Category Archives: nanotechnology

Brainlike transistor and human intelligence

This brainlike transistor (not a memristor) is important because it functions at room temperature as opposed to others, which require cryogenic temperatures.

A December 20, 2023 Northwestern University news release (received via email; also on EurekAlert) fills in the details,

  • Researchers develop transistor that simultaneously processes and stores information like the human brain
  • Transistor goes beyond categorization tasks to perform associative learning
  • Transistor identified similar patterns, even when given imperfect input
  • Previous similar devices could only operate at cryogenic temperatures; new transistor operates at room temperature, making it more practical

EVANSTON, Ill. — Taking inspiration from the human brain, researchers have developed a new synaptic transistor capable of higher-level thinking.

Designed by researchers at Northwestern University, Boston College and the Massachusetts Institute of Technology (MIT), the device simultaneously processes and stores information just like the human brain. In new experiments, the researchers demonstrated that the transistor goes beyond simple machine-learning tasks to categorize data and is capable of performing associative learning.

Although previous studies have leveraged similar strategies to develop brain-like computing devices, those transistors cannot function outside cryogenic temperatures. The new device, by contrast, is stable at room temperatures. It also operates at fast speeds, consumes very little energy and retains stored information even when power is removed, making it ideal for real-world applications.

The study was published today (Dec. 20 [2023]) in the journal Nature.

“The brain has a fundamentally different architecture than a digital computer,” said Northwestern’s Mark C. Hersam, who co-led the research. “In a digital computer, data move back and forth between a microprocessor and memory, which consumes a lot of energy and creates a bottleneck when attempting to perform multiple tasks at the same time. On the other hand, in the brain, memory and information processing are co-located and fully integrated, resulting in orders of magnitude higher energy efficiency. Our synaptic transistor similarly achieves concurrent memory and information processing functionality to more faithfully mimic the brain.”

Hersam is the Walter P. Murphy Professor of Materials Science and Engineering at Northwestern’s McCormick School of Engineering. He also is chair of the department of materials science and engineering, director of the Materials Research Science and Engineering Center and member of the International Institute for Nanotechnology. Hersam co-led the research with Qiong Ma of Boston College and Pablo Jarillo-Herrero of MIT.

Recent advances in artificial intelligence (AI) have motivated researchers to develop computers that operate more like the human brain. Conventional, digital computing systems have separate processing and storage units, causing data-intensive tasks to devour large amounts of energy. With smart devices continuously collecting vast quantities of data, researchers are scrambling to uncover new ways to process it all without consuming an increasing amount of power. Currently, the memory resistor, or “memristor,” is the most well-developed technology that can perform combined processing and memory function. But memristors still suffer from energy costly switching.

“For several decades, the paradigm in electronics has been to build everything out of transistors and use the same silicon architecture,” Hersam said. “Significant progress has been made by simply packing more and more transistors into integrated circuits. You cannot deny the success of that strategy, but it comes at the cost of high power consumption, especially in the current era of big data where digital computing is on track to overwhelm the grid. We have to rethink computing hardware, especially for AI and machine-learning tasks.”

To rethink this paradigm, Hersam and his team explored new advances in the physics of moiré patterns, a type of geometrical design that arises when two patterns are layered on top of one another. When two-dimensional materials are stacked, new properties emerge that do not exist in one layer alone. And when those layers are twisted to form a moiré pattern, unprecedented tunability of electronic properties becomes possible.

For the new device, the researchers combined two different types of atomically thin materials: bilayer graphene and hexagonal boron nitride. When stacked and purposefully twisted, the materials formed a moiré pattern. By rotating one layer relative to the other, the researchers could achieve different electronic properties in each graphene layer even though they are separated by only atomic-scale dimensions. With the right choice of twist, researchers harnessed moiré physics for neuromorphic functionality at room temperature.

“With twist as a new design parameter, the number of permutations is vast,” Hersam said. “Graphene and hexagonal boron nitride are very similar structurally but just different enough that you get exceptionally strong moiré effects.”

To test the transistor, Hersam and his team trained it to recognize similar — but not identical — patterns. Just earlier this month, Hersam introduced a new nanoelectronic device capable of analyzing and categorizing data in an energy-efficient manner, but his new synaptic transistor takes machine learning and AI one leap further.

“If AI is meant to mimic human thought, one of the lowest-level tasks would be to classify data, which is simply sorting into bins,” Hersam said. “Our goal is to advance AI technology in the direction of higher-level thinking. Real-world conditions are often more complicated than current AI algorithms can handle, so we tested our new devices under more complicated conditions to verify their advanced capabilities.”

First the researchers showed the device one pattern: 000 (three zeros in a row). Then, they asked the AI to identify similar patterns, such as 111 or 101. “If we trained it to detect 000 and then gave it 111 and 101, it knows 111 is more similar to 000 than 101,” Hersam explained. “000 and 111 are not exactly the same, but both are three digits in a row. Recognizing that similarity is a higher-level form of cognition known as associative learning.”

In experiments, the new synaptic transistor successfully recognized similar patterns, displaying its associative memory. Even when the researchers threw curveballs — like giving it incomplete patterns — it still successfully demonstrated associative learning.

“Current AI can be easy to confuse, which can cause major problems in certain contexts,” Hersam said. “Imagine if you are using a self-driving vehicle, and the weather conditions deteriorate. The vehicle might not be able to interpret the more complicated sensor data as well as a human driver could. But even when we gave our transistor imperfect input, it could still identify the correct response.”

The study, “Moiré synaptic transistor with room-temperature neuromorphic functionality,” was primarily supported by the National Science Foundation.

Here’s a link to and a citation for the paper,

Moiré synaptic transistor with room-temperature neuromorphic functionality by Xiaodong Yan, Zhiren Zheng, Vinod K. Sangwan, Justin H. Qian, Xueqiao Wang, Stephanie E. Liu, Kenji Watanabe, Takashi Taniguchi, Su-Yang Xu, Pablo Jarillo-Herrero, Qiong Ma & Mark C. Hersam. Nature volume 624, pages 551–556 (2023) DOI: https://doi.org/10.1038/s41586-023-06791-1 Published online: 20 December 2023 Issue Date: 21 December 2023

This paper is behind a paywall.

Transformative potential of Martian nanomaterials

Yes, nanomaterials from Mars! A December 21, 2023 news item on Nanowerk makes the proposition, Note: A link has been removed,

Researchers at the University of Sussex have discovered the transformative potential of Martian nanomaterials, potentially opening the door to sustainable habitation on the red planet. They published their findings in (“Quasi–1D Anhydrite Nanobelts from the Sustainable Liquid Exfoliation of Terrestrial Gypsum for Future Martian-Based Electronics”).

Using resources and techniques currently applied on the International Space Station [ISS] and by NASA [US National Aeronautics and Space Administration], Dr Conor Boland, a Lecturer in Materials Physics at the University of Sussex, led a research group that investigated the potential of nanomaterials – incredibly tiny components thousands of times smaller than a human hair – for clean energy production and building materials on Mars.

Taking what was considered a waste product by NASA and applying only sustainable production methods, including water-based chemistry and low-energy processes, the researchers have successfully identified electrical properties within gypsum nanomaterials – opening the door to potential clean energy and sustainable technology production on Mars.

A December 21, 2023 University of Sussex press release (also on EurekAlert) by Stephanie Allen, which originated the news item, features the lead researcher’s hopes for the discovery, Note: A link has been removed,

Dr Conor Boland, said: 

“This study shows that the potential is quite literally out of this world for nanomaterials. Our study builds off recent research performed by NASA and takes what was considered waste, essentially lumps of rock, and turns it into transformative nanomaterials for a range of applications from creating clean hydrogen fuel to developing an electronic device similar to a transistor, to creating an additive to textiles to increase their robustness.

“This opens avenues for sustainable technology – and building – on Mars but also highlights the broader potential for eco-friendly breakthroughs here on Earth.”

