and the creation and dissemination of art and culture. Jesse McKee, Head of Strategy at 221A, Philippe Pasquier, Professor at School of Interactive Arts & Technology (SFU) and Rhea Myers, artist, hacker and writer will share their experiences in a session moderated by Dorothy Woodend, cultural editor for The Tyee.

- 7 p.m on Zoom (registration here) Event broadcast online on France Canada Culture’s Facebook. In English.

Not all of the events are in both languages.

One last thing, if you have some French and find puppets interesting, the event in Victoria, British Columbia features both, “Catherine Léger, linguist and professor at the University of Victoria, with whom we will discover and come to accept the diversity of French with the help of marionnettes [puppets]; … .”

Resisting silver’s microbial properties?

Yes, it is possible for bacteria to become resistant to silver nanoparticles. However, that yes comes with some qualifications according to a July 13, 2021 news item on ScienceDaily (Note: Links have been removed),

Antimicrobials are used to kill or slow the growth of bacteria, viruses and other microorganisms. They can be in the form of antibiotics, used to treat bodily infections, or as an additive or coating on commercial products used to keep germs at bay. These life-saving tools are essential to preventing and treating infections in humans, animals and plants, but they also pose a global threat to public health when microorganisms develop resistance to them, a concept known as antimicrobial resistance.

One of the main drivers of antimicrobial resistance is the misuse and overuse of antimicrobial agents, which includes silver nanoparticles, [emphases mine] an advanced material with well-documented antimicrobial properties. It is increasingly used in commercial products that boast enhanced germ-killing performance — it has been woven into textiles, coated onto toothbrushes, and even mixed into cosmetics as a preservative.

The Gilbertson Group at the University of Pittsburgh [Pennsylvania, US} Swanson School of Engineering used laboratory strains of E.coli to better understand bacterial resistance to silver nanoparticles and attempt to get ahead of the potential misuse of this material. The team recently published their results in Nature Nanotechnology.

Caption: A depiction of hyper-motile E.coli, a strain of bacteria found to resist silver nanoparticles’ antimicrobial properties after repeated exposure. Credit: Lisa Stabryla/University of Pittsburgh.

A July 13, 2021 University of Pittsburgh news release (also on EurekAlert), which originated the news item, provides more insight into the research,

“Bacterial resistance to silver nanoparticles is understudied, so our group looked at the mechanisms behind this event,” said Lisa Stabryla, lead author on the paper and a recent civil and environmental PhD graduate at Pitt. “This is a promising innovation to add to our arsenal of antimicrobials, but we need to consciously study it and perhaps regulate its use to avoid decreased efficacy like we’ve seen with some common antibiotics.”

Stabryla exposed E.coli to 20 consecutive days of silver nanoparticles and monitored bacterial growth over time. Nanoparticles are roughly 50 times smaller than a bacterium.

“In the beginning, bacteria could only survive at low concentrations of silver nanoparticles, but as the experiment continued, we found that they could survive at higher doses,” Stabryla noted. “Interestingly, we found that bacteria developed resistance to the silver nanoparticles but not their released silver ions alone.”

The group sequenced the genome of the E.coli that had been exposed to silver nanoparticles and found a mutation in a gene that corresponds to an efflux pump that pushes heavy metal ions out of the cell.

“It is possible that some form of silver is getting into the cell, and when it arrives, the cell mutates to quickly pump it out,” she added. “More work is needed to determine if researchers can perhaps overcome this mechanism of resistance through particle design.”

The group then studied two different types of E.coli: a hyper-motile strain that swims through its environment more quickly than normally motile bacteria and a non-motile strain that does not have physical means for moving around. They found that only the hyper-motile strain developed resistance.

“This finding could suggest that silver nanoparticles may be a good option to target certain types of bacteria, particularly non-motile strains,” Stabryla said.

In the end, bacteria will still find a way to evolve and evade antimicrobials. The hope is that an understanding of the mechanisms that lead to this evolution and a mindful use of new antimicrobials will lessen the impact of antimicrobial resistance.

“We are the first to look at bacterial motility effects on the ability to develop resistance to silver nanoparticles,” said Leanne Gilbertson, assistant professor of civil and environmental engineering at Pitt. “The observed difference is really interesting and merits further investigation to understand it and how to link the genetic response – the efflux pump regulation – to the bacteria’s ability to move in the system.

“The results are promising for being able to tune particle properties for a desired response, such as high efficacy while avoiding resistance.”

Here’s a link to and a citation for the paper,

Role of bacterial motility in differential resistance mechanisms of silver nanoparticles and silver ions by Lisa M. Stabryla, Kathryn A. Johnston, Nathan A. Diemler, Vaughn S. Cooper, Jill E. Millstone, Sarah-Jane Haig & Leanne M. Gilbertson. Nature Nanotechnology (2021) DOI: https://doi.org/10.1038/s41565-021-00929-w Published: 21 June 2021

This paper appears to be open access.

“The Immune System: Our Great Protector Against Dangerous Stuff” talk at Simon Fraser University’s (SFU) Café Scientifique on Thursday January 27, 2022 from 5:00 pm – 6:30 pm PST

This is from a January 13, 2022 SFU Café Scientifique notice (received via email),

Happy New Year! We are excited to announce our next virtual SFU Café
Scientifique!

 Thursday January 27, 2022, 5:00-6:30 pm

 Dr. Jonathan Choy, SFU Molecular Biology and Biochemistry

The Immune System: Our Great Protector Against Dangerous Stuff

Our bodies are constantly in contact with material in the environment,
such as microbes, that are harmful to our health. Despite this, most
people are healthy because the immune system patrols our bodies and
protects us from these harmful environmental components. In this Cafe
Scientifique, Dr. Jonathan Choy from the Department of Molecular Biology
and Biochemistry will discuss how the immune system does this.

