Category Archives: nanotechnology

A graphene-inorganic-hybrid micro-supercapacitor made of fallen leaves

I wonder if this means the end to leaf blowers. That is almost certainly wishful thinking as the researchers don’t seem to be concerned with how the leaves are gathered.

The schematic illustration of the production of femtosecond laser-induced graphene. Courtesy of KAIST

A January 27, 2022 news item on Nanowerk announces the work (Note: A link has been removed),

A KAIST [Korea Advanced Institute of Science and Technology] research team has developed graphene-inorganic-hybrid micro-supercapacitors made of fallen leaves using femtosecond laser direct laser writing (Advanced Functional Materials, “Green Flexible Graphene-Inorganic-Hybrid Micro-Supercapacitors Made of Fallen Leaves Enabled by Ultrafast Laser Pulses”).

A January 27, 2022 KAIST press release (also on EurekAlert but published January 26, 2022), which originated the news item, delves further into the research,

The rapid development of wearable electronics requires breakthrough innovations in flexible energy storage devices in which micro-supercapacitors have drawn a great deal of interest due to their high power density, long lifetimes, and short charging times. Recently, there has been an enormous increase in waste batteries owing to the growing demand and the shortened replacement cycle in consumer electronics. The safety and environmental issues involved in the collection, recycling, and processing of such waste batteries are creating a number of challenges.

Forests cover about 30 percent of the Earth’s surface and produce a huge amount of fallen leaves. This naturally occurring biomass comes in large quantities and is completely biodegradable, which makes it an attractive sustainable resource. Nevertheless, if the fallen leaves are left neglected instead of being used efficiently, they can contribute to fire hazards, air pollution, and global warming.

To solve both problems at once, a research team led by Professor Young-Jin Kim from the Department of Mechanical Engineering and Dr. Hana Yoon from the Korea Institute of Energy Research developed a novel technology that can create 3D porous graphene microelectrodes with high electrical conductivity by irradiating femtosecond laser pulses on the leaves in ambient air. This one-step fabrication does not require any additional materials or pre-treatment. 

They showed that this technique could quickly and easily produce porous graphene electrodes at a low price, and demonstrated potential applications by fabricating graphene micro-supercapacitors to power an LED and an electronic watch. These results open up a new possibility for the mass production of flexible and green graphene-based electronic devices.

Professor Young-Jin Kim said, “Leaves create forest biomass that comes in unmanageable quantities, so using them for next-generation energy storage devices makes it possible for us to reuse waste resources, thereby establishing a virtuous cycle.” 

This research was published in Advanced Functional Materials last month and was sponsored by the Ministry of Agriculture Food and Rural Affairs, the Korea Forest Service, and the Korea Institute of Energy Research.

Here’s a link to and a citation for the paper,

Green Flexible Graphene–Inorganic-Hybrid Micro-Supercapacitors Made of Fallen Leaves Enabled by Ultrafast Laser Pulses by Truong-Son Dinh Le, Yeong A. Lee, Han Ku Nam, Kyu Yeon Jang, Dongwook Yang, Byunggi Kim, Kanghoon Yim, Seung-Woo Kim, Hana Yoon, Young-Jin Kim. Advanced Functional Materials DOI: https://doi.org/10.1002/adfm.202107768 First published: 05 December 2021

This paper is behind a paywall.

Art appraised by algorithm

Artificial intelligence has been introduced to art appraisals and auctions by way of an academic research project. A January 27, 2022 University of Luxembourg press release (also on EurekAlert but published February 2, 2022) announces the research, Note: Links have been removed,

Does artificial intelligence have a place in such a fickle and quirky environment as the secondary art market? Can an algorithm learn to predict the value assigned to an artwork at auction?

These questions, among others, were analysed by a group of researchers including Roman Kräussl, professor at the Department of Finance at the University of Luxembourg and co-authors Mathieu Aubry (École des Ponts ParisTech), Gustavo Manso (Haas School of Business, University of California at Berkeley), and Christophe Spaenjers (HEC Paris). The resulting paper, Biased Auctioneers, has been accepted for publication in the top-ranked Journal of Finance.

Training a neural network to appraise art 

In this study, which combines fields of finance and computer science, researchers used machine learning and artificial intelligence to create a neural network algorithm that mimics the work of human appraisers by generating price predictions for art at auction. This algorithm relies on data using both visual and non-visual characteristics of artwork. The authors of this study unleashed their algorithm on a vast set of art sales data capturing 1.2 million painting auctions from 2008 to 2014, training the neural network with both an image of the artwork, and information such as the artist, the medium and the auction house where the work was sold. Once trained to this dataset, the authors asked the neural network to predict the auction house pre-sale estimates, ‘buy-in’ price (the minimum price at which the work will be sold), as well as the final auction price for art sales in the year 2015. It became then possible to compare the algorithm’s estimate with the real-word data, and determine whether the relative level of the machine-generated price predictions predicts relative price outcomes.

The path towards a more efficient market?

Not too surprisingly, the human experts’ predications [sic] were more accurate than the algorithm, whose prediction, in turn, was more accurate than the standard linear hedonic model which researchers used to benchmark the study. Reasons for the discrepancy between human and machine include, as the authors argue, mainly access to a larger amount of information about the individual works of art including provenance, condition and historical context. Although interesting, the authors’ goal was not to pit human against machine on this specific task. On the contrary, the authors aimed at discovering the usefulness and potential applications of machine-based valuations. For example, using such an algorithm, it may be possible to determine whether an auctioneer’s pre-sale valuations are too pessimistic or too optimistic, effectively predicting the prediction errors of the auctioneers. Ultimately, this information could be used to correct for these kinds of man-made market inefficiencies.

Beyond the auction block

The implications of this methodology and the applied computational power, however, is not limited to the art world. Other markets trading in ‘real’ assets, which rely heavily on human appraisers, namely the real estate market, can benefit from the research. While AI is not likely to replace humans just yet, machine-learning technology as demonstrated by the researchers may become an important tool for investors and intermediaries, who wish to gain access to as much information, as quickly and as cheaply as possible.

Here’s a link to and a citation for the paper,

Biased Auctioneers by Mathieu Aubry, Roman Kräussl, Gustavo Manso, and Christophe Spaenjers. Journal of Finance, Forthcoming [print issue], Available at SSRN: https://ssrn.com/abstract=3347175 or http://dx.doi.org/10.2139/ssrn.3347175 Published online: January 6, 2022

This paper appears to be open access online and was last revised on January 13, 2022.

Can you make my nose more like a camel’s?

Camel Face Close Up [downloaded from https://www.asergeev.com/php/searchph/links.php?keywords=Camel_close_up]

I love that image which I found on Alexey Sergeev’s Camel Close Up webpage on his eponymous website. It turns out the photographer is in the Department of Mathematics at Texas A&M University. Thank you Mr. Sergeev.

A January 19, 2022 news item on Nanowerk describes research inspired by a camel’s nose, Note: A link has been removed,

Camels have a renowned ability to survive on little water. They are also adept at finding something to drink in the vast desert, using noses that are exquisite moisture detectors.

