Tag Archives: Brazil

Walking again with exoskeletons and brain-controlled, non-invasive muscle stimulation enabling people to walk

I have two news bits about paraplegics and the possibility of walking. The first is from Alberta, Canada and the second is from Brazil.

Alberta

The fellow in the video is wearing a robotic exoskeleton. As you can see, it’s not perfect but it represents an extraordinary breakthrough (from an April 16, 2019 article by Sarah Lawrynuik for the Canadian Broadcasting Corporation [CBC] Radio),

On his fifteenth birthday in December 2015, Calgary’s Alex McEwan was injured in a tobogganing accident with friends and lost the ability to walk. It’s the kind of change that could destroy a person, but Alex has thrived and is learning new skills. Watch him walk onstage, with some help from a powered exoskeleton, to receive his diploma. 1:21

Sometimes events conspire to move us in a completely unexpected ways. After his accident, Alex McEwan participated in a very special study (from an August 3, 2019 article by Colin Zak for Alberta Health Services),

Researchers at Foothills Medical Centre (FMC) are the first in Canada to examine the benefits of using an exoskeleton robotic device to rehabilitate patients with spinal cord injuries (SCI) in the days and weeks following their injury.

The device, known as the Ekso Bionic Exoskeleton, consists of a metal frame that supports and stabilizes a patient’s torso, core, legs and feet. It is moved robotically by a therapist, enabling patients with a spinal cord injury to get up and walk around. Although it is controlled by remote control, the device offers varying levels of physical control by the patient, depending on the nature and extent of their injury.

Dr. Ho [ Dr. Chester Ho, Head of Physical Medicine and Rehabilitation at FMC ] says exoskeletons may potentially promote recovery and reduce complications in SCI patients by reducing loss of bone and muscle mass caused by spending so much time lying down, and also improve breathing and bowel function.

The year-long study, which begins this summer, will include between five and 10 patients selected from across Calgary [Alberta]. It aims to examine whether treatment is safe and feasible in the days and weeks after an SCI. This study will be followed by larger studies involving more patients.

Participants in the study will receive 60-minute therapy sessions with the exoskeleton device two to three times a week, for a total of 25 training hours over an eight- to 10-week period. Safety and feasibility outcomes will be monitored and tracked by the research team throughout all sessions.

Before the advent of exoskeletons, rehabilitation for patients with an SCI required them to be hoisted with a physical therapist moving their legs.

“Every step is different with this device, so patients learn from their mistakes in real time. Patients really like to use the device; it gives them hope.”

Alex, [emphasis mine] 15, sustained a spinal cord injury while tobogganing last December.

He says rehabilitation sessions with the exoskeleton have made a difference in how he feels and gives him hope for the future.

Over 2 1/2 years later, the CBC has made a radio documentary about this study and the people who took part. Lawrynuik’s April 16, 2019 article describes some highlights from the radio documentary,

Imagine waking up in a hospital bed surrounded by the beeps and whirring sounds of the machines keeping you alive. The doctor tells you that you will likely never walk again.

But then, just as you begin to process that news, a physiotherapist shows up at your bedside and says, “Hold up. I might have a special opportunity for you.”

That’s the journey taken by a number of Albertans who landed in Calgary’s Foothills Medical Centre after accidents or trauma to their spine in the last three years. Three of those people are Alex McEwan, a university student in Lethbridge; Jean Ogilvie, a 77-year-old woman living in Calgary; and Josh Pelland, a former climber turned motivational speaker in Three Hills, Alta.

All three are united by a technology called an exoskeleton, created by a company called Ekso Bionics, that allowed them to walk despite no longer being able to use their legs. 

“The first time was a bit scary actually,” Ogilvie said. “It’s like a great big skeleton that sort of clasps you in its body. [It’s] black and all sorts of straps and sensors tell you how I’m doing.”

Pelland agrees about how daunting the experience is to start.

“They just said, ‘OK, the machine is going to assist you and lift you up.’ And I was a bit like, ‘OK, this is the strangest thing ever.'”

Once the frame of the exoskeleton is strapped along the outside of the patient’s legs and up their back, starting from the seated position, it does lift them completely without the help of their own muscles.

From there they shift their upper-body weight within the machine to hit certain targets — once your body weight is shifted forward and laterally enough, a beep sounds and the exoskeleton pulls each leg forward, one at a time. 

As patients learn to use the machine, they walk with the assistance of a walker. Then, as they progress, they upgrade to forearm crutches. The entire time, they’re accompanied by the man behind the machine, Kyle McIntosh.

McIntosh is a physiotherapist and he worked with the exoskeleton both to help patients and to conduct research into the machine’s impact on rehabilitation.

After being discharged and living once again without the exoskeleton, and therefore without the ability to walk — McEwan got an idea: maybe he’d be allowed to use the robot, just one last time.

“High school wasn’t high school for me. I only really got one semester of grade 10 before I broke my spine. So that first semester was great. I enjoyed it. I played sports. I was a good student. But then it was no longer about high school anymore. It was more about adjusting to my new life.”

McIntosh and McEwan hatched the plan together and kept it a closely guarded secret. Then, on the day McEwan was set to graduate from Grade 12, he asked to be placed last on the list of students to cross the stage.

“I remember taking a first few steps and not hearing very much. Hearing people cheer because I was the kid in the wheelchair at the high school, so it makes sense. But the second they saw the canes and my first few steps, just one kid erupted: ‘Yeah!’ And then everyone went crazy.”

“I think walking across the stage — just like I got to walk into my high school on the first day of Grade 10 — was a really good closing story. The chapter of me learning to live in a wheelchair was done. And it was now my turn to go live my life. So that’s why I think it was such an important day because it gave me a lot of closure. I got to walk into the high school, I got to walk out.”

If you have the time, you might want to read Lawrynuik’s April 16, 2019 article in its entirety. It turns out that the study did much more than give a people a chance to walk again, even if just for a short time.

Anyone interested in the robotic, wearable exoskeleton used in the study can go here to EksoHealth, the company that produces the EksoGT, a bionic exoskeleton. (Lawrynuik’s article has another name for the product, i.e., Ekso Bionic Exoskeleton but all I could find was the EksoGT.)

Brazil and Walk Again

The most recent post featuring the Walk Again project is my May 20, 2014 edition which was part of a larger series on ‘Brain research, ethics, and nanotechnology’. The May 20, 2014 posting covered Walk Again’s debut at the 2014 World Cup (soccer/football) in Brazil. Unfortunately,, the lead researcher Miguel Nicolelis oversold the technology. I think people were expecting someone with paraplegia to come bounding out onto the field and give a flashy opening kick for the tournament what they saw was something a great deal more restrained.

The person was wheeled out onto the field, stood up, shuffled a bit, and nudged the ball with his foot. It represented a huge breakthrough but it wasn’t flashy.

The latest from Walk Again is in a May 14, 2019 Associação Alberto Santos Dumont para Apoio à Pesquisa press release on EurekAlert,

In another major clinical breakthrough of the Walk Again Project, a non-profit international consortium aimed at developing new neuro-rehabilitation protocols, technologies and therapies for spinal cord injury, two patients with paraplegia regained the ability to walk with minimal assistance, through the employment of a fully non-invasive brain-machine interface that does not require the use of any invasive spinal cord surgical procedure. The results of this study appeared on the May 1 [2019] issue of the journal Scientific Reports.

The two patients with paraplegia (AIS C) used their own brain activity to control the non-invasive delivery of electrical pulses to a total of 16 muscles (eight in each leg), allowing them to produce a more physiological walk than previously reported, requiring only a conventional walker and a body weight support system as assistive devices. Overall, the two patients were able to produce more than 4,500 steps using this new technology, which combines a non-invasive brain-machine interface, based on a 16-channel EEG, to control a multi-channel functional electrical stimulation system (FES), tailored to produce a much smoother gait pattern than the state of the art of this technique.

“What surprised us was that, in addition to allowing these patients to walk with little help, one of them displayed a clear motor improvement by practicing with this new approach. Patients required approximatively [sic] 25 sessions to master the training before they were able to walk using this apparatus,” said Solaiman Shokur one of the authors of the study.

The two patients that used this new rehabilitation approach had previously participated in the long-term neurorehabilitation study carried out using the Walk Again Project Neurorehabilitation (WANR) protocol. As reported in a recent publication from the same team (Shokur et al., PLoS One, Nov. 2018), all seven patients who participated in that protocol for a period of 28 months improved their clinical status, from complete paraplegia (AIS A or B, meaning no motor functions below the level of the injury, according to the ASIA classification) to partial paraplegia (AIS C, meaning partial recovery of sensory and motor function below the injury level). This significant neurological recovery included major clinical improvements in sensory discrimination (tactile, nociception, vibration, and pressure), voluntary motor control of abdomen and leg muscles, and important gains in autonomic control, such as bladder, bowel, and sexual functions.

“The last two studies published by the Walk Again Project clearly indicate that partial neurological and functional recovery can be induced in chronic spinal cord injury patients by combining multiple non-invasive technologies that are based around the concept of using a brain-machine interface to control different types of actuators, like virtual avatars, robotic walkers, or muscle stimulating devices, to allow the total involvement of patients in their own rehabilitation routine,” said Miguel Nicolelis, scientific director of the Walk Again Project and one of the authors of the study.

In a recent report by another group, one AIS C and two AIS D patients were able to walk thanks to the employment of an invasive method for spinal cord electrical stimulation, which required a spinal surgical procedure. In contrast, in the present study two AIS C patients – which originally were AIS A (see Supplemental Material below)- and a third AIS B subject, who recently achieved similar results, were able to regain a significant degree of autonomous walking without the need for such invasive treatments. Instead, these patients only received electrical stimulation patterns delivered to the skin surface of their legs, so that a total of eight muscles in each limb could be electrically stimulated in a physiologically accurate sequence. This was done in order to produce a smoother and more natural pattern of locomotion.

“Crucial for this implementation was the development of a closed-loop controller that allowed real-time correction of the patients’ walking pattern, taking into account muscle fatigue and external perturbations, in order to produce a predefined gait trajectory. Another major component of our approach was the use of a wearable haptic display to deliver tactile feedback to the patients´ forearms in order to provide them with a continuous source of proprioceptive feedback related to their walking,” said Solaiman Shokur.

To control the pattern of electrical muscle stimulation in each leg, these patients utilized an EEG-based brain-machine interface. In this setup, patients learned to alternate the generation of “stepping motor imagery” activity in their right and left motor cortices, in order to create alternated movements of their left and right legs.

According to the authors, the patients exhibited not only “less dependency on walking assistance, but also partial neurological recovery, with substantial rates of motor improvement in one of them.” The improvement in motor control in this last AIS C patient was 9 points in the lower extremity motor score (LEMS), which was comparable with that observed using invasive spinal cord stimulation.

Based on the results obtained over the past 5 years, the WAP now intends to combine all its neurorehabilitation tools into a single integrated, non-invasive platform to treat spinal cord injury patients. This platform will allow patients to begin training soon after the injury occurs. It will also allow the employment of a multi-dimensional integrated brain-machine interface capable of simultaneously controlling virtual and robotic actuators (like a lowerlimb exoskeleton), a multi-channel non-invasive electrical muscle stimulation system (like the FES used in the present study), and a novel non-invasive spinal cord stimulation approach. In this final configuration, this WAP platform will incorporate all these technologies together in order to maximize neurological and functional recovery in the shortest possible time, without the need of any invasive procedure.

According to Dr. Nicolelis, “there is no silver bullet to treat spinal cord injuries. More and more, it looks like we need to implement multiple techniques simultaneously to achieve the best neurorehabilitation results. In this context, it is also imperative to consider the occurrence of cortical plasticity as a major component in the planning of our rehabilitation approach.”

Here’s a link to and a citation for the paper,

Non-invasive, Brain-controlled Functional Electrical Stimulation for Locomotion Rehabilitation in Individuals with Paraplegia by Aurelie Selfslagh, Solaiman Shokur, Debora S. F. Campos, Ana R. C. Donati, Sabrina Almeida, Seidi Y. Yamauti, Daniel B. Coelho, Mohamed Bouri & Miguel A. L. Nicolelis. Scientific Reports volume 9, Article number: 6782 (2019) DOI: https://doi.org/10.1038/s41598-019-43041-9 Published 01 May 2019

This paper is open access.

There’s also a video for Walk Again,

Proposed nanodevice made possible by particle that is its own antiparticle (Majorana particle)

I’m not sure how much the mystery of Ettore Majorana’s disappearance in 1938 has to do with the latest research from Brazil on Majorana particles but it’s definitely fascinating,. From an April 6, 2018 news item on ScienceDaily,

In March 1938, the young Italian physicist Ettore Majorana disappeared mysteriously, leaving his country’s scientific community shaken. The episode remains unexplained, despite Leonardo Scascia’s attempt to unravel the enigma in his book The Disappearance of Majorana (1975).

