Tag Archives: Vancouver

The Hedy Lamarr of international research: Canada’s Third assessment of The State of Science and Technology and Industrial Research and Development in Canada (2 of 2)

Taking up from where I left off with my comments on Competing in a Global Innovation Economy: The Current State of R and D in Canada or as I prefer to call it the Third assessment of Canadas S&T (science and technology) and R&D (research and development). (Part 1 for anyone who missed it).

Is it possible to get past Hedy?

Interestingly (to me anyway), one of our R&D strengths, the visual and performing arts, features sectors where a preponderance of people are dedicated to creating culture in Canada and don’t spend a lot of time trying to make money so they can retire before the age of 40 as so many of our start-up founders do. (Retiring before the age of 40 just reminded me of Hollywood actresses {Hedy] who found and still do find that work was/is hard to come by after that age. You may be able but I’m not sure I can get past Hedy.) Perhaps our business people (start-up founders) could take a leaf out of the visual and performing arts handbook? Or, not. There is another question.

Does it matter if we continue to be a ‘branch plant’ economy? Somebody once posed that question to me when I was grumbling that our start-ups never led to larger businesses and acted more like incubators (which could describe our R&D as well),. He noted that Canadians have a pretty good standard of living and we’ve been running things this way for over a century and it seems to work for us. Is it that bad? I didn’t have an  answer for him then and I don’t have one now but I think it’s a useful question to ask and no one on this (2018) expert panel or the previous expert panel (2013) seems to have asked.

I appreciate that the panel was constrained by the questions given by the government but given how they snuck in a few items that technically speaking were not part of their remit, I’m thinking they might have gone just a bit further. The problem with answering the questions as asked is that if you’ve got the wrong questions, your answers will be garbage (GIGO; garbage in, garbage out) or, as is said, where science is concerned, it’s the quality of your questions.

On that note, I would have liked to know more about the survey of top-cited researchers. I think looking at the questions could have been quite illuminating and I would have liked some information on from where (geographically and area of specialization) they got most of their answers. In keeping with past practice (2012 assessment published in 2013), there is no additional information offered about the survey questions or results. Still, there was this (from the report released April 10, 2018; Note: There may be some difference between the formatting seen here and that seen in the document),

3.1.2 International Perceptions of Canadian Research
As with the 2012 S&T report, the CCA commissioned a survey of top-cited researchers’ perceptions of Canada’s research strength in their field or subfield relative to that of other countries (Section 1.3.2). Researchers were asked to identify the top five countries in their field and subfield of expertise: 36% of respondents (compared with 37% in the 2012 survey) from across all fields of research rated Canada in the top five countries in their field (Figure B.1 and Table B.1 in the appendix). Canada ranks fourth out of all countries, behind the United States, United Kingdom, and Germany, and ahead of France. This represents a change of about 1 percentage point from the overall results of the 2012 S&T survey. There was a 4 percentage point decrease in how often France is ranked among the top five countries; the ordering of the top five countries, however, remains the same.

When asked to rate Canada’s research strength among other advanced countries in their field of expertise, 72% (4,005) of respondents rated Canadian research as “strong” (corresponding to a score of 5 or higher on a 7-point scale) compared with 68% in the 2012 S&T survey (Table 3.4). [pp. 40-41 Print; pp. 78-70 PDF]

Before I forget, there was mention of the international research scene,

Growth in research output, as estimated by number of publications, varies considerably for the 20 top countries. Brazil, China, India, Iran, and South Korea have had the most significant increases in publication output over the last 10 years. [emphases mine] In particular, the dramatic increase in China’s output means that it is closing the gap with the United States. In 2014, China’s output was 95% of that of the United States, compared with 26% in 2003. [emphasis mine]

Table 3.2 shows the Growth Index (GI), a measure of the rate at which the research output for a given country changed between 2003 and 2014, normalized by the world growth rate. If a country’s growth in research output is higher than the world average, the GI score is greater than 1.0. For example, between 2003 and 2014, China’s GI score was 1.50 (i.e., 50% greater than the world average) compared with 0.88 and 0.80 for Canada and the United States, respectively. Note that the dramatic increase in publication production of emerging economies such as China and India has had a negative impact on Canada’s rank and GI score (see CCA, 2016).

As long as I’ve been blogging (10 years), the international research community (in particular the US) has been looking over its shoulder at China.

Patents and intellectual property

As an inventor, Hedy got more than one patent. Much has been made of the fact that  despite an agreement, the US Navy did not pay her or her partner (George Antheil) for work that would lead to significant military use (apparently, it was instrumental in the Bay of Pigs incident, for those familiar with that bit of history), GPS, WiFi, Bluetooth, and more.

Some comments about patents. They are meant to encourage more innovation by ensuring that creators/inventors get paid for their efforts .This is true for a set time period and when it’s over, other people get access and can innovate further. It’s not intended to be a lifelong (or inheritable) source of income. The issue in Lamarr’s case is that the navy developed the technology during the patent’s term without telling either her or her partner so, of course, they didn’t need to compensate them despite the original agreement. They really should have paid her and Antheil.

The current patent situation, particularly in the US, is vastly different from the original vision. These days patents are often used as weapons designed to halt innovation. One item that should be noted is that the Canadian federal budget indirectly addressed their misuse (from my March 16, 2018 posting),

Surprisingly, no one else seems to have mentioned a new (?) intellectual property strategy introduced in the document (from Chapter 2: Progress; scroll down about 80% of the way, Note: The formatting has been changed),

Budget 2018 proposes measures in support of a new Intellectual Property Strategy to help Canadian entrepreneurs better understand and protect intellectual property, and get better access to shared intellectual property.

What Is a Patent Collective?
A Patent Collective is a way for firms to share, generate, and license or purchase intellectual property. The collective approach is intended to help Canadian firms ensure a global “freedom to operate”, mitigate the risk of infringing a patent, and aid in the defence of a patent infringement suit.

Budget 2018 proposes to invest $85.3 million over five years, starting in 2018–19, with $10 million per year ongoing, in support of the strategy. The Minister of Innovation, Science and Economic Development will bring forward the full details of the strategy in the coming months, including the following initiatives to increase the intellectual property literacy of Canadian entrepreneurs, and to reduce costs and create incentives for Canadian businesses to leverage their intellectual property:

  • To better enable firms to access and share intellectual property, the Government proposes to provide $30 million in 2019–20 to pilot a Patent Collective. This collective will work with Canada’s entrepreneurs to pool patents, so that small and medium-sized firms have better access to the critical intellectual property they need to grow their businesses.
  • To support the development of intellectual property expertise and legal advice for Canada’s innovation community, the Government proposes to provide $21.5 million over five years, starting in 2018–19, to Innovation, Science and Economic Development Canada. This funding will improve access for Canadian entrepreneurs to intellectual property legal clinics at universities. It will also enable the creation of a team in the federal government to work with Canadian entrepreneurs to help them develop tailored strategies for using their intellectual property and expanding into international markets.
  • To support strategic intellectual property tools that enable economic growth, Budget 2018 also proposes to provide $33.8 million over five years, starting in 2018–19, to Innovation, Science and Economic Development Canada, including $4.5 million for the creation of an intellectual property marketplace. This marketplace will be a one-stop, online listing of public sector-owned intellectual property available for licensing or sale to reduce transaction costs for businesses and researchers, and to improve Canadian entrepreneurs’ access to public sector-owned intellectual property.

The Government will also consider further measures, including through legislation, in support of the new intellectual property strategy.

Helping All Canadians Harness Intellectual Property
Intellectual property is one of our most valuable resources, and every Canadian business owner should understand how to protect and use it.

To better understand what groups of Canadians are benefiting the most from intellectual property, Budget 2018 proposes to provide Statistics Canada with $2 million over three years to conduct an intellectual property awareness and use survey. This survey will help identify how Canadians understand and use intellectual property, including groups that have traditionally been less likely to use intellectual property, such as women and Indigenous entrepreneurs. The results of the survey should help the Government better meet the needs of these groups through education and awareness initiatives.

The Canadian Intellectual Property Office will also increase the number of education and awareness initiatives that are delivered in partnership with business, intermediaries and academia to ensure Canadians better understand, integrate and take advantage of intellectual property when building their business strategies. This will include targeted initiatives to support underrepresented groups.

Finally, Budget 2018 also proposes to invest $1 million over five years to enable representatives of Canada’s Indigenous Peoples to participate in discussions at the World Intellectual Property Organization related to traditional knowledge and traditional cultural expressions, an important form of intellectual property.

