Category Archives: nanotechnology

Big Conversation Season (podcast) Finale on ‘AI and the Future of Humanity’ available on Friday, September 22, 2023

Three guys (all Brits) talking about this question “Robot Race: Could AI Ever Replace Humanity (part 1)” is part of a larger video podcast series known as the ‘Big Conversation’ and part 2 of this ‘Big Conversation’ is going to be available on Friday, September 22, 2023.

I haven’t listened to the entire first part of the conversation yet. So far, it seems quite engaging and provocative (especially the first five minutes). They’re not arguing but since I don’t want to spoil the surprise do watch the first bit (the first 5 mins. of a 53 mins. 38 secs. podcast).

You can’t ask more of a conversation than to be provoked into thinking. That said …

Pause

I’m a little hesitant to include much about faith and religion here but this two-part series touches on topics that have been discussed here many times. So, the ‘Big Conversation’ is produced through a Christian group. Here’s more about the podcast series and its producers from the Big Conversation webpage,

he Big Conversation is a video series from Premier Unbelievable? featuring world-class thinkers across the religious and non-religious communities. Exploring science, faith, philosophy and what it means to be human [emphasis mine]. The Big Conversation is produced by Premier in partnership with John Templeton Foundation.

Premier consists of Premier Christian Media Trust registered as a charity (no. 287610) and as a company limited by guarantee (no. 01743091) with two fully-owned trading subsidiaries: Premier Christian Communications Ltd (no. 02816074) and Christian Communication Partnership Ltd (no. 03422292). All three companies are registered in England & Wales with a registered office address of Unit 6 April Court, Syborn Way, Crowborough, TN6 3DZ.

I haven’t seen any signs of proselytizing and like almost every other website in existence, they are very interested in getting you to be on their newsletter email list, to donate, etc.

Back to the conversation.

The Robot Race, Parts I & 2: Could AI ever replace humanity?

Here’s a description of the Big Conversation series and two specific podcasts, from the September 20, 2023 press release (received via email),

Big Conversation Season Finale on AI and the Future of Humanity Available this Friday

Featuring AI expert Dr. Nigel Crook, episode explores ‘The Robot Race: Could AI ever replace humans?’

WHAT: 
Currently in its 5th season, The Big Conversation, hosted by comedian and apologist Andy Kind, features some of the biggest minds in the Christian, atheist and religious world to debate some of the biggest questions of science, faith, philosophy and what it means to be human. 

Episodes 5 & 6 of this season feature a two-part discussion about robotics, the future of artificial intelligence and the subsequent concerns of morality surrounding these advancements. This thought-provoking exchange on ethics in AI is sure to leave listeners informed and intrigued to learn more regarding the future of humanity relating to cyber-dependency, automation regulation, AI agency and abuses of power in technology.

WHO:  
To help us understand the complexities of AI, including the power and ethics around the subject – and appropriate concern for the future of humanity – The Big Conversation host Andy Kind spoke with AI Expert Dr. Nigel Crook and Neuroscientist Anil Seth.   

Dr. Nigel Crook, a distinguished figure recognized for his innovative contributions to the realm of AI and robotics, focuses extensively on research related to machine learning inspired by biological processes and the domain of social robotics. He serves as the Professor of Artificial Intelligence and Robotics at Oxford Brooks University and is the Founding Director at the Institute for Ethical AI, specifically revolving around the concept of self-governing ethical robots.

WHEN:  
Episode 5, the first in the two-part AI series, released September 8 [2023], and episode 6 releases Friday, Sept. 22 [2023].  

WHERE:  
These episodes are available at https://www.thebigconversation.show/ as well as all major podcast platforms.  

I have a little more about Anil Seth from the Big Conversation Episode 5 webpage,

… Anil Seth, Professor of Cognitive & Computational Neuroscience at the University of Sussex, winner of The Michael Faraday Prize and Lecture 2023, and author of “Being You: A New Science of Consciousness”

There’s also a bit about Seth in my June 30, 2017 posting “A question of consciousness: Facebotlish (a new language); a July 5, 2017 rap guide performance in Vancouver, Canada; Tom Stoppard’s play; and a little more,” scroll down to the subhead titled ‘Vancouver premiere of Baba Brinkman’s Rap Guide to Consciousness’.

Comments on today’s (September 20, 2023) media briefing for the US National Science Foundation’s (NSF) inaugural Global Centers Competition awards

I almost missed the briefing but the folks at the US National Science Foundation (NSF) kindly allowed me to join the meeting despite being 10 minutes late. Before launching into my comments, here’s what we were discussing,

From a September 20, 2023 NSF media briefing (received via email),

U. S. National Science Foundation Media Briefing on the Inaugural Global Centers Awards  

Please join the U.S. National Science Foundation this Wednesday September 20th from 12:30 – 1:30 p.m. EST for a discussion and Q&A on the inaugural Global Centers Competition awards. Earlier this week, NSF along with partner funding agencies from Australia, Canada, and the United Kingdom — announced awards totaling $76.4 million for the inaugural Global Centers Competition. These international, interdisciplinary collaborative research centers will apply best practices of broadening participation and community engagement to develop use-inspired research on climate change and clean energy. The centers will also create and promote opportunities for students and early-career researchers to gain education and training in world-class research while enhancing diversity, equity, inclusion, and accessibility.

NSF will have a panel of experts on hand to discuss and answer questions about these new Global Centers and how they will sync talent across the globe to generate the discoveries and solutions needed to empower resilient communities everywhere.

What: Panel discussion and Q&A on NSF’s Global Centers

When: 12:30 – 1:30 p.m. EST, Wednesday, September 20th, 2023

Where: This briefing [is over.]

Who: Scheduled panelists include…

Anne Emig is the Section Chief for the Programs and Analysis Section in the National Science Foundation Office of International Science and Engineering

Dr. Tanya Berger-Wolf is the Principal Investigator for the Global Centers Track 1 project on AI and Biodiversity Change as well as the Director of the Translational Data Analytics Institute and a Professor of Computer Science Engineering, Electrical and Computer Engineering, as well as Evolution, Ecology, and Organismal Biology at the Ohio State University

Dr. Meng Tao is the Principal Investigator for the Global Centers Track 1 project Global Hydrogen Production Technologies Center as well as a Professor, School of Electrical, Computer and Energy Engineering at Arizona State University

Dr. Ashish Sharma is the Principal Investigator for the Global Centers Track 1 project Clean Energy and Equitable Transportation Solutions as well as the Climate and Urban Sustainability Lead at the Discovery Partners Institute, University of Illinois System

Note: This briefing is only open to members of the media

I’m glad to have learned about this effort and applaud the NSF for its outreach efforts. By comparison, Canadian agencies (I’m looking at you, Natural Sciences and Engineering Council of Canada [NSERC] and Social Science and Humanities Research Council of Canada [SSHRC]) have a lot to learn.