Majorana, whom Enrico Fermi called a genius of Isaac Newton’s stature, vanished a year after making his main contribution to science. In 1937, when he was only 30, Majorana hypothesized a particle that is its own anti-particle and suggested that it might be the neutrino, whose existence had recently been predicted by Fermi and Wolfgang Pauli.

Eight decades later, Majorana fermions, or simply majoranas, are among the objects most studied by physicists. In addition to neutrinos — whose nature, whether or not they are majoranas, is one of the investigative goals of the mega-experiment Dune — another class not of fundamental particles but of quasi-particles or apparent particles has been investigated in the field of condensed matter. These Majorana quasi-particles can emerge as excitations in topological superconductors.

An April 6, 2018 Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) press release on EurekAlert, which originated the news item,  reveals more about the Brazilian research (Note: Links have been removed),

A new study by PhD student Luciano Henrique Siliano Ricco with a scholarship from the São Paulo Research Foundation – FAPESP, in collaboration with his supervisor Antonio Carlos Ferreira Seridonio and others, was conducted on the Ilha Solteira campus of São Paulo State University (UNESP) in Brazil and described in an article in Scientific Reports.

“We propose a theoretical device that acts as a thermoelectric tuner – a tuner of heat and charge – assisted by Majorana fermions,” Seridonio said.

The device consists of a quantum dot (QD), represented in the Figure A by the symbol ε1. QDs are often called “artificial atoms.” In this case, the QD is located between two metallic leads at different temperatures.

The temperature difference is fundamental to allowing thermal energy to flow across the QD. A quasi-one-dimensional superconducting wire – called a Kitaev wire after its proponent, Russian physicist Alexei Kitaev, currently a professor at the California Institute of Technology (Caltech) in the US – is connected to the QD.

In this study, the Kitaev wire was ring- or U-shaped and had two majoranas (η1 and η2) at its edges. The majoranas emerge as excitations characterized by zero-energy modes.

“When the QD is coupled to only one side of the wire, the system behaves resonantly with regard to electrical and thermal conductance. In other words, it behaves like a thermoelectric filter,” said the principal investigator for the FAPESP fellowship.

“I should stress that this behavior as a filter for thermal and electrical energy occurs when the two majoranas ‘see’ each other via the wire, but only one of them ‘sees’ the QD in the connection.”

Another possibility investigated by the researchers involved making the QD “see” the two majoranas at the same time by connecting it to both ends of the Kitaev wire.

“By making the QD ‘see’ more of η1 or η2, i.e., by varying the system’s asymmetry, we can use the artificial atom as a tuner, where the thermal or electrical energy that flows through it is redshifted or blueshifted,” Seridonio said (see Figure B for illustrative explanation).

This theoretical paper, he added, is expected to contribute to the development of thermoelectric devices based on Majorana fermions.

Here’s a link to and a citation for the paper,

Tuning of heat and charge transport by Majorana fermions by L. S. Ricco, F. A. Dessotti, I. A. Shelykh, M. S. Figueira & A. C. Seridonio. Scientific Reportsvolume 8, Article number: 2790 (2018) doi:10.1038/s41598-018-21180-9 Published online: 12 February 2018

This paper is open access.

As I prepared to publish this piece I stumbled across a sad Sept. 3, 2018 article about Brazil and its overnight loss of heritage in a fire by Henry Grabar for slate.com (Note: Links have been removed),

On Sunday night, a fire ripped through Brazil’s National Museum in Rio de Janeiro, destroying the country’s most valuable storehouse of natural and anthropological history within hours.

Most of the 20 million items housed inside—including the skull of Luzia, the oldest human remains ever found in the Americas; one of the world’s largest archives of South America’s indigenous cultures; more than 26,000 fossils, 55,000 stuffed birds, and 5 million insect specimens; and a library of more than 500,000 books—are thought to have been destroyed.

The loss is a symptom of a larger problem as Grabar notes in his article.

University of Waterloo (Canada) team combines wearable tech with artificial intelligence (AI) for health

A May 16, 2018 University of Waterloo news release (also on EurekAlert) trumpets the research,

A team of Waterloo researchers found that applying artificial intelligence to the right combination of data retrieved from wearable technology may detect whether your health is failing.

The study, which involved researchers from Waterloo’s Faculties of Applied Health Sciences and Engineering, found that the data from wearable sensors and artificial intelligence that assesses changes in aerobic responses could one day predict whether a person is experiencing the onset of a respiratory or cardiovascular disease.

“The onset of a lot of chronic diseases, including type 2 diabetes and chronic obstructive pulmonary disease, has a direct impact on our aerobic fitness,” said Thomas Beltrame, who led the research while at the University of Waterloo, and is now at the Institute of Computing in University of Campinas in Brazil. “In the near future, we believe it will be possible to continuously check your health, even before you realize that you need medical help.”

The study monitored active, healthy men in their twenties who wore a shirt for four days that incorporated sensors for heart rate, breathing and acceleration. They then compared the readings with laboratory responses and found that it was possible to accurately predict health-related benchmarks during daily activities using only the smart shirt.

“The research found a way to process biological signals and generate a meaningful single number to track fitness,” said Richard Hughson, co-author and kinesiology professor at the Schlegel-University of Waterloo Research Institute for Aging.

Beltrame and Hughson co-authored the study with Alexander Wong, Canada Research Chair in artificial intelligence and medical imaging and an engineering professor at Waterloo. He is affiliated with both the Waterloo Artificial Intelligence Institute and the Schlegel-University of Waterloo Research Institute for Aging. Robert Amelard, of the Schlegel-University of Waterloo Research Institute for Aging, is also a co-author. The study appears in the Journal of Applied Physiology.

“This multi-disciplinary research is a great example of how artificial intelligence can be a potential game-changer for healthcare by turning data into predictive knowledge to help healthcare professionals better understand an individual’s health,” said Wong. “It can have a significant impact on improving quality of life and well-being.”

Carré Technologies developed the smart shirts, called Hexoskin, used in the research.

The team plans to test these systems on mixed ages and genders, and people with health issues to see how people might wear the sensors to gauge whether their health is failing.

I wonder if this is the 2nd try for publicity about this work. Take a look at the publication date,

Extracting aerobic system dynamics during unsupervised activities of daily living using wearable sensor machine learning models by Thomas Beltrame, Robert Amelard, Alexander Wong, and Richard L. Hughson. Journal of Applied Physiology 124 (2)
Volume 124Issue 2February 2018Pages 473-48 https://doi.org/10.1152/japplphysiol.00299.2017 [Published] 23 Feb 2018

This paper is behind a paywall.

Interested parties can find Carré Technologies here.

The Hedy Lamarr of international research: Canada’s Third assessment of The State of Science and Technology and Industrial Research and Development in Canada (2 of 2)

Taking up from where I left off with my comments on Competing in a Global Innovation Economy: The Current State of R and D in Canada or as I prefer to call it the Third assessment of Canadas S&T (science and technology) and R&D (research and development). (Part 1 for anyone who missed it).

Is it possible to get past Hedy?

Interestingly (to me anyway), one of our R&D strengths, the visual and performing arts, features sectors where a preponderance of people are dedicated to creating culture in Canada and don’t spend a lot of time trying to make money so they can retire before the age of 40 as so many of our start-up founders do. (Retiring before the age of 40 just reminded me of Hollywood actresses {Hedy] who found and still do find that work was/is hard to come by after that age. You may be able but I’m not sure I can get past Hedy.) Perhaps our business people (start-up founders) could take a leaf out of the visual and performing arts handbook? Or, not. There is another question.

Does it matter if we continue to be a ‘branch plant’ economy? Somebody once posed that question to me when I was grumbling that our start-ups never led to larger businesses and acted more like incubators (which could describe our R&D as well),. He noted that Canadians have a pretty good standard of living and we’ve been running things this way for over a century and it seems to work for us. Is it that bad? I didn’t have an  answer for him then and I don’t have one now but I think it’s a useful question to ask and no one on this (2018) expert panel or the previous expert panel (2013) seems to have asked.

I appreciate that the panel was constrained by the questions given by the government but given how they snuck in a few items that technically speaking were not part of their remit, I’m thinking they might have gone just a bit further. The problem with answering the questions as asked is that if you’ve got the wrong questions, your answers will be garbage (GIGO; garbage in, garbage out) or, as is said, where science is concerned, it’s the quality of your questions.

On that note, I would have liked to know more about the survey of top-cited researchers. I think looking at the questions could have been quite illuminating and I would have liked some information on from where (geographically and area of specialization) they got most of their answers. In keeping with past practice (2012 assessment published in 2013), there is no additional information offered about the survey questions or results. Still, there was this (from the report released April 10, 2018; Note: There may be some difference between the formatting seen here and that seen in the document),

3.1.2 International Perceptions of Canadian Research
As with the 2012 S&T report, the CCA commissioned a survey of top-cited researchers’ perceptions of Canada’s research strength in their field or subfield relative to that of other countries (Section 1.3.2). Researchers were asked to identify the top five countries in their field and subfield of expertise: 36% of respondents (compared with 37% in the 2012 survey) from across all fields of research rated Canada in the top five countries in their field (Figure B.1 and Table B.1 in the appendix). Canada ranks fourth out of all countries, behind the United States, United Kingdom, and Germany, and ahead of France. This represents a change of about 1 percentage point from the overall results of the 2012 S&T survey. There was a 4 percentage point decrease in how often France is ranked among the top five countries; the ordering of the top five countries, however, remains the same.

When asked to rate Canada’s research strength among other advanced countries in their field of expertise, 72% (4,005) of respondents rated Canadian research as “strong” (corresponding to a score of 5 or higher on a 7-point scale) compared with 68% in the 2012 S&T survey (Table 3.4). [pp. 40-41 Print; pp. 78-70 PDF]

Before I forget, there was mention of the international research scene,

Growth in research output, as estimated by number of publications, varies considerably for the 20 top countries. Brazil, China, India, Iran, and South Korea have had the most significant increases in publication output over the last 10 years. [emphases mine] In particular, the dramatic increase in China’s output means that it is closing the gap with the United States. In 2014, China’s output was 95% of that of the United States, compared with 26% in 2003. [emphasis mine]

Table 3.2 shows the Growth Index (GI), a measure of the rate at which the research output for a given country changed between 2003 and 2014, normalized by the world growth rate. If a country’s growth in research output is higher than the world average, the GI score is greater than 1.0. For example, between 2003 and 2014, China’s GI score was 1.50 (i.e., 50% greater than the world average) compared with 0.88 and 0.80 for Canada and the United States, respectively. Note that the dramatic increase in publication production of emerging economies such as China and India has had a negative impact on Canada’s rank and GI score (see CCA, 2016).

As long as I’ve been blogging (10 years), the international research community (in particular the US) has been looking over its shoulder at China.

Patents and intellectual property

As an inventor, Hedy got more than one patent. Much has been made of the fact that  despite an agreement, the US Navy did not pay her or her partner (George Antheil) for work that would lead to significant military use (apparently, it was instrumental in the Bay of Pigs incident, for those familiar with that bit of history), GPS, WiFi, Bluetooth, and more.

Some comments about patents. They are meant to encourage more innovation by ensuring that creators/inventors get paid for their efforts .This is true for a set time period and when it’s over, other people get access and can innovate further. It’s not intended to be a lifelong (or inheritable) source of income. The issue in Lamarr’s case is that the navy developed the technology during the patent’s term without telling either her or her partner so, of course, they didn’t need to compensate them despite the original agreement. They really should have paid her and Antheil.

The current patent situation, particularly in the US, is vastly different from the original vision. These days patents are often used as weapons designed to halt innovation. One item that should be noted is that the Canadian federal budget indirectly addressed their misuse (from my March 16, 2018 posting),

Surprisingly, no one else seems to have mentioned a new (?) intellectual property strategy introduced in the document (from Chapter 2: Progress; scroll down about 80% of the way, Note: The formatting has been changed),

Budget 2018 proposes measures in support of a new Intellectual Property Strategy to help Canadian entrepreneurs better understand and protect intellectual property, and get better access to shared intellectual property.

What Is a Patent Collective?
A Patent Collective is a way for firms to share, generate, and license or purchase intellectual property. The collective approach is intended to help Canadian firms ensure a global “freedom to operate”, mitigate the risk of infringing a patent, and aid in the defence of a patent infringement suit.