It’s not wholly clear what they mean by ‘intellectual property’. The focus seems to be on  patents as they are the only intellectual property (as opposed to copyright and trademarks) singled out in the budget. As for how the ‘patent collective’ is going to meet all its objectives, this budget supplies no clarity on the matter. On the plus side, I’m glad to see that indigenous peoples’ knowledge is being acknowledged as “an important form of intellectual property” and I hope the discussions at the World Intellectual Property Organization are fruitful.

As for the patent situation in Canada (from the report released April 10, 2018),

Over the past decade, the Canadian patent flow in all technical sectors has consistently decreased. Patent flow provides a partial picture of how patents in Canada are exploited. A negative flow represents a deficit of patented inventions owned by Canadian assignees versus the number of patented inventions created by Canadian inventors. The patent flow for all Canadian patents decreased from about −0.04 in 2003 to −0.26 in 2014 (Figure 4.7). This means that there is an overall deficit of 26% of patent ownership in Canada. In other words, fewer patents were owned by Canadian institutions than were invented in Canada.

This is a significant change from 2003 when the deficit was only 4%. The drop is consistent across all technical sectors in the past 10 years, with Mechanical Engineering falling the least, and Electrical Engineering the most (Figure 4.7). At the technical field level, the patent flow dropped significantly in Digital Communication and Telecommunications. For example, the Digital Communication patent flow fell from 0.6 in 2003 to −0.2 in 2014. This fall could be partially linked to Nortel’s US$4.5 billion patent sale [emphasis mine] to the Rockstar consortium (which included Apple, BlackBerry, Ericsson, Microsoft, and Sony) (Brickley, 2011). Food Chemistry and Microstructural [?] and Nanotechnology both also showed a significant drop in patent flow. [p. 83 Print; p. 121 PDF]

Despite a fall in the number of parents for ‘Digital Communication’, we’re still doing well according to statistics elsewhere in this report. Is it possible that patents aren’t that big a deal? Of course, it’s also possible that we are enjoying the benefits of past work and will miss out on future work. (Note: A video of the April 10, 2018 report presentation by Max Blouw features him saying something like that.)

One last note, Nortel died many years ago. Disconcertingly, this report, despite more than one reference to Nortel, never mentions the company’s demise.

Boxed text

While the expert panel wasn’t tasked to answer certain types of questions, as I’ve noted earlier they managed to sneak in a few items.  One of the strategies they used was putting special inserts into text boxes including this (from the report released April 10, 2018),

Box 4.2
The FinTech Revolution

Financial services is a key industry in Canada. In 2015, the industry accounted for 4.4%

of Canadia jobs and about 7% of Canadian GDP (Burt, 2016). Toronto is the second largest financial services hub in North America and one of the most vibrant research hubs in FinTech. Since 2010, more than 100 start-up companies have been founded in Canada, attracting more than $1 billion in investment (Moffatt, 2016). In 2016 alone, venture-backed investment in Canadian financial technology companies grew by 35% to $137.7 million (Ho, 2017). The Toronto Financial Services Alliance estimates that there are approximately 40,000 ICT specialists working in financial services in Toronto alone.

AI, blockchain, [emphasis mine] and other results of ICT research provide the basis for several transformative FinTech innovations including, for example, decentralized transaction ledgers, cryptocurrencies (e.g., bitcoin), and AI-based risk assessment and fraud detection. These innovations offer opportunities to develop new markets for established financial services firms, but also provide entry points for technology firms to develop competing service offerings, increasing competition in the financial services industry. In response, many financial services companies are increasing their investments in FinTech companies (Breznitz et al., 2015). By their own account, the big five banks invest more than $1 billion annually in R&D of advanced software solutions, including AI-based innovations (J. Thompson, personal communication, 2016). The banks are also increasingly investing in university research and collaboration with start-up companies. For instance, together with several large insurance and financial management firms, all big five banks have invested in the Vector Institute for Artificial Intelligence (Kolm, 2017).

I’m glad to see the mention of blockchain while AI (artificial intelligence) is an area where we have innovated (from the report released April 10, 2018),

AI has attracted researchers and funding since the 1960s; however, there were periods of stagnation in the 1970s and 1980s, sometimes referred to as the “AI winter.” During this period, the Canadian Institute for Advanced Research (CIFAR), under the direction of Fraser Mustard, started supporting AI research with a decade-long program called Artificial Intelligence, Robotics and Society, [emphasis mine] which was active from 1983 to 1994. In 2004, a new program called Neural Computation and Adaptive Perception was initiated and renewed twice in 2008 and 2014 under the title, Learning in Machines and Brains. Through these programs, the government provided long-term, predictable support for high- risk research that propelled Canadian researchers to the forefront of global AI development. In the 1990s and early 2000s, Canadian research output and impact on AI were second only to that of the United States (CIFAR, 2016). NSERC has also been an early supporter of AI. According to its searchable grant database, NSERC has given funding to research projects on AI since at least 1991–1992 (the earliest searchable year) (NSERC, 2017a).

The University of Toronto, the University of Alberta, and the Université de Montréal have emerged as international centres for research in neural networks and deep learning, with leading experts such as Geoffrey Hinton and Yoshua Bengio. Recently, these locations have expanded into vibrant hubs for research in AI applications with a diverse mix of specialized research institutes, accelerators, and start-up companies, and growing investment by major international players in AI development, such as Microsoft, Google, and Facebook. Many highly influential AI researchers today are either from Canada or have at some point in their careers worked at a Canadian institution or with Canadian scholars.

As international opportunities in AI research and the ICT industry have grown, many of Canada’s AI pioneers have been drawn to research institutions and companies outside of Canada. According to the OECD, Canada’s share of patents in AI declined from 2.4% in 2000 to 2005 to 2% in 2010 to 2015. Although Canada is the sixth largest producer of top-cited scientific publications related to machine learning, firms headquartered in Canada accounted for only 0.9% of all AI-related inventions from 2012 to 2014 (OECD, 2017c). Canadian AI researchers, however, remain involved in the core nodes of an expanding international network of AI researchers, most of whom continue to maintain ties with their home institutions. Compared with their international peers, Canadian AI researchers are engaged in international collaborations far more often than would be expected by Canada’s level of research output, with Canada ranking fifth in collaboration. [p. 97-98 Print; p. 135-136 PDF]

The only mention of robotics seems to be here in this section and it’s only in passing. This is a bit surprising given its global importance. I wonder if robotics has been somehow hidden inside the term artificial intelligence, although sometimes it’s vice versa with robot being used to describe artificial intelligence. I’m noticing this trend of assuming the terms are synonymous or interchangeable not just in Canadian publications but elsewhere too.  ’nuff said.

Getting back to the matter at hand, t he report does note that patenting (technometric data) is problematic (from the report released April 10, 2018),

The limitations of technometric data stem largely from their restricted applicability across areas of R&D. Patenting, as a strategy for IP management, is similarly limited in not being equally relevant across industries. Trends in patenting can also reflect commercial pressures unrelated to R&D activities, such as defensive or strategic patenting practices. Finally, taxonomies for assessing patents are not aligned with bibliometric taxonomies, though links can be drawn to research publications through the analysis of patent citations. [p. 105 Print; p. 143 PDF]

It’s interesting to me that they make reference to many of the same issues that I mention but they seem to forget and don’t use that information in their conclusions.

There is one other piece of boxed text I want to highlight (from the report released April 10, 2018),

Box 6.3
Open Science: An Emerging Approach to Create New Linkages

Open Science is an umbrella term to describe collaborative and open approaches to
undertaking science, which can be powerful catalysts of innovation. This includes
the development of open collaborative networks among research performers, such
as the private sector, and the wider distribution of research that usually results when
restrictions on use are removed. Such an approach triggers faster translation of ideas
among research partners and moves the boundaries of pre-competitive research to
later, applied stages of research. With research results freely accessible, companies
can focus on developing new products and processes that can be commercialized.

Two Canadian organizations exemplify the development of such models. In June
2017, Genome Canada, the Ontario government, and pharmaceutical companies
invested $33 million in the Structural Genomics Consortium (SGC) (Genome Canada,
2017). Formed in 2004, the SGC is at the forefront of the Canadian open science
movement and has contributed to many key research advancements towards new
treatments (SGC, 2018). McGill University’s Montréal Neurological Institute and
Hospital has also embraced the principles of open science. Since 2016, it has been
sharing its research results with the scientific community without restriction, with
the objective of expanding “the impact of brain research and accelerat[ing] the
discovery of ground-breaking therapies to treat patients suffering from a wide range
of devastating neurological diseases” (neuro, n.d.).

This is exciting stuff and I’m happy the panel featured it. (I wrote about the Montréal Neurological Institute initiative in a Jan. 22, 2016 posting.)