To make the breakthrough the researchers used NASA’s innovative method for extracting water from Martian gypsum, which is dehydrated by the agency to get water for human consumption. This produces a byproduct called anhydrite—considered waste material by NASA, but now shown to be hugely valuable.

The Sussex researchers processed anhydrite into nanobelts –  essentially tagliatelle-shaped materials – demonstrating their potential to provide clean energy and sustainable electronics. Furthermore, at every step of their process, water could be continuously collected and recycled.

Dr Boland added: 

“We are optimistic of the feasibility of this process on Mars, as it requires only naturally occurring materials – everything we used could, in theory, be replicated on the red planet. Arguably this is the most important goal in making the Martian colony sustainable from the outset.”

While full-scale electronics production may be impractical on Mars due to the lack of clean rooms and sterile conditions, the anhydrite nanobelts hold promise for clean energy production on Earth, and could, later down the line, still have a profound effect on sustainable energy production on Mars.

Here’s what a Martian nanomaterial looks like,

Caption: Two raw rocks used by the researchers (left). Vials show the nanobelts in water, with a close up of the actual nanobelts (right). Credit: University of Sussex

Here’s a link to and a citation for the paper,

Quasi–1D Anhydrite Nanobelts from the Sustainable Liquid Exfoliation of Terrestrial Gypsum for Future Martian-Based Electronics by Cencen Wei, Abhijit Roy, Adel K. A. Aljarid, Yi Hu, S. Mark Roe, Dimitrios G. Papageorgiou, Raul Arenal, Conor S. Boland. Advanced Functional Materials DOI: https://doi.org/10.1002/adfm.202310600 First published: 14 December 2023

This paper is open access.

Brain-inspired (neuromrophic) computing with twisted magnets and a patent for manufacturing permanent magnets without rare earths

I have two news bits both of them concerned with magnets.

Patent for magnets that can be made without rare earths

I’m starting with the patent news first since this is (as the company notes in its news release) a “Landmark Patent Issued for Technology Critically Needed to Combat Chinese Monopoly.”

For those who don’t know, China supplies most of the rare earths used in computers, smart phones, and other devices. On general principles, having a single supplier dominate production of and access to a necessary material for devices that most of us rely on can raise tensions. Plus, you can’t mine for resources forever.

This December 19, 2023 Nanocrystal Technology LP news release heralds an exciting development (for the impatient, further down the page I have highlighted the salient sections),

Nanotechnology Discovery by 2023 Nobel Prize Winner Became Launch Pad to Create Permanent Magnets without Rare Earths from China

NEW YORK, NY, UNITED STATES, December 19, 2023 /EINPresswire.com/ — Integrated Nano-Magnetics Corp, a wholly owned subsidiary of Nanocrystal Technology LP, was awarded a patent for technology built upon a fundamental nanoscience discovery made by Aleksey Yekimov, its former Chief Scientific Officer.

This patent will enable the creation of strong permanent magnets which are critically needed for both industrial and military applications but cannot be manufactured without certain “rare earth” elements available mostly from China.

At a glittering awards ceremony held in Stockholm on December10, 2023, three scientists, Aleksey Yekimov, Louis Brus (Professor at Columbia University) and Moungi Bawendi (Professor at MIT) were honored with the Nobel Prize in Chemistry for their discovery of the “quantum dot” which is now fueling practical applications in tuning the colors of LEDs, increasing the resolution of TV screens, and improving MRI imaging.

As stated by the Royal Swedish Academy of Sciences, “Quantum dots are … bringing the greatest benefits to humankind. Researchers believe that in the future they could contribute to flexible electronics, tiny sensors, thinner solar cells, and encrypted quantum communications – so we have just started exploring the potential of these tiny particles.”

Aleksey Yekimov worked for over 19 years until his retirement as Chief Scientific Officer of Nanocrystals Technology LP, an R & D company in New York founded by two Indian-American entrepreneurs, Rameshwar Bhargava and Rajan Pillai.

Yekimov, who was born in Russia, had already received the highest scientific honors for his work before he immigrated to USA in 1999. Yekimov was greatly intrigued by Nanocrystal Technology’s research project and chose to join the company as its Chief Scientific Officer.

During its early years, the company worked on efficient light generation by doping host nanoparticles about the same size as a quantum dot with an additional impurity atom. Bhargava came up with the novel idea of incorporating a single impurity atom, a dopant, into a quantum dot sized host, and thus achieve an extraordinary change in the host material’s properties such as inducing strong permanent magnetism in weak, readily available paramagnetic materials. To get a sense of the scale at which nanotechnology works, and as vividly illustrated by the Nobel Foundation, the difference in size between a quantum dot and a soccer ball is about the same as the difference between a soccer ball and planet Earth.

Currently, strong permanent magnets are manufactured from “rare earths” available mostly in China which has established a near monopoly on the supply of rare-earth based strong permanent magnets. Permanent magnets are a fundamental building block for electro-mechanical devices such as motors found in all automobiles including electric vehicles, trucks and tractors, military tanks, wind turbines, aircraft engines, missiles, etc. They are also required for the efficient functioning of audio equipment such as speakers and cell phones as well as certain magnetic storage media.

The existing market for permanent magnets is $28 billion and is projected to reach $50 billion by 2030 in view of the huge increase in usage of electric vehicles. China’s overwhelming dominance in this field has become a matter of great concern to governments of all Western and other industrialized nations. As the Wall St. Journal put it, China’s now has a “stranglehold” on the economies and security of other countries.

The possibility of making permanent magnets without the use of any rare earths mined in China has intrigued leading physicists and chemists for nearly 30 years. On December 19, 2023, a U.S. patent with the title ‘’Strong Non Rare Earth Permanent Magnets from Double Doped Magnetic Nanoparticles” was granted to Integrated Nano-Magnetics Corp. [emphasis mine] Referring to this major accomplishment Bhargava said, “The pioneering work done by Yekimov, Brus and Bawendi has provided the foundation for us to make other discoveries in nanotechnology which will be of great benefit to the world.”

I was not able to find any company websites. The best I could find is a Nanocrystals Technology LinkedIn webpage and some limited corporate data for Integrated Nano-Magnetics on opencorporates.com.

Twisted magnets and brain-inspired computing

This research offers a pathway to neuromorphic (brainlike) computing with chiral (or twisted) magnets, which, as best as I understand it, do not require rare earths. From a November13, 2023 news item on ScienceDaily,

A form of brain-inspired computing that exploits the intrinsic physical properties of a material to dramatically reduce energy use is now a step closer to reality, thanks to a new study led by UCL [University College London] and Imperial College London [ICL] researchers.

In the new study, published in the journal Nature Materials, an international team of researchers used chiral (twisted) magnets as their computational medium and found that, by applying an external magnetic field and changing temperature, the physical properties of these materials could be adapted to suit different machine-learning tasks.

A November 9, 2023 UCL press release (also on EurekAlert but published November 13, 2023), which originated the news item, fill s in a few more details about the research,

Dr Oscar Lee (London Centre for Nanotechnology at UCL and UCL Department of Electronic & Electrical Engineering), the lead author of the paper, said: “This work brings us a step closer to realising the full potential of physical reservoirs to create computers that not only require significantly less energy, but also adapt their computational properties to perform optimally across various tasks, just like our brains.

“The next step is to identify materials and device architectures that are commercially viable and scalable.”

Traditional computing consumes large amounts of electricity. This is partly because it has separate units for data storage and processing, meaning information has to be shuffled constantly between the two, wasting energy and producing heat. This is particularly a problem for machine learning, which requires vast datasets for processing. Training one large AI model can generate hundreds of tonnes of carbon dioxide.

Physical reservoir computing is one of several neuromorphic (or brain inspired) approaches that aims to remove the need for distinct memory and processing units, facilitating more efficient ways to process data. In addition to being a more sustainable alternative to conventional computing, physical reservoir computing could be integrated into existing circuitry to provide additional capabilities that are also energy efficient.

In the study, involving researchers in Japan and Germany, the team used a vector network analyser to determine the energy absorption of chiral magnets at different magnetic field strengths and temperatures ranging from -269 °C to room temperature.