There’s a little more about the Global Centers Competition awards in a September 18, 2023 NSF news release,

Today [September 18, 2023], the U.S. National Science Foundation — along with partner funding agencies from Australia, Canada, and the United Kingdom — announced awards totaling $76.4 million for the inaugural Global Centers Competition. These international, interdisciplinary collaborative research centers will apply best practices of broadening participation and community engagement to develop use-inspired research on climate change and clean energy. The centers will also create and promote opportunities for students and early-career researchers to gain education and training in world-class research while enhancing diversity, equity, inclusion, and accessibility.

“NSF builds capacity and advances its priorities through these centers of research excellence by uniting diverse teams from around the world,” said NSF Director Sethuraman Panchanathan. “Global Centers will sync talent across the globe to generate the discoveries and solutions needed to empower resilient communities everywhere.”

Global Centers are sponsored in part by a multilateral funding activity led by NSF and four partner funding organizations: Australia’s Commonwealth Scientific and Industrial Research Organization (CSIRO), Canada’s Natural Sciences and Engineering Research Council (NSERC) and Social Science and Humanities Research Council (SSHRC), and the United Kingdom’s UK Research and Innovation (UKRI).

Both collectively and independently, the centers will support convergent interdisciplinary research collaborations focused on assessing and mitigating the impacts of climate change on society, people, and communities. Outcomes from Global Centers’ activities will inform and catalyze the development of innovative solutions and technologies to address climate change. Examples include: enhancing awareness of critical information; advancing and advocating for decarbonization efforts; creating climate change adaptation plans tailored to specific localities and groups; using artificial intelligence to study responses of nature to climate change; transboundary water issues; and scaling the production of next-generation technologies aimed at achieving net zero. Several projects include partnerships with tribal groups or historically Black colleges and universities that will broaden participation.

“The National Science Foundation Global Centres initiative provides students and researchers a platform to advance innovative and interdisciplinary research and gain education and training opportunities in world-class research while also enhancing diversity, equity, inclusion and accessibility,” said NSERC President Alejandro Adem. “We at NSERC look forward to seeing the outcomes of the work being done by some of Canada and the world’s best and brightest minds to tackle one of the biggest issues of our time.”

The awards are divided into two tracks. Track 1 are Implementation grants with co-funding from international partners. Track 2 are Design grants meant to provide seed funding to develop the teams and the science for future competitions. Many additional countries are involved in Track 2 and will increase global engagement.

There are seven Track 1 Global Centers that involve research partnerships with Australia, Canada, and the U.K. Each Track 1 Global Center will be implemented by internationally dispersed teams consisting of U.S. and foreign researchers. U.S. researchers will be supported by NSF up to $5 million over four to five years, while foreign researchers will be supported by their respective country’s funding agency (CSIRO, NSERC, SSHRC and UKRI) with a comparable amount of funds.

There are 14 Track 2 Global Centers that are at the community-driven design stage. These centers’ teams involve U.S. researchers in partnerships with foreign researchers from any country. NSF will provide the U.S. researchers up to $250,000 of seed funding over a two-year period. These multidisciplinary, international teams will coordinate the research and education efforts needed to become competitive for Track-1 funding in the future.

“Our combined investment in Global Centers enables exciting researcher and innovation-led international and interdisciplinary collaboration to drive the energy transition,” said UKRI CEO, Dame Ottoline Leyser. “I look forward to seeing the creative solutions developed through these global collaborations.”

Kirsten Rose, Acting Chief Executive of CSIRO, said as Australia’s national science agency, CSIRO is proud to be part of a strong national contribution to solving this critical global challenge. “Partnering with the NSF’s Global Centers means Australia remains at the global forefront of work to build a clean hydrogen industry, build integrated and equitable energy systems, and partnering with regions and industries for a low emissions future.”

Track 1 (Implementation)

  • Global Hydrogen Production Technologies (HyPT) Center
    Grant number: 2330525
    Arizona State University and U.S. partner institutions: University of Michigan, Stanford University and Navajo Technical University.
    Quadrilateral research partnership with Australia, Canada, and the U.K.
    Critical and Emerging Tech: green hydrogen (renewable energy generation).
     
  • Electric Power Innovation for a Carbon-free Society (EPICS)
    Grant number: 2330450
    The Johns Hopkins University and U.S. partner institutions: Georgia Institute of Technology, University of California, Davis, and Resources for the Future.
    Trilateral research partnership with Australia and the U.K.
    Critical and Emerging Tech: renewable energy storage.
     
  • Global Nitrogen Innovation Center for Clean Energy and Environment (NICCEE)
    Grant number: 2330502
    University of Maryland Center for Environmental Sciences and U.S. partner institutions: New York University and University of Massachusetts Amherst.
    Trilateral research partnership with Canada and the U.K.
    Critical & Emerging Tech: green ammonia (bioeconomy + agriculture).
     
  • Understanding Climate Change Impacts on Transboundary Waters
    Grant number: 2330317
    University of Michigan and U.S. partner institutions: Cornell University, College of the Menominee Nation, Red Lake Nation and University of Wisconsin–Madison.
    Bilateral research partnership with Canada.
    Critical and Emerging Tech: N/A.
     
  • AI and Biodiversity Change (ABC)
    Grant number: 2330423 
    The Ohio State University and U.S. partner institutions: University of Pittsburgh and Massachusetts Institute of Technology.
    Bilateral Research partnership with Canada.
    Critical and Emerging Tech: AI.
     
  • U.S.-Canada Center on Climate-Resilient Western Interconnected Grid
    Grant number: 2330582                
    The University of Utah and U.S. partner institutions: University of California San Diego, The University of New Mexico, and The Nevada System of Higher Education.     
    Bilateral Research partnership with Canada.
    Critical and Emerging Tech: AI.
     
  • Clean Energy and Equitable Transportation Solutions
    Grant number: 2330565
    University of Illinois at Urbana-Champaign and U.S. partner institutions: University Corporation for Atmospheric Research and Arizona State University.
    Bilateral Research partnership with the U.K.
    Critical and Emerging Tech: N/A
     

Track 2 (Design)

  • Developing Solutions to Decarbonize Emissions and Fuels
    Grant number: 2330509              
    University of Maryland, College Park.
    International collaboration with Japan, Israel, and Ghana.             
     
  • Enhanced Wind Turbine Blade Durability
    Grant number: 2329911              
    Cornell University.
    International collaboration with Canada, the UK, Norway, Denmark, and Spain.
     
  • Building the Global Center for Forecasting Freshwater Futures
    Grant number: 2330211
    Virginia Tech.
    International collaboration with Australia.
     
  • Climate Risk and Resilience: Southeast Asia as a Living Lab (SEALL)
    Grant number: 2330308
    University of Illinois at Urbana-Champaign.
    International collaboration with Vietnam, Thailand, Singapore, and India.
     