Budget 2018 proposes to invest $85.3 million over five years, starting in 2018–19, with $10 million per year ongoing, in support of the strategy. The Minister of Innovation, Science and Economic Development will bring forward the full details of the strategy in the coming months, including the following initiatives to increase the intellectual property literacy of Canadian entrepreneurs, and to reduce costs and create incentives for Canadian businesses to leverage their intellectual property:

  • To better enable firms to access and share intellectual property, the Government proposes to provide $30 million in 2019–20 to pilot a Patent Collective. This collective will work with Canada’s entrepreneurs to pool patents, so that small and medium-sized firms have better access to the critical intellectual property they need to grow their businesses.
  • To support the development of intellectual property expertise and legal advice for Canada’s innovation community, the Government proposes to provide $21.5 million over five years, starting in 2018–19, to Innovation, Science and Economic Development Canada. This funding will improve access for Canadian entrepreneurs to intellectual property legal clinics at universities. It will also enable the creation of a team in the federal government to work with Canadian entrepreneurs to help them develop tailored strategies for using their intellectual property and expanding into international markets.
  • To support strategic intellectual property tools that enable economic growth, Budget 2018 also proposes to provide $33.8 million over five years, starting in 2018–19, to Innovation, Science and Economic Development Canada, including $4.5 million for the creation of an intellectual property marketplace. This marketplace will be a one-stop, online listing of public sector-owned intellectual property available for licensing or sale to reduce transaction costs for businesses and researchers, and to improve Canadian entrepreneurs’ access to public sector-owned intellectual property.

The Government will also consider further measures, including through legislation, in support of the new intellectual property strategy.

Helping All Canadians Harness Intellectual Property
Intellectual property is one of our most valuable resources, and every Canadian business owner should understand how to protect and use it.

To better understand what groups of Canadians are benefiting the most from intellectual property, Budget 2018 proposes to provide Statistics Canada with $2 million over three years to conduct an intellectual property awareness and use survey. This survey will help identify how Canadians understand and use intellectual property, including groups that have traditionally been less likely to use intellectual property, such as women and Indigenous entrepreneurs. The results of the survey should help the Government better meet the needs of these groups through education and awareness initiatives.

The Canadian Intellectual Property Office will also increase the number of education and awareness initiatives that are delivered in partnership with business, intermediaries and academia to ensure Canadians better understand, integrate and take advantage of intellectual property when building their business strategies. This will include targeted initiatives to support underrepresented groups.

Finally, Budget 2018 also proposes to invest $1 million over five years to enable representatives of Canada’s Indigenous Peoples to participate in discussions at the World Intellectual Property Organization related to traditional knowledge and traditional cultural expressions, an important form of intellectual property.

It’s not wholly clear what they mean by ‘intellectual property’. The focus seems to be on  patents as they are the only intellectual property (as opposed to copyright and trademarks) singled out in the budget. As for how the ‘patent collective’ is going to meet all its objectives, this budget supplies no clarity on the matter. On the plus side, I’m glad to see that indigenous peoples’ knowledge is being acknowledged as “an important form of intellectual property” and I hope the discussions at the World Intellectual Property Organization are fruitful.

As for the patent situation in Canada (from the report released April 10, 2018),

Over the past decade, the Canadian patent flow in all technical sectors has consistently decreased. Patent flow provides a partial picture of how patents in Canada are exploited. A negative flow represents a deficit of patented inventions owned by Canadian assignees versus the number of patented inventions created by Canadian inventors. The patent flow for all Canadian patents decreased from about −0.04 in 2003 to −0.26 in 2014 (Figure 4.7). This means that there is an overall deficit of 26% of patent ownership in Canada. In other words, fewer patents were owned by Canadian institutions than were invented in Canada.

This is a significant change from 2003 when the deficit was only 4%. The drop is consistent across all technical sectors in the past 10 years, with Mechanical Engineering falling the least, and Electrical Engineering the most (Figure 4.7). At the technical field level, the patent flow dropped significantly in Digital Communication and Telecommunications. For example, the Digital Communication patent flow fell from 0.6 in 2003 to −0.2 in 2014. This fall could be partially linked to Nortel’s US$4.5 billion patent sale [emphasis mine] to the Rockstar consortium (which included Apple, BlackBerry, Ericsson, Microsoft, and Sony) (Brickley, 2011). Food Chemistry and Microstructural [?] and Nanotechnology both also showed a significant drop in patent flow. [p. 83 Print; p. 121 PDF]

Despite a fall in the number of parents for ‘Digital Communication’, we’re still doing well according to statistics elsewhere in this report. Is it possible that patents aren’t that big a deal? Of course, it’s also possible that we are enjoying the benefits of past work and will miss out on future work. (Note: A video of the April 10, 2018 report presentation by Max Blouw features him saying something like that.)

One last note, Nortel died many years ago. Disconcertingly, this report, despite more than one reference to Nortel, never mentions the company’s demise.

Boxed text

While the expert panel wasn’t tasked to answer certain types of questions, as I’ve noted earlier they managed to sneak in a few items.  One of the strategies they used was putting special inserts into text boxes including this (from the report released April 10, 2018),

Box 4.2
The FinTech Revolution

Financial services is a key industry in Canada. In 2015, the industry accounted for 4.4%

of Canadia jobs and about 7% of Canadian GDP (Burt, 2016). Toronto is the second largest financial services hub in North America and one of the most vibrant research hubs in FinTech. Since 2010, more than 100 start-up companies have been founded in Canada, attracting more than $1 billion in investment (Moffatt, 2016). In 2016 alone, venture-backed investment in Canadian financial technology companies grew by 35% to $137.7 million (Ho, 2017). The Toronto Financial Services Alliance estimates that there are approximately 40,000 ICT specialists working in financial services in Toronto alone.

AI, blockchain, [emphasis mine] and other results of ICT research provide the basis for several transformative FinTech innovations including, for example, decentralized transaction ledgers, cryptocurrencies (e.g., bitcoin), and AI-based risk assessment and fraud detection. These innovations offer opportunities to develop new markets for established financial services firms, but also provide entry points for technology firms to develop competing service offerings, increasing competition in the financial services industry. In response, many financial services companies are increasing their investments in FinTech companies (Breznitz et al., 2015). By their own account, the big five banks invest more than $1 billion annually in R&D of advanced software solutions, including AI-based innovations (J. Thompson, personal communication, 2016). The banks are also increasingly investing in university research and collaboration with start-up companies. For instance, together with several large insurance and financial management firms, all big five banks have invested in the Vector Institute for Artificial Intelligence (Kolm, 2017).

I’m glad to see the mention of blockchain while AI (artificial intelligence) is an area where we have innovated (from the report released April 10, 2018),

AI has attracted researchers and funding since the 1960s; however, there were periods of stagnation in the 1970s and 1980s, sometimes referred to as the “AI winter.” During this period, the Canadian Institute for Advanced Research (CIFAR), under the direction of Fraser Mustard, started supporting AI research with a decade-long program called Artificial Intelligence, Robotics and Society, [emphasis mine] which was active from 1983 to 1994. In 2004, a new program called Neural Computation and Adaptive Perception was initiated and renewed twice in 2008 and 2014 under the title, Learning in Machines and Brains. Through these programs, the government provided long-term, predictable support for high- risk research that propelled Canadian researchers to the forefront of global AI development. In the 1990s and early 2000s, Canadian research output and impact on AI were second only to that of the United States (CIFAR, 2016). NSERC has also been an early supporter of AI. According to its searchable grant database, NSERC has given funding to research projects on AI since at least 1991–1992 (the earliest searchable year) (NSERC, 2017a).

The University of Toronto, the University of Alberta, and the Université de Montréal have emerged as international centres for research in neural networks and deep learning, with leading experts such as Geoffrey Hinton and Yoshua Bengio. Recently, these locations have expanded into vibrant hubs for research in AI applications with a diverse mix of specialized research institutes, accelerators, and start-up companies, and growing investment by major international players in AI development, such as Microsoft, Google, and Facebook. Many highly influential AI researchers today are either from Canada or have at some point in their careers worked at a Canadian institution or with Canadian scholars.

As international opportunities in AI research and the ICT industry have grown, many of Canada’s AI pioneers have been drawn to research institutions and companies outside of Canada. According to the OECD, Canada’s share of patents in AI declined from 2.4% in 2000 to 2005 to 2% in 2010 to 2015. Although Canada is the sixth largest producer of top-cited scientific publications related to machine learning, firms headquartered in Canada accounted for only 0.9% of all AI-related inventions from 2012 to 2014 (OECD, 2017c). Canadian AI researchers, however, remain involved in the core nodes of an expanding international network of AI researchers, most of whom continue to maintain ties with their home institutions. Compared with their international peers, Canadian AI researchers are engaged in international collaborations far more often than would be expected by Canada’s level of research output, with Canada ranking fifth in collaboration. [p. 97-98 Print; p. 135-136 PDF]

The only mention of robotics seems to be here in this section and it’s only in passing. This is a bit surprising given its global importance. I wonder if robotics has been somehow hidden inside the term artificial intelligence, although sometimes it’s vice versa with robot being used to describe artificial intelligence. I’m noticing this trend of assuming the terms are synonymous or interchangeable not just in Canadian publications but elsewhere too.  ’nuff said.

Getting back to the matter at hand, t he report does note that patenting (technometric data) is problematic (from the report released April 10, 2018),

The limitations of technometric data stem largely from their restricted applicability across areas of R&D. Patenting, as a strategy for IP management, is similarly limited in not being equally relevant across industries. Trends in patenting can also reflect commercial pressures unrelated to R&D activities, such as defensive or strategic patenting practices. Finally, taxonomies for assessing patents are not aligned with bibliometric taxonomies, though links can be drawn to research publications through the analysis of patent citations. [p. 105 Print; p. 143 PDF]

It’s interesting to me that they make reference to many of the same issues that I mention but they seem to forget and don’t use that information in their conclusions.

There is one other piece of boxed text I want to highlight (from the report released April 10, 2018),

Box 6.3
Open Science: An Emerging Approach to Create New Linkages

Open Science is an umbrella term to describe collaborative and open approaches to
undertaking science, which can be powerful catalysts of innovation. This includes
the development of open collaborative networks among research performers, such
as the private sector, and the wider distribution of research that usually results when
restrictions on use are removed. Such an approach triggers faster translation of ideas
among research partners and moves the boundaries of pre-competitive research to
later, applied stages of research. With research results freely accessible, companies
can focus on developing new products and processes that can be commercialized.

Two Canadian organizations exemplify the development of such models. In June
2017, Genome Canada, the Ontario government, and pharmaceutical companies
invested $33 million in the Structural Genomics Consortium (SGC) (Genome Canada,
2017). Formed in 2004, the SGC is at the forefront of the Canadian open science
movement and has contributed to many key research advancements towards new
treatments (SGC, 2018). McGill University’s Montréal Neurological Institute and
Hospital has also embraced the principles of open science. Since 2016, it has been
sharing its research results with the scientific community without restriction, with
the objective of expanding “the impact of brain research and accelerat[ing] the
discovery of ground-breaking therapies to treat patients suffering from a wide range
of devastating neurological diseases” (neuro, n.d.).

This is exciting stuff and I’m happy the panel featured it. (I wrote about the Montréal Neurological Institute initiative in a Jan. 22, 2016 posting.)

More than once, the report notes the difficulties with using bibliometric and technometric data as measures of scientific achievement and progress and open science (along with its cousins, open data and open access) are contributing to the difficulties as James Somers notes in his April 5, 2018 article ‘The Scientific Paper is Obsolete’ for The Atlantic (Note: Links have been removed),

The scientific paper—the actual form of it—was one of the enabling inventions of modernity. Before it was developed in the 1600s, results were communicated privately in letters, ephemerally in lectures, or all at once in books. There was no public forum for incremental advances. By making room for reports of single experiments or minor technical advances, journals made the chaos of science accretive. Scientists from that point forward became like the social insects: They made their progress steadily, as a buzzing mass.

The earliest papers were in some ways more readable than papers are today. They were less specialized, more direct, shorter, and far less formal. Calculus had only just been invented. Entire data sets could fit in a table on a single page. What little “computation” contributed to the results was done by hand and could be verified in the same way.

The more sophisticated science becomes, the harder it is to communicate results. Papers today are longer than ever and full of jargon and symbols. They depend on chains of computer programs that generate data, and clean up data, and plot data, and run statistical models on data. These programs tend to be both so sloppily written and so central to the results that it’s [sic] contributed to a replication crisis, or put another way, a failure of the paper to perform its most basic task: to report what you’ve actually discovered, clearly enough that someone else can discover it for themselves.