They found that different magnetic phases of chiral magnets excelled at different types of computing task. The skyrmion phase, where magnetised particles are swirling in a vortex-like pattern, had a potent memory capacity apt for forecasting tasks. The conical phase, meanwhile, had little memory, but its non-linearity was ideal for transformation tasks and classification – for instance, identifying if an animal is a cat or dog.

Co-author Dr Jack Gartside, of Imperial College London, said: “Our collaborators at UCL in the group of Professor Hidekazu Kurebayashi recently identified a promising set of materials for powering unconventional computing. These materials are special as they can support an especially rich and varied range of magnetic textures. Working with the lead author Dr Oscar Lee, the Imperial College London group [led by Dr Gartside, Kilian Stenning and Professor Will Branford] designed a neuromorphic computing architecture to leverage the complex material properties to match the demands of a diverse set of challenging tasks. This gave great results, and showed how reconfiguring physical phases can directly tailor neuromorphic computing performance.”

The work also involved researchers at the University of Tokyo and Technische Universität München and was supported by the Leverhulme Trust, Engineering and Physical Sciences Research Council (EPSRC), Imperial College London President’s Excellence Fund for Frontier Research, Royal Academy of Engineering, the Japan Science and Technology Agency, Katsu Research Encouragement Award, Asahi Glass Foundation, and the DFG (German Research Foundation).

Here’s a link to and a citation for the paper,

Task-adaptive physical reservoir computing by Oscar Lee, Tianyi Wei, Kilian D. Stenning, Jack C. Gartside, Dan Prestwood, Shinichiro Seki, Aisha Aqeel, Kosuke Karube, Naoya Kanazawa, Yasujiro Taguchi, Christian Back, Yoshinori Tokura, Will R. Branford & Hidekazu Kurebayashi. Nature Materials volume 23, pages 79–87 (2024) DOI: https://doi.org/10.1038/s41563-023-01698-8 Published online: 13 November 2023 Issue Date: January 2024

This paper is open access.

Collaborative research agreement (CRA) with McMaster University (Canada) for development of catheter coating

I don’t always do as good a job at covering the commercialization of emerging technologies as I’d like, so, this December 13, 2023 news item on Yahoo News was a welcome discovery,

Oakville, Ontario–(Newsfile Corp. – December 13, 2023) – FendX Technologies Inc. (CSE: FNDX) (OTCQB: FDXTF) (FSE: E8D) (the “Company” or “FendX“), a nanotechnology company developing surface protection coatings is pleased to announce it has entered into a Collaborative Research Agreement (“CRA“) dated December 12, 2023 with McMaster University (“McMaster“) which details the research and development plan to create a protective catheter coating using our nanotechnology licensed pursuant to the license agreement dated February 5, 2021, as amended, between the Company and McMaster.

Dr. Carolyn Myers, President and CEO of FendX, stated, “We are excited about the prospect of developing a coating for catheters using our nanotechnology which we believe will reduce catheter blockage caused by either blood clots or bacterial biofilms. Early work conducted at McMaster has demonstrated significant reduction in the adherence of both bacteria and blood which could potentially translate to reduced bacterial biofilm or blood clot formation. [emphasis mine] Our aim is to further this research to tackle the medical need to reduce catheter blockage rates, which can be costly and interfere with patient therapy. We anticipate the development of this coating formulation will also strengthen our overall intellectual property portfolio.”

The CRA outlines more fully the research and development work to be conducted by McMaster on behalf of FendX as well as a payment schedule for the maximum research funding requirements. The term of the CRA is for 24 months commencing on the effective date of December 1, 2023, unless terminated in accordance with the provisions of the CRA. In the first and second year, maximum research funding to McMaster will be $150,547 each year.

About FendX Technologies Inc.

FendX is a Canada-based nanotechnology company focused on developing products to make people’s lives safer by reducing the spread of pathogens. The Company is developing both film and spray products to protect surfaces from contamination. The lead product under development, REPELWRAP™ film, is a protective surface coating film that, due to its repelling properties, prevents the adhesion of pathogens and reduces their transmission on surfaces prone to contamination. The spray nanotechnology is a bifunctional spray coating being developed to reduce contamination on surfaces by repelling and killing pathogens. The Company is conducting research and development activities using its nanotechnology in collaboration with industry-leading partners, including McMaster University. The Company has an exclusive worldwide license to its technology and IP portfolio from McMaster, which encompass both film and spray coating nanotechnology formulations.

For more information, please visit https://fendxtech.com/ and the Company’s profile on SEDAR+ at www.sedarplus.ca.

Neither the Canadian Securities Exchange nor the Market Regulator (as that term is defined in the policies of the Canadian Securities Exchange) accepts responsibility for the adequacy or accuracy of this release.

Forward-Looking Statements

This news release contains certain forward-looking statements within the meaning of Canadian securities legislation, including with respect to: the plans of the Company; statements regarding the catheter coating development and anticipated benefits; the Company’s belief that the catheter coating could reduce catheter occlusions caused by either blood clots or bacterial biofilms; statements regarding strengthening the Company’s overall intellectual property portfolio; the Company’s belief that REPELWRAP™ will have applications in healthcare settings and other industries; and products under development and any pathogen reduction benefits related thereto. Although the Company believes that such statements are reasonable, it can give no assurance that such expectations will prove to be correct. Forward-looking statements are statements that are not historical facts; they are generally, but not always, identified by the words “expects,” “plans,” “anticipates,” “believes,” “intends,” “estimates,” “projects,” “aims,” “potential,” “goal,” “objective,” “prospective,” and similar expressions, or that events or conditions “will,” “would,” “may,” “can,” “could” or “should” occur, or are those statements, which, by their nature, refer to future events. The Company cautions that forward-looking statements are based on the beliefs, estimates and opinions of the Company’s management on the date the statements are made and involve several risks and uncertainties. Consequently, there can be no assurances that such statements will prove to be accurate and that actual results and future events could differ materially from those anticipated in such statements.

Important factors that could cause future results to differ materially from those anticipated in these forward-looking statements include: product candidates only being in formulation/reformulation stages; limited operating history; research and development activities; dependence on collaborative partners, licensors and others; effect of general economic and political conditions; and other risk factors set forth in the Company’s public filings which are available on SEDAR+ at www.sedarplus.ca. Accordingly, the reader is urged to refer to the Company’s such filings for a more complete discussion of such risk factors and their potential effects. Except to the extent required by applicable securities laws and the policies of the Canadian Securities Exchange, the Company undertakes no obligation to update these forward-looking statements if management’s beliefs, estimates or opinions, or other factors should change.

FendX offers next to no information about their technology or the proposed work with McMaster as seen in this excerpt from the Our Technology webpage on the FendX website,

Our patent-pending licensed nanotechnology works by combining a hierarchical wrinkled molecular structure with chemical functionalization to create nano-surfaces with repelling properties that prevent adhesion of bacteria, viruses and liquids.

Inspired by the water-resistant surface of the lotus leaf

Our nanotechnology causes both high surface tension (e.g., water) and low surface tension (e.g., oil) liquids to form droplets when they come in contact with the nano-surface.

The repelling properties of our nano-surfaces prevents adhesion of bacteria and viruses.

We believe our technology will have numerous applications and opportunities in healthcare and other industries.

That’s it. No technical details and not a single research study is cited.

While McMaster University doesn’t seem to have issued any news releases about their joint research effort with FendX, there are two research papers that I’m reasonably confident are relevant. From the Didar Lab Publications webpage, here are links and citation for both papers,

An omniphobic lubricant-infused coating produced by chemical vapor deposition of hydrophobic organosilanes attenuates clotting on catheter surfaces by Maryam Badv, Iqbal H. Jaffer, Jeffrey I. Weitz & Tohid F. Didar. Scientific Reports volume 7, Article number: 11639 (2017) DOI: https://doi.org/10.1038/s41598-017-12149-1 Published: 14 September 2017

This paper is open access.