Register here to receive a zoom invite:

 
https://www.eventbrite.ca/e/sfu-cafe-scientifique-january-2022-tickets-227344733217

I found Dr. Choy’s profile page on the SFU website and found this description for his research interests,

T Cell Biology 

T cells are specialized cells of the immune system that protect host organisms from infection but that also contribute to a wide array of human diseases. Research in my laboratory is focused on understanding the mechanisms by which T cells become inappropriately activated in disease settings and how they cause organ damage. We have provided particular attention to how innate immune signals, such as cytokines secreted by innate immune cells and vascular cells, control the outcome of T cell responses. Within this context, processes that inhibit the activation of T cells are also being studied in order to potentially prevent disease-causing immune responses. Our studies on this topic are applied most directly to inflammatory vascular diseases, such as transplant arteriosclerosis and giant cell arteritis.

Nitric Oxide Signaling and Production 

Nitric oxide (NO) is a bioactive gas that controls many cell biological responses. Dysregulation of its production and/or bioactivity is involved in many diseases. My laboratory is interested in understanding how NO effects cell signaling and how its production is controlled by NO synthases. We are specifically interested in how NO-mediated protein S-nitrosylation, a post-translational modification caused by NO, affects cell signaling pathways and cellular functions.

I gather from the Café Scientifique write up that Dr. Choy’s talk is intended for a more general audience as opposed to the description of his research interests which are intended for students of molecular biology and biochemistry/

For those who are unfamiliar with it, Simon Fraser University is located in the Vancouver area (Canada).

East/West collaboration on scholarship and imagination about humanity’s long-term future— six new fellows at Berggruen Research Center at Peking University

According to a January 4, 2022 Berggruen Institute (also received via email), they have appointed a new crop of fellows for their research center at Peking University,

The Berggruen Institute has announced six scientists and philosophers to serve as Fellows at the Berggruen Research Center at Peking University in Beijing, China. These eminent scholars will work together across disciplines to explore how the great transformations of our time may shift human experience and self-understanding in the decades and centuries to come.

The new Fellows are Chenjian Li, University Chair Professor at Peking University; Xianglong Zhang, professor of philosophy at Peking University; Xiaoli Liu, professor of philosophy at Renmin University of China; Jianqiao Ge, lecturer at the Academy for Advanced Interdisciplinary Studies (AAIS) at Peking University; Xiaoping Chen, Director of the Robotics Laboratory at the University of Science and Technology of China; and Haidan Chen, associate professor of medical ethics and law at the School of Health Humanities at Peking University.

“Amid the pandemic, climate change, and the rest of the severe challenges of today, our Fellows are surmounting linguistic and cultural barriers to imagine positive futures for all people,” said Bing Song, Director of the China Center and Vice President of the Berggruen Institute. “Dialogue and shared understanding are crucial if we are to understand what today’s breakthroughs in science and technology really mean for the human community and the planet we all share.”

The Fellows will investigate deep questions raised by new understandings and capabilities in science and technology, exploring their implications for philosophy and other areas of study.  Chenjian Li is considering the philosophical and ethical considerations of gene editing technology. Meanwhile, Haidan Chen is exploring the social implications of brain/computer interface technologies in China, while Xiaoli Liu is studying philosophical issues arising from the intersections among psychology, neuroscience, artificial intelligence, and art.

Jianqiao Ge’s project considers the impact of artificial intelligence on the human brain, given the relative recency of its evolution into current form. Xianglong Zhang’s work explores the interplay between literary culture and the development of technology. Finally, Xiaoping Chen is developing a new concept for describing innovation that draws from Daoist, Confucianist, and ancient Greek philosophical traditions.

Fellows at the China Center meet monthly with the Institute’s Los Angeles-based Fellows. These fora provide an opportunity for all Fellows to share and discuss their work. Through this cross-cultural dialogue, the Institute is helping to ensure continued high-level of ideas among China, the United States, and the rest of the world about some of the deepest and most fundamental questions humanity faces today.

“Changes in our capability and understanding of the physical world affect all of humanity, and questions about their implications must be pondered at a cross-cultural level,” said Bing. “Through multidisciplinary dialogue that crosses the gulf between East and West, our Fellows are pioneering new thought about what it means to be human.”

Haidan Chen is associate professor of medical ethics and law at the School of Health Humanities at Peking University. She was a visiting postgraduate researcher at the Institute for the Study of Science Technology and Innovation (ISSTI), the University of Edinburgh; a visiting scholar at the Brocher Foundation, Switzerland; and a Fulbright visiting scholar at the Center for Biomedical Ethics, Stanford University. Her research interests embrace the ethical, legal, and social implications (ELSI) of genetics and genomics, and the governance of emerging technologies, in particular stem cells, biobanks, precision medicine, and brain science. Her publications appear at Social Science & MedicineBioethics and other journals.

Xiaoping Chen is the director of the Robotics Laboratory at University of Science and Technology of China. He also currently serves as the director of the Robot Technical Standard Innovation Base, an executive member of the Global AI Council, Chair of the Chinese RoboCup Committee, and a member of the International RoboCup Federation’s Board of Trustees. He has received the USTC’s Distinguished Research Presidential Award and won Best Paper at IEEE ROBIO 2016. His projects have won the IJCAI’s Best Autonomous Robot and Best General-Purpose Robot awards as well as twelve world champions at RoboCup. He proposed an intelligent technology pathway for robots based on Open Knowledge and the Rong-Cha principle, which have been implemented and tested in the long-term research on KeJia and JiaJia intelligent robot systems.