  • Climate-Smart Food-Energy-Water Nexus in Small Farms
    Grant number: 2330505              
    The University of Tennessee Institute of Agriculture.        
    International collaboration with Argentina, Brazil, Guatemala, Panama, Cambodia, and Uganda.
     
  • Center for Household Energy and Thermal Resilience (HEaTR)
    Grant number: 2330533              
    Cornell University.
    International collaboration with India, the U.K, Ghana, and Singapore.
     
  • Enabling interdisciplinary wildfire research for community resilience
    Grant number: 2330343              
    Oregon State University.
    International collaborations with Australia and the U.K.
     
  • SuReMin: Sustainable, resilient, responsible global minerals supply chain
    Grant number: 2330041              
    Northwestern University.
    International collaboration with Chile.
     
  • Nature-based Urban Hydrology Center
    Grant number: 2330413              
    Villanova University.
    International collaboration with Canada, the U.K, Switzerland, Ireland, Australia, Chile, and Turkey.
     
  • A multi-disciplinary framework to combat climate-induced desert locust upsurges, outbreaks, and plagues in East Africa
    Grand number: 2330452
    Georgia State University.
    International collaboration with Ethiopia.
     
  • US-Africa Research Center for Clean Energy
    Grant number: 2330437
    Georgia Institute of Technology.
    International collaborations with Rwanda.
     
  • Equitable and User-Centric Energy Market for Resilient Grid-interactive Communities
    Grant number: 2330504
    Santa Clara University.
    International collaboration with Canada.
     
  • Energy Sovereignty for Indigenous Peoples (ESIP)
    Grant number: 2330387
    University of North Dakota.
    International collaboration with Canada.
     
  • Blue Climate Solutions
    Grant number: 2330518              
    University of Rhode Island.
    International collaboration with Indonesia.

For Canadian researchers who are interested, there’s a National Science Foundation Global Centres webpage on the NSERC website, which answers a lot of questions about the programme from a Canadian perspective. The application deadline for both tracks was May 10, 2023 and there’s no information (as of September 20, 2023) about future competitions. Nice to see the social science and humanities included in the form of a funding agency. (I think this might be the one compliment I deliver to a Canadian funding initiative this year. 🙂

For American researchers, there’s the NSF’s Global Centers webpage; for UK researchers, there’s the United Kingdom’s Research and Innovation’s Global Centres in clean energy and climate change webpage; and for Australian researchers, there’s the CSIRO’s National Science Foundation Global Centers webpage. Application deadlines have passed for all of these competitions and there’s no information (as of September 20, 2023) about future competitions.

A few comments

News about local and international affairs (see Seth Borenstein’s September 20, 2023 Associated Press article “UN chief warns of ‘gates of hell’ in climate summit, but carbon polluting nations stay silent”) and one’s own personal experience with climate issues can be discouraging at times so it’s heartening to see these efforts. Kudos to the organizers of the Global Centers programme and I wish all the researchers success.

Given how new these centers are, it’s understandable that the panelists would be a little fuzzy about specific although they’ve clearly considered and are attempting to address issues such as sharing data, trust, and outreach to various stakeholders and communities.

I wish I’d asked about cybersecurity when they were talking about data. Ah well, there was my question about outreach to people over the age of 50 or 55 as so much of their planning was focused on youth. The panelists who responded (Dr. Tanya Berger-Wolf, Dr. Meng Tao, and Dr. Ashish Sharma) did not seem to have done much thinking about seniors/elders/older people.

I believe bird watching (as mentioned by one of the panelists) does tend to attract older people but citizen science or other hobbies/programmes mentioned may or may not be a good source for seniors outreach. Almost all science outreach tilts to youth including citizen science.

With the planet is not doing so well and with the aging populations in Canada, the US, many European countries, China, Japan, and I’m sure many others perhaps some new thinking about ‘inclusivity’ might be in order. One suggestion, start thinking about age groups. In the same way that 20 is not 30, is not 40, so 55 is not 65, is not 75. One more thing, perhaps take into account life experience. Something that gets forgotten is that a lot of the programmes that people take for granted and a lot of the technology people use today was developed in the 1960s (e.g. Internet). That old person? Maybe it’s someone who founded the UN’s Environment Program (I was teaching a nanotechnology course in a seniors programme and asked students about themselves; I was intimidated by her credentials).

In the end, this Global Center initiative is heartening news.

Synthetic human embryos—what now? (2 of 2)

The term they’re using in the Weizmann Institute of Science’s (Israel) announcement is “a generally accurate human embryo model.” This is in contrast to previous announcements including the one from the University of Cambridge team highlighted in Part 1.

From a September 6, 2023 news item on phys.org, Note: A link has been removed,

A research team headed by Prof. Jacob Hanna at the Weizmann Institute of Science has created complete models of human embryos from stem cells cultured in the lab—and managed to grow them outside the womb up to day 14. As reported today [September 6, 2023] in Nature, these synthetic embryo models had all the structures and compartments characteristic of this stage, including the placenta, yolk sac, chorionic sac and other external tissues that ensure the models’ dynamic and adequate growth.

Cellular aggregates derived from human stem cells in previous studies could not be considered genuinely accurate human embryo models, because they lacked nearly all the defining hallmarks of a post-implantation embryo. In particular, they failed to contain several cell types that are essential to the embryo’s development, such as those that form the placenta and the chorionic sac. In addition, they did not have the structural organization characteristic of the embryo and revealed no dynamic ability to progress to the next developmental stage.

Given their authentic complexity, the human embryo models obtained by Hanna’s group may provide an unprecedented opportunity to shed new light on the embryo’s mysterious beginnings. Little is known about the early embryo because it is so difficult to study, for both ethical and technical reasons, yet its initial stages are crucial to its future development. During these stages, the clump of cells that implants itself in the womb on the seventh day of its existence becomes, within three to four weeks, a well-structured embryo that already contains all the body organs.

“The drama is in the first month, the remaining eight months of pregnancy are mainly lots of growth,” Hanna says. “But that first month is still largely a black box. Our stem cell–derived human embryo model offers an ethical and accessible way of peering into this box. It closely mimics the development of a real human embryo, particularly the emergence of its exquisitely fine architecture.”

A stem cell–derived human embryo model at a developmental stage equivalent to that of a day 14 embryo. The model has all the compartments that define this stage: the yolk sac (yellow) and the part that will become the embryo itself, topped by the amnion (blue) – all enveloped by cells that will become the placenta (pink) Courtesy: Weizmann Institute of Science

A September 6, 2023 Weizmann Institute of Science press release, which originated the news item, offers a wealth of detail, Note: Links have been removed,

Letting the embryo model say “Go!”