More than once, the report notes the difficulties with using bibliometric and technometric data as measures of scientific achievement and progress and open science (along with its cousins, open data and open access) are contributing to the difficulties as James Somers notes in his April 5, 2018 article ‘The Scientific Paper is Obsolete’ for The Atlantic (Note: Links have been removed),

The scientific paper—the actual form of it—was one of the enabling inventions of modernity. Before it was developed in the 1600s, results were communicated privately in letters, ephemerally in lectures, or all at once in books. There was no public forum for incremental advances. By making room for reports of single experiments or minor technical advances, journals made the chaos of science accretive. Scientists from that point forward became like the social insects: They made their progress steadily, as a buzzing mass.

The earliest papers were in some ways more readable than papers are today. They were less specialized, more direct, shorter, and far less formal. Calculus had only just been invented. Entire data sets could fit in a table on a single page. What little “computation” contributed to the results was done by hand and could be verified in the same way.

The more sophisticated science becomes, the harder it is to communicate results. Papers today are longer than ever and full of jargon and symbols. They depend on chains of computer programs that generate data, and clean up data, and plot data, and run statistical models on data. These programs tend to be both so sloppily written and so central to the results that it’s [sic] contributed to a replication crisis, or put another way, a failure of the paper to perform its most basic task: to report what you’ve actually discovered, clearly enough that someone else can discover it for themselves.

Perhaps the paper itself is to blame. Scientific methods evolve now at the speed of software; the skill most in demand among physicists, biologists, chemists, geologists, even anthropologists and research psychologists, is facility with programming languages and “data science” packages. And yet the basic means of communicating scientific results hasn’t changed for 400 years. Papers may be posted online, but they’re still text and pictures on a page.

What would you get if you designed the scientific paper from scratch today? A little while ago I spoke to Bret Victor, a researcher who worked at Apple on early user-interface prototypes for the iPad and now runs his own lab in Oakland, California, that studies the future of computing. Victor has long been convinced that scientists haven’t yet taken full advantage of the computer. “It’s not that different than looking at the printing press, and the evolution of the book,” he said. After Gutenberg, the printing press was mostly used to mimic the calligraphy in bibles. It took nearly 100 years of technical and conceptual improvements to invent the modern book. “There was this entire period where they had the new technology of printing, but they were just using it to emulate the old media.”Victor gestured at what might be possible when he redesigned a journal article by Duncan Watts and Steven Strogatz, “Collective dynamics of ‘small-world’ networks.” He chose it both because it’s one of the most highly cited papers in all of science and because it’s a model of clear exposition. (Strogatz is best known for writing the beloved “Elements of Math” column for The New York Times.)

The Watts-Strogatz paper described its key findings the way most papers do, with text, pictures, and mathematical symbols. And like most papers, these findings were still hard to swallow, despite the lucid prose. The hardest parts were the ones that described procedures or algorithms, because these required the reader to “play computer” in their head, as Victor put it, that is, to strain to maintain a fragile mental picture of what was happening with each step of the algorithm.Victor’s redesign interleaved the explanatory text with little interactive diagrams that illustrated each step. In his version, you could see the algorithm at work on an example. You could even control it yourself….

For anyone interested in the evolution of how science is conducted and communicated, Somers’ article is a fascinating and in depth look at future possibilities.

Subregional R&D

I didn’t find this quite as compelling as the last time and that may be due to the fact that there’s less information and I think the 2012 report was the first to examine the Canadian R&D scene with a subregional (in their case, provinces) lens. On a high note, this report also covers cities (!) and regions, as well as, provinces.

Here’s the conclusion (from the report released April 10, 2018),

Ontario leads Canada in R&D investment and performance. The province accounts for almost half of R&D investment and personnel, research publications and collaborations, and patents. R&D activity in Ontario produces high-quality publications in each of Canada’s five R&D strengths, reflecting both the quantity and quality of universities in the province. Quebec lags Ontario in total investment, publications, and patents, but performs as well (citations) or better (R&D intensity) by some measures. Much like Ontario, Quebec researchers produce impactful publications across most of Canada’s five R&D strengths. Although it invests an amount similar to that of Alberta, British Columbia does so at a significantly higher intensity. British Columbia also produces more highly cited publications and patents, and is involved in more international research collaborations. R&D in British Columbia and Alberta clusters around Vancouver and Calgary in areas such as physics and ICT and in clinical medicine and energy, respectively. [emphasis mine] Smaller but vibrant R&D communities exist in the Prairies and Atlantic Canada [also referred to as the Maritime provinces or Maritimes] (and, to a lesser extent, in the Territories) in natural resource industries.

Globally, as urban populations expand exponentially, cities are likely to drive innovation and wealth creation at an increasing rate in the future. In Canada, R&D activity clusters around five large cities: Toronto, Montréal, Vancouver, Ottawa, and Calgary. These five cities create patents and high-tech companies at nearly twice the rate of other Canadian cities. They also account for half of clusters in the services sector, and many in advanced manufacturing.

Many clusters relate to natural resources and long-standing areas of economic and research strength. Natural resource clusters have emerged around the location of resources, such as forestry in British Columbia, oil and gas in Alberta, agriculture in Ontario, mining in Quebec, and maritime resources in Atlantic Canada. The automotive, plastics, and steel industries have the most individual clusters as a result of their economic success in Windsor, Hamilton, and Oshawa. Advanced manufacturing industries tend to be more concentrated, often located near specialized research universities. Strong connections between academia and industry are often associated with these clusters. R&D activity is distributed across the country, varying both between and within regions. It is critical to avoid drawing the wrong conclusion from this fact. This distribution does not imply the existence of a problem that needs to be remedied. Rather, it signals the benefits of diverse innovation systems, with differentiation driven by the needs of and resources available in each province. [pp.  132-133 Print; pp. 170-171 PDF]

Intriguingly, there’s no mention that in British Columbia (BC), there are leading areas of research: Visual & Performing Arts, Psychology & Cognitive Sciences, and Clinical Medicine (according to the table on p. 117 Print, p. 153 PDF).

As I said and hinted earlier, we’ve got brains; they’re just not the kind of brains that command respect.

Final comments

My hat’s off to the expert panel and staff of the Council of Canadian Academies. Combining two previous reports into one could not have been easy. As well, kudos to their attempts to broaden the discussion by mentioning initiative such as open science and for emphasizing the problems with bibliometrics, technometrics, and other measures. I have covered only parts of this assessment, (Competing in a Global Innovation Economy: The Current State of R&D in Canada), there’s a lot more to it including a substantive list of reference materials (bibliography).

While I have argued that perhaps the situation isn’t quite as bad as the headlines and statistics may suggest, there are some concerning trends for Canadians but we have to acknowledge that many countries have stepped up their research game and that’s good for all of us. You don’t get better at anything unless you work with and play with others who are better than you are. For example, both India and Italy surpassed us in numbers of published research papers. We slipped from 7th place to 9th. Thank you, Italy and India. (And, Happy ‘Italian Research in the World Day’ on April 15, 2018, the day’s inaugural year. In Italian: Piano Straordinario “Vivere all’Italiana” – Giornata della ricerca Italiana nel mondo.)

Unfortunately, the reading is harder going than previous R&D assessments in the CCA catalogue. And in the end, I can’t help thinking we’re just a little bit like Hedy Lamarr. Not really appreciated in all of our complexities although the expert panel and staff did try from time to time. Perhaps the government needs to find better ways of asking the questions.

***ETA April 12, 2018 at 1500 PDT: Talking about missing the obvious! I’ve been ranting on about how research strength in visual and performing arts and in philosophy and theology, etc. is perfectly fine and could lead to ‘traditional’ science breakthroughs without underlining the point by noting that Antheil was a musician, Lamarr was as an actress and they set the foundation for work by electrical engineers (or people with that specialty) for their signature work leading to WiFi, etc.***

There is, by the way, a Hedy-Canada connection. In 1998, she sued Canadian software company Corel, for its unauthorized use of her image on their Corel Draw 8 product packaging. She won.

More stuff

For those who’d like to see and hear the April 10, 2017 launch for “Competing in a Global Innovation Economy: The Current State of R&D in Canada” or the Third Assessment as I think of it, go here.

The report can be found here.