Jianqiao Ge is a lecturer at the Academy for Advanced Interdisciplinary Studies (AAIS) at Peking University. Before, she was a postdoctoral fellow at the University of Chicago and the Principal Investigator / Co-Investigator of more than 10 research grants supported by the Ministry of Science and Technology of China, the National Natural Science Foundation of China, and Beijing Municipal Science & Technology Commission. She has published more than 20 peer-reviewed articles on leading academic journals such as PNAS, the Journal of Neuroscience, and has been awarded two national patents. In 2008, by scanning the human brain with functional MRI, Ge and her collaborator were among the first to confirm that the human brain engages distinct neurocognitive strategies to comprehend human intelligence and artificial intelligence. Ge received her Ph.D. in psychology, B.S in physics, a double B.S in mathematics and applied mathematics, and a double B.S in economics from Peking University.

Chenjian Li is the University Chair Professor of Peking University. He also serves on the China Advisory Board of Eli Lilly and Company, the China Advisory Board of Cornell University, and the Rhodes Scholar Selection Committee. He is an alumnus of Peking University’s Biology Department, Peking Union Medical College, and Purdue University. He was the former Vice Provost of Peking University, Executive Dean of Yuanpei College, and Associate Dean of the School of Life Sciences at Peking University. Prior to his return to China, he was an associate professor at Weill Medical College of Cornell University and the Aidekman Endowed Chair of Neurology at Mount Sinai School of Medicine. Dr. Li’s academic research focuses on the molecular and cellular mechanisms of neurological diseases, cancer drug development, and gene-editing and its philosophical and ethical considerations. Li also writes as a public intellectual on science and humanity, and his Chinese translation of Richard Feynman’s book What Do You Care What Other People Think? received the 2001 National Publisher’s Book Award.

Xiaoli Liu is professor of philosophy at Renmin University. She is also Director of the Chinese Society of Philosophy of Science Leader. Her primary research interests are philosophy of mathematics, philosophy of science and philosophy of cognitive science. Her main works are “Life of Reason: A Study of Gödel’s Thought,” “Challenges of Cognitive Science to Contemporary Philosophy,” “Philosophical Issues in the Frontiers of Cognitive Science.” She edited “Symphony of Mind and Machine” and series of books “Mind and Cognition.” In 2003, she co-founded the “Mind and Machine workshop” with interdisciplinary scholars, which has held 18 consecutive annual meetings. Liu received her Ph.D. from Peking University and was a senior visiting scholar in Harvard University.

Xianglong Zhang is a professor of philosophy at Peking University. His research areas include Confucian philosophy, phenomenology, Western and Eastern comparative philosophy. His major works (in Chinese except where noted) include: Heidegger’s Thought and Chinese Tao of HeavenBiography of HeideggerFrom Phenomenology to ConfuciusThe Exposition and Comments of Contemporary Western Philosophy; The Exposition and Comments of Classic Western PhilosophyThinking to Take Refuge: The Chinese Ancient Philosophies in the GlobalizationLectures on the History of Confucian Philosophy (four volumes); German Philosophy, German Culture and Chinese Philosophical ThinkingHome and Filial Piety: From the View between the Chinese and the Western.

About the Berggruen China Center
Breakthroughs in artificial intelligence and life science have led to the fourth scientific and technological revolution. The Berggruen China Center is a hub for East-West research and dialogue dedicated to the cross-cultural and interdisciplinary study of the transformations affecting humanity. Intellectual themes for research programs are focused on frontier sciences, technologies, and philosophy, as well as issues involving digital governance and globalization.

About the Berggruen Institute:
The Berggruen Institute’s mission is to develop foundational ideas and shape political, economic, and social institutions for the 21st century. Providing critical analysis using an outwardly expansive and purposeful network, we bring together some of the best minds and most authoritative voices from across cultural and political boundaries to explore fundamental questions of our time. Our objective is enduring impact on the progress and direction of societies around the world. To date, projects inaugurated at the Berggruen Institute have helped develop a youth jobs plan for Europe, fostered a more open and constructive dialogue between Chinese leadership and the West, strengthened the ballot initiative process in California, and launched Noema, a new publication that brings thought leaders from around the world together to share ideas. In addition, the Berggruen Prize, a $1 million award, is conferred annually by an independent jury to a thinker whose ideas are shaping human self-understanding to advance humankind.

You can find out more about the Berggruen China Center here and you can access a list along with biographies of all the Berggruen Institute fellows here.

Getting ready

I look forward to hearing about the projects from these thinkers.

Gene editing and ethics

I may have to reread some books in anticipation of Chenjian Li’s philosophical work and ethical considerations of gene editing technology. I wonder if there’ll be any reference to the He Jiankui affair.

(Briefly for those who may not be familiar with the situation, He claimed to be the first to gene edit babies. In November 2018, news about the twins, Lulu and Nana, was a sensation and He was roundly criticized for his work. I have not seen any information about how many babies were gene edited for He’s research; there could be as many as six. My July 28, 2020 posting provided an update. I haven’t stumbled across anything substantive since then.)

There are two books I recommend should you be interested in gene editing, as told through the lens of the He Jiankui affair. If you can, read both as that will give you a more complete picture.