Perhaps the paper itself is to blame. Scientific methods evolve now at the speed of software; the skill most in demand among physicists, biologists, chemists, geologists, even anthropologists and research psychologists, is facility with programming languages and “data science” packages. And yet the basic means of communicating scientific results hasn’t changed for 400 years. Papers may be posted online, but they’re still text and pictures on a page.

What would you get if you designed the scientific paper from scratch today? A little while ago I spoke to Bret Victor, a researcher who worked at Apple on early user-interface prototypes for the iPad and now runs his own lab in Oakland, California, that studies the future of computing. Victor has long been convinced that scientists haven’t yet taken full advantage of the computer. “It’s not that different than looking at the printing press, and the evolution of the book,” he said. After Gutenberg, the printing press was mostly used to mimic the calligraphy in bibles. It took nearly 100 years of technical and conceptual improvements to invent the modern book. “There was this entire period where they had the new technology of printing, but they were just using it to emulate the old media.”Victor gestured at what might be possible when he redesigned a journal article by Duncan Watts and Steven Strogatz, “Collective dynamics of ‘small-world’ networks.” He chose it both because it’s one of the most highly cited papers in all of science and because it’s a model of clear exposition. (Strogatz is best known for writing the beloved “Elements of Math” column for The New York Times.)

The Watts-Strogatz paper described its key findings the way most papers do, with text, pictures, and mathematical symbols. And like most papers, these findings were still hard to swallow, despite the lucid prose. The hardest parts were the ones that described procedures or algorithms, because these required the reader to “play computer” in their head, as Victor put it, that is, to strain to maintain a fragile mental picture of what was happening with each step of the algorithm.Victor’s redesign interleaved the explanatory text with little interactive diagrams that illustrated each step. In his version, you could see the algorithm at work on an example. You could even control it yourself….

For anyone interested in the evolution of how science is conducted and communicated, Somers’ article is a fascinating and in depth look at future possibilities.

Subregional R&D

I didn’t find this quite as compelling as the last time and that may be due to the fact that there’s less information and I think the 2012 report was the first to examine the Canadian R&D scene with a subregional (in their case, provinces) lens. On a high note, this report also covers cities (!) and regions, as well as, provinces.

Here’s the conclusion (from the report released April 10, 2018),

Ontario leads Canada in R&D investment and performance. The province accounts for almost half of R&D investment and personnel, research publications and collaborations, and patents. R&D activity in Ontario produces high-quality publications in each of Canada’s five R&D strengths, reflecting both the quantity and quality of universities in the province. Quebec lags Ontario in total investment, publications, and patents, but performs as well (citations) or better (R&D intensity) by some measures. Much like Ontario, Quebec researchers produce impactful publications across most of Canada’s five R&D strengths. Although it invests an amount similar to that of Alberta, British Columbia does so at a significantly higher intensity. British Columbia also produces more highly cited publications and patents, and is involved in more international research collaborations. R&D in British Columbia and Alberta clusters around Vancouver and Calgary in areas such as physics and ICT and in clinical medicine and energy, respectively. [emphasis mine] Smaller but vibrant R&D communities exist in the Prairies and Atlantic Canada [also referred to as the Maritime provinces or Maritimes] (and, to a lesser extent, in the Territories) in natural resource industries.

Globally, as urban populations expand exponentially, cities are likely to drive innovation and wealth creation at an increasing rate in the future. In Canada, R&D activity clusters around five large cities: Toronto, Montréal, Vancouver, Ottawa, and Calgary. These five cities create patents and high-tech companies at nearly twice the rate of other Canadian cities. They also account for half of clusters in the services sector, and many in advanced manufacturing.

Many clusters relate to natural resources and long-standing areas of economic and research strength. Natural resource clusters have emerged around the location of resources, such as forestry in British Columbia, oil and gas in Alberta, agriculture in Ontario, mining in Quebec, and maritime resources in Atlantic Canada. The automotive, plastics, and steel industries have the most individual clusters as a result of their economic success in Windsor, Hamilton, and Oshawa. Advanced manufacturing industries tend to be more concentrated, often located near specialized research universities. Strong connections between academia and industry are often associated with these clusters. R&D activity is distributed across the country, varying both between and within regions. It is critical to avoid drawing the wrong conclusion from this fact. This distribution does not imply the existence of a problem that needs to be remedied. Rather, it signals the benefits of diverse innovation systems, with differentiation driven by the needs of and resources available in each province. [pp.  132-133 Print; pp. 170-171 PDF]

Intriguingly, there’s no mention that in British Columbia (BC), there are leading areas of research: Visual & Performing Arts, Psychology & Cognitive Sciences, and Clinical Medicine (according to the table on p. 117 Print, p. 153 PDF).

As I said and hinted earlier, we’ve got brains; they’re just not the kind of brains that command respect.

Final comments

My hat’s off to the expert panel and staff of the Council of Canadian Academies. Combining two previous reports into one could not have been easy. As well, kudos to their attempts to broaden the discussion by mentioning initiative such as open science and for emphasizing the problems with bibliometrics, technometrics, and other measures. I have covered only parts of this assessment, (Competing in a Global Innovation Economy: The Current State of R&D in Canada), there’s a lot more to it including a substantive list of reference materials (bibliography).

While I have argued that perhaps the situation isn’t quite as bad as the headlines and statistics may suggest, there are some concerning trends for Canadians but we have to acknowledge that many countries have stepped up their research game and that’s good for all of us. You don’t get better at anything unless you work with and play with others who are better than you are. For example, both India and Italy surpassed us in numbers of published research papers. We slipped from 7th place to 9th. Thank you, Italy and India. (And, Happy ‘Italian Research in the World Day’ on April 15, 2018, the day’s inaugural year. In Italian: Piano Straordinario “Vivere all’Italiana” – Giornata della ricerca Italiana nel mondo.)

Unfortunately, the reading is harder going than previous R&D assessments in the CCA catalogue. And in the end, I can’t help thinking we’re just a little bit like Hedy Lamarr. Not really appreciated in all of our complexities although the expert panel and staff did try from time to time. Perhaps the government needs to find better ways of asking the questions.

***ETA April 12, 2018 at 1500 PDT: Talking about missing the obvious! I’ve been ranting on about how research strength in visual and performing arts and in philosophy and theology, etc. is perfectly fine and could lead to ‘traditional’ science breakthroughs without underlining the point by noting that Antheil was a musician, Lamarr was as an actress and they set the foundation for work by electrical engineers (or people with that specialty) for their signature work leading to WiFi, etc.***

There is, by the way, a Hedy-Canada connection. In 1998, she sued Canadian software company Corel, for its unauthorized use of her image on their Corel Draw 8 product packaging. She won.

More stuff

For those who’d like to see and hear the April 10, 2017 launch for “Competing in a Global Innovation Economy: The Current State of R&D in Canada” or the Third Assessment as I think of it, go here.

The report can be found here.

For anyone curious about ‘Bombshell: The Hedy Lamarr Story’ to be broadcast on May 18, 2018 as part of PBS’s American Masters series, there’s this trailer,

For the curious, I did find out more about the Hedy Lamarr and Corel Draw. John Lettice’s December 2, 1998 article The Rgister describes the suit and her subsequent victory in less than admiring terms,

Our picture doesn’t show glamorous actress Hedy Lamarr, who yesterday [Dec. 1, 1998] came to a settlement with Corel over the use of her image on Corel’s packaging. But we suppose that following the settlement we could have used a picture of Corel’s packaging. Lamarr sued Corel earlier this year over its use of a CorelDraw image of her. The picture had been produced by John Corkery, who was 1996 Best of Show winner of the Corel World Design Contest. Corel now seems to have come to an undisclosed settlement with her, which includes a five-year exclusive (oops — maybe we can’t use the pack-shot then) licence to use “the lifelike vector illustration of Hedy Lamarr on Corel’s graphic software packaging”. Lamarr, bless ‘er, says she’s looking forward to the continued success of Corel Corporation,  …

There’s this excerpt from a Sept. 21, 2015 posting (a pictorial essay of Lamarr’s life) by Shahebaz Khan on The Blaze Blog,

6. CorelDRAW:
For several years beginning in 1997, the boxes of Corel DRAW’s software suites were graced by a large Corel-drawn image of Lamarr. The picture won Corel DRAW’s yearly software suite cover design contest in 1996. Lamarr sued Corel for using the image without her permission. Corel countered that she did not own rights to the image. The parties reached an undisclosed settlement in 1998.

There’s also a Nov. 23, 1998 Corel Draw 8 product review by Mike Gorman on mymac.com, which includes a screenshot of the packaging that precipitated the lawsuit. Once they settled, it seems Corel used her image at least one more time.

The Hedy Lamarr of international research: Canada’s Third assessment of The State of Science and Technology and Industrial Research and Development in Canada (1 of 2)

Before launching into the assessment, a brief explanation of my theme: Hedy Lamarr was considered to be one of the great beauties of her day,

“Ziegfeld Girl” Hedy Lamarr 1941 MGM *M.V.
Titles: Ziegfeld Girl
People: Hedy Lamarr
Image courtesy mptvimages.com [downloaded from https://www.imdb.com/title/tt0034415/mediaviewer/rm1566611456]

Aside from starring in Hollywood movies and, before that, movies in Europe, she was also an inventor and not just any inventor (from a Dec. 4, 2017 article by Laura Barnett for The Guardian), Note: Links have been removed,

Let’s take a moment to reflect on the mercurial brilliance of Hedy Lamarr. Not only did the Vienna-born actor flee a loveless marriage to a Nazi arms dealer to secure a seven-year, $3,000-a-week contract with MGM, and become (probably) the first Hollywood star to simulate a female orgasm on screen – she also took time out to invent a device that would eventually revolutionise mobile communications.

As described in unprecedented detail by the American journalist and historian Richard Rhodes in his new book, Hedy’s Folly, Lamarr and her business partner, the composer George Antheil, were awarded a patent in 1942 for a “secret communication system”. It was meant for radio-guided torpedoes, and the pair gave to the US Navy. It languished in their files for decades before eventually becoming a constituent part of GPS, Wi-Fi and Bluetooth technology.

(The article goes on to mention other celebrities [Marlon Brando, Barbara Cartland, Mark Twain, etc] and their inventions.)

Lamarr’s work as an inventor was largely overlooked until the 1990’s when the technology community turned her into a ‘cultish’ favourite and from there her reputation grew and acknowledgement increased culminating in Rhodes’ book and the documentary by Alexandra Dean, ‘Bombshell: The Hedy Lamarr Story (to be broadcast as part of PBS’s American Masters series on May 18, 2018).

Canada as Hedy Lamarr

There are some parallels to be drawn between Canada’s S&T and R&D (science and technology; research and development) and Ms. Lamarr. Chief amongst them, we’re not always appreciated for our brains. Not even by people who are supposed to know better such as the experts on the panel for the ‘Third assessment of The State of Science and Technology and Industrial Research and Development in Canada’ (proper title: Competing in a Global Innovation Economy: The Current State of R&D in Canada) from the Expert Panel on the State of Science and Technology and Industrial Research and Development in Canada.

A little history

Before exploring the comparison to Hedy Lamarr further, here’s a bit more about the history of this latest assessment from the Council of Canadian Academies (CCA), from the report released April 10, 2018,

This assessment of Canada’s performance indicators in science, technology, research, and innovation comes at an opportune time. The Government of Canada has expressed a renewed commitment in several tangible ways to this broad domain of activity including its Innovation and Skills Plan, the announcement of five superclusters, its appointment of a new Chief Science Advisor, and its request for the Fundamental Science Review. More specifically, the 2018 Federal Budget demonstrated the government’s strong commitment to research and innovation with historic investments in science.

The CCA has a decade-long history of conducting evidence-based assessments about Canada’s research and development activities, producing seven assessments of relevance:

The State of Science and Technology in Canada (2006) [emphasis mine]
•Innovation and Business Strategy: Why Canada Falls Short (2009)
•Catalyzing Canada’s Digital Economy (2010)
•Informing Research Choices: Indicators and Judgment (2012)
The State of Science and Technology in Canada (2012) [emphasis mine]
The State of Industrial R&D in Canada (2013) [emphasis mine]
•Paradox Lost: Explaining Canada’s Research Strength and Innovation Weakness (2013)

Using similar methods and metrics to those in The State of Science and Technology in Canada (2012) and The State of Industrial R&D in Canada (2013), this assessment tells a similar and familiar story: Canada has much to be proud of, with world-class researchers in many domains of knowledge, but the rest of the world is not standing still. Our peers are also producing high quality results, and many countries are making significant commitments to supporting research and development that will position them to better leverage their strengths to compete globally. Canada will need to take notice as it determines how best to take action. This assessment provides valuable material for that conversation to occur, whether it takes place in the lab or the legislature, the bench or the boardroom. We also hope it will be used to inform public discussion. [p. ix Print, p. 11 PDF]

This latest assessment succeeds the general 2006 and 2012 reports, which were mostly focused on academic research, and combines it with an assessment of industrial research, which was previously separate. Also, this third assessment’s title (Competing in a Global Innovation Economy: The Current State of R&D in Canada) makes what was previously quietly declared in the text, explicit from the cover onwards. It’s all about competition, despite noises such as the 2017 Naylor report (Review of fundamental research) about the importance of fundamental research.