Highly Stable Hierarchically Structured All-Polymeric Lubricant-Infused Films Prevent Thrombosis and Repel Multidrug-Resistant Pathogens by Elisabet Afonso, Fereshteh Bayat, Liane Ladouceur, Shadman Khan, Aránzazu Martínez-Gómez, Jeffrey I. Weitz, Zeinab Hosseinidoust, Pilar Tiemblo, Nuria García, and Tohid F. Didar. CS Appl. Mater. Interfaces 2022, 14, 48, 53535–53545 DOI: https://doi.org/10.1021/acsami.2c17309 Publication Date: November 22, 2022 Copyright © 2022 American Chemical Society

This paper is behind a paywall.

Interweave: A multi-sensory show (March 21, 2024 in Vancouver, Canada) where fashion, movement, & music come together though wearable instruments.

Interweave is a free show at The Kent in the gallery in downtown Vancouver, Canada. Here’s more from a Simon Fraser University (SFU) announcement (received via email),

SFU School for the Contemporary Arts (SCA) alumnus, Kimia Koochakzadeh-Yazdi, is hosting Interweave, a multi-sensory show where fashion, movement, and music come together though wearable instruments.

Embrace the fusion of creativity and expression alongside your fellow alumni in a setting that celebrates innovation and the uncharted synergy between fashion, music, and movement. This is a great opportunity to mingle and reconnect with your peers.

Event Details:

Date: March 21, 2024
Time: Doors 7:30pm, Show 8:00pm
Location: The Kent Vancouver, 534 Cambie Street
Free Entry, RSVP required

Interweave is the first event from Fashion x Electronics (FXE), a collective created by Kimia Koochakzadeh-Yazdi, SCA alumnus, composer, and performer, and designer Kayla Yazdi. FXE is an interdisciplinary collective that is building multi-sensory experiences for their community, bridging together a diverse range of disciplines.

This is a 19+ event. ID will be checked at the door.

RSVP Now!

I wasn’t able to discern much more about the event or the Yazdi sisters from their Fashion x Electronics (FXE) website but there is this about Kayla Yazdi on her FXE profile,

Kayla Yazdi

Designer / Co-Producer

Kayla Yazdi is an Iranian-Canadian designer based in Vancouver, Canada. Her upbringing in Iran immersed her in a world of culture, art, and color. Holding a diploma in painting and a bachelor’s degree in design with a specialization in fashion and technology, Kayla has cultivated the skill set that merges her artistic sensibilities with innovative design concepts.

Kayla is dedicated to the creation of “almost” zero-waste garments. With design, technology, and experimentation, Kayla seeks to minimize environmental impacts while delivering unique styles.

Kimia Koochakzadeh-Yazdi’s FXE profile has this,

Kimia Koochakzadeh-Yazdi

Sound Artist / Co-Producer

Kimia Koochakzadeh-Yazdi(b. 1997 Tehran, Iran) is a California/Vancouver-based composer and performer. She writes for hybrid instrumental/electronic ensembles, creates electroacoustic and audiovisual works, and performs electronic music. Kimia explores the unfamiliar familiar while constantly being driven by the concepts of motion, interaction, and growth in both human life and in the sonic world. Being a cross-disciplinary artist, she has actively collaborated on projects evolving around dance, film, and theatre. Kimia’s work has been showcased by organizations such as Iranian Female Composer Association, Music on Main, Western Front, Vancouver New Music, and Media Arts Committee. She has been featured in The New York Times, Georgia Straight, MusicWorks Magazine, Vancouver Sun, and Sequenza 21. Her work has been performed at festivals around the world including Ars Electronica Festival, Festival Ecos Urbanos, Tehran Contemporary Sounds, AudioVisual Frontiers Virtual Exhibition, The New York City Electroacoustic Music Festival, Yarn/Wire Institute, Ensemble Evolution, New Music on the Point, wasteLAnd Summer Academy, EQ: Evolution of the String Quartet, Modulus Festival, and SALT New Music Festival. She holds a BFA in Music Composition from Simon Fraser University’s Interdisciplinary School for the Contemporary Arts, having studied with Sabrina Schroeder and Mauricio Pauly. Kimia is currently pursuing her DMA in Music Composition at Stanford University.

For more details about the sisters and the performance, Marilyn R. Wilson has written up a February 21, 2024 interview with both sisters for her Olio blog,

Can you share a little bit about your background, the life, work, experiences that led you to who you are today?
Kayla: I’m a visual artist with a focus on fashion design, and textile development. I like to explore ways to create wearable art with minimal waste produced in the process. I studied painting at Azadehgan School of Art in Iran and fashion design & technology at Wilson School of Design in Vancouver. My interest in fashion is rooted in creating functional art. I enjoy the business aspect of fashion however, I want to push boundaries of how fashion can be seen as art rather than solely as production.

Kimia: I’m a composer of acoustic and electronic music, I perform and build instruments, and a lot of times I combine these components together. Working with various disciplines is also an important part of my practice. I studied piano performance at Tehran Music School before moving to Vancouver to study composition at Simon Fraser University. I am currently a doctorate candidate in music composition at Stanford University. I love electronic music, food, and sports! My family, partner, and friends are a huge part of my life!

You have your premier event called “Interweave” coming up on March 21st at The Kent Gallery in Vancouver. What can guests attending expect this evening?

Kayla & Kimia: Interweave is a multidisciplinary performance that bridges fashion, music, technology, and dance. Our dancers will be performing in garments designed by Kayla, that are embedded with microcontrollers and sensors developed by Kimia. The dancers control various musical parameters through their movements and their interaction with the sensors that are incorporated within the garments. Along with works for movement and dance, there will be a live electronic music performance made for costume-made instruments. So far we have received an amazing amount of support and RSVP’s from the art industry in Vancouver and look forward to welcoming many local creative individuals.

We’d love to know about the team of professionals who are working hard to create this unique experience. 

Kayla & Kimia: We are working with the amazing choreographers/dancers Anya Saugstad and Daria Mikhailiuk. We are thankful for Laleh Zandi’s help for creating a sculpture for one of our instruments which will be performed by Kimia. Celeste Betancur and Richard Lee have been our amazing audio tech assistants. We are very appreciative of everyone involved in FXE’s premiere and can’t wait to showcase our hard work.

I have a bit more about Kimia Koochakzadeh-Yazdi and her work in music from a February 27, 2024 profile on the SFU School for the Contemporary Arts website, Note: Links have been removed,

Please introduce yourself.

I’m a composer of acoustic and electronic music, I perform and build instruments, and a lot of times, I combine these components together. Working with various disciplines is also an important part of my practice. I studied piano performance at Tehran Music School before moving to Vancouver to study composition at Simon Fraser University, graduating from the SCA in 2020. I am currently a doctoral student in music composition at Stanford University, where I spend most of my time.

Tell us about your current studies.

I’m in the third year of the DMA (Doctor of Musical Arts) program at Stanford University. I do the majority of my work at the Center for Computer Research in Music and Acoustics (CCRMA). I’m currently trying to learn and to experiment as much as possible! The amount of resources and ideas that I have been exposed to during the last couple of years has been quite significant and wonderful. I have been taking courses in subjects that I never thought I would study, from classes in the computer science and the mechanical engineering departments, to ones in education and theatre. I’m grateful to have been given a supportive platform to truly experiment and to learn.

As for my compositions, they are more melodic than before, and that currently makes me happy. I have started to perform more again (piano and electronics), and it makes me question: why did I ever stop…?

Koochakzadeh-Yazdi’s mention of building instruments reminded me of Icelandic musician, Bjork and Biophilia, which was an album, various art projects, and a film (Biophilia Live), which featured a number of musical instruments she created.

Getting back to Interweave, it’ s on March 21, 2024 at The Kent, specifically the gallery, which has,

… 14 foot ceilings boasts 50 track lights with the ability to transform the vacuous hall from candlelight to daylight. The lights are fully dimmable in an array of playful hues, according to your whim.   A full array of DMX Lighting and control systems live alongside the track light system and our recently installed (Vancouvers only) immersive projection system [emphasis mine] is ready for your vision.  This is your show.