In a new study in ACS [American Chemical Society] Nano (“A Camel Nose-Inspired Highly Durable Neuromorphic Humidity Sensor with Water Source Locating Capability”), researchers describe a humidity sensor inspired by the structure and properties of camels’ noses. In experiments, they found this device could reliably detect variations in humidity in settings that included industrial exhaust and the air surrounding human skin.

A January 19, 2022 ACS news release (also on EurekAlert), which originated the news item, describes the work in more detail,

Humans sometimes need to determine the presence of moisture in the air, but people aren’t quite as skilled as camels at sensing water with their noses. Instead, people must use devices to locate water in arid environments, or to identify leaks or analyze exhaust in industrial facilities. However, currently available sensors all have significant drawbacks. Some devices may be durable, for example, but have a low sensitivity to the presence of water. Meanwhile, sunlight can interfere with some highly sensitive detectors, making them difficult to use outdoors, for example. To devise a durable, intelligent sensor that can detect even low levels of airborne water molecules, Weiguo Huang, Jian Song, and their colleagues looked to camels’ noses. 

Narrow, scroll-like passages within a camel’s nose create a large surface area, which is lined with water-absorbing mucus. To mimic the high-surface-area structure within the nose, the team created a porous polymer network. On it, they placed moisture-attracting molecules called zwitterions to simulate the property of mucus to change capacitance as humidity varies. In experiments, the device was durable and could monitor fluctuations in humidity in hot industrial exhaust, find the location of a water source and sense moisture emanating from the human body. Not only did the sensor respond to changes in a person’s skin perspiration as they exercised, it detected the presence of a human finger and could even follow its path in a V or L shape. This sensitivity suggests that the device could become the basis for a touchless interface through which someone could communicate with a computer, according to the researchers. What’s more, the sensor’s electrical response to moisture can be tuned or adjusted, much like the signals sent out by human neurons — potentially allowing it to learn via artificial intelligence, they say. 

The authors acknowledge funding from the Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, the Natural Science Foundation of Fujian Province, and the National Natural Science Foundation of China.

Here’s a link to and a citation for the paper,

A Camel Nose-Inspired Highly Durable Neuromorphic Humidity Sensor with Water Source Locating Capability by Caicong Li, Jie Liu, Hailong Peng, Yuan Sui, Jian Song, Yang Liu, Wei Huang, Xiaowei Chen, Jinghui Shen, Yao Ling, Chongyu Huang, Youwei Hong, and Weiguo Huang. ACS Nano 2022, 16, 1, 1511–1522 DOI: https://doi.org/10.1021/acsnano.1c10004 Publication Date:December 15, 2021 Copyright © 2021 American Chemical Society

This paper is behind a paywall.

Entropic bonding for nanoparticle crystals

A January 19, 2022 University of Michigan news release (also on EurekAlert) is written in a Q&A (question and answer style) not usually seen on news releases, Note: Links have been removed),

Turns out entropy binds nanoparticles a lot like electrons bind chemical crystals

ANN ARBOR—Entropy, a physical property often explained as “disorder,” is revealed as a creator of order with a new bonding theory developed at the University of Michigan and published in the Proceedings of the National Academy of Sciences [PNAS]. 

Engineers dream of using nanoparticles to build designer materials, and the new theory can help guide efforts to make nanoparticles assemble into useful structures. The theory explains earlier results exploring the formation of crystal structures by space-restricted nanoparticles, enabling entropy to be quantified and harnessed in future efforts. 

And curiously, the set of equations that govern nanoparticle interactions due to entropy mirror those that describe chemical bonding. Sharon Glotzer, the Anthony C. Lembke Department Chair of Chemical Engineering, and Thi Vo, a postdoctoral researcher in chemical engineering, answered some questions about their new theory.

What is entropic bonding?

Glotzer: Entropic bonding is a way of explaining how nanoparticles interact to form crystal structures. It’s analogous to the chemical bonds formed by atoms. But unlike atoms, there aren’t electron interactions holding these nanoparticles together. Instead, the attraction arises because of entropy. 

Oftentimes, entropy is associated with disorder, but it’s really about options. When nanoparticles are crowded together and options are limited, it turns out that the most likely arrangement of nanoparticles can be a particular crystal structure. That structure gives the system the most options, and thus the highest entropy. Large entropic forces arise when the particles become close to one another. 

By doing the most extensive studies of particle shapes and the crystals they form, my group found that as you change the shape, you change the directionality of those entropic forces that guide the formation of these crystal structures. That directionality simulates a bond, and since it’s driven by entropy, we call it entropic bonding.

Why is this important?

Glotzer: Entropy’s contribution to creating order is often overlooked when designing nanoparticles for self-assembly, but that’s a mistake. If entropy is helping your system organize itself, you may not need to engineer explicit attraction between particles—for example, using DNA or other sticky molecules—with as strong an interaction as you thought. With our new theory, we can calculate the strength of those entropic bonds.

While we’ve known that entropic interactions can be directional like bonds, our breakthrough is that we can describe those bonds with a theory that line-for-line matches the theory that you would write down for electron interactions in actual chemical bonds. That’s profound. I’m amazed that it’s even possible to do that. Mathematically speaking, it puts chemical bonds and entropic bonds on the same footing. This is both fundamentally important for our understanding of matter and practically important for making new materials.

Electrons are the key to those chemical equations though. How did you do this when no particles mediate the interactions between your nanoparticles?

Glotzer: Entropy is related to the free space in the system, but for years I didn’t know how to count that space. Thi’s big insight was that we could count that space using fictitious point particles. And that gave us the mathematical analogue of the electrons.

Vo: The pseudoparticles move around the system and fill in the spaces that are hard for another nanoparticle to fill—we call this the excluded volume around each nanoparticle. As the nanoparticles become more ordered, the excluded volume around them becomes smaller, and the concentration of pseudoparticles in those regions increases. The entropic bonds are where that concentration is highest. 

In crowded conditions, the entropy lost by increasing the order is outweighed by the entropy gained by shrinking the excluded volume. As a result, the configuration with the highest entropy will be the one where pseudoparticles occupy the least space.

The research is funded by the Simons Foundation, Office of Naval Research, and the Office of the Undersecretary of Defense for Research and Engineering. It relied on the computing resources of the National Science Foundation’s Extreme Science and Engineering Discovery Environment. Glotzer is also the John Werner Cahn Distinguished University Professor of Engineering, the Stuart W. Churchill Collegiate Professor of Chemical Engineering, and a professor of material science and engineering, macromolecular science and engineering, and physics at U-M.

Here’s a link to and a citation for the paper,

A theory of entropic bonding by Thi Vo and Sharon C. Glotzer. PNAS January 25, 2022 119 (4) e2116414119 DOI: https://doi.org/10.1073/pnas.2116414119

This paper is behind a paywall.

Hydrogen In Motion (H2M), its solid state hydrogen storage nanomaterial, and running for Vancouver (Canada) City Council?