One other quick comment, I did wonder in my July 1, 2016 posting (featuring the announcement of the third assessment) how combining two assessments would impact the size of the expert panel and the size of the final report,

Given the size of the 2012 assessment of science and technology at 232 pp. (PDF) and the 2013 assessment of industrial research and development at 220 pp. (PDF) with two expert panels, the imagination boggles at the potential size of the 2016 expert panel and of the 2016 assessment combining the two areas.

I got my answer with regard to the panel as noted in my Oct. 20, 2016 update (which featured a list of the members),

A few observations, given the size of the task, this panel is lean. As well, there are three women in a group of 13 (less than 25% representation) in 2016? It’s Ontario and Québec-dominant; only BC and Alberta rate a representative on the panel. I hope they will find ways to better balance this panel and communicate that ‘balanced story’ to the rest of us. On the plus side, the panel has representatives from the humanities, arts, and industry in addition to the expected representatives from the sciences.

The imbalance I noted then was addressed, somewhat, with the selection of the reviewers (from the report released April 10, 2018),

The CCA wishes to thank the following individuals for their review of this report:

Ronald Burnett, C.M., O.B.C., RCA, Chevalier de l’ordre des arts et des
lettres, President and Vice-Chancellor, Emily Carr University of Art and Design
(Vancouver, BC)

Michelle N. Chretien, Director, Centre for Advanced Manufacturing and Design
Technologies, Sheridan College; Former Program and Business Development
Manager, Electronic Materials, Xerox Research Centre of Canada (Brampton,
ON)

Lisa Crossley, CEO, Reliq Health Technologies, Inc. (Ancaster, ON)
Natalie Dakers, Founding President and CEO, Accel-Rx Health Sciences
Accelerator (Vancouver, BC)

Fred Gault, Professorial Fellow, United Nations University-MERIT (Maastricht,
Netherlands)

Patrick D. Germain, Principal Engineering Specialist, Advanced Aerodynamics,
Bombardier Aerospace (Montréal, QC)

Robert Brian Haynes, O.C., FRSC, FCAHS, Professor Emeritus, DeGroote
School of Medicine, McMaster University (Hamilton, ON)

Susan Holt, Chief, Innovation and Business Relationships, Government of
New Brunswick (Fredericton, NB)

Pierre A. Mohnen, Professor, United Nations University-MERIT and Maastricht
University (Maastricht, Netherlands)

Peter J. M. Nicholson, C.M., Retired; Former and Founding President and
CEO, Council of Canadian Academies (Annapolis Royal, NS)

Raymond G. Siemens, Distinguished Professor, English and Computer Science
and Former Canada Research Chair in Humanities Computing, University of
Victoria (Victoria, BC) [pp. xii- xiv Print; pp. 15-16 PDF]

The proportion of women to men as reviewers jumped up to about 36% (4 of 11 reviewers) and there are two reviewers from the Maritime provinces. As usual, reviewers external to Canada were from Europe. Although this time, they came from Dutch institutions rather than UK or German institutions. Interestingly and unusually, there was no one from a US institution. When will they start using reviewers from other parts of the world?

As for the report itself, it is 244 pp. (PDF). (For the really curious, I have a  December 15, 2016 post featuring my comments on the preliminary data for the third assessment.)

To sum up, they had a lean expert panel tasked with bringing together two inquiries and two reports. I imagine that was daunting. Good on them for finding a way to make it manageable.

Bibliometrics, patents, and a survey

I wish more attention had been paid to some of the issues around open science, open access, and open data, which are changing how science is being conducted. (I have more about this from an April 5, 2018 article by James Somers for The Atlantic but more about that later.) If I understand rightly, they may not have been possible due to the nature of the questions posed by the government when requested the assessment.

As was done for the second assessment, there is an acknowledgement that the standard measures/metrics (bibliometrics [no. of papers published, which journals published them; number of times papers were cited] and technometrics [no. of patent applications, etc.] of scientific accomplishment and progress are not the best and new approaches need to be developed and adopted (from the report released April 10, 2018),

It is also worth noting that the Panel itself recognized the limits that come from using traditional historic metrics. Additional approaches will be needed the next time this assessment is done. [p. ix Print; p. 11 PDF]

For the second assessment and as a means of addressing some of the problems with metrics, the panel decided to take a survey which the panel for the third assessment has also done (from the report released April 10, 2018),

The Panel relied on evidence from multiple sources to address its charge, including a literature review and data extracted from statistical agencies and organizations such as Statistics Canada and the OECD. For international comparisons, the Panel focused on OECD countries along with developing countries that are among the top 20 producers of peer-reviewed research publications (e.g., China, India, Brazil, Iran, Turkey). In addition to the literature review, two primary research approaches informed the Panel’s assessment:
•a comprehensive bibliometric and technometric analysis of Canadian research publications and patents; and,
•a survey of top-cited researchers around the world.

Despite best efforts to collect and analyze up-to-date information, one of the Panel’s findings is that data limitations continue to constrain the assessment of R&D activity and excellence in Canada. This is particularly the case with industrial R&D and in the social sciences, arts, and humanities. Data on industrial R&D activity continue to suffer from time lags for some measures, such as internationally comparable data on R&D intensity by sector and industry. These data also rely on industrial categories (i.e., NAICS and ISIC codes) that can obscure important trends, particularly in the services sector, though Statistics Canada’s recent revisions to how this data is reported have improved this situation. There is also a lack of internationally comparable metrics relating to R&D outcomes and impacts, aside from those based on patents.

For the social sciences, arts, and humanities, metrics based on journal articles and other indexed publications provide an incomplete and uneven picture of research contributions. The expansion of bibliometric databases and methodological improvements such as greater use of web-based metrics, including paper views/downloads and social media references, will support ongoing, incremental improvements in the availability and accuracy of data. However, future assessments of R&D in Canada may benefit from more substantive integration of expert review, capable of factoring in different types of research outputs (e.g., non-indexed books) and impacts (e.g., contributions to communities or impacts on public policy). The Panel has no doubt that contributions from the humanities, arts, and social sciences are of equal importance to national prosperity. It is vital that such contributions are better measured and assessed. [p. xvii Print; p. 19 PDF]

My reading: there’s a problem and we’re not going to try and fix it this time. Good luck to those who come after us. As for this line: “The Panel has no doubt that contributions from the humanities, arts, and social sciences are of equal importance to national prosperity.” Did no one explain that when you use ‘no doubt’, you are introducing doubt? It’s a cousin to ‘don’t take this the wrong way’ and ‘I don’t mean to be rude but …’ .

Good news

This is somewhat encouraging (from the report released April 10, 2018),

Canada’s international reputation for its capacity to participate in cutting-edge R&D is strong, with 60% of top-cited researchers surveyed internationally indicating that Canada hosts world-leading infrastructure or programs in their fields. This share increased by four percentage points between 2012 and 2017. Canada continues to benefit from a highly educated population and deep pools of research skills and talent. Its population has the highest level of educational attainment in the OECD in the proportion of the population with
a post-secondary education. However, among younger cohorts (aged 25 to 34), Canada has fallen behind Japan and South Korea. The number of researchers per capita in Canada is on a par with that of other developed countries, andincreased modestly between 2004 and 2012. Canada’s output of PhD graduates has also grown in recent years, though it remains low in per capita terms relative to many OECD countries. [pp. xvii-xviii; pp. 19-20]

Don’t let your head get too big

Most of the report observes that our international standing is slipping in various ways such as this (from the report released April 10, 2018),

In contrast, the number of R&D personnel employed in Canadian businesses
dropped by 20% between 2008 and 2013. This is likely related to sustained and
ongoing decline in business R&D investment across the country. R&D as a share
of gross domestic product (GDP) has steadily declined in Canada since 2001,
and now stands well below the OECD average (Figure 1). As one of few OECD
countries with virtually no growth in total national R&D expenditures between
2006 and 2015, Canada would now need to more than double expenditures to
achieve an R&D intensity comparable to that of leading countries.

Low and declining business R&D expenditures are the dominant driver of this
trend; however, R&D spending in all sectors is implicated. Government R&D
expenditures declined, in real terms, over the same period. Expenditures in the
higher education sector (an indicator on which Canada has traditionally ranked
highly) are also increasing more slowly than the OECD average. Significant
erosion of Canada’s international competitiveness and capacity to participate
in R&D and innovation is likely to occur if this decline and underinvestment
continue.

Between 2009 and 2014, Canada produced 3.8% of the world’s research
publications, ranking ninth in the world. This is down from seventh place for
the 2003–2008 period. India and Italy have overtaken Canada although the
difference between Italy and Canada is small. Publication output in Canada grew
by 26% between 2003 and 2014, a growth rate greater than many developed
countries (including United States, France, Germany, United Kingdom, and
Japan), but below the world average, which reflects the rapid growth in China
and other emerging economies. Research output from the federal government,
particularly the National Research Council Canada, dropped significantly
between 2009 and 2014.(emphasis mine)  [p. xviii Print; p. 20 PDF]

For anyone unfamiliar with Canadian politics,  2009 – 2014 were years during which Stephen Harper’s Conservatives formed the government. Justin Trudeau’s Liberals were elected to form the government in late 2015.

During Harper’s years in government, the Conservatives were very interested in changing how the National Research Council of Canada operated and, if memory serves, the focus was on innovation over research. Consequently, the drop in their research output is predictable.

Given my interest in nanotechnology and other emerging technologies, this popped out (from the report released April 10, 2018),

When it comes to research on most enabling and strategic technologies, however, Canada lags other countries. Bibliometric evidence suggests that, with the exception of selected subfields in Information and Communication Technologies (ICT) such as Medical Informatics and Personalized Medicine, Canada accounts for a relatively small share of the world’s research output for promising areas of technology development. This is particularly true for Biotechnology, Nanotechnology, and Materials science [emphasis mine]. Canada’s research impact, as reflected by citations, is also modest in these areas. Aside from Biotechnology, none of the other subfields in Enabling and Strategic Technologies has an ARC rank among the top five countries. Optoelectronics and photonics is the next highest ranked at 7th place, followed by Materials, and Nanoscience and Nanotechnology, both of which have a rank of 9th. Even in areas where Canadian researchers and institutions played a seminal role in early research (and retain a substantial research capacity), such as Artificial Intelligence and Regenerative Medicine, Canada has lost ground to other countries.

Arguably, our early efforts in artificial intelligence wouldn’t have garnered us much in the way of ranking and yet we managed some cutting edge work such as machine learning. I’m not suggesting the expert panel should have or could have found some way to measure these kinds of efforts but I’m wondering if there could have been some acknowledgement in the text of the report. I’m thinking a couple of sentences in a paragraph about the confounding nature of scientific research where areas that are ignored for years and even decades then become important (e.g., machine learning) but are not measured as part of scientific progress until after they are universally recognized.

Still, point taken about our diminishing returns in ’emerging’ technologies and sciences (from the report released April 10, 2018),

The impression that emerges from these data is sobering. With the exception of selected ICT subfields, such as Medical Informatics, bibliometric evidence does not suggest that Canada excels internationally in most of these research areas. In areas such as Nanotechnology and Materials science, Canada lags behind other countries in levels of research output and impact, and other countries are outpacing Canada’s publication growth in these areas — leading to declining shares of world publications. Even in research areas such as AI, where Canadian researchers and institutions played a foundational role, Canadian R&D activity is not keeping pace with that of other countries and some researchers trained in Canada have relocated to other countries (Section 4.4.1). There are isolated exceptions to these trends, but the aggregate data reviewed by this Panel suggest that Canada is not currently a world leader in research on most emerging technologies.