In no particular order: This book provides an extensive and accessible look at the science, the politics of scientific research, and some of the pressures on scientists of all countries. Kevin Davies’ 2020 book, “Editing Humanity; the CRISPR Revolution and the New Era of Genome Editing” provides an excellent introduction from an insider. Here’s more from Davies’ biographical sketch,

Kevin Davies is the executive editor of The CRISPR Journal and the founding editor of Nature Genetics . He holds an MA in biochemistry from the University of Oxford and a PhD in molecular genetics from the University of London. He is the author of Cracking the Genome, The $1,000 Genome, and co-authored a new edition of DNA: The Story of the Genetic Revolution with Nobel Laureate James D. Watson and Andrew Berry. …

The other book is “The Mutant Project; Inside the Global Race to Genetically Modify Humans” (2020) by Eben Kirksey, an anthropologist who has an undergraduate degree in one of the sciences. He too provides scientific underpinning but his focus is on the cultural and personal underpinnings of the He Jiankui affair, on the culture of science research, irrespective of where it’s practiced, and the culture associated with the DIY (do-it-yourself) Biology community. Here’s more from Kirksey’s biographical sketch,

EBEN KIRKSEY is an American anthropologist and Member of the Institute for Advanced Study in Princeton, New Jersey. He has been published in Wired, The Atlantic, The Guardian and The Sunday Times . He is sought out as an expert on science in society by the Associated Press, The Wall Street Journal, The New York Times, Democracy Now, Time and the BBC, among other media outlets. He speaks widely at the world’s leading academic institutions including Oxford, Yale, Columbia, UCLA, and the International Summit of Human Genome Editing, plus music festivals, art exhibits, and community events. Professor Kirksey holds a long-term position at Deakin University in Melbourne, Australia.

Brain/computer interfaces (BCI)

I’m happy to see that Haidan Chen will be exploring the social implications of brain/computer interface technologies in China. I haven’t seen much being done here in Canada but my December 23, 2021 posting, Your cyborg future (brain-computer interface) is closer than you think, highlights work being done at the Imperial College London (ICL),

“For some of these patients, these devices become such an integrated part of themselves that they refuse to have them removed at the end of the clinical trial,” said Rylie Green, one of the authors. “It has become increasingly evident that neurotechnologies have the potential to profoundly shape our own human experience and sense of self.”

You might also find my September 17, 2020 posting has some useful information. Check under the “Brain-computer interfaces, symbiosis, and ethical issues” subhead for another story about attachment to one’s brain implant and also the “Finally” subhead for more reading suggestions.

Artificial intelligence (AI), art, and the brain

I’ve lumped together three of the thinkers, Xiaoli Liu, Jianqiao Ge and Xianglong Zhang, as there is some overlap (in my mind, if nowhere else),

  • Liu’s work on philosophical issues as seen in the intersections of psychology, neuroscience, artificial intelligence, and art
  • Ge’s work on the evolution of the brain and the impact that artificial intelligence may have on it
  • Zhang’s work on the relationship between literary culture and the development of technology

A December 3, 2021 posting, True love with AI (artificial intelligence): The Nature of Things explores emotional and creative AI (long read), is both a review of a recent episode of the Canadian Broadcasting Corporation’s (CBC) science television series,The Nature of Things, and a dive into a number of issues as can be seen under subheads such as “AI and Creativity,” “Kazuo Ishiguro?” and “Evolution.”

You may also want to check out my December 27, 2021 posting, Ai-Da (robot artist) writes and performs poem honouring Dante’s 700th anniversary, for an eye opening experience. If nothing else, just watch the embedded video.

This suggestion relates most closely to Ge’s and Zhang’s work. If you haven’t already come across it, there’s Walter J. Ong’s 1982 book, “Orality and Literacy: The Technologizing of the Word.” From the introductory page of the 2002 edition (PDF),

This classic work explores the vast differences between oral and
literate cultures and offers a brilliantly lucid account of the
intellectual, literary and social effects of writing, print and
electronic technology. In the course of his study, Walter J.Ong
offers fascinating insights into oral genres across the globe and
through time and examines the rise of abstract philosophical and
scientific thinking. He considers the impact of orality-literacy
studies not only on literary criticism and theory but on our very
understanding of what it is to be a human being, conscious of self
and other.

In 2013, a 30th anniversary edition of the book was released and is still in print.

Philosophical traditions

I’m very excited to learn more about Xiaoping Chen’s work describing innovation that draws from Daoist, Confucianist, and ancient Greek philosophical traditions.

Should any of my readers have suggestions for introductory readings on these philosophical traditions, please do use the Comments option for this blog. In fact, if you have suggestions for other readings on these topics, I would be very happy to learn of them.

Congratulations to the six Fellows at the Berggruen Research Center at Peking University in Beijing, China. I look forward to reading articles about your work in the Berggruen Institute’s Noema magazine and, possibly, attending your online events.

Tamarind shells turned into carbon nanosheets for supercapacitors

Fro anyone who needs a shot of happiness, this is a very happy scientist,

Caption: Assistant Professor (Steve) Cuong Dang, from NTU’s School of Electrical and Electronic Engineering, who led the study, displaying pieces of tamarind shell, which were integral to the study. Credit to NTU Singapore

A July 14, 2021 news item on ScienceDaily describes the source of assistant professor (Steve) Cuong Dang’s happiness,

Shells of tamarind, a tropical fruit consumed worldwide, are discarded during food production. As they are bulky, tamarind shells take up a considerable amount of space in landfills where they are disposed as agricultural waste.

However, a team of international scientists led by Nanyang Technological University, Singapore (NTU Singapore) has found a way to deal with the problem. By processing the tamarind shells which are rich in carbon, the scientists converted the waste material into carbon nanosheets, which are a key component of supercapacitors – energy storage devices that are used in automobiles, buses, electric vehicles, trains, and elevators.

The study reflects NTU’s commitment to address humanity’s grand challenges on sustainability as part of its 2025 strategic plan, which seeks to accelerate the translation of research discoveries into innovations that mitigate our impact on the environment.