Vancouver city politics don’t usually feature here. but this June 13 ,2022 article by Kenneth Chan for the Daily Hive suggests that might be changing,

Colleen Hardwick’s TEAM for a Livable Vancouver party has officially nominated six candidates to fill Vancouver city councillor seats in the upcoming civic election.

….

Grace Quan is a co-founder and the head of Hydrogen In Motion, which specializes in developing a nanomaterial to store hydrogen [emphasis mine]. She previously worked for the Canadian International Development Agency and in the Foreign Service and served as a senior advisor to the CFO of the Treasury Board of Canada.

There’s not a lot of detail in the description which is reasonable considering five other candidates were being announced.

Since this blog is focused on nanotechnology and other emerging technologies, the word ‘nanomaterial’ popped out. Its use in the candidate’s description is close to meaningless, similar to saying that your storage container is made from a material. In this case, the material (presumably) is exploiting advantages found at the nanoscale. As for Quan, the work experience cited highlights experience working in government agencies but doesn’t include any technology development.

My main interest is the technology followed by the business aspects. As for why Quan is running for political office and how she will find the time; I can only offer speculation.

Hydrogen in Motion’s storage technology

Obviously the place to look is the Hydrogen in Motion (H2M) website. Descriptions of their technology are vague (from the company’s Hydrogen page),

Hydrogen In Motion solution is leading a breakthrough in solid state hydrogen storage nanomaterial. H2M hydrogen storage redefines the use of hydrogen fuel technologies and simplifying its logistical applications. Our technology offers hydrogen energy solution that has positive economic and environmental impact and provides an infinite source of constant energy with no emissions, low cost commitment and versatility with compact storage. Our technology solution has resolved the constraints currently burdening the hydrogen economy, making it the most viable solution for commercialization of future clean energy.

Which nanomaterial(s) are they using? Carbon nanotubes, graphene, gold nanoparticles, borophene, perovskite, fullerenes, etc.? The company’s Products page offers a little more information and some diagrams,

H2M fuel cell technology is well-adapted for a wide range of applications, from nomadic to stationary, enabling for easy transition to emission free systems. As the H2M nanomaterial is conformable, H2M hydrogen storage containers can be shaped to meet the application requirements; from extending flight duration for drones to grid scale renewable energy storage for solar, wind, and wave. H2M is the most effective Hydrogen storage ever designed.

There are no product names nor pictures of products other than this, which is in the banner,

[downloaded from https://www.hydrogeninmotion.com/products/]

No names, no branding, no product specifications.

Unusually for a startup, neither member of the executive team seems to have been the scientist who developed or is developing the nanomaterial for this technology. Also unusual, there’s not a scientific advisory board. Grace Quan has credentials as a Certified Public Accountant (CPA) and holds a Master of Business Administration (MB). Plus there’s this from the About Us page,

Grace has over 25 years of experience spanning a wealth of sectors including government – Federal Government of Canada, the Provincial Government (Minister’s Office) of Alberta; Academia – University of British Columbia, and Management of a Flying School; Not-for-Profit / Research Funding Agency – Genome British Columbia; and private sector with various management positions. Grace is well positioned to lead H2M in navigating the complicated world of Federal and Provincial politics and program funding requirements. At the same time Grace’s skills and expertise in the private sector will be invaluable in providing strategic direction in the marketing, finance, human resource, and production domains.

The other member of the executive team, Mark Cannon, the chief technical officer, has a Master of Science and a Bachelor of Mathematics. Plus there’s this from the About Us page,

Mark has over thirty years of experience commercializing academic developments, covering such diverse fields as: real time vision analysis, electromagnetic measurement and simulation, Computer Aided Design of printed circuit boards and microchips, custom integrated semiconductor chips for encryption, optical fibre signal measurement and recovery, and building energy management systems. He has worked at major research and development companies such as Systemhouse, Bell-Northern Research (later absorbed by Nortel), and Cadence Design Systems. Mark is very familiar with technology startups, the exigencies of entrepreneurship, and the business cycle of introducing new products into the market having cofounded two successful start-ups: Unicad Inc. (bought by Cooper & Chyan Technologies) and Viewnyx Corporation. He has also held key roles in two other start-ups, Chrysalis ITS and Optovation Inc.

His experience seems almost entirely focused on electronics and optics. It’s not clear to me how this experience is transferable to hydrogen storage and nanomaterials. (As well, his TechCrunch profile lists him as having founded one company rather than the three listed in his company’s profile.)

The company’s R&D page offers an overview of the process, the skills needed to conduct the research, and some quite interesting details about hydrogen storage but no scientific papers,

Conceive/Improve Theoretical Modelling

The theoretical team uses physical chemical theory starting at the quantum level using density functional theory (DFT) to model material composed of the elements that provide a structure and attract hydrogen. Once the theoretical material has been tested on that scale, further models are built using Molecular dynamics, thermodynamic modeling and finally computational fluid dynamic modeling. The team continuously provide support by modeling the different stages of synthesis to determine the optimal parameters required to achieve the correct synthesis.

Material Synthesis

The synthesis team uses a variety of chemical and physical state alteration techniques to synthesize the desired material. Series of experiments are devised to build the desired material usually one stage at a time. Usually a series of experiments are planned to determine key synthesis parameters that effect the material. Once a base material is completed, a series of experiments is devised and repeated to bring it to the next stage.

Characterization

Test Hydrogen Absorption & Desorption

Ultimately, the material’s performance is based on the results from the H2MS hydrogen measurement system. Once a material has been successfully synthesized and validated using the H2MS, multiple measurements are made at different temperatures for multiple cycles. This validates the robustness, operating range, and re-usability of the hydrogen storage material. For our first material [emphasis mine], a scale up plan is being developed. Moving from laboratory scale to manufacturing scale [emphasis mine] introduces several challenges in the synthesis of material. This includes equipment selection, fluid and thermal dynamic effects at a larger scale, reaction kinetics, chemical equilibrium and of course, cost.

At what stage is this company?

The business

There are a couple of promising business developments. First, there’s a September 1, 2021 Hydrogen in Motion news release (Note: Links have been removed),

Loop Energy (TSX: LPEN), a developer and manufacturer of hydrogen fuel cell-based solutions, and Hydrogen In Motion (H2M), a leading provider of solid state hydrogen storage, announce their plans to collaborate on converting  a Southern Railway of BC owned and operated diesel electric switcher locomotive to hydrogen electric.

The two British Columbia-based companies will use locally developed technology, including Loop Energy’s 50kw eFlow™ fuel cell system and a low pressure solid state hydrogen storage tank developed by H2M. The project signifies the first instance of Loop supplying its products for use in a rail transport application.

“This is an exciting phase for the hydrogen fuel cell industry as this proves that it is technically and economically feasible to convert diesel-powered switcher locomotives to hydrogen fuel cell-based power systems,” said Grace Quan, CEO of Hydrogen-in-Motion. “The introduction of a hydrogen infrastructure into railyards reduces air contaminants and greenhouse gases and brings clean technologies, job growth and innovation to local communities.”