The Hedy Lamarr treatment

We have ‘good looks’ (arts and humanities) but not the kind of brains (physical sciences and engineering) that people admire (from the report released April 10, 2018),

Canada, relative to the world, specializes in subjects generally referred to as the
humanities and social sciences (plus health and the environment), and does
not specialize as much as others in areas traditionally referred to as the physical
sciences and engineering. Specifically, Canada has comparatively high levels
of research output in Psychology and Cognitive Sciences, Public Health and
Health Services, Philosophy and Theology, Earth and Environmental Sciences,
and Visual and Performing Arts. [emphases mine] It accounts for more than 5% of world researchin these fields. Conversely, Canada has lower research output than expected
in Chemistry, Physics and Astronomy, Enabling and Strategic Technologies,
Engineering, and Mathematics and Statistics. The comparatively low research
output in core areas of the natural sciences and engineering is concerning,
and could impair the flexibility of Canada’s research base, preventing research
institutions and researchers from being able to pivot to tomorrow’s emerging
research areas. [p. xix Print; p. 21 PDF]

Couldn’t they have used a more buoyant tone? After all, science was known as ‘natural philosophy’ up until the 19th century. As for visual and performing arts, let’s include poetry as a performing and literary art (both have been the case historically and cross-culturally) and let’s also note that one of the great physics texts, (De rerum natura by Lucretius) was a multi-volume poem (from Lucretius’ Wikipedia entry; Note: Links have been removed).

His poem De rerum natura (usually translated as “On the Nature of Things” or “On the Nature of the Universe”) transmits the ideas of Epicureanism, which includes Atomism [the concept of atoms forming materials] and psychology. Lucretius was the first writer to introduce Roman readers to Epicurean philosophy.[15] The poem, written in some 7,400 dactylic hexameters, is divided into six untitled books, and explores Epicurean physics through richly poetic language and metaphors. Lucretius presents the principles of atomism; the nature of the mind and soul; explanations of sensation and thought; the development of the world and its phenomena; and explains a variety of celestial and terrestrial phenomena. The universe described in the poem operates according to these physical principles, guided by fortuna, “chance”, and not the divine intervention of the traditional Roman deities.[16]

Should you need more proof that the arts might have something to contribute to physical sciences, there’s this in my March 7, 2018 posting,

It’s not often you see research that combines biologically inspired engineering and a molecular biophysicist with a professional animator who worked at Peter Jackson’s (Lord of the Rings film trilogy, etc.) Park Road Post film studio. An Oct. 18, 2017 news item on ScienceDaily describes the project,

Like many other scientists, Don Ingber, M.D., Ph.D., the Founding Director of the Wyss Institute, [emphasis mine] is concerned that non-scientists have become skeptical and even fearful of his field at a time when technology can offer solutions to many of the world’s greatest problems. “I feel that there’s a huge disconnect between science and the public because it’s depicted as rote memorization in schools, when by definition, if you can memorize it, it’s not science,” says Ingber, who is also the Judah Folkman Professor of Vascular Biology at Harvard Medical School and the Vascular Biology Program at Boston Children’s Hospital, and Professor of Bioengineering at the Harvard Paulson School of Engineering and Applied Sciences (SEAS). [emphasis mine] “Science is the pursuit of the unknown. We have a responsibility to reach out to the public and convey that excitement of exploration and discovery, and fortunately, the film industry is already great at doing that.”

“Not only is our physics-based simulation and animation system as good as other data-based modeling systems, it led to the new scientific insight [emphasis mine] that the limited motion of the dynein hinge focuses the energy released by ATP hydrolysis, which causes dynein’s shape change and drives microtubule sliding and axoneme motion,” says Ingber. “Additionally, while previous studies of dynein have revealed the molecule’s two different static conformations, our animation visually depicts one plausible way that the protein can transition between those shapes at atomic resolution, which is something that other simulations can’t do. The animation approach also allows us to visualize how rows of dyneins work in unison, like rowers pulling together in a boat, which is difficult using conventional scientific simulation approaches.”

It comes down to how we look at things. Yes, physical sciences and engineering are very important. If the report is to be believed we have a very highly educated population and according to PISA scores our students rank highly in mathematics, science, and reading skills. (For more information on Canada’s latest PISA scores from 2015 see this OECD page. As for PISA itself, it’s an OECD [Organization for Economic Cooperation and Development] programme where 15-year-old students from around the world are tested on their reading, mathematics, and science skills, you can get some information from my Oct. 9, 2013 posting.)

Is it really so bad that we choose to apply those skills in fields other than the physical sciences and engineering? It’s a little bit like Hedy Lamarr’s problem except instead of being judged for our looks and having our inventions dismissed, we’re being judged for not applying ourselves to physical sciences and engineering and having our work in other closely aligned fields dismissed as less important.

Canada’s Industrial R&D: an oft-told, very sad story

Bemoaning the state of Canada’s industrial research and development efforts has been a national pastime as long as I can remember. Here’s this from the report released April 10, 2018,

There has been a sustained erosion in Canada’s industrial R&D capacity and competitiveness. Canada ranks 33rd among leading countries on an index assessing the magnitude, intensity, and growth of industrial R&D expenditures. Although Canada is the 11th largest spender, its industrial R&D intensity (0.9%) is only half the OECD average and total spending is declining (−0.7%). Compared with G7 countries, the Canadian portfolio of R&D investment is more concentrated in industries that are intrinsically not as R&D intensive. Canada invests more heavily than the G7 average in oil and gas, forestry, machinery and equipment, and finance where R&D has been less central to business strategy than in many other industries. …  About 50% of Canada’s industrial R&D spending is in high-tech sectors (including industries such as ICT, aerospace, pharmaceuticals, and automotive) compared with the G7 average of 80%. Canadian Business Enterprise Expenditures on R&D (BERD) intensity is also below the OECD average in these sectors. In contrast, Canadian investment in low and medium-low tech sectors is substantially higher than the G7 average. Canada’s spending reflects both its long-standing industrial structure and patterns of economic activity.

R&D investment patterns in Canada appear to be evolving in response to global and domestic shifts. While small and medium-sized enterprises continue to perform a greater share of industrial R&D in Canada than in the United States, between 2009 and 2013, there was a shift in R&D from smaller to larger firms. Canada is an increasingly attractive place to conduct R&D. Investment by foreign-controlled firms in Canada has increased to more than 35% of total R&D investment, with the United States accounting for more than half of that. [emphasis mine]  Multinational enterprises seem to be increasingly locating some of their R&D operations outside their country of ownership, possibly to gain proximity to superior talent. Increasing foreign-controlled R&D, however, also could signal a long-term strategic loss of control over intellectual property (IP) developed in this country, ultimately undermining the government’s efforts to support high-growth firms as they scale up. [pp. xxii-xxiii Print; pp. 24-25 PDF]

Canada has been known as a ‘branch plant’ economy for decades. For anyone unfamiliar with the term, it means that companies from other countries come here, open up a branch and that’s how we get our jobs as we don’t have all that many large companies here. Increasingly, multinationals are locating R&D shops here.

While our small to medium size companies fund industrial R&D, it’s large companies (multinationals) which can afford long-term and serious investment in R&D. Luckily for companies from other countries, we have a well-educated population of people looking for jobs.

In 2017, we opened the door more widely so we can scoop up talented researchers and scientists from other countries, from a June 14, 2017 article by Beckie Smith for The PIE News,

Universities have welcomed the inclusion of the work permit exemption for academic stays of up to 120 days in the strategy, which also introduces expedited visa processing for some highly skilled professions.

Foreign researchers working on projects at a publicly funded degree-granting institution or affiliated research institution will be eligible for one 120-day stay in Canada every 12 months.

And universities will also be able to access a dedicated service channel that will support employers and provide guidance on visa applications for foreign talent.

The Global Skills Strategy, which came into force on June 12 [2017], aims to boost the Canadian economy by filling skills gaps with international talent.

As well as the short term work permit exemption, the Global Skills Strategy aims to make it easier for employers to recruit highly skilled workers in certain fields such as computer engineering.

“Employers that are making plans for job-creating investments in Canada will often need an experienced leader, dynamic researcher or an innovator with unique skills not readily available in Canada to make that investment happen,” said Ahmed Hussen, Minister of Immigration, Refugees and Citizenship.

“The Global Skills Strategy aims to give those employers confidence that when they need to hire from abroad, they’ll have faster, more reliable access to top talent.”

Coincidentally, Microsoft, Facebook, Google, etc. have announced, in 2017, new jobs and new offices in Canadian cities. There’s a also Chinese multinational telecom company Huawei Canada which has enjoyed success in Canada and continues to invest here (from a Jan. 19, 2018 article about security concerns by Matthew Braga for the Canadian Broadcasting Corporation (CBC) online news,

For the past decade, Chinese tech company Huawei has found no shortage of success in Canada. Its equipment is used in telecommunications infrastructure run by the country’s major carriers, and some have sold Huawei’s phones.

The company has struck up partnerships with Canadian universities, and say it is investing more than half a billion dollars in researching next generation cellular networks here. [emphasis mine]

While I’m not thrilled about using patents as an indicator of progress, this is interesting to note (from the report released April 10, 2018),

Canada produces about 1% of global patents, ranking 18th in the world. It lags further behind in trademark (34th) and design applications (34th). Despite relatively weak performance overall in patents, Canada excels in some technical fields such as Civil Engineering, Digital Communication, Other Special Machines, Computer Technology, and Telecommunications. [emphases mine] Canada is a net exporter of patents, which signals the R&D strength of some technology industries. It may also reflect increasing R&D investment by foreign-controlled firms. [emphasis mine] [p. xxiii Print; p. 25 PDF]

Getting back to my point, we don’t have large companies here. In fact, the dream for most of our high tech startups is to build up the company so it’s attractive to buyers, sell, and retire (hopefully before the age of 40). Strangely, the expert panel doesn’t seem to share my insight into this matter,

Canada’s combination of high performance in measures of research output and impact, and low performance on measures of industrial R&D investment and innovation (e.g., subpar productivity growth), continue to be viewed as a paradox, leading to the hypothesis that barriers are impeding the flow of Canada’s research achievements into commercial applications. The Panel’s analysis suggests the need for a more nuanced view. The process of transforming research into innovation and wealth creation is a complex multifaceted process, making it difficult to point to any definitive cause of Canada’s deficit in R&D investment and productivity growth. Based on the Panel’s interpretation of the evidence, Canada is a highly innovative nation, but significant barriers prevent the translation of innovation into wealth creation. The available evidence does point to a number of important contributing factors that are analyzed in this report. Figure 5 represents the relationships between R&D, innovation, and wealth creation.

The Panel concluded that many factors commonly identified as points of concern do not adequately explain the overall weakness in Canada’s innovation performance compared with other countries. [emphasis mine] Academia-business linkages appear relatively robust in quantitative terms given the extent of cross-sectoral R&D funding and increasing academia-industry partnerships, though the volume of academia-industry interactions does not indicate the nature or the quality of that interaction, nor the extent to which firms are capitalizing on the research conducted and the resulting IP. The educational system is high performing by international standards and there does not appear to be a widespread lack of researchers or STEM (science, technology, engineering, and mathematics) skills. IP policies differ across universities and are unlikely to explain a divergence in research commercialization activity between Canadian and U.S. institutions, though Canadian universities and governments could do more to help Canadian firms access university IP and compete in IP management and strategy. Venture capital availability in Canada has improved dramatically in recent years and is now competitive internationally, though still overshadowed by Silicon Valley. Technology start-ups and start-up ecosystems are also flourishing in many sectors and regions, demonstrating their ability to build on research advances to develop and deliver innovative products and services.

You’ll note there’s no mention of a cultural issue where start-ups are designed for sale as soon as possible and this isn’t new. Years ago, there was an accounting firm that published a series of historical maps (the last one I saw was in 2005) of technology companies in the Vancouver region. Technology companies were being developed and sold to large foreign companies from the 19th century to present day.

Part 2

Measurably fewer nanoparticles in São Paulo’s (Brazil) air after ethanol use

An Aug. 28, 2017 news item on Nanotechnology Now features news about nanoparticles and the environment in São Paulo, Brazil,

When ethanol prices at the pump rise for whatever reason, it becomes economically advantageous for drivers of dual-fuel vehicles to fill up with gasoline. However, the health of the entire population pays a high price: substitution of gasoline for ethanol leads to a 30% increase in the atmospheric concentration of ultrafine particulate matter, which consists of particles with a diameter of less than 50 nanometers (nm).

An Aug. 23, 2017 Fundação de Amparo à Pesquisa do Estado de São Paulo (The São Paulo Research Foundation [FAPESP]) press release, which originated the news item, explains further,

The phenomenon was detected in São Paulo City, Brazil, in a study supported by FAPESP and published in July 2017 in Nature Communications.