A July 14, 2021 NTU press release (also here [scroll down to click on the link to the full press release] and on EurekAlert but published July 13, 2021), which originated the news item, delves further into the topic,

he team, made up of researchers from NTU Singapore, the Western Norway University of Applied Sciences in Norway, and Alagappa University in India, believes that these nanosheets, when scaled up, could be an eco-friendly alternative to their industrially produced counterparts, and cut down on waste at the same time.

Assistant Professor (Steve) Cuong Dang, from NTU’s School of Electrical and Electronic Engineering, who led the study, said: “Through a series of analysis, we found that the performance of our tamarind shell-derived nanosheets was comparable to their industrially made counterparts in terms of porous structure and electrochemical properties. The process to make the nanosheets is also the standard method to produce active carbon nanosheets.”

Professor G. Ravi, Head, Department of Physics, who co-authored the study with Asst Prof Dr R. Yuvakkumar, who are both from Alagappa University, said: “The use of tamarind shells may reduce the amount of space required for landfills, especially in regions in Asia such as India, one of the world’s largest producers of tamarind, which is also grappling with waste disposal issues.”

The study was published in the peer-reviewed scientific journal Chemosphere in June [2021].

The step-by-step recipe for carbon nanosheets

To manufacture the carbon nanosheets, the researchers first washed tamarind fruit shells and dried them at 100°C for around six hours, before grinding them into powder.

The scientists then baked the powder in a furnace for 150 minutes at 700-900 degrees Celsius in the absence of oxygen to convert them into ultrathin sheets of carbon known as nanosheets.

Tamarind shells are rich in carbon and porous in nature, making them an ideal material from which to manufacture carbon nanosheets.

A common material used to produce carbon nanosheets are industrial hemp fibres. However, they require to be heated at over 180°C for 24 hours – four times longer than that of tamarind shells, and at a higher temperature. This is before the hemp is further subjected to intense heat to convert them into carbon nanosheets.

Professor Dhayalan Velauthapillai, Head of the research group for Advanced Nanomaterials for Clean Energy and Health Applications at Western Norway University of Applied Sciences, who participated in the study, said: “Carbon nanosheets comprise of layers of carbon atoms arranged in interconnecting hexagons, like a honeycomb. The secret behind their energy storing capabilities lies in their porous structure leading to large surface area which help the material to store large amounts of electric charges.”

The tamarind shell-derived nanosheets also showed good thermal stability and electric conductivity, making them promising options for energy storage.

The researchers hope to explore larger scale production of the carbon nanosheets with agricultural partners. They are also working on reducing the energy needed for the production process, making it more environmentally friendly, and are seeking to improve the electrochemical properties of the nanosheets.

The team also hopes to explore the possibility of using different types of fruit skins or shells to produce carbon nanosheets.

Here’s a link to and a citation for the paper,

Cleaner production of tamarind fruit shell into bio-mass derived porous 3D-activated carbon nanosheets by CVD technique for supercapacitor applications by V. Thirumal, K. Dhamodharan, R. Yuvakkumar, G. Ravi, B. Saravanakumar, M. Thambidurai, Cuong Dang, Dhayalan Velauthapillai. Chemosphere Volume 282, November 2021, 131033 DOI: https://doi.org/10.1016/j.chemosphere.2021.131033 Available online 2 June 2021.

This paper is behind a paywall.

Because we could all do with a little more happiness these days,

Caption: (L-R) Senior Research Fellow Dr Thambidurai Mariyappan, also from NTU’s School of Electrical and Electronic Engineering, who was part of the study, and Asst Prof Dang, holding up tamarind pods. Credit to NTU Singapore

The Storywrangler, tool exploring billions of social media messages, could predict political & financial turmoil

Being able to analyze Twitter messages (tweets) in real-time is amazing given what I wrote in this January 16, 2013 posting titled: “Researching tweets (the Twitter kind)” about the US Library of Congress and its attempts to access tweets for scholars,”

At least one of the reasons no one has received access to the tweets is that a single search of the archived (2006- 2010) tweets alone would take 24 hours, [emphases mine] …

So, bravo to the researchers at the University of Vermont (UVM). A July 16, 2021 news item on ScienceDaily makes the announcement,

For thousands of years, people looked into the night sky with their naked eyes — and told stories about the few visible stars. Then we invented telescopes. In 1840, the philosopher Thomas Carlyle claimed that “the history of the world is but the biography of great men.” Then we started posting on Twitter.

Now scientists have invented an instrument to peer deeply into the billions and billions of posts made on Twitter since 2008 — and have begun to uncover the vast galaxy of stories that they contain.

Caption: UVM scientists have invented a new tool: the Storywrangler. It visualizes the use of billions of words, hashtags and emoji posted on Twitter. In this example from the tool’s online viewer, three global events from 2020 are highlighted: the death of Iranian general Qasem Soleimani; the beginning of the COVID-19 pandemic; and the Black Lives Matter protests following the murder of George Floyd by Minneapolis police. The new research was published in the journal Science Advances. Credit: UVM

A July 15, 2021 UVM news release (also on EurekAlert but published on July 16, 2021) by Joshua Brown, which originated the news item, provides more detail abut the work,

“We call it the Storywrangler,” says Thayer Alshaabi, a doctoral student at the University of Vermont who co-led the new research. “It’s like a telescope to look — in real time — at all this data that people share on social media. We hope people will use it themselves, in the same way you might look up at the stars and ask your own questions.”

The new tool can give an unprecedented, minute-by-minute view of popularity, from rising political movements to box office flops; from the staggering success of K-pop to signals of emerging new diseases.