A few months before, a July 30, 2021 Hydrogen in Motion news release announced an international deal,

Hydrogen In Motion (H2M) announced a collaboration with H2e Power [h2e Power Systems] out of Pune, India for a project to assess, design, install and demonstrate a hydrogen fuel cell 3-Wheeler using H2e PEM Fuel Cell integrated with Hydrogen In Motion’s innovative solid state hydrogen storage technology onboard. This Indo-Canadian collaboration leverages the zero emission and hydrogen strategies released in India and Canada. Hydrogen In Motion is receiving advisory services and up to $600,000 in funding support for this project through the Canadian International Innovation Program (CIIP). CIIP is a funding program offered by Global Affairs Canada [emphasis mine] and is delivered in collaboration with the National Research Council of Canada Industrial Research Assistance Program (NRC IRAP). Respectively in India, H2e’s contributions towards this collaboration are supported by the Department of Science & Technology (DST) in collaboration with Global Innovation and Technology Alliance (GITA).

About This Project – This project will install a hydrogen fuel cell range extender using H2M low pressure hydrogen storage tanks on an electric powered three-wheeled auto rickshaw. Project goal is to significantly extend operational range and provide auxiliary power for home use when not in service.

The lack of scientific papers about the company’s technology is a little concerning. It’s not unheard of but combined with not identifying the scientist/inventor who developed the technology or identifying the source for the technology (in Canada, it’s almost always a university), or giving details about the technology or giving product details or noting that their products are being beta tested (?) in two countries India and Canada, or information about funding (where do they get their money?), or having a scientific advisory board, raises questions. The answer may be simple. They don’t place much value on keeping their website up to date as they are busy.

I did find some company details on the Companies of Canada.com website,

Hydrogen In Motion Inc. (H2M) is a company from Vancouver BC Canada. The company has corporate status: Active.

This business was incorporated 8 years ago on 8th January 2014

Hydrogen In Motion Inc. (H2M) is governed under the Canada Business Corporations Act – 2014-01-08. It a company of type: Non-distributing corporation with 50 or fewer shareholders.

The date of the company’s last Annual Meeting is 2021-01-01. The status of its annual filings are: 2021 -Filed, 2020 -Filed, 2019 -Filed.

Kona Equity offers an analysis (from the second quarter of 2019 to the fourth quarter of 2020),

Hydrogen In Motion

Founded in 2014

Strengths

There are no known strengths for Hydrogen In Motion

Weaknesses

Hydrogen In Motion has a very small market share in their industry

Revenue generated per employee is less than the industry average

Revenue growth is less than the industry average

The number of employees is not growing as fast as the industry average

Variance of revenue growth is more than the industry average

7 employees

Employee growth rate from first known quarter to current -69.6%

I’d love to see a more recent analysis taking into account the 2021 business deals.

It’s impossible to tell when this job was posted but it provides some interesting insight, All the emphases are mine,

We are looking for an accomplished Chemical Process Engineer to lead our nanomaterial and carbon-rich material production, development and scale-up efforts. The holder of this position will be responsible for leading a team of engineers and technicians in the designing, developing and optimizing of process unit operations to provide high quality nanomaterials at various scales ranging from Research and Development to Commercial Manufacturing with good manufacturing practices (cGMP). The successful candidate is expected to independently strategize, analyze, design and control product scale-up to meet volume and quality demands.

Finally, there’s a chemical engineer or two. Plus, according to the company’s LinkedIn profile, there’s a theoretical physicist, Andrey Tokarev. Two locations are listed for Hydrogen in Motion, the Cordova St. office and something at 12388 88 Ave, Surrey. The company size is listed at 11 to 50 employees.

Grace Quan is good at getting government support for her company as this February 2019 story on the Government of Canada website shows,

Mark Cannon, Hydrogen in Motion CTO, Quak Foo Lee, chemical engineer, Angus Hui, co-op student, Dr. Pei Pei, research associate, Grace Quan, CEO, Sahida Kureshi PhD Candidate, and Dr. Andrey Tokerav, theoretical physicist. [downloaded from https://www.international.gc.ca/world-monde/stories-histoires/2019/CPTPP-hydrogen.aspx?lang=eng]

Canada in Asia-Pacific

Trade diversification | February 2019

Grace Quan’s goal is to deliver hydrogen around the world to help the environment and address climate change.

Quan is the CEO of Vancouver-based Hydrogen in Motion, a clean-tech company leading the way in hydrogen storage.

The number one problem with hydrogen is how to store it, which is why Quan founded Hydrogen in Motion. She set out to find a way to get hydrogen to people around the world.

Quan’s company has figured out how to do this. By using a material that soaks up hydrogen like a sponge, more of it can be stored at a lower pressure and at lower cost.

In the future, clean energy, including hydrogen, should become the method of choice to power anything that requires gas or electricity. For example, vehicles, snow blowers and drones could be powered by hydrogen in the future. Hydrogen is an infinite source of clean energy that can lessen the environmental impact from other sources of energy.

Thanks to the Comprehensive and Progressive Agreement for Trans-Pacific Partnership (CPTPP), Quan says she can explore new markets in the Asia-Pacific region for hydrogen export.

Japan is a new market that Quan’s company will explore as a result of the CPTPP. There’s a lot of opportunity there, with Tokyo hosting the 2020 Olympics, which are expected to be powered by hydrogen.

Quan recently returned from a trade mission to India [emphasis mine], where local trade commissioners helped her set up a meeting with a major auto maker.

In 2020, Hydrogen in Motion was a ‘success story‘ for Canada’s Scientific Research and Experimental Development (SR&ED) Tax Incentive Program (Note: A link has been removed),

H2M was selected for the free in-person First-time claimant advisory service when filing its first scientific research and experimental development (SR&ED) claim. Since then, the SR&ED tax incentives have had a significant impact on the company’s work. The company is not only thankful for the program’s funding, but also to the SR&ED staff for their hard work and assistance, especially during the pandemic.

The company’s Chief Executive Officer, Grace Quan, had the following comments:

“In the context of COVID-19 shutdowns and general business disruption, the SR&ED tax incentives have become a critical source of funds as other sources were put on hold due to the pandemic and the financial uncertainty of the times. I wish to express my extreme gratitude for the consideration, efforts and support, as well as thanks, to the Canadian government, the SR&ED Program and its staff for their compassionate and empathetic treatment of individuals and businesses. The staff was friendly, professional, prompt and went above and beyond to help a small business like Hydrogen In Motion. They were a pleasure to work with and were extremely effective in problem resolution and facilitating processing of our SR&ED refund to provide much needed cash flow during these difficult times.”

As you might expect from someone running for political office, Quan is good at promoting herself. From her Advisory Board profile page for the Vancouver Economic Commission,

As President & CEO of Hydrogen In Motion Inc. (H2M), Grace brings fiduciary accountability and strategic vision to the table with her CPA/CMA [certified management accountant] and MBA credentials. Grace has a vast range of financial and managerial experience in private and public sectors from managing a Flying School, to working in a Provincial Minister’s office, to helping to manage the $250 billion dollar budget for the Treasury Board Secretariat of the Government of Canada. 