“These polluting nanoparticles are so tiny that they behave like gas molecules. When inhaled, they can penetrate the respiratory system’s defensive barriers and reach the pulmonary alveoli, so that potentially toxic substances enter the bloodstream and may increase the incidence of respiratory and cardiovascular problems,” said Paulo Artaxo, Full Professor at the University of São Paulo’s Physics Institute (IF-USP) and a co-author of the study.

Levels of ultrafine particulate matter in the atmosphere are neither monitored nor regulated by environmental agencies not only in Brazil but practically anywhere in the world, according to Artaxo. The São Paulo State Environmental Corporation (CETESB), for example, routinely monitors only solid particles with diameters of 10,000 nm (PM10) and 2,500 nm (PM2.5) – as well as other gaseous pollutants such as ozone (O3), carbon monoxide (CO) and nitrogen dioxide (NO2).

“Between 75% and 80% of the mass of the nanoparticles we measured in this study corresponds to organic compounds emitted by motor vehicles – carbon in different chemical forms. What these compounds are exactly and how they affect health are questions that require further research,” Artaxo said.

He added that a consensus is forming in the United States and Europe based on recent research indicating that these emissions are a potential health hazard and should be regulated. Several US states, such as California, have laws requiring a 20%-30% ethanol blend in gasoline, which also helps reduce emissions of ultrafine particulate matter.

Methodology

The data analyzed in the study were collected during the period of January-May 2011, when ethanol prices fluctuated sharply compared with gasoline prices, owing to macroeconomic factors such as variations in the international price of sugar (Brazilian ethanol is made from sugarcane).

Collection was performed at the top of a ten-story building belonging to IF-USP in the western part of São Paulo City. According to Artaxo, the site was chosen because it is relatively distant from the main traffic thoroughfares so that the aerosols there are “older” in the sense that they have already interacted with other substances present in the atmosphere.

“Generally speaking, the pollution we inhale every day at home or at work isn’t what comes out of vehicular exhaust pipes but particles already processed in the atmosphere,” he explained. “For this reason, we chose a site that isn’t directly impacted by primary vehicle emissions.”

The study was conducted during Joel Ferreira de Brito’s postdoctoral research, which Artaxo supervised. The model used to analyze the data was developed by Brazilian economist Alberto Salvo, a professor at the National University of Singapore and first author of the article. Franz Geiger, a chemist at Northwestern University in the US, also collaborated.

“We adapted a sophisticated statistical model originally developed for economic analysis and used here for the first time to analyze the chemistry of atmospheric nanoparticles,” Artaxo said. “The main strength of this tool is that it can work with a large number of variables, such as the presence or absence of rainfall, wind direction, traffic intensity, and levels of ozone, carbon monoxide and other pollutants.”

Analyses were performed before, during and after a sharp fluctuation in ethanol prices leading consumers to switch motor fuels in São Paulo City. While no significant changes were detected in levels of inhalable fine particulate matter (PM2.5 and PM10), the study proved in a real, day-to-day situation that choosing ethanol reduces emissions of ultrafine particles. To date, this phenomenon had only been observed in the laboratory.

“These results reinforce the need for public policies to encourage the use of biofuels, as they clearly show that the public lose in health what they save at the pump when opting for gasoline,” Artaxo said.

In São Paulo, a city with 7 million motor vehicles and the largest urban fleet of flexible-fuel cars, it would be feasible to run all buses on biofuel. “We have the technology for this in Brazil – and at a competitive price,” he said.

The fact that the city’s bus fleet still depends on diesel, Artaxo warned, creates an even worse health hazard in the shape of emissions of black carbon, one of the main components of soot and a pollutant that contributes to global warming. Alongside electricity generation, the transportation sector is the largest emitter of pollutants produced by the burning of fossil fuels.

For Artaxo, incentives for electric, hybrid or biofuel vehicles are vital to reduce greenhouse gas emissions. “By incentivizing biofuels, we could solve several problems at once,” he said. “We could combat climate change, reduce harm to health and foster advances in automotive technology by offering a stimulus for auto makers to develop more economical and efficient cars fueled by ethanol.”

Here’s a link to and a citation for the paper,

Reduced ultrafine particle levels in São Paulo’s atmosphere during shifts from gasoline to ethanol use by Alberto Salvo, Joel Brito, Paulo Artaxo, & Franz M. Geiger. Nature Communications 8, Article number: 77 (2017) doi:10.1038/s41467-017-00041-5 Published online: 18 July 2017

This paper is open access.

International Women’s Day March 8, 2017 and UNESCO/L’Oréal’s For Women in Science (Rising Talents)

Before getting to the science, here’s a little music in honour of March 8, 2017 International Women’s Day,

There is is a Wikipedia entry devoted to Rise Up (Parachute Club song), Note: Links have been removed<

“Rise Up” is a pop song recorded by the Canadian group Parachute Club on their self-titled 1983 album. It was produced and engineered by Daniel Lanois, and written by Parachute Club members Billy Bryans, Lauri Conger, Lorraine Segato and Steve Webster with lyrics contributed by filmmaker Lynne Fernie.

An upbeat call for peace, celebration, and “freedom / to love who we please,” the song was a national hit in Canada, and was hailed as a unique achievement in Canadian pop music:

“ Rarely does one experience a piece of music in white North America where the barrier between participant and observer breaks down. Rise Up rises right up and breaks down the wall.[1] ”

According to Segato, the song was not written with any one individual group in mind, but as a universal anthem of freedom and equality;[2] Fernie described the song’s lyrics as having been inspired in part by West Coast First Nations rituals in which young girls would “rise up” at dawn to adopt their adult names as a rite of passage.[3]

It remains the band’s most famous song, and has been adopted as an activist anthem for causes as diverse as gay rights, feminism, anti-racism and the New Democratic Party.[4] As well, the song’s reggae and soca-influenced rhythms made it the first significant commercial breakthrough for Caribbean music in Canada.

L’Oréal UNESCO For Women in Science

From a March 8, 2017 UNESCO press release (received via email),

Fifteen outstanding young women researchers, selected
among more than 250 candidates in the framework of the 19th edition of
the L’Oréal-UNESCO For Women in Science awards, will receive the
International Rising Talent fellowship during a gala on 21 March at the
hotel Pullman Tour Eiffel de Paris. By recognizing their achievements at
a key moment in their careers, the _For Women in Science programme aims
to help them pursue their research.

Since 1998, the L’Oréal-UNESCO _For Women in Science programme [1]
has highlighted the achievements of outstanding women scientists and
supported promising younger women who are in the early stages of their
scientific careers. Selected among the best national and regional
L’Oréal-UNESCO fellows, the International Rising Talents come from
all regions of the world (Africa and Arab States, Asia-Pacific, Europe,
Latin America and North America).

Together with the five laureates of the 2017 L’Oreal-UNESCO For Women
in Science awards [2], they will participate in a week of events,
training and exchanges that will culminate with the award ceremony on 23
March 2017 at the Mutualité in Paris.

The 2017 International Rising Talent are recognized for their work in
the following five categories:

WATCHING THE BRAIN AT WORK

* DOCTOR LORINA NACI, Canada
Fundamental medicine
In a coma: is the patient conscious or unconscious?     * ASSOCIATE
PROFESSOR MUIREANN IRISH, Australia

Clinical medicine
Recognizing Alzheimer’s before the first signs appear.

ON THE ROAD TO CONCEIVING NEW MEDICAL TREATMENTS

* DOCTOR HYUN LEE, Germany
Biological Sciences
Neurodegenerative diseases: untangling aggregated proteins.
* DOCTOR NAM-KYUNG YU, Republic of Korea
Biological Sciences
Rett syndrome: neuronal cells come under fire
* DOCTOR STEPHANIE FANUCCHI, South Africa
Biological Sciences
Better understanding the immune system.
* DOCTOR JULIA ETULAIN, Argentina
Biological Sciences
Better tissue healing.

Finding potential new sources of drugs

* DOCTOR RYM BEN SALLEM, Tunisia
Biological Sciences
New antibiotics are right under our feet.
* DOCTOR HAB JOANNA SULKOWSKA, Poland
Biological Sciences
Unraveling the secrets of entangled proteins.

GETTING TO THE HEART OF MATTER

* MS NAZEK EL-ATAB, United Arab Emirates
Electrical, Electronic and Computer Engineering
Miniaturizing electronics without losing memory.
* DOCTOR BILGE DEMIRKOZ, Turkey
Physics
Piercing the secrets of cosmic radiation.
* DOCTOR TAMARA ELZEIN, Lebanon
Material Sciences
Trapping radioactivity.
* DOCTOR RAN LONG, China
Chemistry
Unlocking the potential of energy resources with nanochemistry.

EXAMINING THE PAST TO SHED LIGHT ON THE FUTURE – OR VICE VERSA

* DOCTOR FERNANDA WERNECK, Brazil
Biological Sciences
Predicting how animal biodiversity will evolve.
* DOCTOR SAM GILES, United Kingdom
Biological Sciences
Taking another look at the evolution of vertebrates thanks to their
braincases.
* DOCTOR ÁGNES KÓSPÁL, Hungary
Astronomy and Space Sciences
Looking at the birth of distant suns and planets to better understand
the solar system.

Congratulations to all of the winners!

You can find out more about these awards and others on the 2017 L’Oréal-UNESCO For Women in Science Awards webpage or on the For Women In Science website. (Again in honour of the 2017 International Women’s Day, I was the 92758th signer of the For Women in Science Manifesto.)

International Women’s Day origins

Thank you to Wikipedia (Note: Links have been removed),

International Women’s Day (IWD), originally called International Working Women’s Day, is celebrated on March 8 every year.[2] It commemorates the movement for women’s rights.

The earliest Women’s Day observance was held on February 28, 1909, in New York and organized by the Socialist Party of America.[3] On March 8, 1917, in the capital of the Russian Empire, Petrograd, a demonstration of women textile workers began, covering the whole city. This was the beginning of the Russian Revolution.[4] Seven days later, the Emperor of Russia Nicholas II abdicated and the provisional Government granted women the right to vote.[3] March 8 was declared a national holiday in Soviet Russia in 1917. The day was predominantly celebrated by the socialist movement and communist countries until it was adopted in 1975 by the United Nations.

It seems only fitting to bookend this post with another song (Happy International Women’s Day March 8, 2017),

While the lyrics are unabashedly romantic, the video is surprisingly moody with a bit of a ‘stalker vive’ although it does end up with her holding centre stage while singing and bouncing around in time to Walking on Sunshine.

High-performance, low-energy artificial synapse for neural network computing

This artificial synapse is apparently an improvement on the standard memristor-based artificial synapse but that doesn’t become clear until reading the abstract for the paper. First, there’s a Feb. 20, 2017 Stanford University news release by Taylor Kubota (dated Feb. 21, 2017 on EurekAlert), Note: Links have been removed,

For all the improvements in computer technology over the years, we still struggle to recreate the low-energy, elegant processing of the human brain. Now, researchers at Stanford University and Sandia National Laboratories have made an advance that could help computers mimic one piece of the brain’s efficient design – an artificial version of the space over which neurons communicate, called a synapse.

“It works like a real synapse but it’s an organic electronic device that can be engineered,” said Alberto Salleo, associate professor of materials science and engineering at Stanford and senior author of the paper. “It’s an entirely new family of devices because this type of architecture has not been shown before. For many key metrics, it also performs better than anything that’s been done before with inorganics.”

The new artificial synapse, reported in the Feb. 20 issue of Nature Materials, mimics the way synapses in the brain learn through the signals that cross them. This is a significant energy savings over traditional computing, which involves separately processing information and then storing it into memory. Here, the processing creates the memory.

This synapse may one day be part of a more brain-like computer, which could be especially beneficial for computing that works with visual and auditory signals. Examples of this are seen in voice-controlled interfaces and driverless cars. Past efforts in this field have produced high-performance neural networks supported by artificially intelligent algorithms but these are still distant imitators of the brain that depend on energy-consuming traditional computer hardware.

Building a brain

When we learn, electrical signals are sent between neurons in our brain. The most energy is needed the first time a synapse is traversed. Every time afterward, the connection requires less energy. This is how synapses efficiently facilitate both learning something new and remembering what we’ve learned. The artificial synapse, unlike most other versions of brain-like computing, also fulfills these two tasks simultaneously, and does so with substantial energy savings.

“Deep learning algorithms are very powerful but they rely on processors to calculate and simulate the electrical states and store them somewhere else, which is inefficient in terms of energy and time,” said Yoeri van de Burgt, former postdoctoral scholar in the Salleo lab and lead author of the paper. “Instead of simulating a neural network, our work is trying to make a neural network.”