For anyone curious about ‘Bombshell: The Hedy Lamarr Story’ to be broadcast on May 18, 2018 as part of PBS’s American Masters series, there’s this trailer,

For the curious, I did find out more about the Hedy Lamarr and Corel Draw. John Lettice’s December 2, 1998 article The Rgister describes the suit and her subsequent victory in less than admiring terms,

Our picture doesn’t show glamorous actress Hedy Lamarr, who yesterday [Dec. 1, 1998] came to a settlement with Corel over the use of her image on Corel’s packaging. But we suppose that following the settlement we could have used a picture of Corel’s packaging. Lamarr sued Corel earlier this year over its use of a CorelDraw image of her. The picture had been produced by John Corkery, who was 1996 Best of Show winner of the Corel World Design Contest. Corel now seems to have come to an undisclosed settlement with her, which includes a five-year exclusive (oops — maybe we can’t use the pack-shot then) licence to use “the lifelike vector illustration of Hedy Lamarr on Corel’s graphic software packaging”. Lamarr, bless ‘er, says she’s looking forward to the continued success of Corel Corporation,  …

There’s this excerpt from a Sept. 21, 2015 posting (a pictorial essay of Lamarr’s life) by Shahebaz Khan on The Blaze Blog,

6. CorelDRAW:
For several years beginning in 1997, the boxes of Corel DRAW’s software suites were graced by a large Corel-drawn image of Lamarr. The picture won Corel DRAW’s yearly software suite cover design contest in 1996. Lamarr sued Corel for using the image without her permission. Corel countered that she did not own rights to the image. The parties reached an undisclosed settlement in 1998.

There’s also a Nov. 23, 1998 Corel Draw 8 product review by Mike Gorman on mymac.com, which includes a screenshot of the packaging that precipitated the lawsuit. Once they settled, it seems Corel used her image at least one more time.

Predictive policing in Vancouver—the first jurisdiction in Canada to employ a machine learning system for property theft reduction

Predictive policing has come to Canada, specifically, Vancouver. A July 22, 2017 article by Matt Meuse for the Canadian Broadcasting Corporation (CBC) news online describes the new policing tool,

The Vancouver Police Department is implementing a city-wide “predictive policing” system that uses machine learning to prevent break-ins by predicting where they will occur before they happen — the first of its kind in Canada.

Police chief Adam Palmer said that, after a six-month pilot project in 2016, the system is now accessible to all officers via their cruisers’ onboard computers, covering the entire city.

“Instead of officers just patrolling randomly throughout the neighbourhood, this will give them targeted areas it makes more sense to patrol in because there’s a higher likelihood of crime to occur,” Palmer said.

 

Things got off to a slow start as the system familiarized itself [during a 2016 pilot project] with the data, and floundered in the fall due to unexpected data corruption.

But Special Const. Ryan Prox said the system reduced property crime by as much as 27 per cent in areas where it was tested, compared to the previous four years.

The accuracy of the system was also tested by having it generate predictions for a given day, and then watching to see what happened that day without acting on the predictions.

Palmer said the system was getting accuracy rates between 70 and 80 per cent.

When a location is identified by the system, Palmer said officers can be deployed to patrol that location. …

“Quite often … that visible presence will deter people from committing crimes [altogether],” Palmer said.

Though similar systems are used in the United States, Palmer said the system is the first of its kind in Canada, and was developed specifically for the VPD.

While the current focus is on residential break-ins, Palmer said the system could also be tweaked for use with car theft — though likely not with violent crime, which is far less predictable.

Palmer dismissed the inevitable comparison to the 2002 Tom Cruise film Minority Report, in which people are arrested to prevent them from committing crimes in the future.

“We’re not targeting people, we’re targeting locations,” Palmer said. “There’s nothing dark here.”

If you want to get a sense of just how dismissive Chief Palmer was, there’s a July 21, 2017 press conference (run time: approx. 21 mins.) embedded with a media release of the same date. The media release offered these details,

The new model is being implemented after the VPD ran a six-month pilot study in 2016 that contributed to a substantial decrease in residential break-and-enters.

The pilot ran from April 1 to September 30, 2016. The number of residential break-and enters during the test period was compared to the monthly average over the same period for the previous four years (2012 to 2015). The highest drop in property crime – 27 per cent – was measured in June.

The new model provides data in two-hour intervals for locations where residential and commercial break-and-enters are anticipated. The information is for 100-metre and 500-metre zones. Police resources can be dispatched to that area on foot or in patrol cars, to provide a visible presence to deter thieves.

The VPD’s new predictive policing model is built on GEODASH – an advanced machine-learning technology that was implemented by the VPD in 2015. A public version of GEODASH was introduced in December 2015 and is publicly available on vpd.ca. It retroactively plots the location of crimes on a map to provide a general idea of crime trends to the public.

I wish Chief Palmer had been a bit more open to discussion about the implications of ‘predictive policing’. In the US where these systems have been employed in various jurisdictions, there’s some concern arising after an almost euphoric initial response as a Nov. 21, 2016 article by Logan Koepke for the slate.com notes (Note: Links have been removed),

When predictive policing systems began rolling out nationwide about five years ago, coverage was often uncritical and overly reliant on references to Minority Report’s precog system. The coverage made predictive policing—the computer systems that attempt to use data to forecast where crime will happen or who will be involved—seem almost magical.

Typically, though, articles glossed over Minority Report’s moral about how such systems can go awry. Even Slate wasn’t immune, running a piece in 2011 called “Time Cops” that said, when it came to these systems, “Civil libertarians can rest easy.”

This soothsaying language extended beyond just media outlets. According to former New York City Police Commissioner William Bratton, predictive policing is the “wave of the future.” Microsoft agrees. One vendor even markets its system as “better than a crystal ball.” More recent coverage has rightfully been more balanced, skeptical, and critical. But many still seem to miss an important point: When it comes to predictive policing, what matters most isn’t the future—it’s the past.

Some predictive policing systems incorporate information like the weather, a location’s proximity to a liquor store, or even commercial data brokerage information. But at their core, they rely either mostly or entirely on historical crime data held by the police. Typically, these are records of reported crimes—911 calls or “calls for service”—and other crimes the police detect. Software automatically looks for historical patterns in the data, and uses those patterns to make its forecasts—a process known as machine learning.

Intuitively, it makes sense that predictive policing systems would base their forecasts on historical crime data. But historical crime data has limits. Criminologists have long emphasized that crime reports—and other statistics gathered by the police—do not necessarily offer an accurate picture of crime in a community. The Department of Justice’s National Crime Victimization Survey estimates that from 2006 to 2010, 52 percent of violent crime went unreported to police, as did 60 percent of household property crime. Essentially: Historical crime data is a direct record of how law enforcement responds to particular crimes, rather than the true rate of crime. Rather than predicting actual criminal activity, then, the current systems are probably better at predicting future police enforcement.

Koepke goes on to cover other potential issues with ‘predicitive policing’ in this thoughtful piece. He also co-authored an August 2016 report, Stuck in a Pattern; Early evidence on “predictive” policing and civil rights.

There seems to be increasing attention on machine learning and bias as noted in my May 24, 2017 posting where I provide links to other FrogHeart postings on the topic and there’s this Feb. 28, 2017 posting about a new regional big data sharing project, the Cascadia Urban Analytics Cooperative where I mention Cathy O’Neil (author of the book, Weapons of Math Destruction) and her critique in a subsection titled: Algorithms and big data.

I would like to see some oversight and some discussion in Canada about this brave new world of big data.

One final comment, it is possible to get access to the Vancouver Police Department’s data through the City of Vancouver’s Open Data Catalogue (home page).

Art/science events in Vancouver, Canada (Nov. 22, 2017) and Toronto (Dec. 1, 2017)

The first event I’m highlighting is the Curiosity Collider Cafe’s Nov. 22, 2017 event in Vancouver (Canada), from a November 14, 2017 announcement received via email,

Art, science, & neuroscience. Visualizing/sonifying particle collisions. Colors from nature. Sci-art career adventure. Our #ColliderCafe is a space for artists, scientists, makers, and anyone interested in art+science.

Meet, discover, connect, create. Are you curious?

Join us at “Collider Cafe: Art. Science. Interwoven.” to explore how art and science intersect in the exploration of curiosity.

When: 8:00pm on Wednesday, November 22, 2017.

Doors open at 7:30pm.

Where: Café Deux Soleils.. 2096 Commercial Drive, Vancouver, BC (Google Map).

Cost: $5-10 (sliding scale) cover at the door.

Proceeds will be used to cover the cost of running this event, and to fund future Curiosity Collider events.

With speakers:

Caitlin Ffrench (painter, writer, and textile artist) – Colours from Nature

Claudia Krebs (neuroanatomy professor) – Does the brain really differentiate between science and art?

Derek Tan (photographer, illustrator, and multimedia designer) – Design for Science: How I Got My Job E

Eli York (neuroscience researcher) – Imaging the brain’s immune system

Leó Stefánsson (multimedia artist) – Experiencing Data: Visualizing and Sonifying Particle Collisions

Follow updates on twitter via @ccollider or #ColliderCafe.

Head to the Facebook event page – let us know you are coming and share this event with others!