Hanna’s team built on their previous experience in creating synthetic stem cell–based models of mouse embryos. As in that research, the scientists made no use of fertilized eggs or a womb. Rather, they started out with human cells known as pluripotent stem cells, which have the potential to differentiate into many, though not all, cell types. Some were derived from adult skin cells that had been reverted to “stemness.” Others were the progeny of human stem cell lines that had been cultured for years in the lab.

The researchers then used Hanna’s recently developed method to reprogram pluripotent stem cells so as to turn the clock further back: to revert these cells to an even earlier state – known as the naïve state – in which they are capable of becoming anything, that is, specializing into any type of cell. This stage corresponds to day 7 of the natural human embryo, around the time it implants itself in the womb. Hanna’s team had in fact been the first to start describing methods to generate human naïve stem cells, back in 2013; they continued to improve these methods, which stand at the heart of the current project, over the years.

The scientists divided the cells into three groups. The cells intended to develop into the embryo were left as is. The cells in each of the other groups were treated only with chemicals, without any need for genetic modification, so as to turn on certain genes, which was intended to cause these cells to differentiate toward one of three tissue types needed to sustain the embryo: placenta, yolk sac or the extraembryonic mesoderm membrane that ultimately creates the chorionic sac.

Soon after being mixed together under optimized, specifically developed conditions, the cells formed clumps, about 1 percent of which self-organized into complete embryo-like structures. “An embryo is self-driven by definition; we don’t need to tell it what to do – we must only unleash its internally encoded potential,” Hanna says. “It’s critical to mix in the right kinds of cells at the beginning, which can only be derived from naïve stem cells that have no developmental restrictions. Once you do that, the embryo-like model itself says, ‘Go!’”

The stem cell–based embryo-like structures (termed SEMs) developed normally outside the womb for 8 days, reaching a developmental stage equivalent to day 14 in human embryonic development. That’s the point at which natural embryos acquire the internal structures that enable them to proceed to the next stage: developing the progenitors of body organs.

Complete human embryo models match classic diagrams in terms of structure and cell identity

When the researchers compared the inner organization of their stem cell–derived embryo models with illustrations and microscopic anatomy sections in classical embryology atlases from the 1960s, they found an uncanny structural resemblance between the models and the natural human embryos at the corresponding stage. Every compartment and supporting structure was not only there, but in the right place, size and shape. Even the cells that make the hormone used in pregnancy testing were there and active: When the scientists applied secretions from these cells to a commercial pregnancy test, it came out positive.

In fact, the study has already produced a finding that may open a new direction of research into early pregnancy failure. The researchers discovered that if the embryo is not enveloped by placenta-forming cells in the right manner at day 3 of the protocol (corresponding to day 10 in natural embryonic development), its internal structures, such as the yolk sac, fail to properly develop.

“An embryo is not static. It must have the right cells in the right organization, and it must be able to progress – it’s about being and becoming,” Hanna says. “Our complete embryo models will help researchers address the most basic questions about what determines its proper growth.”

This ethical approach to unlocking the mysteries of the very first stages of embryonic development could open numerous research paths. It might help reveal the causes of many birth defects and types of infertility. It could also lead to new technologies for growing transplant tissues and organs. And it could offer a way around experiments that cannot be performed on live embryos – for example, determining the effects of exposure to drugs or other substances on fetal development.

For people who are visually inclined, there are two videos embedded in the September 6, 2023 Weizmann Institute of Science press release.

Here’s a link to and a citation for the paper,

Complete human day 14 post-implantation embryo models from naïve ES cells by Bernardo Oldak, Emilie Wildschutz, Vladyslav Bondarenko, Mehmet-Yunus Comar, Cheng Zhao, Alejandro Aguilera-Castrejon, Shadi Tarazi, Sergey Viukov, Thi Xuan Ai Pham, Shahd Ashouokhi, Dmitry Lokshtanov, Francesco Roncato, Eitan Ariel, Max Rose, Nir Livnat, Tom Shani, Carine Joubran, Roni Cohen, Yoseph Addadi, Muriel Chemla, Merav Kedmi, Hadas Keren-Shaul, Vincent Pasque, Sophie Petropoulos, Fredrik Lanner, Noa Novershtern & Jacob H. Hanna. Nature (2023) DOI: https://doi.org/10.1038/s41586-023-06604-5 Published: 06 September 2023

This paper is behind a paywall.

As for the question I asked in the head “what now?” I have absolutely no idea.

Synthetic human embryos—what now? (1 of 2)

Usually, there’s a rough chronological order to how I introduce the research, but this time I’m looking at the term used to describe it, following up with the various news releases and commentaries about the research, and finishing with a Canadian perspective.

After writing this post (but before it was published), the Weizmann Institute of Science (Israel) made their September 6, 2023 announcement and things changed a bit. That’s in Part two.

Say what you really mean (a terminology issue)

First, it might be useful to investigate the term, ‘synthetic human embryos’ as Julian Hitchcock does in his June 29, 2023 article on Bristows website (h/t Mondaq’s July 5, 2023 news item), Note: Links have been removed,

Synthetic Embryos” are neither Synthetic nor Embryos. So why are editors giving that name to stem cell-based models of human development?

One of the less convincing aspects of the last fortnight’s flurry of announcements about advances in simulating early human development (see here) concerned their name. Headlines galore (in newspapers and scientific journals) referred to “synthetic embryos“.

But embryo models, however impressive, are not embryos. To claim that the fundamental stages of embryo development that we learnt at school – fertilisation, cleavage and compaction – could now be bypassed to achieve the same result would be wrong. Nor are these objects “synthesised”: indeed, their interest to us lies in the ways in which they organise themselves. The researchers merely place the stem cells in a matrix in appropriate conditions, then stand back and watch them do it. Scientists were therefore unhappy about this use of the term in news media, and relieved when the International Society for Stem Cell Research (ISSCR) stepped in with a press release:

“Unlike some recent media reports describing this research, the ISSCR advises against using the term “synthetic embryo” to describe embryo models, because it is inaccurate and can create confusion. Integrated embryo models are neither synthetic nor embryos. While these models can replicate aspects of the early-stage development of human embryos, they cannot and will not develop to the equivalent of postnatal stage humans. Further, the ISSCR Guidelines prohibit the transfer of any embryo model to the uterus of a human or an animal.”

Although this was the ISSCR’s first attempt to put that position to the public, it had already made that recommendation to the research community two years previously. Its 2021 Guidelines for Stem Cell Research and Clinical Translation had recommended researchers to “promote accurate, current, balanced, and responsive public representations of stem cell research”. In particular:

“While organoids, chimeras, embryo models, and other stem cell-based models are useful research tools offering possibilities for further scientific progress, limitations on the current state of scientific knowledge and regulatory constraints must be clearly explained in any communications with the public or media. Suggestions that any of the current in vitro models can recapitulate an intact embryo, human sentience or integrated brain function are unfounded overstatements that should be avoided and contradicted with more precise characterizations of current understanding.”