In 2018 Grace Quan, CEO was recognized by BC Business magazine as one of the 50 Most Influential Women In STEM. [emphasis mine]

July 28, 2021 it was announced that Quan became a member of the World Hydrogen Advisory Board of the Sustainable Energy Council (UK).

Speculating about a political candidate

Grace Quan’s electoral run seems like odd timing. If your company just signed two deals less than a year ago during what seems to be an upswing in its business affairs then running for office (an almost full time job in itself) as a city councillor (a full time job, should you be elected) is an unexpected move from someone with no experience in public office.

Another surprising thing? The British Columbia Centre for Innovation and Clean Energy (CICE) announced a new consortium according to a Techcouver.com June 9, 2022 news item (about four days before the announcement of Quan’s political candidacy on the Daily Hive),

The British Columbia Centre for Innovation and Clean Energy (CICE) is partnering with businesses and government organizations to drive B.C.’s low-carbon hydrogen economy forward, with the launch of the B.C. Hydrogen Changemakers Consortium (BCHCC).

The partnership was announced at last night’s official Consortium launch event hosted by CICE and attended by leading B.C. hydrogen players, investors, and government officials. The Consortium launch is part of CICE’s previously announced Hydrogen Blueprint Investment, which will lay a foundation for the establishment of a hydrogen hub in Metro Vancouver, co-locating hydrogen supply and demand.

The group is expected to grow as projects and collaborations increase. To date, the Consortium members include: Ballard Power Systems, Capilano Maritime Design Ltd., Climate Action Secretariat, Fort Capital, FortisBC, Geazone Eco-Courier, Hydra Energy, HTEC, Innovative Clean Energy Fund, InBC Investment Corp., Modo, Parkland Refining, Powertech Labs, and TransLink.

Hydrogen in Motion doesn’t seem to be one of the inaugural members, which may mean nothing or may hint at why Quan is running for office.

Three possibilities

Perhaps the company is not doing so well? There’s a very high failure rate with technology companies. The ‘valley of death’ is the description for taking a development from the lab and turning it into a business (which is almost always highly dependent on government funding). Assuming the company manages to get something to market and finds customers, the next stage, growing the company from a few million in revenues to 10s and 100s of millions of dollars is equally fraught.

Keeping the company afloat for eight years is a big accomplishment especially when you factor in COVID-19 which has had a devastating impact on businesses large and small.

Alternatively, the company is being acquired (or would that be absorbed?) by a larger company. Entrepreneurs in British Columbia have a long history of growing their tech companies with the goal of being acquired and getting a large payout. Quan’s co-founder certainly has experience with growing a company and then selling it to a larger company.

Finally, the company is doing just fine but Quan is bored and needs a new challenge (which may be the case in the other two scenarios as well). if you look at her candidate profile page, you’ll see she has a range of interests.

Note: I am not offering an opinion on Quan’s suitability for political office. This is neither an endorsement nor an ‘anti-endorsement’.

Using natural proteins to grow gold nanoclusters for hybrid bionanomaterials

While there’s a January 10, 2022 news item on Nanowerk, the research being announced was made available online in the Fall of 2021 and is now available in print,

Gold nanoclusters are groups of a few gold atoms with interesting photoluminescent properties. The features of gold nanoclusters depend not only on their structure, but their size and also by the ligands coordinated to them. These inorganic nanomaterials have been used in sensing, biomedicine and optics and their coordination with biomolecules can endow multiple capabilities in biological media.

A research collaboration between the groups of Dr. Juan Cabanillas, Research Professor at IMDEA Nanociencia and Dr. Aitziber L. Cortajarena, Ikerbasque Professor and Principal Investigator at CIC biomaGUNE have explored the use of natural proteins to grow gold nanoclusters, resulting in hybrid bionanomaterials with tunable photoluminescent properties and with a plethora of potential applications.

A January 10, 2022 IMDEA Nanociencia press release, which originated the news item, provides more technical detail about the research,

The nanoclusters –with less than 2 nm in size- differentiate from larger nanoparticles (plasmonic) since they present discrete energy levels coupled optically. The groups of amino acids within the proteins coordinate the gold atoms and allow the groups to be arranged around the gold nanocluster, facilitating the stabilization and adding an extra level of tailoring. These nanoclusters have interesting energy harvesting features. Since the discrete energy levels are optically coupled, the absorption of a photon leads to promotion of an electron to higher levels, which can trigger a photophysical process or a photochemical reaction.  

The results by Cabanillas and Cortajarena groups, published in Advanced Optical Materials and Nano Letters, explore the origin of the photoluminescence in protein-designed gold nanoclusters and shed light into the strong influence of environmental conditions on the nature of luminescence. Nanocluster capping by two types of amino acids (histidine and cysteine) allow for changing the emission spectral range from blue to red, paving the way to tune the optical properties by an appropriate ligand choice. The nature of emission is also changed with capping, from fluorescence to phosphorescence, respectively. The synergistic protein-nanocluster effects on emission are still not clear, and the groups at IMDEA Nanociencia and CIC biomaGUNE are working to elucidate the mechanisms behind. There are potential applications for the aforementioned nanoclusters, in solid state as active medium in laser cavities. Optical gain properties from these nanoclusters are yet to be demonstrated, which could pave the way to a new generation of potentially interesting laser devices. As the combination of gold plus proteins is potentially biocompatible, many potential applications in biomedicine can also be envisaged.

A related publication of the groups in Nano Letters demonstrates that the insertion of tryptophans, amino acids with high electron density, in the vicinity of the nanocluster boosts its photoluminescence quantum efficiency up to 40% in some cases, values relevant for solid state light emission applications. Researchers also observed an antenna effect: the tryptophans can absorb light in a discrete manner and transfer the energy to the cluster. This effect has interest for energy harvesting and for sensing purposes as well.

The proteins through the biocapping enable the synthesis of the nanoclusters and largely improve their quantum efficiency. “The photoluminescence quantum efficiency is largely improved when using the biocapping” Dr. Cabanillas says. He believes this research work means “a new field opening for the tuning of optical properties of nanoclusters through protein engineering, and much work is ahead for the understanding of the amplification mechanism”. Dr. Cortajarena emphasizes “we have already demonstrated the great potential of engineered photoluminescent protein-nanocluster in biomedical and technological fields, and understanding the fundamental emission mechanisms is pivotal for future applications“. A variety of further applications include biosensors, as the protein admits functionalization with recognition molecules, energy harvesting, imaging and photodynamic therapies. Further work is ahead this opening avenue for photophysics research.