Then in Toronto, there’s the ArtSci Salon with an event about what they claim is one of the hottest topics today: STEAM. For the uninitiated, the acronym is for Science, Technology, Engineering, Art, and Mathematics which some hope will supersede STEM (Science, Technology, Engineering, and Mathematics). Regardless, here’s more from a November 13, 2017 Art/Sci Salon announcement received via email,

The ArtSci Salon presents:

What does A stand for in STEAM?

Date: December 1, 2017

Time: 5:30-7:30 pm

Location: The Fields Institute for Research in Mathematical Sciences
222 College Street, Toronto, ON

Please, RSVP here
http://bit.ly/2zH8nrN

Grouping four broadly defined disciplinary clusters –– Science, Technology, Engineering and Mathematics –– STEM has come to stand for governments’ and institutions’ attempt to champion ambitious programs geared towards excellence and innovation while providing hopeful students with “useful” education leading to “real jobs”. But in recent years education advocates have reiterated the crucial role of the arts in achieving such excellence. A has been added to STEM…

But what does A stand for in STEAM? What is its role? and how is it interpreted by those involved in STEM education, by arts practitioners and educators and by science communicators? It turns out that A has different roles, meanings, applications, interpretations…

Please, join us for an intriguing discussion on STEAM education and STEAM approaches. Our guests represent different experiences, backgrounds and areas of research. Your participation will make their contributions even richer

With:

Linda Duvall (Visual and Media Artist)

Richard Lachman (Associate Professor, RTA School of Media, Ryerson University)

Jan McMillin (Teacher/Librarian, Queen Victoria P.S.)

Jenn Stroud Rossmann (Professor, Mechanical Engineering – Lafayette College)

Lauren Williams (Special Collections Librarian – Thomas Fisher Rare Book Library

Bios

Linda Duvall is a Saskatoon-based visual artist whose work exists at the intersection of collaboration, performance and conversation. Her hybrid practice addresses recurring themes of connection to place, grief and loss, and the many meanings of exclusion and absence.

Richard Lachman directs the Zone Learning network of incubators for Ryerson University, Research Development for the Faculty of Communication and Design, and the Experiential Media Institute. His research interests include transmedia storytelling, digital documentaries, augmented/locative/VR experiences, mixed realities, and collaborative design thinking.

Jan McMillin is a Teacher Librarian at the TDSB. Over the last 3 years she has led a team to organize a S.T.E.A.M. Conference for approximately 180 Intermediate students from Queen Victoria P.S. and Parkdale Public. The purpose of the conference is to inspire these young people and to show them what they can also aspire to. Queen Victoria has a history of promoting the Arts in Education and so the conference was also partly to expand the notion of STEM to incorporate the Arts and creativity

Jenn Stroud Rossmann is a professor of mechanical engineering at Lafayette College. Her research interests include cardiovascular and respiratory fluid mechanics and interdiscplinary pedagogies. She co-authored an innovative textbook, Introduction to Engineering Mechanics: A Continuum Approach (CRC Press, Second Edition, 2015), and writes the essay series “An Engineer Reads a Novel” for Public Books. She is also a fiction writer whose work (in such journals as Cheap Pop, Literary Orphans, Tahoma Literary Review) has earned several Pushcart Prize nominations and other honors; her first novel is forthcoming in Fall 2018 from 7.13 Books.

Lauren Williams is Special Collections Librarian in the Department of Rare Books and Special Collections, Thomas Fisher Rare Book Library. Lauren is a graduate of the University of Toronto iSchool, where she specialized in Library and Information Science and participated in the Book History and Print Culture Collaborative Program.

Enjoy!

Art (Lawren Harris and the Group of Seven), science (Raman spectroscopic examinations), and other collisions at the 2014 Canadian Chemistry Conference (part 4 of 4)

Cultural heritage and the importance of pigments and databases

Unlike Thom (Ian Thom, curator at the Vancouver Art Gallery), I believe that the testing was important. Knowing the spectra emitted by the pigments in Hurdy Gurdy and Autumn Harbour could help to set benchmarks for establishing the authenticity of the pigments used by artists (Harris and others) in the early part of Canada’s 20th century.

Europeans and Americans are more advanced in their use of technology as a tool in the process of authenticating, restoring, or conserving a piece of art. At the Chicago Institute of Art they identified the red pigment used in a Renoir painting as per my March 24, 2014 posting,

… The first item concerns research by Richard Van Duyne into the nature of the red paint used in one of Renoir’s paintings. A February 14, 2014 news item on Azonano describes some of the art conservation work that Van Duyne’s (nanoish) technology has made possible along with details about this most recent work,

Scientists are using powerful analytical and imaging tools to study artworks from all ages, delving deep below the surface to reveal the process and materials used by some of the world’s greatest artists.

Northwestern University chemist Richard P. Van Duyne, in collaboration with conservation scientists at the Art Institute of Chicago, has been using a scientific method he discovered nearly four decades ago to investigate masterpieces by Pierre-Auguste Renoir, Winslow Homer and Mary Cassatt.

Van Duyne recently identified the chemical components of paint, now partially faded, used by Renoir in his oil painting “Madame Léon Clapisson.” Van Duyne discovered the artist used carmine lake, a brilliant but light-sensitive red pigment, on this colorful canvas. The scientific investigation is the cornerstone of a new exhibition at the Art Institute of Chicago.

There are some similarities between the worlds of science (in this case, chemistry) and art (collectors,  institutions, curators, etc.). They are worlds where one must be very careful.

The scientists/chemists choose their words with precision while offering no certainties. Even the announcement for the discovery (by physicists) of the Higgs Boson is not described in absolute terms as I noted in my July 4, 2012 posting titled: Tears of joy as physicists announce they’re pretty sure they found the Higgs Boson. As the folks from ProsPect Scientific noted,

This is why the science must be tightly coupled with art expertise for an effective analysis.  We cannot do all of that for David [Robertson]. [He] wished to show a match between several pigments to support an interpretation that the ‘same’ paints were used. The availability of Hurdy Gurdy made this plausible because it offered a known benchmark that lessened our dependency on the databases and art-expertise. This is why Raman spectroscopy more often disproves authenticity (through pigment anachronisms). Even if all of the pigments analysed showed the same spectra we don’t know that many different painters didn’t buy the same brand of paint or that some other person didn’t take those same paints and use them for a different painting. Even if all pigments were different, that doesn’t mean Lawren Harris didn’t paint it, it just means different paints were used.

In short they proved that one of the pigments used in Autumn Harbour was also used in the authenticated Harris, Hurdy Gurdy, and the other pigment was in use at that time (early 20th century) in Canada. It doesn’t prove it’s a Harris painting but, unlike the Pollock painting where they found an anachronistic pigment, it doesn’t disprove Robertson’s contention.

To contrast the two worlds, the art world seems to revel in secrecy for its own sake while the world of science (chemistry) will suggest, hint, or hedge but never state certainties. The ProSpect* Scientific representative commented on authentication, art institutions, and databases,

We know that some art institutions are extremely cautious about any claims towards authentication, and they decline to be cited in anything other than the work they directly undertake. (One director of a well known US art institution said to me that they pointedly do not authenticate works, she offered advice on how to conduct the analysis but declined any reference to her institution.) We cannot comment on any of the business plans of any of our customers but the customers we have that use Raman spectroscopy on paintings generally build databases from their collected studies as a vital tool to their own ongoing work collecting and preserving works of art.

We don’t know of anyone with a database particular to pigments used by Canadian artists and neither did David R. We don’t know that any organization is developing such a database.The database we used is a mineral database (as pigments in the early 20th century were pre-synthetic this database contains some of the things commonly used in pigments at that time) There are databases available for many things:  many are for sale, some are protected intellectual property. We don’t have immediate access to a pigments database. Some of our art institution/museum customers are developing their own but often these are not publicly available. Raman spectroscopy is new on the scene relative to other techniques like IR and X-Ray analysis and the databases of Raman spectra are less mature.

ProSpect Scientific provided two papers which illustrate either the chemists’ approach to testing and art (RAMAN VIBRATIONAL STUDY OF PIGMENTS WITH PATRIMONIAL INTEREST FOR THE CHILEAN CULTURAL HERITAGE) and/or the art world’s approach (GENUINE OR FAKE: A MICRO-RAMAN SPECTROSCOPY STUDY OF AN ABSTRACT PAINTING ATTRIBUTED TO VASILY KANDINSKY [PDF]).

Canadian cultural heritage

Whether or not Autumn Harbour is a Lawren Harris painting may turn out to be less important than establishing a means for better authenticating, restoring, and conserving Canadian cultural heritage. (In a June 13, 2014 telephone conversation, David Robertson claims he will forward the summary version of the data from the tests to the Canadian Conservation Institute once it is received.)