The artificial synapse is based off a battery design. It consists of two thin, flexible films with three terminals, connected by an electrolyte of salty water. The device works as a transistor, with one of the terminals controlling the flow of electricity between the other two.

Like a neural path in a brain being reinforced through learning, the researchers program the artificial synapse by discharging and recharging it repeatedly. Through this training, they have been able to predict within 1 percent of uncertainly what voltage will be required to get the synapse to a specific electrical state and, once there, it remains at that state. In other words, unlike a common computer, where you save your work to the hard drive before you turn it off, the artificial synapse can recall its programming without any additional actions or parts.

Testing a network of artificial synapses

Only one artificial synapse has been produced but researchers at Sandia used 15,000 measurements from experiments on that synapse to simulate how an array of them would work in a neural network. They tested the simulated network’s ability to recognize handwriting of digits 0 through 9. Tested on three datasets, the simulated array was able to identify the handwritten digits with an accuracy between 93 to 97 percent.

Although this task would be relatively simple for a person, traditional computers have a difficult time interpreting visual and auditory signals.

“More and more, the kinds of tasks that we expect our computing devices to do require computing that mimics the brain because using traditional computing to perform these tasks is becoming really power hungry,” said A. Alec Talin, distinguished member of technical staff at Sandia National Laboratories in Livermore, California, and senior author of the paper. “We’ve demonstrated a device that’s ideal for running these type of algorithms and that consumes a lot less power.”

This device is extremely well suited for the kind of signal identification and classification that traditional computers struggle to perform. Whereas digital transistors can be in only two states, such as 0 and 1, the researchers successfully programmed 500 states in the artificial synapse, which is useful for neuron-type computation models. In switching from one state to another they used about one-tenth as much energy as a state-of-the-art computing system needs in order to move data from the processing unit to the memory.

This, however, means they are still using about 10,000 times as much energy as the minimum a biological synapse needs in order to fire. The researchers are hopeful that they can attain neuron-level energy efficiency once they test the artificial synapse in smaller devices.

Organic potential

Every part of the device is made of inexpensive organic materials. These aren’t found in nature but they are largely composed of hydrogen and carbon and are compatible with the brain’s chemistry. Cells have been grown on these materials and they have even been used to make artificial pumps for neural transmitters. The voltages applied to train the artificial synapse are also the same as those that move through human neurons.

All this means it’s possible that the artificial synapse could communicate with live neurons, leading to improved brain-machine interfaces. The softness and flexibility of the device also lends itself to being used in biological environments. Before any applications to biology, however, the team plans to build an actual array of artificial synapses for further research and testing.

Additional Stanford co-authors of this work include co-lead author Ewout Lubberman, also of the University of Groningen in the Netherlands, Scott T. Keene and Grégorio C. Faria, also of Universidade de São Paulo, in Brazil. Sandia National Laboratories co-authors include Elliot J. Fuller and Sapan Agarwal in Livermore and Matthew J. Marinella in Albuquerque, New Mexico. Salleo is an affiliate of the Stanford Precourt Institute for Energy and the Stanford Neurosciences Institute. Van de Burgt is now an assistant professor in microsystems and an affiliate of the Institute for Complex Molecular Studies (ICMS) at Eindhoven University of Technology in the Netherlands.

This research was funded by the National Science Foundation, the Keck Faculty Scholar Funds, the Neurofab at Stanford, the Stanford Graduate Fellowship, Sandia’s Laboratory-Directed Research and Development Program, the U.S. Department of Energy, the Holland Scholarship, the University of Groningen Scholarship for Excellent Students, the Hendrik Muller National Fund, the Schuurman Schimmel-van Outeren Foundation, the Foundation of Renswoude (The Hague and Delft), the Marco Polo Fund, the Instituto Nacional de Ciência e Tecnologia/Instituto Nacional de Eletrônica Orgânica in Brazil, the Fundação de Amparo à Pesquisa do Estado de São Paulo and the Brazilian National Council.

Here’s an abstract for the researchers’ paper (link to paper provided after abstract) and it’s where you’ll find the memristor connection explained,

The brain is capable of massively parallel information processing while consuming only ~1–100fJ per synaptic event1, 2. Inspired by the efficiency of the brain, CMOS-based neural architectures3 and memristors4, 5 are being developed for pattern recognition and machine learning. However, the volatility, design complexity and high supply voltages for CMOS architectures, and the stochastic and energy-costly switching of memristors complicate the path to achieve the interconnectivity, information density, and energy efficiency of the brain using either approach. Here we describe an electrochemical neuromorphic organic device (ENODe) operating with a fundamentally different mechanism from existing memristors. ENODe switches at low voltage and energy (<10pJ for 103μm2 devices), displays >500 distinct, non-volatile conductance states within a ~1V range, and achieves high classification accuracy when implemented in neural network simulations. Plastic ENODes are also fabricated on flexible substrates enabling the integration of neuromorphic functionality in stretchable electronic systems6, 7. Mechanical flexibility makes ENODes compatible with three-dimensional architectures, opening a path towards extreme interconnectivity comparable to the human brain.

Here’s a link to and a citation for the paper,

A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing by Yoeri van de Burgt, Ewout Lubberman, Elliot J. Fuller, Scott T. Keene, Grégorio C. Faria, Sapan Agarwal, Matthew J. Marinella, A. Alec Talin, & Alberto Salleo. Nature Materials (2017) doi:10.1038/nmat4856 Published online 20 February 2017

This paper is behind a paywall.

ETA March 8, 2017 10:28 PST: You may find this this piece on ferroelectricity and neuromorphic engineering of interest (March 7, 2017 posting titled: Ferroelectric roadmap to neuromorphic computing).

Nanotech business news from Turkey and from Northern Ireland

I have two nanotech business news bits, one from Turkey and one from Northern Ireland.

Turkey

A Turkish company has sold one of its microscopes to the US National Aeronautics and Space Administration (NASA), according to a Jan. 20, 2017 news item on dailysabah.com,

Turkish nanotechnology company Nanomanyetik has begun selling a powerful microscope to the U.S. space agency NASA, the company’s general director told Anadolu Agency on Thursday [Jan. 19, 2017].

Dr. Ahmet Oral, who also teaches physics at Middle East Technical University, said Nanomanyetik developed a microscope that is able to map surfaces on the nanometric and atomic levels, or extremely small particles.

Nanomanyetik’s foreign customers are drawn to the microscope because of its higher quality yet cheaper price compared to its competitors.

“There are almost 30 firms doing this work,” according to Oral. “Ten of them are active and we are among these active firms. Our aim is to be in the top three,” he said, adding that Nanomanyetik jumps to the head of the line because of its after-sell service.

In addition to sales to NASA, the Ankara-based firm exports the microscope to Brazil, Chile, France, Iran, Israel, Italy, Japan, Poland, South Korea and Spain.

Electronics giant Samsung is also a customer.

“Where does Samsung use this product? There are pixels in the smartphones’ displays. These pixels are getting smaller each year. Now the smallest pixel is 15X10 microns,” he said. Human hair is between 10 and 100 microns in diameter.

“They are figuring inner sides of pixels so that these pixels can operate much better. These patterns are on the nanometer level. They are using these microscopes to see the results of their works,” Oral said.

Nanomanyetik’s microscopes produces good quality, high resolution images and can even display an object’s atoms and individual DNA fibers, according to Oral.

You can find the English language version of the Nanomanyetik (NanoMagnetics Instruments) website here . For those with the language skills there is the Turkish language version, here.

Northern Ireland

A Jan. 22, 2017 news article by Dominic Coyle for The Irish Times (Note: Links have been removed) shares this business news and mention of a world first,

MOF Technologies has raised £1.5 million (€1.73 million) from London-based venture capital group Excelsa Ventures and Queen’s University Belfast’s Qubis research commercialisation group.

MOF Technologies chief executive Paschal McCloskey welcomed the Excelsa investment.

Established in part by Qubis in 2012 in partnership with inventor Prof Stuart James, MOF Technologies began life in a lab at the School of Chemistry and Chemical Engineering at Queen’s.

Its metal organic framework (MOF) technology is seen as having significant potential in areas including gas storage, carbon capture, transport, drug delivery and heat transformation. Though still in its infancy, the market is forecast to grow to £2.2 billion by 2022, the company says.

MOF Technologies last year became the first company worldwide to successfully commercialise MOFs when it agreed a deal with US fruit and vegetable storage provider Decco Worldwide to commercialise MOFs for use in a food application.

TruPick, designed by Decco and using MOF Technologies’ environmentally friendly technology, enables nanomaterials control the effects of ethylene on fruit produce so it maintains freshness in storage or transport.

MOFs are crystalline, sponge-like materials composed of two components – metal ions and organic molecules known as linkers.

“We very quickly recognised the market potential of MOFs in terms of their unmatched ability for gas storage,” said Moritz Bolle from Excelsa Ventures. “This technology will revolutionise traditional applications and open countless new opportunities for industry. We are confident MOF Technologies is the company that will lead this seismic shift in materials science.

You can find MOF Technologies here.

Prawn (shrimp) shopping bags and saving the earth

Using a material (shrimp shells) that is disposed of as waste to create a biodegradable product (shopping bags) can only be described as a major win. A Jan. 10, 2017 news item on Nanowerk makes the announcement,

Bioengineers at The University of Nottingham are trialling how to use shrimp shells to make biodegradable shopping bags, as a ‘green’ alternative to oil-based plastic, and as a new food packaging material to extend product shelf life.

The new material for these affordable ‘eco-friendly’ bags is being optimised for Egyptian conditions, as effective waste management is one of the country’s biggest challenges.

An expert in testing the properties of materials, Dr Nicola Everitt from the Faculty of Engineering at Nottingham, is leading the research together with academics at Nile University in Egypt.

“Non-degradable plastic packaging is causing environmental and public health problems in Egypt, including contamination of water supplies which particularly affects living conditions of the poor,” explains Dr Everitt.

Natural biopolymer products made from plant materials are a ‘green’ alternative growing in popularity, but with competition for land with food crops, it is not a viable solution in Egypt.

A Jan. 10, 2017 University of Nottingham press release, which originated the news item,expands on the theme,

This new project aims to turn shrimp shells, which are a part of the country’s waste problem into part of the solution.

Dr Everitt said: “Use of a degradable biopolymer made of prawn shells for carrier bags would lead to lower carbon emissions and reduce food and packaging waste accumulating in the streets or at illegal dump sites. It could also make exports more acceptable to a foreign market within a 10-15-year time frame. All priorities at a national level in Egypt.”

Degradable nanocomposite material

The research is being undertaken to produce an innovative biopolymer nanocomposite material which is degradable, affordable and suitable for shopping bags and food packaging.

Chitosan is a man-made polymer derived from the organic compound chitin, which is extracted from shrimp shells, first using acid (to remove the calcium carbonate “backbone” of the crustacean shell) and then alkali (to produce the long molecular chains which make up the biopolymer).

The dried chitosan flakes can then be dissolved into solution and polymer film made by conventional processing techniques.

Chitosan was chosen because it is a promising biodegradable polymer already used in pharmaceutical packaging due to its antimicrobial, antibacterial and biocompatible properties. The second strand of the project is to develop an active polymer film that absorbs oxygen.

Enhancing food shelf life and cutting food waste

This future generation food packaging could have the ability to enhance food shelf life with high efficiency and low energy consumption, making a positive impact on food wastage in many countries.

If successful, Dr Everitt plans to approach UK packaging manufacturers with the product.

Additionally, the research aims to identify a production route by which these degradable biopolymer materials for shopping bags and food packaging could be manufactured.

I also found the funding for this project to be of interest (from the press release),

The project is sponsored by the Newton Fund and the Newton-Mosharafa Fund grant and is one of 13 Newton-funded collaborations for The University of Nottingham.

The collaborations, which are designed to tackle community issues through science and innovation, with links formed with countries such as Brazil, Egypt, Philippines and Indonesia.

Since the Newton Fund was established in 2014, the University has been awarded a total of £4.5m in funding. It also boasts the highest number of institutional-led collaborations.

Professor Nick Miles Pro-Vice-Chancellor for Global Engagement said: “The University of Nottingham has a long and established record in global collaboration and research.

The Newton Fund plays to these strengths and enables us to work with institutions around the world to solve some of the most pressing issues facing communities.”

From a total of 68 universities, The University of Nottingham has emerged as the top awardee of British Council Newton Fund Institutional Links grants (13) and is joint top awardee from a total of 160 institutions competing for British Council Newton Fund Researcher Links Workshop awards (6).

Professor Miles added: “This is testament to the incredible research taking place across the University – both here in the UK and in the campuses in Malaysia and China – and underlines the strength of our research partnerships around the world.”

That’s it!