I wonder if ‘multi-sensory’ includes an immersive experience.

Don’t forget, you have to RSVP for Interweave, which is free.

Noise pollution in the ocean and the Canadian military

A December 1, 2023 news item on phys.org highlights noise pollution research from Simon Fraser University (SFU) based in Vancouver, British Columbia, Canada,

A new study from Simon Fraser University researchers examines the Canadian military’s efforts to reduce the impacts of underwater noise pollution on species during training exercises in the Pacific Ocean but caveat that more can still be done.

Kieran Cox, Liber Ero and NSERC Fellow from Simon Fraser University, prepares to dive into kelp forests. Photo by Kiara Kattler

A December 11, 2023 SFU news release (also on EurekAlert but published December 1, 2023), which originated the news item, delves further into the research,

The paper, published today [online December 1 or 11, 2023] in Marine Policy, takes aim at a report commissioned by the Canadian Department of National Defence (DND) to reduce the effects of noise pollution from military small-arms munitions training within “Whiskey Hotel”, a 330-square-kilometre area in the Strait of Juan de Fuca off the British Columbia coast.

The military commissioned the report after it committed to pausing exercises in the area for three years to examine the risk in-air and underwater training noises pose to marine mammals, such as the endangered Southern Resident Killer Whales.

With the report complete, the military has indicated it plans to resume training activities in Whiskey Hotel and will implement measures to reduce the impact of noise pollution, such as mitigation avoidance zones, cease-fire procedures, and marine species awareness training.

While researchers acknowledge the report and the mitigation measures as a positive step forward, the SFU-led paper analyzing the original report found several limitations.

For example, the report only looked at the noise pollution created by small arms fire and didn’t consider the significant noise created by the military vessels themselves. The report also focused on marine mammals and didn’t take into account the impact noise pollution also has on local populations of fish, such as salmon, and invertebrates in the area.  

Researchers say more can be done in the future to protect fish and invertebrates from noise pollution, especially as the federal government continues to develop a national plan to manage and mitigate the impacts of underwater vessel noise on marine species and their ecosystems.

“It’s important to be clear: this report is a step in the right direction. The government is developing an ocean noise strategy, so legislation on this topic is currently lacking, and activities that pertain to national security will be largely exempt from regulations. Commissioning an investigation and implementing mitigation measures is a conservation success story, one that I’m keen to see this improved upon and used in the future,” says SFU biological sciences postdoctoral fellow Kieran Cox, the lead author of the study. 

“I am hopeful that this framework can be adapted to consider all marine life and sources of noise pollution noise, which is needed as we move towards an Ocean Noise Strategy that can inform the coming decades.”

Here’s a link to and a citation for the paper,

Military training in the Canadian Pacific: Taking aim at critical habitat or sufficient mitigation of noise pollution impacts? by Kieran D. Cox, Audrey Looby, Hailey L. Davies, Kelsie A. Murchy, Brittnie Spriel, Aaron N. Rice, Francis Juanes, Isabelle M. Côté. Marine Policy Volume 160, February 2024, 105945 DOI: https://doi.org/10.1016/j.marpol.2023.105945

This paper is behind a paywall.

Everlasting dirt-powered sensors for agriculture?

Caption: The fuel cell’s 3D printed cap peeks above the ground. The cap keeps debris out of the device while enabling air flow. Credit: Bill Yen/Northwestern University

A January 12, 2024 Northwestern University news release (also received via email and also on EurekAlert both published January 15, 2024) describes this dirt-powered research from the US, Note: Links have been removed,

*New fuel cell harnesses naturally occurring microbes to generate electricity

*Soil-powered sensors to successfully monitor soil moisture and detect touch

*New tech was robust enough to withstand drier soil conditions and flooding

*Fuel cell could replace batteries in sensors used for precision agriculture

EVANSTON, Ill. — A Northwestern University-led team of researchers has developed a new fuel cell that harvests energy from microbes living in dirt. 

About the size of a standard paperback book, the completely soil-powered technology could fuel underground sensors used in precision agriculture and green infrastructure. This potentially could offer a sustainable, renewable alternative to batteries, which hold toxic, flammable chemicals that leach into the ground, are fraught with conflict-filled supply chains and contribute to the ever-growing problem of electronic waste.

To test the new fuel cell, the researchers used it to power sensors measuring soil moisture and detecting touch, a capability that could be valuable for tracking passing animals. To enable wireless communications, the researchers also equipped the soil-powered sensor with a tiny antenna to transmit data to a neighboring base station by reflecting existing radio frequency signals.

Not only did the fuel cell work in both wet and dry conditions, but its power also outlasted similar technologies by 120%.

The research will be published today (Jan. 12 [2024]) in the Proceedings of the Association for Computing Machinery on Interactive, Mobile, Wearable and Ubiquitous Technologies. The study authors also are releasing all designs, tutorials and simulation tools to the public, so others may use and build upon the research.

“The number of devices in the Internet of Things (IoT) is constantly growing,” said Northwestern alumnus Bill Yen, who led the work. “If we imagine a future with trillions of these devices, we cannot build every one of them out of lithium, heavy metals and toxins that are dangerous to the environment. We need to find alternatives that can provide low amounts of energy to power a decentralized network of devices. In a search for solutions, we looked to soil microbial fuel cells, which use special microbes to break down soil and use that low amount of energy to power sensors. As long as there is organic carbon in the soil for the microbes to break down, the fuel cell can potentially last forever.”

“These microbes are ubiquitous; they already live in soil everywhere,” said Northwestern’s George Wells, a senior author on the study. “We can use very simple engineered systems to capture their electricity. We’re not going to power entire cities with this energy. But we can capture minute amounts of energy to fuel practical, low-power applications.”

Wells is an associate professor of civil and environmental engineering at Northwestern’s McCormick School of Engineering. Now a Ph.D. student at Stanford University, Yen started this project when he was an undergraduate researcher in Wells’ laboratory.

Solutions for a dirty job

In recent years, farmers worldwide increasingly have adopted precision agriculture as a strategy to improve crop yields. The tech-driven approach relies on measuring precise levels of moisture, nutrients and contaminants in soil to make decisions that enhance crop health. This requires a widespread, dispersed network of electronic devices to continuously collect environmental data.

“If you want to put a sensor out in the wild, in a farm or in a wetland, you are constrained to putting a battery in it or harvesting solar energy,” Yen said. “Solar panels don’t work well in dirty environments because they get covered with dirt, do not work when the sun isn’t out and take up a lot of space. Batteries also are challenging because they run out of power. Farmers are not going to go around a 100-acre farm to regularly swap out batteries or dust off solar panels.”

To overcome these challenges, Wells, Yen and their collaborators wondered if they could instead harvest energy from the existing environment. “We could harvest energy from the soil that farmers are monitoring anyway,” Yen said.

‘Stymied efforts’

Making their first appearance in 1911, soil-based microbial fuel cells (MFCs) operate like a battery — with an anode, cathode and electrolyte. But instead of using chemicals to generate electricity, MFCs harvest electricity from bacteria that naturally donate electrons to nearby conductors. When these electrons flow from the anode to the cathode, it creates an electric circuit.

But in order for microbial fuel cells to operate without disruption, they need to stay hydrated and oxygenated — which is tricky when buried underground within dry dirt.

“Although MFCs have existed as a concept for more than a century, their unreliable performance and low output power have stymied efforts to make practical use of them, especially in low-moisture conditions,” Yen said.

Winning geometry

With these challenges in mind, Yen and his team embarked on a two-year journey to develop a practical, reliable soil-based MFC. His expedition included creating — and comparing — four different versions. First, the researchers collected a combined nine months of data on the performance of each design. Then, they tested their final version in an outdoor garden.

The best-performing prototype worked well in dry conditions as well as within a water-logged environment. The secret behind its success: Its geometry. Instead of using a traditional design, in which the anode and cathode are parallel to one another, the winning fuel cell leveraged a perpendicular design.