This research is a collaboration led by Dr. Juan Cabanillas and Dr. Aitziber L. Cortajarena research groups at IMDEA Nanociencia and CIC biomaGUNE, with contributions from researchers at the Diamond Light Source Ltd. [synchrotron] and DIPC. It has been cofounded by the projects AMAPOLA, NMAT2D, FULMATEN, Atracción de Talento from Comunidad de Madrid and the Severo Ochoa Centre of Excellence award to IMDEA Nanociencia. CIC biomaGUNE acknowledges support by the projects ERC-ProNANO, ERC-NIMM, ProTOOLs and the Maria de Maeztu Units of Excellence Programme.

Here are links to and citations for the papers,

Tuning the Optical Properties of Au Nanoclusters by Designed Proteins by Elena Lopez-Martinez, Diego Gianolio, Saül Garcia-Orrit, Victor Vega-Mayoral, Juan Cabanillas-Gonzalez, Carlos Sanchez-Cano, Aitziber L. Cortajarena. Advanced Optical Materials Volume 10, Issue 1 January 4, 2022 2101332 DOI: https://doi.org/10.1002/adom.202101332 First published: 31 October 2021

This paper is open access.

Boosting the Photoluminescent Properties of Protein-Stabilized Gold Nanoclusters through Protein Engineering by Antonio Aires, Ahmad Sousaraei, Marco Möller, Juan Cabanillas-Gonzalez, and Aitziber L. Cortajarena. Nano Lett. 2021, 21, 21, 9347–9353 DOI: https://doi.org/10.1021/acs.nanolett.1c03768 Publication Date: November 1, 2021 Copyright © 2021 American Chemical Society

This paper is behind a paywall.

Not being familiar with either of the two research institutions mentioned in the press release, I did a little digging.

Here’s a little information about IMDEA Nanociencia (IMDEA Nanoscience Institute), from its Wikipedia entry, Note: All links have been removed,

IMDEA Nanoscience Institute is a private non-profit foundation within the IMDEA Institutes network, created in 2006-2007 as a result of collaboration agreement between the Community of Madrid and Spanish Ministry of Education and Science. The foundation manages IMDEA-Nanoscience Institute,[1] a scientific centre dedicated to front-line research in nanoscience, nanotechnology and molecular design and aiming at transferable innovations and close contact with industries. IMDEA Nanoscience is a member of the Campus of International excellence, a consortium of research institutes promoted by the Autonomous University of Madrid and Spanish National Research Council (UAM/CSIC).[2]

As for CIC biomaGUNE, here’s more from its institutional profile on the science.eus website,

The Centre for Cooperative Research in Biomaterials-CIC biomaGUNE, located in San Sebastian (Spain), was officially opened in December 2006. CIC biomaGUNE is a non-profit research organization created to promote scientific research and technological innovation at the highest levels in the Basque Country following the BioBasque policy in order to create a new business sector based on biosciences. Established by the Department of Industry, Technology & Innovation of the Government of the Autonomous Community of the Basque Country, CIC biomaGUNE constitutes one of the Centres of the CIC network, the largest Basque Country research network on specific strategic areas, having the mission to contribute to the economical and social development of the country through the generation of knowledge and speeding up the process that leads to technological innovation.

Xenobots (living robots) that can reproduce

Xenobots (living robots made from African frog (Xenopus laevis) frog cells) can now self-replicate. First mentioned here in a June 21, 2021 posting, xenobots have captured the imagination of various media outlets including the Canadian Broadcasting Corporation’s (CBC) Quirks and Quarks radio programme and blog where Amanda Buckiewicz posted a December 3, 2021 article about the latest xenobot development (Note: Links have been removed),

In a new study, Bongard [Joshua Bongard, a computer scientist at the University of Vermont] and his colleagues from Tufts University and Harvard’s Wyss Institute for Biologically Inspired Engineering found that the xenobots would autonomously collect loose single cells in their environment, gathering hundreds of cells together until new xenobots had formed.

“This took a little bit for us to wrap our minds around,” he said. “There’s no programming here. Instead, we’re designing or shaping these xenobots, and what they do, the way they behave, is based on shape.”

“We take a couple of thousand of those frog cells and we squish them together into a ball and put that in the bottom of a petri dish,” Bongard told Quirks & Quarks host Bob McDonald. 

“If you were to look into the dish, you would see some very small, what look like specks of pepper, moving about in the bottom of the petri dish.”

The xenobots initially received no instruction from humans on how to replicate. But when researchers added extra cells to the dish containing xenobots, they observed that the xenobots would assemble them into piles.

“Cells early in development are sticky,” said Bongard. “If the pile is large enough and the cells stick together, the outer ones on the surface will grow very small hairs, which are called cilia. And eventually, after four days, those cilia will start to beat back and forth like flexible oars, and the pile will start moving.”

“And that’s a child xenobot.” 

A November 29, 2021 Wyss Institute news release by Joshua Brown describes the process a little differently,

To persist, life must reproduce. Over billions of years, organisms have evolved many ways of replicating, from budding plants to sexual animals to invading viruses.

Now scientists at the University of Vermont, Tufts University, and the Wyss Institute for Biologically Inspired Engineering at Harvard University have discovered an entirely new form of biological reproduction—and applied their discovery to create the first-ever, self-replicating living robots.

The same team that built the first living robots (“Xenobots,” assembled from frog cells—reported in 2020) has discovered that these computer-designed and hand-assembled organisms can swim out into their tiny dish, find single cells, gather hundreds of them together, and assemble “baby” Xenobots inside their Pac-Man-shaped “mouth”—that, a few days later, become new Xenobots that look and move just like themselves.

And then these new Xenobots can go out, find cells, and build copies of themselves. Again and again.

In a Xenopus laevis frog, these embryonic cells would develop into skin. “They would be sitting on the outside of a tadpole, keeping out pathogens and redistributing mucus,” says Michael Levin, Ph.D., a professor of biology and director of the Allen Discovery Center at Tufts University and co-leader of the new research. “But we’re putting them into a novel context. We’re giving them a chance to reimagine their multicellularity.” Levin is also an Associate Faculty member at the Wyss Institute.

And what they imagine is something far different than skin. “People have thought for quite a long time that we’ve worked out all the ways that life can reproduce or replicate. But this is something that’s never been observed before,” says co-author Douglas Blackiston, Ph.D., the senior scientist at Tufts University and the Wyss Institute who assembled the Xenobot “parents” and developed the biological portion of the new study.

“This is profound,” says Levin. “These cells have the genome of a frog, but, freed from becoming tadpoles, they use their collective intelligence, a plasticity, to do something astounding.” In earlier experiments, the scientists were amazed that Xenobots could be designed to achieve simple tasks. Now they are stunned that these biological objects—a computer-designed collection of cells—will spontaneously replicate. “We have the full, unaltered frog genome,” says Levin, “but it gave no hint that these cells can work together on this new task,” of gathering and then compressing separated cells into working self-copies.

“These are frog cells replicating in a way that is very different from how frogs do it. No animal or plant known to science replicates in this way,” says Sam Kriegman, Ph.D.,  the lead author on the new study, who completed his Ph.D. in Bongard’s lab at UVM and is now a post-doctoral researcher at Tuft’s Allen Center and Harvard University’s Wyss Institute for Biologically Inspired Engineering.