Here’s a little bit about Hitchcock from his Bristows profile page,

  • Diploma Medical School, University of Birmingham (1975-78)
  • LLB, University of Wolverhampton
  • Diploma in Intellectual Property Law & Practice, University of Bristol
  • Qualified 1998

Following an education in medicine at the University of Birmingham and a career as a BBC science producer, Julian has focused on the law and regulation of life science technologies since 1997, practising in England and Australia. He joined Bristows with Alex Denoon in 2018.

Hitchcock’s June 29, 2023 article comments on why this term is being used,

I have a lot of sympathy with the position of the science writers and editors incurring the scientists’ ire. First, why should journalists have known of the ISSCR’s recommendations on the use of the term “synthetic embryo”? A journalist who found Recommendation 4.1 of the ISSCR Guidelines would probably not have found them specific enough to address the point, and the academic introduction containing the missing detail is hard to find. …

My second reason for being sympathetic to the use of the terrible term is that no suitable alternative has been provided, other than in the Stem Cell Reports paper, which recommends the umbrella terms “embryo models” or “stem cell based embryo models”. …

When asked why she had used the term “synthetic embryo”, the journalist I contacted remarked that, “We’re still working out the right language and it’s something we’re discussing and will no doubt evolve along with the science”.

It is absolutely in the public’s interest (and in the interest of science), that scientific research is explained in terms that the public understands. There is, therefore, a need, I think, for the scientific community to supply a name to the media or endure the penalties of misinformation …

In such an intensely competitive field of research, disagreement among researchers, even as to names, is inevitable. In consequence, however, journalists and their audiences are confronted by a slew of terms which may or may not be synonymous or overlapping, with no agreed term [emphasis mine] for the overall class of stem cell based embryo models. We cannot blame them if they make up snappy titles of their own [emphasis mine]. …

The announcement

The earliest date for the announcement at the International Society for Stem Cell Researh meeting that I can find is Hannah Devlin’s June 14, 2023 article in The Guardian newspaper, Note: A link has been removed,

Scientists have created synthetic human embryos using stem cells, in a groundbreaking advance that sidesteps the need for eggs or sperm.

Scientists say these model embryos, which resemble those in the earliest stages of human development, could provide a crucial window on the impact of genetic disorders and the biological causes of recurrent miscarriage.

However, the work also raises serious ethical and legal issues as the lab-grown entities fall outside current legislation in the UK and most other countries.

The structures do not have a beating heart or the beginnings of a brain, but include cells that would typically go on to form the placenta, yolk sac and the embryo itself.

Prof Magdalena Żernicka-Goetz, of the University of Cambridge and the California Institute of Technology, described the work in a plenary address on Wednesday [June 14, 2023] at the International Society for Stem Cell Research’s annual meeting in Boston.

The (UK) Science Media Centre made expert comments available in a June 14, 2023 posting “expert reaction to Guardian reporting news of creation of synthetic embryos using stem cells.”

Two days later, this June 16, 2023 essay by Kathryn MacKay, Senior Lecturer in Bioethics, University of Sydney (Australia), appeared on The Conversation (h/t June 16, 2023 news item on phys.org), Note: Links have been removed,

Researchers have created synthetic human embryos using stem cells, according to media reports. Remarkably, these embryos have reportedly been created from embryonic stem cells, meaning they do not require sperm and ova.

This development, widely described as a breakthrough that could help scientists learn more about human development and genetic disorders, was revealed this week in Boston at the annual meeting of the International Society for Stem Cell Research.

The research, announced by Professor Magdalena Żernicka-Goetz of the University of Cambridge and the California Institute of Technology, has not yet been published in a peer-reviewed journal. But Żernicka-Goetz told the meeting these human-like embryos had been made by reprogramming human embryonic stem cells.

So what does all this mean for science, and what ethical issues does it present?

MacKay goes on to answer her own questions, from the June 16, 2023 essay, Note: A link has been removed,

One of these quandaries arises around whether their creation really gets us away from the use of human embryos.

Robin Lovell-Badge, the head of stem cell biology and developmental genetics at the Francis Crick Institute in London UK, reportedly said that if these human-like embryos can really model human development in the early stages of pregnancy, then we will not have to use human embryos for research.

At the moment, it is unclear if this is the case for two reasons.

First, the embryos were created from human embryonic stem cells, so it seems they do still need human embryos for their creation. Perhaps more light will be shed on this when Żernicka-Goetz’s research is published.

Second, there are questions about the extent to which these human-like embryos really can model human development.

Professor Magdalena Żernicka-Goetz’s research is published

Almost two weeks later the research from the Cambridge team (there are other teams and countries also racing; see Part two for the news from Sept. 6, 2023) was published, from a June 27, 2023 news item on ScienceDaily,

Cambridge scientists have created a stem cell-derived model of the human embryo in the lab by reprogramming human stem cells. The breakthrough could help research into genetic disorders and in understanding why and how pregnancies fail.

Published today [Tuesday, June 27, 2023] in the journal Nature, this embryo model is an organised three-dimensional structure derived from pluripotent stem cells that replicate some developmental processes that occur in early human embryos.

Use of such models allows experimental modelling of embryonic development during the second week of pregnancy. They can help researchers gain basic knowledge of the developmental origins of organs and specialised cells such as sperm and eggs, and facilitate understanding of early pregnancy loss.

A June 27, 2023 University of Cambridge press release (also on EurekAlert), which originated the news item, provides more detail about the work,

“Our human embryo-like model, created entirely from human stem cells, gives us access to the developing structure at a stage that is normally hidden from us due to the implantation of the tiny embryo into the mother’s womb,” said Professor Magdalena Zernicka-Goetz in the University of Cambridge’s Department of Physiology, Development and Neuroscience, who led the work.

She added: “This exciting development allows us to manipulate genes to understand their developmental roles in a model system. This will let us test the function of specific factors, which is difficult to do in the natural embryo.”

In natural human development, the second week of development is an important time when the embryo implants into the uterus. This is the time when many pregnancies are lost.

The new advance enables scientists to peer into the mysterious ‘black box’ period of human development – usually following implantation of the embryo in the uterus – to observe processes never directly observed before.

Understanding these early developmental processes holds the potential to reveal some of the causes of human birth defects and diseases, and to develop tests for these in pregnant women.

Until now, the processes could only be observed in animal models, using cells from zebrafish and mice, for example.

Legal restrictions in the UK currently prevent the culture of natural human embryos in the lab beyond day 14 of development: this time limit was set to correspond to the stage where the embryo can no longer form a twin. [emphasis mine]

Until now, scientists have only been able to study this period of human development using donated human embryos. This advance could reduce the need for donated human embryos in research.

Zernicka-Goetz says the while these models can mimic aspects of the development of human embryos, they cannot and will not develop to the equivalent of postnatal stage humans.