The story of the Storywrangler — a curation and analysis of over 150 billion tweets–and some of its key findings were published on July 16 [2021] in the journal Science Advances.

EXPRESSIONS OF THE MANY

The team of eight scientists who invented Storywrangler — from the University of Vermont, Charles River Analytics, and MassMutual Data Science [emphasis mine]– gather about ten percent of all the tweets made every day, around the globe. For each day, they break these tweets into single bits, as well as pairs and triplets, generating frequencies from more than a trillion words, hashtags, handles, symbols and emoji, like “Super Bowl,” “Black Lives Matter,” “gravitational waves,” “#metoo,” “coronavirus,” and “keto diet.”

“This is the first visualization tool that allows you to look at one-, two-, and three-word phrases, across 150 different languages [emphasis mine], from the inception of Twitter to the present,” says Jane Adams, a co-author on the new study who recently finished a three-year position as a data-visualization artist-in-residence at UVM’s Complex Systems Center.

The online tool, powered by UVM’s supercomputer at the Vermont Advanced Computing Core, provides a powerful lens for viewing and analyzing the rise and fall of words, ideas, and stories each day among people around the world. “It’s important because it shows major discourses as they’re happening,” Adams says. “It’s quantifying collective attention.” Though Twitter does not represent the whole of humanity, it is used by a very large and diverse group of people, which means that it “encodes popularity and spreading,” the scientists write, giving a novel view of discourse not just of famous people, like political figures and celebrities, but also the daily “expressions of the many,” the team notes.

In one striking test of the vast dataset on the Storywrangler, the team showed that it could be used to potentially predict political and financial turmoil. They examined the percent change in the use of the words “rebellion” and “crackdown” in various regions of the world. They found that the rise and fall of these terms was significantly associated with change in a well-established index of geopolitical risk for those same places.

WHAT’S HAPPENING?

The global story now being written on social media brings billions of voices — commenting and sharing, complaining and attacking — and, in all cases, recording — about world wars, weird cats, political movements, new music, what’s for dinner, deadly diseases, favorite soccer stars, religious hopes and dirty jokes.

“The Storywrangler gives us a data-driven way to index what regular people are talking about in everyday conversations, not just what reporters or authors have chosen; it’s not just the educated or the wealthy or cultural elites,” says applied mathematician Chris Danforth, a professor at the University of Vermont who co-led the creation of the StoryWrangler with his colleague Peter Dodds. Together, they run UVM’s Computational Story Lab.

“This is part of the evolution of science,” says Dodds, an expert on complex systems and professor in UVM’s Department of Computer Science. “This tool can enable new approaches in journalism, powerful ways to look at natural language processing, and the development of computational history.”

How much a few powerful people shape the course of events has been debated for centuries. But, certainly, if we knew what every peasant, soldier, shopkeeper, nurse, and teenager was saying during the French Revolution, we’d have a richly different set of stories about the rise and reign of Napoleon. “Here’s the deep question,” says Dodds, “what happened? Like, what actually happened?”

GLOBAL SENSOR

The UVM team, with support from the National Science Foundation [emphasis mine], is using Twitter to demonstrate how chatter on distributed social media can act as a kind of global sensor system — of what happened, how people reacted, and what might come next. But other social media streams, from Reddit to 4chan to Weibo, could, in theory, also be used to feed Storywrangler or similar devices: tracing the reaction to major news events and natural disasters; following the fame and fate of political leaders and sports stars; and opening a view of casual conversation that can provide insights into dynamics ranging from racism to employment, emerging health threats to new memes.

In the new Science Advances study, the team presents a sample from the Storywrangler’s online viewer, with three global events highlighted: the death of Iranian general Qasem Soleimani; the beginning of the COVID-19 pandemic; and the Black Lives Matter protests following the murder of George Floyd by Minneapolis police. The Storywrangler dataset records a sudden spike of tweets and retweets using the term “Soleimani” on January 3, 2020, when the United States assassinated the general; the strong rise of “coronavirus” and the virus emoji over the spring of 2020 as the disease spread; and a burst of use of the hashtag “#BlackLivesMatter” on and after May 25, 2020, the day George Floyd was murdered.

“There’s a hashtag that’s being invented while I’m talking right now,” says UVM’s Chris Danforth. “We didn’t know to look for that yesterday, but it will show up in the data and become part of the story.”

Here’s a link to and a citation for the paper,

Storywrangler: A massive exploratorium for sociolinguistic, cultural, socioeconomic, and and political timelines using Twitter by Thayer Alshaabi, Jane L. Adams, Michael V. Arnold, Joshua R. Minot, David R. Dewhurst, Andrew J. Reagan, Christopher M. Danforth and Peter Sheridan Dodds. Science Advances 16 Jul 2021: Vol. 7, no. 29, eabe6534DOI: 10.1126/sciadv.abe6534 DOI: 10.1126/sciadv.abe6534

This paper is open access.

A couple of comments

I’m glad to see they are looking at phrases in many different languages. Although I do experience some hesitation when I consider the two companies involved in this research with the University of Vermont.

Charles River Analytics and MassMutual Data Science would not have been my first guess for corporate involvement but on re-examining the subhead and noting this: “potentially predict political and financial turmoil”, they make perfect sense. Charles River Analytics provides “Solutions to serve the warfighter …”, i.e., soldiers/the military, and MassMutual is an insurance company with a dedicated ‘data science space’ (from the MassMutual Explore Careers Data Science webpage),

What are some key projects that the Data Science team works on?