Made of carbon felt (an inexpensive, abundant conductor to capture the microbes’ electrons), the anode is horizontal to the ground’s surface. Made of an inert, conductive metal, the cathode sits vertically atop the anode. 

Although the entire device is buried, the vertical design ensures that the top end is flush with the ground’s surface. A 3D-printed cap rests on top of the device to prevent debris from falling inside. And a hole on top and an empty air chamber running alongside the cathode enable consistent airflow.  

The lower end of the cathode remains nestled deep beneath the surface, ensuring that it stays hydrated from the moist, surrounding soil — even when the surface soil dries out in the sunlight. The researchers also coated part of the cathode with waterproofing material to allow it to breathe during a flood. And, after a potential flood, the vertical design enables the cathode to dry out gradually rather than all at once.

On average, the resulting fuel cell generated 68 times more power than needed to operate its sensors. It also was robust enough to withstand large changes in soil moisture — from somewhat dry (41% water by volume) to completely underwater.

Making computing accessible

The researchers say all components for their soil-based MFC can be purchased at a local hardware store. Next, they plan to develop a soil-based MFC made from fully biodegradable materials. Both designs bypass complicated supply chains and avoid using conflict minerals.

“With the COVID-19 pandemic, we all became familiar with how a crisis can disrupt the global supply chain for electronics,” said study co-author Josiah Hester, a former Northwestern faculty member who is now at the Georgia Institute of Technology. “We want to build devices that use local supply chains and low-cost materials so that computing is accessible for all communities.”

The study, “Soil-powered computing: The engineer’s guide to practical soil microbial fuel cell design,” was supported by the National Science Foundation (award number CNS-2038853), the Agricultural and Food Research Initiative (award number 2023-67021-40628) from the USDA National Institute of Food and Agriculture, the Alfred P. Sloan Foundation, VMware Research and 3M.

Here’s a link to and a citation for the paper,

Soil-Powered Computing: The Engineer’s Guide to Practical Soil Microbial Fuel Cell Design by Bill Yen, Laura Jaliff, Louis Gutierrez, Philothei Sahinidis, Sadie Bernstein, John Madden, Stephen Taylor, Colleen Josephson, Pat Pannuto, Weitao Shuai, George Wells, Nivedita Arora, Josiah Hester. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies Volume 7 Issue 4 Article No.: 196 pp 1–40 DOI: https://doi.org/10.1145/3631410 Published: 12 January 2024

This paper is open access.

Portable and non-invasive (?) mind-reading AI (artificial intelligence) turns thoughts into text and some thoughts about the near future

First, here’s some of the latest research and if by ‘non-invasive,’ you mean that electrodes are not being planted in your brain, then this December 12, 2023 University of Technology Sydney (UTS) press release (also on EurekAlert) highlights non-invasive mind-reading AI via a brain-computer interface (BCI), Note: Links have been removed,

In a world-first, researchers from the GrapheneX-UTS Human-centric Artificial Intelligence Centre at the University of Technology Sydney (UTS) have developed a portable, non-invasive system that can decode silent thoughts and turn them into text. 

The technology could aid communication for people who are unable to speak due to illness or injury, including stroke or paralysis. It could also enable seamless communication between humans and machines, such as the operation of a bionic arm or robot.

The study has been selected as the spotlight paper at the NeurIPS conference, a top-tier annual meeting that showcases world-leading research on artificial intelligence and machine learning, held in New Orleans on 12 December 2023.

The research was led by Distinguished Professor CT Lin, Director of the GrapheneX-UTS HAI Centre, together with first author Yiqun Duan and fellow PhD candidate Jinzhou Zhou from the UTS Faculty of Engineering and IT.

In the study participants silently read passages of text while wearing a cap that recorded electrical brain activity through their scalp using an electroencephalogram (EEG). A demonstration of the technology can be seen in this video [See UTS press release].

The EEG wave is segmented into distinct units that capture specific characteristics and patterns from the human brain. This is done by an AI model called DeWave developed by the researchers. DeWave translates EEG signals into words and sentences by learning from large quantities of EEG data. 

“This research represents a pioneering effort in translating raw EEG waves directly into language, marking a significant breakthrough in the field,” said Distinguished Professor Lin.

“It is the first to incorporate discrete encoding techniques in the brain-to-text translation process, introducing an innovative approach to neural decoding. The integration with large language models is also opening new frontiers in neuroscience and AI,” he said.

Previous technology to translate brain signals to language has either required surgery to implant electrodes in the brain, such as Elon Musk’s Neuralink [emphasis mine], or scanning in an MRI machine, which is large, expensive, and difficult to use in daily life.

These methods also struggle to transform brain signals into word level segments without additional aids such as eye-tracking, which restrict the practical application of these systems. The new technology is able to be used either with or without eye-tracking.

The UTS research was carried out with 29 participants. This means it is likely to be more robust and adaptable than previous decoding technology that has only been tested on one or two individuals, because EEG waves differ between individuals. 

The use of EEG signals received through a cap, rather than from electrodes implanted in the brain, means that the signal is noisier. In terms of EEG translation however, the study reported state-of the art performance, surpassing previous benchmarks.

“The model is more adept at matching verbs than nouns. However, when it comes to nouns, we saw a tendency towards synonymous pairs rather than precise translations, such as ‘the man’ instead of ‘the author’,” said Duan. [emphases mine; synonymous, eh? what about ‘woman’ or ‘child’ instead of the ‘man’?]

“We think this is because when the brain processes these words, semantically similar words might produce similar brain wave patterns. Despite the challenges, our model yields meaningful results, aligning keywords and forming similar sentence structures,” he said.

The translation accuracy score is currently around 40% on BLEU-1. The BLEU score is a number between zero and one that measures the similarity of the machine-translated text to a set of high-quality reference translations. The researchers hope to see this improve to a level that is comparable to traditional language translation or speech recognition programs, which is closer to 90%.

The research follows on from previous brain-computer interface technology developed by UTS in association with the Australian Defence Force [ADF] that uses brainwaves to command a quadruped robot, which is demonstrated in this ADF video [See my June 13, 2023 posting, “Mind-controlled robots based on graphene: an Australian research story” for the story and embedded video].

About one month after the research announcement regarding the University of Technology Sydney’s ‘non-invasive’ brain-computer interface (BCI), I stumbled across an in-depth piece about the field of ‘non-invasive’ mind-reading research.

Neurotechnology and neurorights

Fletcher Reveley’s January 18, 2024 article on salon.com (originally published January 3, 2024 on Undark) shows how quickly the field is developing and raises concerns, Note: Links have been removed,

One afternoon in May 2020, Jerry Tang, a Ph.D. student in computer science at the University of Texas at Austin, sat staring at a cryptic string of words scrawled across his computer screen:

“I am not finished yet to start my career at twenty without having gotten my license I never have to pull out and run back to my parents to take me home.”

The sentence was jumbled and agrammatical. But to Tang, it represented a remarkable feat: A computer pulling a thought, however disjointed, from a person’s mind.

For weeks, ever since the pandemic had shuttered his university and forced his lab work online, Tang had been at home tweaking a semantic decoder — a brain-computer interface, or BCI, that generates text from brain scans. Prior to the university’s closure, study participants had been providing data to train the decoder for months, listening to hours of storytelling podcasts while a functional magnetic resonance imaging (fMRI) machine logged their brain responses. Then, the participants had listened to a new story — one that had not been used to train the algorithm — and those fMRI scans were fed into the decoder, which used GPT1, a predecessor to the ubiquitous AI chatbot ChatGPT, to spit out a text prediction of what it thought the participant had heard. For this snippet, Tang compared it to the original story:

“Although I’m twenty-three years old I don’t have my driver’s license yet and I just jumped out right when I needed to and she says well why don’t you come back to my house and I’ll give you a ride.”