If you think about it, Canadians are defined by the arts and by research. While our neighbours to the south went through a revolutionary war to declare independence, Canadians have declared independence through the visual and literary arts and the scientific research and implementation of technology (transportation and communication in the 19th and 20th centuries).

Thank you to both Tony Ma and David Robertson.

Finally, Happy Canada Day on July 1, 2014!

Part 1

Part 2

Part 3

* ‘ProsPect’ changed to ‘ProSpect’ on June 30, 2014.

ETA July 14, 2014 at 1300 hours PDT: There is now an addendum to this series, which features a reply from the Canadian Conservation Institute to a query about art pigments used by Canadian artists and access to a database of information about them.

Lawren Harris (Group of Seven), art authentication, and the Canadian Conservation Insitute (addendum to four-part series)

Art (Lawren Harris and the Group of Seven), science (Raman spectroscopic examinations), and other collisions at the 2014 Canadian Chemistry Conference (part 3 of 4)

Dramatic headlines (again)

Ignoring the results entirely, Metro News Vancouver, which favours the use of the word ‘fraud’, featured it in the headline of a second article about the testing, “Alleged Group of Seven work a fraud: VAG curator” by Thandi Fletcher (June 5, 2014 print issue); happily the online version of Fletcher’s story has had its headline changed to the more accurate: “Alleged Group of Seven painting not an authentic Lawren Harris, says Vancouver Art Gallery curator.” Fletcher’s article was updated after its initial publication with some additional text (it is worth checking out the online version even if you’re already seen the print version). There had been a second Vancouver Metro article on the testing of the authenticated painting by Nick Wells but that in common, with his June 4, 2014 article about the first test, “A fraud or a find?” is no longer available online. Note: Standard mainstream media practice is that the writer with the byline for the article is not usually the author of the article’s headline.

There are two points to be made here. First, Robertson has not attempted to represent ‘Autumn Harbour’ as an authentic Lawren Harris painting other than in a misguided headline for his 2011 news release.  From Robertson’s July 26, 2011 news release (published by Reuters and published by Market Wired) where he crossed a line by stating that Autumn Harbour is a Harris in his headline (to my knowledge the only time he’s done so),

Lost Lawren Harris Found in Bala, Ontario

Unknown 24×36 in. Canvas Piques a Storm of Controversy

VANCOUVER, BRITISH COLUMBIA–(Marketwire – July 26, 2011) –
Was Autumn Harbour painted by Lawren Harris in the fall of 1912? That summer Lawren Harris was 26 years old and had proven himself as an accomplished and professional painter. He had met J.E.H. MacDonald in November of 1911. They became fast friends and would go on to form the Group of Seven in 1920 but now in the summer of 1912 they were off on a sketching expedition to Mattawa and Temiscaming along the Quebec-Ontario border. Harris had seen the wilderness of the northern United States and Europe but this was potentially his first trip outside the confines of an urban Toronto environment into the Canadian wilderness.

By all accounts he was overwhelmed by what he saw and struggled to find new meaning in his talents that would capture these scenes in oil and canvas. There are only two small works credited to this period, archived in the McMichael gallery in Kleinburg, Ontario. Dennis Reid, Assistant Curator of the National Gallery of Canada stated in 1970 about this period: “Both Harris and (J.E.H.) MacDonald explored new approaches to handling of colour and overall design in these canvases. Harris in particular was experimenting with new methods of paint handling, and Jackson pointed out the interest of the other painters in these efforts, referring to the technique affectionately as ‘Tomato Soup’.” For most authorities the summer and fall of 1912 are simply called his ‘lost period’ because it was common for Harris to destroy, abandon or give away works that did not meet his standards. The other trait common to Harris works, is the lack of a signature and some that are signed were signed on his behalf. The most common proxy signatory was Betsy Harris, his second wife who signed canvases on his behalf when he could no longer do so.

So the question remains. Can an unsigned 24×36 in. canvas dated to 1900-1920 that was found in a curio shop in Bala, Ontario be a long lost Lawren Harris? When pictures were shown to Charles C. Hill, Curator of Canadian Art, National Gallery of Canada, he replied: “The canvas looks like no Harris I have ever seen…” A similar reply also came from Ian Thom, Head Curator for the Vancouver Art Gallery: “I do not believe that your work can be connected with Harris in any way.” [emphases mine] Yet the evidence still persists. The best example resides within the National Art Gallery. A 1919, 50.5 X 42.5 in. oil on rough canvas shows Harris’s style of under painting, broad brush strokes and stilled composition. Shacks, painted in 1919 and acquired the Gallery in 1920 is an exact technique clone of Autumn Harbour. For a list of comparisons styles with known Harris works and a full list of the collected evidence please consult www.1912lawrenharris.ca/ and see for yourself.

If Robertson was intent on perpetrating a fraud, why would he include the negative opinions from the curators or attempt to authenticate his purported Harris? The 2011 website is no longer available but Robertson has established another website, http://autumnharbour.ca/.

It’s not a crime (fraud) to have strong or fervent beliefs. After all, Robertson was the person who contacted ProSpect* Scientific to arrange for a test.

Second, Ian Thom, the VAG curator did not call ‘Autumn Harbour’ or David Robertson, a fraud. From the updated  June 5, 2014 article sporting a new headline by Thandi Fletcher,

“I do not believe that the painting … is in fact a Lawren Harris,” said Ian Thom, senior curator at the Vancouver Art Gallery, “It’s that simple.”

It seems Thom feels as strongly as Robertson does; it’s just that Thom holds an opposing opinion.

Monetary value was mentioned earlier as an incentive for Robertson’s drive to prove the authenticity of his painting, from the updated June 5, 2014 article with the new headline by Thandi Fletcher,

Still, Robertson, who has carried out his own research on the painting, said he is convinced the piece is an authentic Harris. If it were, he said it would be worth at least $3 million. [emphasis mine]

“You don’t have to have a signature on the canvas to recognize brushstroke style,” he said.

Note: In a June 13, 2014 telephone conversation, Robertson used the figure of $1M to denote his valuation of Autumn Harbour and claimed a degree in Geography with a minor in Fine Arts from the University of Waterloo. He also expressed the hope that Autumn Harbour would prove to be a* Rosetta Stone of sorts for art pigments used in the early part of the 20th century.

As for the owner of Hurdy Gurdy and the drama that preceded its test on June 4, 2014, Fletcher had this in her updated and newly titled article,

Robertson said the painting’s owner, local Vancouver businessman Tony Ma, had promised to bring the Harris original to the chemistry conference but pulled out after art curator Thom told him not to participate.

While Thom acknowledged that Ma did ask for his advice, he said he didn’t tell him to pull out of the conference.

“It was more along the lines of, ‘If I were you, I wouldn’t do it, because I don’t think it’s going to accomplish anything,’” said Thom, adding that the final decision is up to Ma. [emphasis mine]

A request for comment from Ma was not returned Wednesday [June 5, 2014].

Thom, who already examined Robertson’s painting a year ago [in 2013? then, how is he quoted in a 2011 news release?], said he has no doubt Harris did not paint it.

“The subject matter is wrong, the handling of the paint is wrong, and the type of canvas is wrong,” he said, adding that many other art experts agree with him.

Part 1

Part 2

Part 4

* ‘ProsPect’ changed to ‘ProSpect’ on June 30, 2014. Minor grammatical change made to sentence: ‘He also expressed the hope that Autumn Harbour would prove to a be of Rosetta Stone of sorts for art pigments used in the early part of the 20th century.’ to ‘He also expressed the hope that Autumn Harbour would prove to be a* Rosetta Stone of sorts for art pigments used in the early part of the 20th century.’ on July 2, 2014.

ETA July 14, 2014 at 1300 hours PDT: There is now an addendum to this series, which features a reply from the Canadian Conservation Institute to a query about art pigments used by Canadian artists and access to a database of information about them.

Lawren Harris (Group of Seven), art authentication, and the Canadian Conservation Insitute (addendum to four-part series)

Tissue regeneration by injection

I’ve got two items: one from the University of Nottingham (UK) where they’re working on tissue regeneration for bones, muscles, and the heart.The second item is from Simon Fraser University (Vancouver, Canada)where the focus is on regenerating bones.

Here’s more about the work at the University of Nottingham from the [July 3, 2012] news item on Nanowerk,

The University of Nottingham has begun the search for a new class of injectable materials that will stimulate stem cells to regenerate damaged tissue in degenerative and age related disorders of the bone, muscle and heart.

The work, which is currently at the experimental stage, could lead to treatments for diseases that currently have no cure. The aim is to produce radical new treatments that will reduce the need for invasive surgery, optimise recovery and reduce the risk of undesirable scar tissue.