Both Buckiewicz’s December 3, 2021 article and Brown’s November 29, 2021 Wyss Institute news release are good reads with liberal used of embedded images. If you have time, start with Buckiewicz as she provides a good introduction and follow up with Brown who gives more detail and has an embedded video of a December 1, 2021 panel discussion with the scientists behind the xenobots.

Here’s a link to and a citation for the latest paper,

Kinematic self-replication in reconfigurable organisms by Sam Kriegman, Douglas Blackiston, Michael Levin, and Josh Bongard. PNAS [Proceedings of the National Academy of Sciences] December 7, 2021 118 (49) e2112672118; https://doi.org/10.1073/pnas.2112672118

This paper appears to be open access.

June 7 – 10, 2022 in Grenoble, France, a conference and a 6G summit to explore pathways to 6G, ‘Internet of Senses’, etc.

As far as I can tell, 5G is still not widely deployed. At least, that’s what I gather from Tim Fisher’s article profiling the deployment by continent and by country (reviewed by Christine Baker; updated on June 2, 2022) on the Lifewire website, Note: Links have been removed)

5G is the newest wireless networking technology for phones, smartwatches, cars, and who knows what else, but it’s not yet available in every region around the world.

Some estimates forecast that by 2025, we’ll reach 3.6 billion 5G connections, a number expected to grow to 4.4 billion by 2027.

I skimmed through Fisher’s article and the African continent would seem to have the most extensive deployment country by country.

Despite the fact that we’re years from a ubiquitous 5G environment, enthusiasts are preparing for 6G. A June 1, 2022 news item on Nanotechnology Now highlights an upcoming conference and 6G summit in Grenoble, France,

Anticipating that 6G systems will offer a major step change in performance from gigabit towards terabit capacities and sub-millisecond response times, the top two European conferences for communication networks will meet June 7-10 [2022] to explore future critical 6G applications like real-time automation or extended reality, an “internet of senses”, sustainability and providing data for a digital twin of the physical world.

The hybrid conference, “Connectivity for a Sustainable World”, will accommodate both in-person and remote attendance for four days of keynotes, panels, work sessions and exhibits. The event is sponsored by the IEEE Communications Society and the EU Association for Signal Processing and will be held in the WTC Grenoble Convention Center.

“The telecom sector is an enabler for a sustainable world,” said Emilio Calvanese Strinati, New-6G Program director at CEA-Leti, which organized the conference. “Designed to be energy efficient, with low carbon footprints, telecoms will be a key enabler to reduce CO2 emissions in the ICT sectors. For example, 6G targets multi-sensorial virtual reality, e.g. the metaverse, and remote work and telepresence, which enable people to interact without travelling.”

The conference also will explore new smart network technologies and architectures needed to dramatically enhance the energy efficiency and sustainability of networks to manage major traffic growth, while keeping electromagnetic fields under strict safety limits. These technologies will form the basis for a human-centric Next-Generation Internet and address the European Commission’s Sustainable Development Goals, such as accessibility and affordability of technology.
The Grenoble gathering is the 31st edition of the EuCNC [EU-China Commission] conference, which merged two years ago with the 6G Summit. The joint conference was established by the European Commission for industry, academia, research centers and SMEs from across the ICT and telecom sectors to cooperate, discuss and help realize the vision for European technological sovereignty. It is intended to be held for in-person attendance, with remote attendance in a hybrid mode.

“The EuCNC and 6G Summit members are playing an important role in supporting the EU’s goal of European Sovereignty and cybersecurity in 5G and 6G in parallel with the French microelectronics industry’s support of the European Chips Act,” said Calvanese Strinati, who will help lead a workshop, “Semantic and Goal Oriented Communications, an Opportunity for 6G?”, on June 7.

Keynotes (all times CEST) [Central European Summer Time]

“Shaping 6G: Revolutionizing the Evolution of Networks”
Mikael Rylander, Technology Leadership Officer, Nokia/Netherlands
June 8: 9:15-10:00 am

“6G: From Digital Transformation to Socio-Digital Innovation”
Dimitra Simeonidou, Director Smart Internet Lab, Co-Director Bristol Digital Futures Institute, University of Bristol, UK
June 9: 8:30-9:15 am

“Going Beyond RF: Nano Communication in 6G+ Networks”
Falko Dressler, Professor, Technische Universität, Berlin
June 9: 9:15-10:00 am

For the curious, CEA-Leti, the organizing institution, is “a research institute for electronics and information technologies, based in Grenoble, France. It is one of the world’s largest organizations for applied research in microelectronics and nanotechnology.” (See the entire description in the CEA-Leti: Laboratoire d’l’électronique des technologies de l’information Wikipedia entry)

As for the ‘internet of senses’, perhaps I missed seeing it in the programme?

The co-chairs Pearse O’Donohue and Sébastien Dauvé offer a welcome on the 2022 conference/summit homepage that touches on current affairs, as well as, the technology,

We would like to welcome you to this edition of the conference, which is for the second time putting together two of the top European conferences in the area of communication networks: the European Conference on Networks and Communications (EuCNC) and the 6G Summit. After two years of restrictions due to the COVID-19 pandemic, we are delighted to host this hybrid conference in the city of Grenoble, located in the French Alps and recognised internationally for its scientific excellence, especially in the area of electronics components and systems. This is a testimony of the increased importance of microelectronics for European technological sovereignty and cybersecurity in 5G and 6G, in line with the European Chips Act recently proposed by the Commission.

The Russian war against Ukraine has disrupted the lives of millions of Ukrainians. Recognising the importance of connectivity, in particular in times of crisis and under these exceptional circumstances, the EU in cooperation with key stakeholders has taken measures to alleviate the consequences of the humanitarian crisis. These include resilience of networks within the country, free or heavily discounted international calls and SMS to Ukraine or free roaming to Ukrainian people that fled the war.

In the longer term, we need to make sure that trust, security and competitiveness of future technologies such as beyond 5G and 6G are ensured.

6G systems are expected to offer a new step change in performance from Gigabit towards Terabit capacities and sub-millisecond response times. This will enable new critical applications such as real-time automation or extended reality (“Internet of Senses”) sensing, collecting and providing the data for nothing less than a digital twin of the physical world.

Moreover, new smart network technologies and architectures will need to drastically enhance the energy efficiency of connectivity infrastructures to manage major traffic growth while keeping electromagnetic fields under strict safety limits. These technologies will form the basis for a human-centric Next-Generation Internet and address Sustainable Development Goals (SDGs) such as accessibility and affordability of technology.

This year is an important milestone in the European research, development and innovation sphere towards 6G communications systems as it has seen the kick-off of the activities of the European partnership on Smart Networks and Services (SNS). This strategic public-private partnership has been established in November 2021 as one of the Horizon Europe Joint undertakings. The SNS partnership should enable European players to develop the technology capacities for 6G systems as basis for future digital services towards 2030. Its focus extends beyond networking, spanning the whole value chain, from components and devices to the Cloud, AI and Cybersecurity.