Data science works with stakeholders throughout the enterprise to automate or support decision making when outcomes are unknown. We help determine the prospective clients that MassMutual should market to, the risk associated with life insurance applicants, and which bonds MassMutual should invest in. [emphases mine]

Of course. The military and financial services. Delightfully, this research is at least partially (mostly?) funded on the public dime, the US National Science Foundation.

Restoring words with a neuroprosthesis

There seems to have been an update to the script for the voiceover. You’ll find it at the 1 min. 30 secs. mark ( spoken: “with up to 93% accuracy at 18 words per minute`’ vs. written “with median 74% accuracy at 15 words per minute)".

A July 14, 2021 news item on ScienceDaily announces the latest work on a a neuroprosthetic from the University of California at San Francisco (UCSF),

Researchers at UC San Francisco have successfully developed a “speech neuroprosthesis” that has enabled a man with severe paralysis to communicate in sentences, translating signals from his brain to the vocal tract directly into words that appear as text on a screen.

The achievement, which was developed in collaboration with the first participant of a clinical research trial, builds on more than a decade of effort by UCSF neurosurgeon Edward Chang, MD, to develop a technology that allows people with paralysis to communicate even if they are unable to speak on their own. The study appears July 15 [2021] in the New England Journal of Medicine.

A July 14, 2021 UCSF news release (also on EurekAlert), which originated the news item, delves further into the topic,

“To our knowledge, this is the first successful demonstration of direct decoding of full words from the brain activity of someone who is paralyzed and cannot speak,” said Chang, the Joan and Sanford Weill Chair of Neurological Surgery at UCSF, Jeanne Robertson Distinguished Professor, and senior author on the study. “It shows strong promise to restore communication by tapping into the brain’s natural speech machinery.”

Each year, thousands of people lose the ability to speak due to stroke, accident, or disease. With further development, the approach described in this study could one day enable these people to fully communicate.

Translating Brain Signals into Speech

Previously, work in the field of communication neuroprosthetics has focused on restoring communication through spelling-based approaches to type out letters one-by-one in text. Chang’s study differs from these efforts in a critical way: his team is translating signals intended to control muscles of the vocal system for speaking words, rather than signals to move the arm or hand to enable typing. Chang said this approach taps into the natural and fluid aspects of speech and promises more rapid and organic communication.

“With speech, we normally communicate information at a very high rate, up to 150 or 200 words per minute,” he said, noting that spelling-based approaches using typing, writing, and controlling a cursor are considerably slower and more laborious. “Going straight to words, as we’re doing here, has great advantages because it’s closer to how we normally speak.”

Over the past decade, Chang’s progress toward this goal was facilitated by patients at the UCSF Epilepsy Center who were undergoing neurosurgery to pinpoint the origins of their seizures using electrode arrays placed on the surface of their brains. These patients, all of whom had normal speech, volunteered to have their brain recordings analyzed for speech-related activity. Early success with these patient volunteers paved the way for the current trial in people with paralysis.

Previously, Chang and colleagues in the UCSF Weill Institute for Neurosciences mapped the cortical activity patterns associated with vocal tract movements that produce each consonant and vowel. To translate those findings into speech recognition of full words, David Moses, PhD, a postdoctoral engineer in the Chang lab and lead author of the new study, developed new methods for real-time decoding of those patterns, as well as incorporating statistical language models to improve accuracy.

But their success in decoding speech in participants who were able to speak didn’t guarantee that the technology would work in a person whose vocal tract is paralyzed. “Our models needed to learn the mapping between complex brain activity patterns and intended speech,” said Moses. “That poses a major challenge when the participant can’t speak.”

In addition, the team didn’t know whether brain signals controlling the vocal tract would still be intact for people who haven’t been able to move their vocal muscles for many years. “The best way to find out whether this could work was to try it,” said Moses.

The First 50 Words

To investigate the potential of this technology in patients with paralysis, Chang partnered with colleague Karunesh Ganguly, MD, PhD, an associate professor of neurology, to launch a study known as “BRAVO” (Brain-Computer Interface Restoration of Arm and Voice). The first participant in the trial is a man in his late 30s who suffered a devastating brainstem stroke more than 15 years ago that severely damaged the connection between his brain and his vocal tract and limbs. Since his injury, he has had extremely limited head, neck, and limb movements, and communicates by using a pointer attached to a baseball cap to poke letters on a screen.

The participant, who asked to be referred to as BRAVO1, worked with the researchers to create a 50-word vocabulary that Chang’s team could recognize from brain activity using advanced computer algorithms. The vocabulary – which includes words such as “water,” “family,” and “good” – was sufficient to create hundreds of sentences expressing concepts applicable to BRAVO1’s daily life.

For the study, Chang surgically implanted a high-density electrode array over BRAVO1’s speech motor cortex. After the participant’s full recovery, his team recorded 22 hours of neural activity in this brain region over 48 sessions and several months. In each session, BRAVO1 attempted to say each of the 50 vocabulary words many times while the electrodes recorded brain signals from his speech cortex.

Translating Attempted Speech into Text

To translate the patterns of recorded neural activity into specific intended words, Moses’s two co-lead authors, Sean Metzger and Jessie Liu, both bioengineering graduate students in the Chang Lab, used custom neural network models, which are forms of artificial intelligence. When the participant attempted to speak, these networks distinguished subtle patterns in brain activity to detect speech attempts and identify which words he was trying to say.

To test their approach, the team first presented BRAVO1 with short sentences constructed from the 50 vocabulary words and asked him to try saying them several times. As he made his attempts, the words were decoded from his brain activity, one by one, on a screen.

Then the team switched to prompting him with questions such as “How are you today?” and “Would you like some water?” As before, BRAVO1’s attempted speech appeared on the screen. “I am very good,” and “No, I am not thirsty.”