Over the past decade, Zernicka-Goetz’s group in Cambridge has been studying the earliest stages of pregnancy, in order to understand why some pregnancies fail and some succeed.

In 2021 and then in 2022 her team announced in Developmental Cell, Nature and Cell Stem Cell journals that they had finally created model embryos from mouse stem cells that can develop to form a brain-like structure, a beating heart, and the foundations of all other organs of the body.

The new models derived from human stem cells do not have a brain or beating heart, but they include cells that would typically go on to form the embryo, placenta and yolk sac, and develop to form the precursors of germ cells (that will form sperm and eggs).

Many pregnancies fail at the point when these three types of cells orchestrate implantation into the uterus begin to send mechanical and chemical signals to each other, which tell the embryo how to develop properly.

There are clear regulations governing stem cell-based models of human embryos and all researchers doing embryo modelling work must first be approved by ethics committees. Journals require proof of this ethics review before they accept scientific papers for publication. Zernicka-Goetz’s laboratory holds these approvals.

“It is against the law and FDA regulations to transfer any embryo-like models into a woman for reproductive aims. These are highly manipulated human cells and their attempted reproductive use would be extremely dangerous,” said Dr Insoo Hyun, Director of the Center for Life Sciences and Public Learning at Boston’s Museum of Science and a member of Harvard Medical School’s Center for Bioethics.

Zernicka-Goetz also holds position at the California Institute of Technology and is NOMIS Distinguished Scientist and Scholar Awardee.

The research was funded by the Wellcome Trust and Open Philanthropy.

(There’s more about legal concerns further down in this post.)

Here’s a link to and a citation for the paper,

Pluripotent stem cell-derived model of the post-implantation human embryo by Bailey A. T. Weatherbee, Carlos W. Gantner, Lisa K. Iwamoto-Stohl, Riza M. Daza, Nobuhiko Hamazaki, Jay Shendure & Magdalena Zernicka-Goetz. Nature (2023) DOI: https://doi.org/10.1038/s41586-023-06368-y Published: 27 June 2023

This paper is open access.

Published the same day (June 27, 2023) is a paper (citation and link follow) also focused on studying human embryonic development using stem cells. First, there’s this from the Abstract,

Investigating human development is a substantial scientific challenge due to the technical and ethical limitations of working with embryonic samples. In the face of these difficulties, stem cells have provided an alternative to experimentally model inaccessible stages of human development in vitro …

This time the work is from a US/German team,

Self-patterning of human stem cells into post-implantation lineages by Monique Pedroza, Seher Ipek Gassaloglu, Nicolas Dias, Liangwen Zhong, Tien-Chi Jason Hou, Helene Kretzmer, Zachary D. Smith & Berna Sozen. Nature (2023) DOI: https://doi.org/10.1038/s41586-023-06354-4 Published: 27 June 2023

The paper is open access.

Legal concerns and a Canadian focus

A July 25, 2023 essay by Françoise Baylis and Jocelyn Downie of Dalhousie University (Nova Scotia, Canada) for The Conversation (h/t July 25, 2023 article on phys.org) covers the advantages of doing this work before launching into a discussion of legislation and limits in the UK and, more extensively, in Canada, Note: Links have been removed,

This research could increase our understanding of human development and genetic disorders, help us learn how to prevent early miscarriages, lead to improvements in fertility treatment, and — perhaps — eventually allow for reproduction without using sperm and eggs.

Synthetic human embryos — also called embryoid bodies, embryo-like structures or embryo models — mimic the development of “natural human embryos,” those created by fertilization. Synthetic human embryos include the “cells that would typically go on to form the embryo, placenta and yolk sac, and develop to form the precursors of germ cells (that will form sperm and eggs).”

Though research involving natural human embryos is legal in many jurisdictions, it remains controversial. For some people, research involving synthetic human embryos is less controversial because these embryos cannot “develop to the equivalent of postnatal stage humans.” In other words, these embryos are non-viable and cannot result in live births.

Now, for a closer look at the legalities in the UK and in Canada, from the July 25, 2023 essay, Note: Links have been removed,

The research presented by Żernicka-Goetz at the ISSCR meeting took place in the United Kingdom. It was conducted in accordance with the Human Fertilization and Embryology Act, 1990, with the approval of the U.K. Stem Cell Bank Steering Committee.

U.K. law limits the research use of human embryos to 14 days of development. An embryo is defined as “a live human embryo where fertilisation is complete, and references to an embryo include an egg in the process of fertilisation.”

Synthetic embryos are not created by fertilization and therefore, by definition, the 14-day limit on human embryo research does not apply to them. This means that synthetic human embryo research beyond 14 days can proceed in the U.K.

The door to the touted potential benefits — and ethical controversies — seems wide open in the U.K.

While the law in the U.K. does not apply to synthetic human embryos, the law in Canada clearly does. This is because the legal definition of an embryo in Canada is not limited to embryos created by fertilization [emphasis mine].

The Assisted Human Reproduction Act (the AHR Act) defines an embryo as “a human organism during the first 56 days of its development following fertilization or creation, excluding any time during which its development has been suspended.”

Based on this definition, the AHR Act applies to embryos created by reprogramming human embryonic stem cells — in other words, synthetic human embryos — provided such embryos qualify as human organisms.

A synthetic human embryo is a human organism. It is of the species Homo sapiens, and is thus human. It also qualifies as an organism — a life form — alongside other organisms created by means of fertilization, asexual reproduction, parthenogenesis or cloning.

Given that the AHR Act applies to synthetic human embryos, there are legal limits on their creation and use in Canada.

First, human embryos — including synthetic human embryos – can only be created for the purposes of “creating a human being, improving or providing instruction in assisted reproduction procedures.”

Given the state of the science, it follows that synthetic human embryos could legally be created for the purpose of improving assisted reproduction procedures.

Second, “spare” or “excess” human embryos — including synthetic human embryos — originally created for one of the permitted purposes, but no longer wanted for this purpose, can be used for research. This research must be done in accordance with the consent regulations which specify that consent must be for a “specific research project.”

Finally, all research involving human embryos — including synthetic human embryos — is subject to the 14-day rule. The law stipulates that: “No person shall knowingly… maintain an embryo outside the body of a female person after the fourteenth day of its development following fertilization or creation, excluding any time during which its development has been suspended.”

Putting this all together, the creation of synthetic embryos for improving assisted human reproduction procedures is permitted, as is research using “spare” or “excess” synthetic embryos originally created for this purpose — provided there is specific consent and the research does not exceed 14 days.

This means that while synthetic human embryos may be useful for limited research on pre-implantation embryo development, they are not available in Canada for research on post-implantation embryo development beyond 14 days.

The authors close with this comment about the prospects for expanding Canada’s14-day limit, from the July 25, 2023 essay,

… any argument will have to overcome the political reality that the federal government is unlikely to open up the Pandora’s box of amending the AHR Act.