In January 2022, the first SNS JU [Joint Undertaking] calls for proposals has been launched, with a total budget of EUR 240 million. It sets out main complementary work streams spanning from 5G Evolution systems, research for radical technology advancement in preparation for 6G, proof of concepts including experimental infrastructures; up to large scale trials and pilots with vertical industries. We are excited and cannot wait for the selected projects to be launched next autumn, thus joining the big family of the EU projects that you will be able to discover and liaise with during this conference.

Karl Bode’s June 2, 2022 article, “6G Hype Begins Despite Fact 5G Hasn’t Finished Disappointing Us Yet,” on Techdirt offers a more measured response to the 6G hopes and dreams offered by O’Donohue, Dauvé, and the others hyping the next technology that will solve all kinds of problems.

Optimizing mRNA nanoparticles

The process of continuously working on scientific improvements is not always appreciated by outsiders such as myself. A December 28, 2021 news item on Nanowerk highlights research published (from 2019 and 2020) on improving delivery of mRNA used in vaccines (Note: A link has been removed),

The research neutron source Hein Maier-Leibnitz (FRM II) at the Technical University of Munich (TUM) is playing an important role in the investigation of mRNA nanoparticles similar to the ones used in the Covid-19 vaccines from vendors BioNTech and Moderna. Researchers at the Heinz Maier-Leibnitz Zentrum (MLZ) used the high neutron flux available in Garching to characterize various formulations for the mRNA vaccine and thus to lay the groundwork for improving the vaccine’s efficacy.

A December 27, 2021 TUM press release, which originated the news item, delves further into the science of improving something that already works well,

The idea of using messenger RNA (mRNA) as an active ingredient is a brilliant one: The molecule contains the specific blueprint for proteins which are then synthesize by the cell. This makes it generally possible to provide a very wide spectrum of different therapeutically effective proteins.

In the case of the Covid-19 vaccine, these are the proteins of the characteristic spikes on the surface of the Corona virus which are used for vaccination. The proteins are presented on the surface of immune cells; then the human immune system triggers defenses against these foreign proteins and thus against the Corona virus. The mRNA itself is completely broken down after only a few hours, a fact which is advantageous to the safety of these vaccines.

The road to the best packaging

The mRNA has to be packaged appropriately in order to keep it from being broken down on the way to the cell by the ubiquitous enzymes of the human body. This is done using nanoparticles which can consist of a mixture of lipids or polymers.

The lipids are fat molecules similar to the molecules of the cell membrane and help deposit the mRNA in the interior of the cell. Lipids and biopolymers are then broken down or excreted by the body.

To this ends, the BioNTech formulation team led by Dr. Heinrich Haas worked together with the group led by Prof. Peter Langguth of the Pharmaceutical Technology department at the Johannes Gutenberg University Mainz’s Institute of Pharmaceutical and Biomedical Sciences. They developed a series of formulations in which the nanoparticles consisted of various mixtures of lipids and biopolymers already proved in pharmaceuticals.

In the light of neutrons

In order to compare the properties of variously composed nanoparticles with one another, the researchers subjected the nanoparticles to a wide range of investigations. In addition to x-ray and microscopic analyses, these investigations included radiation with neutrons using the instrument KWS-2, operated by the Forschungszentrum Jülich at the FRM II of the Technical University of Munich in Garching.

The neutrons are scattered in the interior of the nanoparticles, inter alia, on the hydrogen nuclei and are deflected from their paths in a characteristic way. This is the basis for conclusions about their distribution. If the hydrogen atoms of certain components – for example of the lipids only – are exchanged with heavy hydrogen, the chemical properties and the pharmaceutical efficacy do not change, but the scattering pattern of the neutrons does.

“This method makes it possible to selectively highlight parts of a complex multi-component morphology without changing the physical chemistry of the sample,” says Dr. Aurel Radulescu of the Jülich Centre for Neutron Science (JCNS), who is responsible for the instrument KWS-2 and who led the evaluation of the measurement results. “This makes it possible to depict structural properties which other methods can only barely render visible, if at all.”

The right degree of order is the key

In these analyses the research teams were interested in how efficiently the various formulations were able to transmit the mRNA into the cell, referred to as transfection. The researchers thus found out that the highest transfection rates were achieved with nanoparticles that are characterized by a certain type of internal arrangement.

“High levels of biological activity were registered whenever ordered and less ordered areas alternated in the interior of the nanoparticles in a characteristic manner. This could be a generally valid concept of structure-activity relationship which can be applied independently of the systems investigated here,” Dr. Heinrich Haas of BioNTech points out. A similarly low degree of order had also been found previously by the research teams using x-ray radiation in other lipid nanoparticles.

An improved procedure

In order to receive the desired structural properties lipids and biopolymers had to be combined with the mRNA using exactly defined procedures. Here the research team was able to show that the nanoparticles for packaging the mRNA could be produced in a single step, which means a significant simplification compared to the two-step procedure which was originally also investigated.

Thus a simplified method for the creation of mRNA nanoparticles with improved activity was ultimately found. “Such questions of practical producibility represent an important prerequisite for the possibility of developing pharmaceutical products,” says Prof. Langguth. In the future such concepts could be taken into account in the development of new mRNA-based therapeutic agents.

Here are links to and citations for the papers (Note: This is not my usual way of setting the links),

Hybrid Biopolymer and Lipid Nanoparticles with Improved Transfection Efficacy for mRNA by Christian D. Siewert, Heinrich Haas, Vera Cornet, Sara S. Nogueira, Thomas Nawroth, Lukas Uebbing, Antje Ziller, Jozef Al-Gousous, Aurel Radulescu, Martin A. Schroer, Clement E. Blanchet, Dmitri I. Svergun, Markus P. Radsak, Ugur Sahin and Peter Langguth. Cells 2020, 9(9), 2034 – DOI: 10.3390/cells9092034

This paper appears to be open access.

Investigation of charge ratio variation in mRNA – DEAE-dextran polyplex delivery systems by C. Siewert, H. Haas, T. Nawroth, A. Ziller, S. S. Nogueira, M. A. Schroer, C. E. Blanchet, D. I. Svergun, A. Radulescu, F. Bates, Y. Huesemann, M. P. Radsak, U. Sahin, P. Langguth. Biomaterials, 2019; DOI: 10.1016/j.biomaterials.2018.10.020

This paper is open access.

Polysarcosine-Functionalized Lipid Nanoparticles for Therapeutic mRNA Delivery by S S. Nogueira, A. Schlegel, K. Maxeiner, B. Weber, M. Barz, M. A. Schroer, C. E. Blanchet, D. I. Svergun, S. Ramishetti, D. Peer, P. Langguth, U. Sahin, H. Haas. ACS Appl. Nano Mater. 2020, 3, 11, 10634–10645 – DOI: 10.1021/acsanm.0c01834

This paper is behind a paywall.