The research, which brings together expertise in The University of Nottingham’s Malaysia Campus (UNMC) and UK campus, is part of the Rational Bioactive Materials Design for Tissue Generation project (Biodesign). This €11m EU funded research project which involves 21 research teams from across Europe is made up of leading experts in degenerative disease and regenerative medicine.

The original July 3, 2012 news release from the University of Nottingham includes a video which offers some additional insight (sadly ,it cannot be embedded here) and more information (Note: I have removed a link),

Kevin Shakesheff, Professor of Advanced Drug Delivery and Tissue Engineering and Head of the School of Pharmacy, said: “This research heralds a step-change in approaches to tissue regeneration. Current biomaterials are poorly suited to the needs of tissue engineering and regenerative medicine. The aim of Biodesign is to develop new materials and medicines that will stimulate tissue regeneration rather than wait for the body to start the process itself. The aim is to fabricate advanced biomaterials that match the basic structure of each tissue so the cells can take over the recovery process themselves.”

The Canadian project at Simon Fraser University features a singular focus on bone regeneration, from the July 19, 2012 news release on EurekAlert,

A Simon Fraser University researcher is leading a team of scientists working to create new drugs to stimulate bone regeneration – research that will be furthered by a $2.5 million grant from the Canadian Institutes of Health Research (CIHR).

Lead researcher Robert Young heads a team of internationally recognized experts in bone disease and drug development. The researchers are focusing on developing small molecule compounds and nano-medicines that stimulate bone regeneration, and hope to identify new therapeutic approaches by improving understanding of bone renewal biology.

Their objective is to develop new therapeutic agents that promote bone repair, regeneration and renewal, and prove their efficiency in reproducing or improving bone strength.

The research involves studying the “natural controls” that guide the development of cells in the bones toward either bone forming or bone resorbing cells, setting the stage for the next generation of bone regenerative therapies.

The grant is one of three announced today by the federal government targeting bone health research and totalling $7 million. The others focus on wrist fractures management and identifying bone loss in gum disease.

The funding is through the CIHR’s Institute of Musculoskeletal Health and Arthritis and addresses priorities identified at a 2009 national Bone Health Consensus Conference.

I’ve decided to focus on tissues today so there will be something about tissue engineering and jellyfish (artificial) shortly.

Interview with Baba Brinkman who performs his Rap Guide to Evolution in Vancouver on Feb. 20, 2011

Peer-reviewed and rap music are terms that don’t usually go together unless you’re talking about Vancouver-based rapper, Baba Brinkman.  (ETA Feb.17.11 Baba’s website) The performer has developed a rap about evolution that’s been extensively toured in the UK. Sunday, February 20, 2011, Brinkman brings his evolution rap home to Vancouver (Canada) for a performance at the Railway Club presented by the Centre for Inquiry and others. From the event webpage,

The Centre for Inquiry Vancouver, Radio Freethinker and CiTR 101.9FM are proud to present Baba Brinkman and the Rap Guide to Evolution!

Baba brings his rationalist rap back to his home for a special show of his popular spoken word rationalist rap – The Rap Guide to Evolution! The New York Times has said that this is the only hip-hop show to talk of mitochondria, genetic drift, sexual selection or memes. For Brinkman has taken Da rwin’s exhortation seriously. He is a man on a mission to spread the word about evolution — how it works, what it means for our view of the world, and why it is something to be celebrated rather than feared.

Baba’s work has been called:

“Brilliantly conceived and effervescently performed…not only is it factually correct, it’s also dazzlingly intelligent…after seeing this show, you’ll never look at a hip-hop music video in the same way again!” – The Scotsman

Event details:

Sunday, February 20th 2011 at 9:00 pm – 12 am
The Railway Club, 579 Dunsmuir Street, Vancouver BC
Tickets: $8 at the door
Special Guests: Aaron Nazrul & the Boom Booms

Prior to his Sunday performance, Baba very kindly answered some interview questions:

(a) Is this the first time you’ve given a performance of ‘The Rap Guide to Evolution’ in Vancouver? And how did this performance come about?

This won’t be the Vancouver première of the Rap Guide to Evolution since I was featured as part of the 2009 Vancouver Evolution Festival with performances at UBC, SFU, and at a club venue in Gastown, but the show has evolved considerably over the past two years and it is my first performance in Vancouver since achieving any recognition for the show.  In terms of the show’s origins, I was performing a rap adaptation of Chaucer’s Canterbury Tales a few years back and encountered a geneticist named Dr. Mark Pallen at the University of Birmingham in the UK who challenged me to “do for Darwin what I did for Chaucer”. Dr. Pallen had a grant from the British Council to organize a Darwin Day celebration in 2009 and he commissioned me to write the show for his event, and then after that I brought it to the VanEvo festival, the Cambridge Darwin Festival, the Edinburgh and Adelaide Fringe Festivals, and numerous college campuses, plus an off-Broadway showcase in New York, so it’s been a busy couple of years.

(b) I understand this ‘evolution’ rap was commissioned and is the only ‘science peer-reviewed’ rap in existence. How much research did you do on evolution before you started rapping about it? What did you learn that you didn’t know?

I got the commission officially in September 2008 so I had approximately five months to read-up on evolutionary theory before I started rapping about it. I read books by E O Wilson, Richard Dawkins, Jared Diamond, Joseph Carroll, Dan Dennett, D S Wilson, Geoffrey Miller, and Mark Pallen’s own “Rough Guide to Evolution”. There were other books as well but those are the authors that significantly influenced the writing. What I learned is that the explanatory power of Darwin’s theory is far more vast that I had imagined when first accepting the challenge. I was familiar with evolution from taking biology and human origins courses at University, but I had never heard of Universal Darwinism or Evolutionary Psychology or Costly Signaling or any number of key concepts that ended up featuring heavily in the show.

(c) How has your rapping practice (scientific and otherwise) evolved?

My rapping practiced has evolved in the same way that everything else evolves, gradually and haphazardly in response to changing environmental circumstances. For instance, I would never have guessed when I started rapping at the age of 19 that I would end up in a science rapping niche, but each step seems to have followed effortlessly enough from the last along the way. I still attend to the same stylistic and musical concerns as before so that I keep improving my skills, but the content has taken some surprising turns. There’s an apt expression in hip-hop for this process (also the title of a Too-Short album): Get In Where You Fit In.

(d) Is there anything you’d like to add?

The Rap Guide to Evolution will be transferring to New York for an off-Broadway run in a couple of months, so come see the show while you can, since I might not be back for another two years at this rate!

I’m hoping to get there for Baba’s performance and his last comment definitely provides motivation in addition to the incentive provided by the sweet sounds of his special guests, Aaron Nazrul & the Boom Booms.

I have featured Baba and his work previously in these posts:

Smart windows in The Netherlands and in Vancouver

Michael Berger at Nanowerk has written a good primer on smart windows while discussing a specific project from The Netherlands. From Berger’s article,

‘Smart’ windows, or smart glass, refers to glass technology that includes electrochromic devices, suspended particle devices, micro-blinds and liquid crystal devices. Their major feature is that they can control the amount of light passing through the glass and increase energy efficiency of the room by reducing costs for heating or air-conditioning. In the case of self-powered smart windows the glass even generates the energy needed to electrically switch its transparency.

Smart windows can be electrochromic and/or photochromic. From an article by Alan Chen, of the Lawrence Berkeley National Laboratory, titled, New Photochromic Material Could Advance Energy-Efficient Windows,

A photochromic material is one that changes from transparent to a color when it is exposed to light, and reverts to transparency when the light is dimmed or blocked. An electrochromic material changes color when a small electric charge is passed through it. Both photochromic and electrochromic materials have potential applications in many types of devices.

As for how both materials could have applications appropriate for windows, Berger’s article describes a smart window that sounds like it’s both electrochromic and photochromics and has the added benefit of being able to power itself,

A new type of smart window proposed by researchers in The Netherlands makes use of a luminescent dye-doped liquid-crystal solution sandwiched in between electrically conductive plates as an energy-generating window.

The dye absorbs a variable amount of light depending on its orientation, and re-emits this light, of which a significant fraction is trapped by total internal reflection at the glass/air interface.

(For more details about this specific project, please read Berger’s full article.)

A few months ago I chanced across a local (Vancouver, Canada-based) start-up company, SWITCH Materials, that features technology for smart windows. From the company website (Technology page),

SWITCH’s advanced materials are based on novel organic molecules that react to both solar and electrical stimulation. Smart windows and lenses are the first commercial application under development at SWITCH. They darken when exposed to the sun and rapidly bleach on command when stimulated by electricity.

While competitive technologies rely on either photochromism or electrochromism, SWITCH’s hybrid technology offers the advantages of both, providing enhanced control and lower cost manufacturing.