The decoder was not only capturing the gist of the original, but also producing exact matches of specific words — twenty, license. When Tang shared the results with his adviser, a UT Austin neuroscientist named Alexander Huth who had been working towards building such a decoder for nearly a decade, Huth was floored. “Holy shit,” Huth recalled saying. “This is actually working.” By the fall of 2021, the scientists were testing the device with no external stimuli at all — participants simply imagined a story and the decoder spat out a recognizable, albeit somewhat hazy, description of it. “What both of those experiments kind of point to,” said Huth, “is the fact that what we’re able to read out here was really like the thoughts, like the idea.”

The scientists brimmed with excitement over the potentially life-altering medical applications of such a device — restoring communication to people with locked-in syndrome, for instance, whose near full-body paralysis made talking impossible. But just as the potential benefits of the decoder snapped into focus, so too did the thorny ethical questions posed by its use. Huth himself had been one of the three primary test subjects in the experiments, and the privacy implications of the device now seemed visceral: “Oh my god,” he recalled thinking. “We can look inside my brain.”

Huth’s reaction mirrored a longstanding concern in neuroscience and beyond: that machines might someday read people’s minds. And as BCI technology advances at a dizzying clip, that possibility and others like it — that computers of the future could alter human identities, for example, or hinder free will — have begun to seem less remote. “The loss of mental privacy, this is a fight we have to fight today,” said Rafael Yuste, a Columbia University neuroscientist. “That could be irreversible. If we lose our mental privacy, what else is there to lose? That’s it, we lose the essence of who we are.”

Spurred by these concerns, Yuste and several colleagues have launched an international movement advocating for “neurorights” — a set of five principles Yuste argues should be enshrined in law as a bulwark against potential misuse and abuse of neurotechnology. But he may be running out of time.

Reveley’s January 18, 2024 article provides fascinating context and is well worth reading if you have the time.

For my purposes, I’m focusing on ethics, Note: Links have been removed,

… as these and other advances propelled the field forward, and as his own research revealed the discomfiting vulnerability of the brain to external manipulation, Yuste found himself increasingly concerned by the scarce attention being paid to the ethics of these technologies. Even Obama’s multi-billion-dollar BRAIN Initiative, a government program designed to advance brain research, which Yuste had helped launch in 2013 and supported heartily, seemed to mostly ignore the ethical and societal consequences of the research it funded. “There was zero effort on the ethical side,” Yuste recalled.

Yuste was appointed to the rotating advisory group of the BRAIN Initiative in 2015, where he began to voice his concerns. That fall, he joined an informal working group to consider the issue. “We started to meet, and it became very evident to me that the situation was a complete disaster,” Yuste said. “There was no guidelines, no work done.” Yuste said he tried to get the group to generate a set of ethical guidelines for novel BCI technologies, but the effort soon became bogged down in bureaucracy. Frustrated, he stepped down from the committee and, together with a University of Washington bioethicist named Sara Goering, decided to independently pursue the issue. “Our aim here is not to contribute to or feed fear for doomsday scenarios,” the pair wrote in a 2016 article in Cell, “but to ensure that we are reflective and intentional as we prepare ourselves for the neurotechnological future.”

In the fall of 2017, Yuste and Goering called a meeting at the Morningside Campus of Columbia, inviting nearly 30 experts from all over the world in such fields as neurotechnology, artificial intelligence, medical ethics, and the law. By then, several other countries had launched their own versions of the BRAIN Initiative, and representatives from Australia, Canada [emphasis mine], China, Europe, Israel, South Korea, and Japan joined the Morningside gathering, along with veteran neuroethicists and prominent researchers. “We holed ourselves up for three days to study the ethical and societal consequences of neurotechnology,” Yuste said. “And we came to the conclusion that this is a human rights issue. These methods are going to be so powerful, that enable to access and manipulate mental activity, and they have to be regulated from the angle of human rights. That’s when we coined the term ‘neurorights.’”

The Morningside group, as it became known, identified four principal ethical priorities, which were later expanded by Yuste into five clearly defined neurorights: The right to mental privacy, which would ensure that brain data would be kept private and its use, sale, and commercial transfer would be strictly regulated; the right to personal identity, which would set boundaries on technologies that could disrupt one’s sense of self; the right to fair access to mental augmentation, which would ensure equality of access to mental enhancement neurotechnologies; the right of protection from bias in the development of neurotechnology algorithms; and the right to free will, which would protect an individual’s agency from manipulation by external neurotechnologies. The group published their findings in an often-cited paper in Nature.

But while Yuste and the others were focused on the ethical implications of these emerging technologies, the technologies themselves continued to barrel ahead at a feverish speed. In 2014, the first kick of the World Cup was made by a paraplegic man using a mind-controlled robotic exoskeleton. In 2016, a man fist bumped Obama using a robotic arm that allowed him to “feel” the gesture. The following year, scientists showed that electrical stimulation of the hippocampus could improve memory, paving the way for cognitive augmentation technologies. The military, long interested in BCI technologies, built a system that allowed operators to pilot three drones simultaneously, partially with their minds. Meanwhile, a confusing maelstrom of science, science-fiction, hype, innovation, and speculation swept the private sector. By 2020, over $33 billion had been invested in hundreds of neurotech companies — about seven times what the NIH [US National Institutes of Health] had envisioned for the 12-year span of the BRAIN Initiative itself.

Now back to Tang and Huth (from Reveley’s January 18, 2024 article), Note: Links have been removed,

Central to the ethical questions Huth and Tang grappled with was the fact that their decoder, unlike other language decoders developed around the same time, was non-invasive — it didn’t require its users to undergo surgery. Because of that, their technology was free from the strict regulatory oversight that governs the medical domain. (Yuste, for his part, said he believes non-invasive BCIs pose a far greater ethical challenge than invasive systems: “The non-invasive, the commercial, that’s where the battle is going to get fought.”) Huth and Tang’s decoder faced other hurdles to widespread use — namely that fMRI machines are enormous, expensive, and stationary. But perhaps, the researchers thought, there was a way to overcome that hurdle too.

The information measured by fMRI machines — blood oxygenation levels, which indicate where blood is flowing in the brain — can also be measured with another technology, functional Near-Infrared Spectroscopy, or fNIRS. Although lower resolution than fMRI, several expensive, research-grade, wearable fNIRS headsets do approach the resolution required to work with Huth and Tang’s decoder. In fact, the scientists were able to test whether their decoder would work with such devices by simply blurring their fMRI data to simulate the resolution of research-grade fNIRS. The decoded result “doesn’t get that much worse,” Huth said.

And while such research-grade devices are currently cost-prohibitive for the average consumer, more rudimentary fNIRS headsets have already hit the market. Although these devices provide far lower resolution than would be required for Huth and Tang’s decoder to work effectively, the technology is continually improving, and Huth believes it is likely that an affordable, wearable fNIRS device will someday provide high enough resolution to be used with the decoder. In fact, he is currently teaming up with scientists at Washington University to research the development of such a device.

Even comparatively primitive BCI headsets can raise pointed ethical questions when released to the public. Devices that rely on electroencephalography, or EEG, a commonplace method of measuring brain activity by detecting electrical signals, have now become widely available — and in some cases have raised alarm. In 2019, a school in Jinhua, China, drew criticism after trialing EEG headbands that monitored the concentration levels of its pupils. (The students were encouraged to compete to see who concentrated most effectively, and reports were sent to their parents.) Similarly, in 2018 the South China Morning Post reported that dozens of factories and businesses had begun using “brain surveillance devices” to monitor workers’ emotions, in the hopes of increasing productivity and improving safety. The devices “caused some discomfort and resistance in the beginning,” Jin Jia, then a brain scientist at Ningbo University, told the reporter. “After a while, they got used to the device.”

But the primary problem with even low-resolution devices is that scientists are only just beginning to understand how information is actually encoded in brain data. In the future, powerful new decoding algorithms could discover that even raw, low-resolution EEG data contains a wealth of information about a person’s mental state at the time of collection. Consequently, nobody can definitively know what they are giving away when they allow companies to collect information from their brains.