Chang and Moses found that the system was able to decode words from brain activity at rate of up to 18 words per minute with up to 93 percent accuracy (75 percent median). Contributing to the success was a language model Moses applied that implemented an “auto-correct” function, similar to what is used by consumer texting and speech recognition software.

Moses characterized the early trial results as a proof of principle. “We were thrilled to see the accurate decoding of a variety of meaningful sentences,” he said. “We’ve shown that it is actually possible to facilitate communication in this way and that it has potential for use in conversational settings.”

Looking forward, Chang and Moses said they will expand the trial to include more participants affected by severe paralysis and communication deficits. The team is currently working to increase the number of words in the available vocabulary, as well as improve the rate of speech.

Both said that while the study focused on a single participant and a limited vocabulary, those limitations don’t diminish the accomplishment. “This is an important technological milestone for a person who cannot communicate naturally,” said Moses, “and it demonstrates the potential for this approach to give a voice to people with severe paralysis and speech loss.”

… all of UCSF. Funding sources [emphasis mine] included National Institutes of Health (U01 NS098971-01), philanthropy, and a sponsored research agreement with Facebook Reality Labs (FRL), [emphasis mine] which completed in early 2021.

UCSF researchers conducted all clinical trial design, execution, data analysis and reporting. Research participant data were collected solely by UCSF, are held confidentially, and are not shared with third parties. FRL provided high-level feedback and machine learning advice.

Here’s a link to and a citation for the paper,

Neuroprosthesis for Decoding Speech in a Paralyzed Person with Anarthria by David A. Moses, Ph.D., Sean L. Metzger, M.S., Jessie R. Liu, B.S., Gopala K. Anumanchipalli, Ph.D., Joseph G. Makin, Ph.D., Pengfei F. Sun, Ph.D., Josh Chartier, Ph.D., Maximilian E. Dougherty, B.A., Patricia M. Liu, M.A., Gary M. Abrams, M.D., Adelyn Tu-Chan, D.O., Karunesh Ganguly, M.D., Ph.D., and Edward F. Chang, M.D. N Engl J Med 2021; 385:217-227 DOI: 10.1056/NEJMoa2027540 Published July 15, 2021

This paper is mostly behind a paywall but you do have this option: “Create your account to get 2 free subscriber-only articles each month.”

Attosecond imaging technology with record high-harmonic generation

This July 21, 2021 news item on Nanowerk is all about laser pulses and tiny timescales.

Cornell researchers have developed nanostructures that enable record-breaking conversion of laser pulses into high-harmonic generation, paving the way for new scientific tools for high-resolution imaging and studying physical processes that occur at the scale of an attosecond – one quintillionth of a second [emphasis mine].

High-harmonic generation has long been used to merge photons from a pulsing laser into one, ultrashort photon with much higher energy, producing extreme ultraviolet light and X-rays used for a variety of scientific purposes. Traditionally, gases have been used as sources of harmonics, but a research team led by Gennady Shvets, professor of applied and engineering physics in the College of Engineering, has shown that engineered nanostructures have a bright future for this application.

llustration of an infrared laser hitting a gallium-phosphide metsurface, which efficiently produces even and odd high-harmonic generation. Credit: Daniil Shilkin/Provided

A July 21, 2021 Cornell University news release by Syl Kacapyr (also on EurekAlert), which originated the news item, provides more detail about the nanostructures,

The nanostructures created by the team make up an ultrathin resonant gallium-phosphide metasurface that overcomes many of the usual problems associated with high-harmonic generation in gases and other solids. The gallium-phosphide material permits harmonics of all orders without reabsorbing them, and the specialized structure can interact with the laser pulse’s entire light spectrum.

“Achieving this required engineering of the metasurface’s structure using full-wave simulations,” Shcherbakov [Maxim Shcherbakov] said. “We carefully selected the parameters of the gallium-phosphide particles to fulfill this condition, and then it took a custom nanofabrication flow to bring it to light.”

The result is nanostructures capable of generating both even and odd harmonics – a limitation of most other harmonic materials – covering a wide range of photon energies between 1.3 and 3 electron volts. The record-breaking conversion efficiency enables scientists to observe molecular and electronic dynamics within a material with just one laser shot, helping to preserve samples that may otherwise be degraded by multiple high-powered shots.

The study is the first to observe high-harmonic generated radiation from a single laser pulse, which allowed the metasurface to withstand high powers – five to 10 times higher than previously shown in other metasurfaces.

“It opens up new opportunities to study matter at ultrahigh fields, a regime not readily accessible before,” Shcherbakov said. “With our method, we envision that people can study materials beyond metasurfaces, including but not limited to crystals, 2D materials, single atoms, artificial atomic lattices and other quantum systems.”

Now that the research team has demonstrated the advantages of using nanostructures for high-harmonic generation, it hopes to improve high-harmonic devices and facilities by stacking the nanostructures together to replace a solid-state source, such as crystals.

Here’s a link to and a citation for the paper,

Generation of even and odd high harmonics in resonant metasurfaces using single and multiple ultra-intense laser pulses by Maxim R. Shcherbakov, Haizhong Zhang, Michael Tripepi, Giovanni Sartorello, Noah Talisa, Abdallah AlShafey, Zhiyuan Fan, Justin Twardowski, Leonid A. Krivitsky, Arseniy I. Kuznetsov, Enam Chowdhury & Gennady Shvets. Nature Communications volume 12, Article number: 4185 DOI: https://doi.org/10.1038/s41467-021-24450-9 Published: 07 July 2021

This paper is open access.