• SWITCH’s technology also operates without requiring a continuous charge, and as a result has great potential for significant cost savings in many applications.

• The organic compounds in SWITCH’s materials are thermally stable and remain in their coloured state until electricity reverses the chemical transformation.

As far as I can tell, one of the big differences between this Canadian company’s approach and the Dutch research team’s is the Canadian’s use of organic compounds. Also, one of the key advantages (in addition to the ability to generate electricity) to the Dutch team’s approach is that users can control the window’s transmission of light.

I don’t know how close either the Canadian company (SWITCH) or the Dutch research team is to a commercial application but there is this excerpt from the Jan. 14, 2010 news release (on the Pangaea Ventures website),

SWITCH Materials Inc., an advanced materials company developing energy saving SMART window solutions, has raised $7.5M in Series B financing. The Business Development Bank of Canada (BDC Venture Capital) led the investment, with participation from existing investors GrowthWorks, Pangaea Ventures and Ventures West. Proceeds will be used for continuing R&D and to complete product commercialization.

“I am excited that an up and coming Canadian clean tech company will be added to our portfolio,” said Geoff Catherwood, Director of Venture Capital at BDC. “The technology being developed at SWITCH carries tremendous potential to address the burgeoning demand for a new generation of window technology. Producing a SMART window solution that can meet the price point required for significant market penetration will enable SWITCH to gain a leadership position in a large untapped market.” In conjunction with the financing, Mr. Catherwood will join the company’s Board of Directors.

I notice the news release makes no mention of a timeline for possible commercial applications or of competitors for that matter. In addition to the Dutch research team (there’s a Dutch company [I blogged about them here {scroll down}] that is producing something remarkably similar [it too offers control for transmission of light] to the Dutch research team’s smart windows profiled by Berger), there’s competition from the Americans who, recently, through their federal Dept. of Energy invested $72M (a loan guarantee added to previous investments) in SAGE Electrochromics.

The market for windows that could conceivably eliminate or seriously minimize the use of air conditioning is huge. In this era of concern about energy use and climate change, air conditioning is a problem as it uses a tremendous amount of energy, has a significant carbon footprint, and most importantly for business, it is expensive. Think of Hong Kong, Shanghai, Delhi, Tokyo, Rio de Janeiro, Cairo, Tel Aviv, Nairobi,  Toronto, New York, Montréal, Chicago, Paris, London, Belgrade, Berlin, etc. during their respective hot seasons and the advantages of smart windows become quite apparent.

One last thing I’d like to mention about the Canadian company, it’s a Simon Fraser University (SFU), spinoff with Neil Branda, director of SFU’s nanotechnology centre, 4D Labs as their chief technical officer. Dr. Branda’s research work was last mentioned on this blog in a posting that featured, SFU scientists their phasers on stun as part of the title.

Mona Hatoum and the Rennie Collection

I’m not writing about nano today instead I’m focussing on the show of Mona Hatoum’s work at the new gallery in Vancouver, the Rennie Collection. A local developer/realtor, Bob Rennie, has amassed a substantive modern art collection which he’s showcasing in his own gallery in a restored heritage building in Chinatown. You can read more about the gallery and its opening here in an article by John Mackie in the Vancouver Sun (Oct. 24, 2009). There’s also an in-depth profile written by Matt O’Grady in Vancouver Magazine (April 2009 [corrected 12:50 pm PST, Dec.4.09]) here.

The gallery is a first for Vancouver in that you have to make an appointment to view the show. It’s open one day a week on Thursday and there are three guided showings. I went yesterday having booked almost 1 month ago. They say that they allow 10 people in a showing but we had 11 so I guess they do make exceptions which surprises me since the experience is highly controlled.

I’ve never before had to sign a release to view art work. According to that piece of paper, I cannot sue them if I trip and fall and I’m not allowed to touch the artwork nor am I allowed to take pictures or videos. Oh, and I was given a sticker with the Rennie Collection brand to wear on my coat. I have no idea why we were given stickers. There was no need to identify us  as we were the only visitors in the gallery. I even had to check in and I’m not sure but I may have failed to check out when I left. (drat)

The only time I’ve gone through more security checks was when I visited a local high tech company that had contracts with the US Dept. of Defense.

Given Hatoum’s work, the Rennie Collection security experience was perfect. Before I launch off into my impressions, I don’t have an art history degree or an intimate knowledge of the art scene. Basically I look at stuff and then I describe it in standard English. I don’t use ‘art speak’ although I may use some of the same words. (e.g. When I was teaching I used to talk about ‘techno English’. Terms that are used in standard English but mean something different in the technology community.)

Mona Hatoum works conceptually. Most of her work seem to centre around concepts such as the fragility of life, pain, alienation, and rootlessness.

Thankfully, the guide helped to provide context (stories) for the pieces. There were a couple pieces that have me wondering how this stuff could possibly be described as art. For example, she hung a mirror up on a wall so you could see yourself in it. I don’t care how many times someone declares this to be art, I’m not buying it. (pun! Obviously Bob Rennie did as these pieces are from his collection)

The two pieces that were most exciting to me were Hot Spot and Projection. The first is a tilted 8-foot high (or more) globe with the continents outlined in red neon. The globe looks like a rounded cage or grid (you see a lot of cages in Hatoum’s work). The neon which outlines the continents is powered by electric outlets and cords which are plainly visible through the bands of metal that form the globe. As Hatoum sees it, the entire world is a hot spot.

Just across from the hot spot is a map of the world called Projection. The map is not the standard Mercator map that many of us know but the Peters map which is a more accurate representation of the landmasses and oceans on the planet Earth. The North American and European continents have been distorted on the Mercator map to seem larger than they are and the Peters map redresses that distortion.

Looking from ‘Hot Spot’ where she’s used the Mecator map and viewing it in relationship to ‘Projection’ with its Peters map, is disorienting. This state lends itself to new perceptions and ideas and it was for me the richest and most exciting part of the show. The rest ranged from laughable (the mirror) to somewhat intriguing.

There’s also some work on the roof but those are other artists and I’m running out of time today. Do visit the collection if you don’t mind signing releases, booking weeks ahead of time, and wearing the Rennie brand (I kept the unpeeled sticker in my hand).

Nanotechnology strategies everywhere except Canada; Visible Verse 2009; OECD workshops on nanotech in developing world

There’s an article by Michael Berger on Nanowerk titled, European strategy for nanotechnology and the nanotechnology Action Plan, where he outlines the European Union’s approach to creating a strategy, contrasts it in a few asides (launching potshots at the Europeans) with the US approach, and provides some handy links. Coincidentally there’s a news item on Nanowerk about RUSNANO (the Russian publicly funded nanotech investment agency) visiting Sweden. From the news item,

A RUSNANO delegation headed by CEO Anatoly Chubais will visit Sweden on November 19-20, 2009 to study the support that government offers for innovative developments, share with Sweden’s business and scientific communities the goals and principles that guide RUSNANO’s activities and discuss opportunities to collaborate in commercialization of nanotechnologies with their Swedish counterparts.

Canada hosted RUSNANO a few months back for similar purposes but interestingly there was no mention of studying “the support that government offers for innovative developments … ” and I’m not sure if it’s because there isn’t a support framework, official or otherwise, in Canada or if they failed to mention it in the news release. (I strongly suspect the former.) I blogged here about RUSNANO’s visit to Canada at the time.

Taking Sweden and the UK as examples, it would seem that European countries have both a European Union framework and an individual country framework for nanotechnology. The US has its National Nanotechnology Initiative (in place since 2000). China will provide some sort of insight into its nanotechnology plans via its road map series which I mentioned briefly here. Canada remains mute. You can view the National Institute of Nanotechnology’s website but you’d be hard pressed to find any details about an overall strategy for nanotechnology scientific research, public engagement, business support, education, social impact  etc. (Despite the institute’s name that’s probably not in their scope of responsibilities but I can’t find that information anywhere.) You will find a list of the institute’s research areas but you won’t find an overview of the Canadian nanotech research scene or much of anything else (to date they have distributed three news releases in 2009 and none in 2008 but 2007 was a banner year, there were four).

For a brief respite from the nano, Heather Haley’s See the Voice: Visible Verse 2009 (video poetry festival) is being held tonight (Thursday, November 19, 2009) at Pacific Cinematheque at 7:30 pm, 1131 Howe St. Vancouver, Canada. You can buy tickets or read more about it here.

Back to the international nanotechnology front: The OECD (Organization for Economic Cooperation and Development) and UNITAR (United Nations Institute for Training and Research) are holding joint nanotechnology awareness workshops for transitional and developing countries. You can read more about them in the news item on Nanowerk.

Edited at 3:05 pm PST, Nov. 19.09 to change electronic poetry to video poetry.