Huth and Tang concluded that brain data, therefore, should be closely guarded, especially in the realm of consumer products. In an article on Medium from last April, Tang wrote that “decoding technology is continually improving, and the information that could be decoded from a brain scan a year from now may be very different from what can be decoded today. It is crucial that companies are transparent about what they intend to do with brain data and take measures to ensure that brain data is carefully protected.” (Yuste said the Neurorights Foundation recently surveyed the user agreements of 30 neurotech companies and found that all of them claim ownership of users’ brain data — and most assert the right to sell that data to third parties. [emphases mine]) Despite these concerns, however, Huth and Tang maintained that the potential benefits of these technologies outweighed their risks, provided the proper guardrails [emphasis mine] were put in place.

It would seem the first guardrails are being set up in South America (from Reveley’s January 18, 2024 article), Note: Links have been removed,

On a hot summer night in 2019, Yuste sat in the courtyard of an adobe hotel in the north of Chile with his close friend, the prominent Chilean doctor and then-senator Guido Girardi, observing the vast, luminous skies of the Atacama Desert and discussing, as they often did, the world of tomorrow. Girardi, who every year organizes the Congreso Futuro, Latin America’s preeminent science and technology event, had long been intrigued by the accelerating advance of technology and its paradigm-shifting impact on society — “living in the world at the speed of light,” as he called it. Yuste had been a frequent speaker at the conference, and the two men shared a conviction that scientists were birthing technologies powerful enough to disrupt the very notion of what it meant to be human.

Around midnight, as Yuste finished his pisco sour, Girardi made an intriguing proposal: What if they worked together to pass an amendment to Chile’s constitution, one that would enshrine protections for mental privacy as an inviolable right of every Chilean? It was an ambitious idea, but Girardi had experience moving bold pieces of legislation through the senate; years earlier he had spearheaded Chile’s famous Food Labeling and Advertising Law, which required companies to affix health warning labels on junk food. (The law has since inspired dozens of countries to pursue similar legislation.) With BCI, here was another chance to be a trailblazer. “I said to Rafael, ‘Well, why don’t we create the first neuro data protection law?’” Girardi recalled. Yuste readily agreed.

… Girardi led the political push, promoting a piece of legislation that would amend Chile’s constitution to protect mental privacy. The effort found surprising purchase across the political spectrum, a remarkable feat in a country famous for its political polarization. In 2021, Chile’s congress unanimously passed the constitutional amendment, which Piñera [Sebastián Piñera] swiftly signed into law. (A second piece of legislation, which would establish a regulatory framework for neurotechnology, is currently under consideration by Chile’s congress.) “There was no divide between the left or right,” recalled Girardi. “This was maybe the only law in Chile that was approved by unanimous vote.” Chile, then, had become the first country in the world to enshrine “neurorights” in its legal code.

Even before the passage of the Chilean constitutional amendment, Yuste had begun meeting regularly with Jared Genser, an international human rights lawyer who had represented such high-profile clients as Desmond Tutu, Liu Xiaobo, and Aung San Suu Kyi. (The New York Times Magazine once referred to Genser as “the extractor” for his work with political prisoners.) Yuste was seeking guidance on how to develop an international legal framework to protect neurorights, and Genser, though he had just a cursory knowledge of neurotechnology, was immediately captivated by the topic. “It’s fair to say he blew my mind in the first hour of discussion,” recalled Genser. Soon thereafter, Yuste, Genser, and a private-sector entrepreneur named Jamie Daves launched the Neurorights Foundation, a nonprofit whose first goal, according to its website, is “to protect the human rights of all people from the potential misuse or abuse of neurotechnology.”

To accomplish this, the organization has sought to engage all levels of society, from the United Nations and regional governing bodies like the Organization of American States, down to national governments, the tech industry, scientists, and the public at large. Such a wide-ranging approach, said Genser, “is perhaps insanity on our part, or grandiosity. But nonetheless, you know, it’s definitely the Wild West as it comes to talking about these issues globally, because so few people know about where things are, where they’re heading, and what is necessary.”

This general lack of knowledge about neurotech, in all strata of society, has largely placed Yuste in the role of global educator — he has met several times with U.N. Secretary-General António Guterres, for example, to discuss the potential dangers of emerging neurotech. And these efforts are starting to yield results. Guterres’s 2021 report, “Our Common Agenda,” which sets forth goals for future international cooperation, urges “updating or clarifying our application of human rights frameworks and standards to address frontier issues,” such as “neuro-technology.” Genser attributes the inclusion of this language in the report to Yuste’s advocacy efforts.

But updating international human rights law is difficult, and even within the Neurorights Foundation there are differences of opinion regarding the most effective approach. For Yuste, the ideal solution would be the creation of a new international agency, akin to the International Atomic Energy Agency — but for neurorights. “My dream would be to have an international convention about neurotechnology, just like we had one about atomic energy and about certain things, with its own treaty,” he said. “And maybe an agency that would essentially supervise the world’s efforts in neurotechnology.”

Genser, however, believes that a new treaty is unnecessary, and that neurorights can be codified most effectively by extending interpretation of existing international human rights law to include them. The International Covenant of Civil and Political Rights, for example, already ensures the general right to privacy, and an updated interpretation of the law could conceivably clarify that that clause extends to mental privacy as well.

There is no need for immediate panic (from Reveley’s January 18, 2024 article),

… while Yuste and the others continue to grapple with the complexities of international and national law, Huth and Tang have found that, for their decoder at least, the greatest privacy guardrails come not from external institutions but rather from something much closer to home — the human mind itself. Following the initial success of their decoder, as the pair read widely about the ethical implications of such a technology, they began to think of ways to assess the boundaries of the decoder’s capabilities. “We wanted to test a couple kind of principles of mental privacy,” said Huth. Simply put, they wanted to know if the decoder could be resisted.

In late 2021, the scientists began to run new experiments. First, they were curious if an algorithm trained on one person could be used on another. They found that it could not — the decoder’s efficacy depended on many hours of individualized training. Next, they tested whether the decoder could be thrown off simply by refusing to cooperate with it. Instead of focusing on the story that was playing through their headphones while inside the fMRI machine, participants were asked to complete other mental tasks, such as naming random animals, or telling a different story in their head. “Both of those rendered it completely unusable,” Huth said. “We didn’t decode the story they were listening to, and we couldn’t decode anything about what they were thinking either.”

Given how quickly this field of research is progressing, it seems like a good idea to increase efforts to establish neurorights (from Reveley’s January 18, 2024 article),

For Yuste, however, technologies like Huth and Tang’s decoder may only mark the beginning of a mind-boggling new chapter in human history, one in which the line between human brains and computers will be radically redrawn — or erased completely. A future is conceivable, he said, where humans and computers fuse permanently, leading to the emergence of technologically augmented cyborgs. “When this tsunami hits us I would say it’s not likely it’s for sure that humans will end up transforming themselves — ourselves — into maybe a hybrid species,” Yuste said. He is now focused on preparing for this future.

In the last several years, Yuste has traveled to multiple countries, meeting with a wide assortment of politicians, supreme court justices, U.N. committee members, and heads of state. And his advocacy is beginning to yield results. In August, Mexico began considering a constitutional reform that would establish the right to mental privacy. Brazil is currently considering a similar proposal, while Spain, Argentina, and Uruguay have also expressed interest, as has the European Union. In September [2023], neurorights were officially incorporated into Mexico’s digital rights charter, while in Chile, a landmark Supreme Court ruling found that Emotiv Inc, a company that makes a wearable EEG headset, violated Chile’s newly minted mental privacy law. That suit was brought by Yuste’s friend and collaborator, Guido Girardi.

“This is something that we should take seriously,” he [Huth] said. “Because even if it’s rudimentary right now, where is that going to be in five years? What was possible five years ago? What’s possible now? Where’s it gonna be in five years? Where’s it gonna be in 10 years? I think the range of reasonable possibilities includes things that are — I don’t want to say like scary enough — but like dystopian enough that I think it’s certainly a time for us to think about this.”

You can find The Neurorights Foundation here and/or read Reveley’s January 18, 2024 article on salon.com or as originally published January 3, 2024 on Undark. Finally, thank you for the article, Fletcher Reveley!