It therefore seems likely that synthetic human embryo research will remain limited in Canada for the foreseeable future.

As mentioned, in September 2023 there was a new development. See: Part two.

Sign up for Nano4EARTH’s Roundtable Discussion (Batteries and Energy Storage): September 26, 2023 (online or in person)

Given that Nano4Earth was first announced by the US government in October 2022 (see my November 28, 2022 posting), the initiative has been quite active (see my February 27, 2023 posting, “Nano4EARTH workshop recordings available online“).

Now for the latest, from the National Nanotechnology Initiative (NNI) webpage for the batteries and storage roundtable discussion,

Nano4EARTH Roundtable Discussion on Batteries and Energy Storage

September 26, 2023
9:30 a.m. to 3:30 p.m. ET
Online and L’Enfant Plaza SW, Washington, D.C.

The Nano4EARTH roundtable discussion on batteries and energy storage aims to identify fundamental knowledge gaps, needs, and opportunities to advance current electrification goals. By convening stakeholders from different sectors, backgrounds, and expertise the goal of this roundtable is to identify applicable lessons across the spectrum of technologies, discuss system-specific needs, scalability and commercialization challenges, and potential paths forward. These needs could have a near-term impact on energy efficiency, sustainable development, and climate change. The moderated discussion will tackle all aspects of the topic – ranging from exciting R&D opportunities to commercialization challenges – by featuring a small group of experts from different sectors and backgrounds.

This roundtable is a critical part of the Nano4EARTH National Nanotechnology Challenge, which aims to leverage recent investments in understanding and controlling matter at the nanoscale to develop technologies and industries that address climate change. Nano4EARTH focuses on facilitating opportunities for members of the nanotechnology community to convene, collaborate, and share resources. Nano4EARTH also strives to provide mechanisms that support technology development and commercialization of nanotechnology-enabled climate solutions.

The topic of this roundtable was identified at the Nano4EARTH kick-off workshop (summary readout and video archive) as a particularly promising area that could have an impact in a short time frame (four years or less). This roundtable is the second of four.

MEETING LOCATION:

Online and the National Nanotechnology Coordination Office: Suite 8001, 470 L’Enfant Plaza SW, Washington, DC 20024. Directions are available here.

Registration is now open and you can find the links to online or in person registration on the National Nanotechnology Initiative (NNI) webpage for the batteries and storage roundtable discussion

h/t JD Supra blog’s August 23, 2023 posting

350-year-old mechanical theorem reveals new properties of light waves

Caption: Physicists at Stevens Institute of Technology use a 350-year-old theorem that explains the workings of pendulums and planets to reveal new properties of light waves. Credit: Stevens Institute of Technology

An August 21, 2023 news item on phys.org revisits a 350-year old theorem, Note: Links have been removed,

Since the 17th century, when Isaac Newton and Christiaan Huygens first debated the nature of light, scientists have been puzzling over whether light is best viewed as a wave or a particle—or perhaps, at the quantum level, even both at once. Now, researchers at Stevens Institute of Technology have revealed a new connection between the two perspectives, using a 350-year-old mechanical theorem—ordinarily used to describe the movement of large, physical objects like pendulums and planets—to explain some of the most complex behaviors of light waves.

The work, led by Xiaofeng Qian, assistant professor of physics at Stevens and reported in the August 17 [2023] online issue of Physical Review Research, also proves for the first time that a light wave’s degree of non-quantum entanglement exists in a direct and complementary relationship with its degree of polarization. As one rises, the other falls, enabling the level of entanglement to be inferred directly from the level of polarization, and vice versa. This means that hard-to-measure optical properties such as amplitudes, phases and correlations—perhaps even these of quantum wave systems—can be deduced from something a lot easier to measure: light intensity.

An August 20, 2023 Stevens Institute of Technology news release (also on EurekAlert), which originated the news item, notes the research doesn’t resolve the light waves and light particles conundrum but it does reveal something new about it,,

“We’ve known for over a century that light sometimes behaves like a wave, and sometimes like a particle, but reconciling those two frameworks has proven extremely difficult,” said Qian “Our work doesn’t solve that problem — but it does show that there are profound connections between wave and particle concepts not just at the quantum level, but at the level of classical light-waves and point-mass systems.” 

Qian’s team used a mechanical theorem, originally developed by Huygens in a 1673 book on pendulums, that explains how the energy required to rotate an object varies depending on the object’s mass and the axis around which it turns. “This is a well-established mechanical theorem that explains the workings of physical systems like clocks or prosthetic limbs,” Qian explained. “But we were able to show that it can offer new insights into how light works, too.”  

This 350-year-old theorem describes relationships between masses and their rotational momentum, so how could it be applied to light where there is no mass to measure? Qian’s team interpreted the intensity of a light as the equivalent of a physical object’s mass, then mapped those measurements onto a coordinate system that could be interpreted using Huygens’ mechanical theorem. “Essentially, we found a way to translate an optical system so we could visualize it as a mechanical system, then describe it using well-established physical equations,” explained Qian.

Once the team visualized a light wave as part of a mechanical system, new connections between the wave’s properties immediately became apparent — including the fact that entanglement and polarization stood in a clear relationship with one another.

“This was something that hadn’t been shown before, but that becomes very clear once you map light’s properties onto a mechanical system,” said Qian. “What was once abstract becomes concrete: using mechanical equations, you can literally measure the distance between ‘center of mass’ and other mechanical points to show how different properties of light relate to one another.” 

Clarifying these relationships could have important practical implications, allowing subtle and hard-to-measure properties of optical systems — or even quantum systems — to be deduced from simpler and more robust measurements of light intensity, Qian explained. More speculatively, the team’s findings suggest the possibility of using mechanical systems to simulate and better-understand the strange and complex behaviors of quantum wave systems.

“That still lies ahead of us, but with this first study we’ve shown clearly that by applying mechanical concepts, it’s possible to understand optical systems in an entirely new way,” Qian said. “Ultimately, this research is helping to simplify the way we understand the world, by allowing us to recognize the intrinsic underlying connections between apparently unrelated physical laws.”

Here’s a link to and a citation for the paper,

Bridging coherence optics and classical mechanics: A generic light polarization-entanglement complementary relation by Xiao-Feng Qian and Misagh Izadi. Phys. Rev. Research 5, 033110 Published 17 August 2023

This paper is open access.

Pope Francis and Rhodes University’s Institute for Nanotechnology Innovation Director,Tebello Nyokong

I’d never heard of the Catholic Church’s Pontifical Academy of Sciences before this July 10, 2023 Rhodes University (South Africa) press release,

Rhodes University’s Institute for Nanotechnology Innovation Director, Distinguished Professor Tebello Nyokong, has been appointed to the Pontifical Academy of Sciences. As the head of the Catholic Church, the bishop of Rome and sovereign of the Vatican City State, Pope Francis appointed Professor Nyokong to the Academy.  

The Academy was founded in 1603 after a period of vicissitudes and was radically reformed by Pope Pius XI in 1936. The aim of the Academy is to promote the progress of mathematical, physical, and natural sciences and the study of epistemological problems relating thereto. The Academy chooses candidates for a seat in the Academy based on their eminent original scientific studies and their acknowledged moral personality, without any ethnic or religious discrimination. They are nominated for life by the sovereign act of the Pope.

Professor Nyokong said that when she first received the communiqué from the Pope, she deleted the correspondence, thinking it was spam. “Who receives an email from the Pope? I am not even catholic, so this came as a surprise for me,” she said. Only after receiving a call enquiring whether she had received the correspondence did she realise it was legit.

“It’s a great honour indeed. I will be travelling to the Vatican in 2024. How does the Pope even know me? I do not even know, but it means there is something holy about the work my students and I are doing,” said Professor Nyokong.

Pontifical Academy of Sciences Chancellor, Peter Kodwo Appiah Turkson, said: “Pope Francis will bestow on Professor Nyokong the insignia of her appointment during a Solemn Pontifical Audience at the next Plenary Session in October 2024.”

Professor Nyokong is researching a new cancer diagnosis and treatment methodology called photo-dynamic therapy, which is an alternative to chemotherapy. The new therapy is based on using a dye, which is used to colour blue denim clothing, and which is inert and harmless by itself but can be activated by exposure to a red laser beam. 

She is celebrated worldwide for the outstanding work she and her team continue to do. She has five honorary degrees including from her alma mater McMaster University in Ontario, Canada; University of South Africa (UNISA); Walter Sisulu University; the University of KwaZulu-Natal and another alma materWestern University in Ontario, Canada.

Professor Nyokong is an honorary fellow of the Royal Society of Chemistry, and a  Fellow of the Royal Society. Rhodes University Vice-Chancellor congratulated Professor Nyokong. “We are incredibly proud of Distinguished Professor Nyokong, and we congratulate her on this huge recognition. This recognition is fitting for someone of Professor Nyokong’s calibre. Her many years of ground-breaking intellectual contribution, hard work, dedication, and commitment to this research-intensive University do not go unnoticed. She has and continues to contribute to our vision of being foremost in the generation and advancement of locally-responsive and globally-engaged knowledge dedicated to creating a just and sustainable world,” concluded Professor Mabizela [Dr Sizwe Mabizela].

Congratulations to Professor Tebello Nyokong!

You can find the Pontifical Academy of Sciences here. In addition to learning about a new ‘science’ agency and finding out the Catholic Church is aware of nanotechnology, I received another surprise on reading the Rhodes University press release in its entirety: Professor Nyokong has two Canadian connections (or alma maters).

Single chip mimics human vision and memory abilities

A June 15, 2023 RMIT University (Australia) press release (also on EurekAlert but published June 14, 2023) announces a neuromorphic (brainlike) computer chip, which mimics human vision and ‘creates’ memories,

Researchers have created a small device that ‘sees’ and creates memories in a similar way to humans, in a promising step towards one day having applications that can make rapid, complex decisions such as in self-driving cars.

The neuromorphic invention is a single chip enabled by a sensing element, doped indium oxide, that’s thousands of times thinner than a human hair and requires no external parts to operate.

RMIT University engineers in Australia led the work, with contributions from researchers at Deakin University and the University of Melbourne.

The team’s research demonstrates a working device that captures, processes and stores visual information. With precise engineering of the doped indium oxide, the device mimics a human eye’s ability to capture light, pre-packages and transmits information like an optical nerve, and stores and classifies it in a memory system like the way our brains can.

Collectively, these functions could enable ultra-fast decision making, the team says.

Team leader Professor Sumeet Walia said the new device can perform all necessary functions – sensing, creating and processing information, and retaining memories – rather than relying on external energy-intensive computation, which prevents real-time decision making.

“Performing all of these functions on one small device had proven to be a big challenge until now,” said Walia from RMIT’s School of Engineering.

“We’ve made real-time decision making a possibility with our invention, because it doesn’t need to process large amounts of irrelevant data and it’s not being slowed down by data transfer to separate processors.”

What did the team achieve and how does the technology work?

The new device was able to demonstrate an ability to retain information for longer periods of time, compared to previously reported devices, without the need for frequent electrical signals to refresh the memory. This ability significantly reduces energy consumption and enhances the device’s performance.

Their findings and analysis are published in Advanced Functional Materials.

First author and RMIT PhD researcher Aishani Mazumder said the human brain used analog processing, which allowed it to process information quickly and efficiently using minimal energy.

“By contrast, digital processing is energy and carbon intensive, and inhibits rapid information gathering and processing,” she said.

“Neuromorphic vision systems are designed to use similar analog processing to the human brain, which can greatly reduce the amount of energy needed to perform complex visual tasks compared with today’s technologies

What are the potential applications?

The team used ultraviolet light as part of their experiments, and are working to expand this technology even further for visible and infrared light – with many possible applications such as bionic vision, autonomous operations in dangerous environments, shelf-life assessments of food and advanced forensics.

“Imagine a self-driving car that can see and recognise objects on the road in the same way that a human driver can or being able to able to rapidly detect and track space junk. This would be possible with neuromorphic vision technology.”

Walia said neuromorphic systems could adapt to new situations over time, becoming more efficient with more experience.

“Traditional computer vision systems – which cannot be miniaturised like neuromorphic technology – are typically programmed with specific rules and can’t adapt as easily,” he said.

“Neuromorphic robots have the potential to run autonomously for long periods, in dangerous situations where workers are exposed to possible cave-ins, explosions and toxic air.”

The human eye has a single retina that captures an entire image, which is then processed by the brain to identify objects, colours and other visual features.

The team’s device mimicked the retina’s capabilities by using single-element image sensors that capture, store and process visual information on one platform, Walia said.

“The human eye is exceptionally adept at responding to changes in the surrounding environment in a faster and much more efficient way than cameras and computers currently can,” he said.

“Taking inspiration from the eye, we have been working for several years on creating a camera that possesses similar abilities, through the process of neuromorphic engineering.” 

Here’s a link to and a citation for the paper,

Long Duration Persistent Photocurrent in 3 nm Thin Doped Indium Oxide for Integrated Light Sensing and In-Sensor Neuromorphic Computation by Aishani Mazumder, Chung Kim Nguyen, Thiha Aung, Mei Xian Low, Md. Ataur Rahman, Salvy P. Russo, Sherif Abdulkader Tawfik, Shifan Wang, James Bullock, Vaishnavi Krishnamurthi. Advanced Functional Materials DOI: https://doi.org/10.1002/adfm.202303641 First published: 14 June 2023

This paper is open access.