A February 19, 2021 article by Pamela Fieber for CBC (Canadian Broadcasting Corporation) news online features news of a Calgary (Alberta) company, Summit Nanotech, and a greener way to mine lithium (Note: A link has been removed),
Amanda Hall was on top of a mountain in Tibet when inspiration struck.
“I saw a Tibetan monk reach into his robe and pull out an iPhone,” Hall told the Calgary Eyeopener [CBC radio programme].
“If there’s an iPhone at the top of a mountain in Tibet, where isn’t there an iPhone on this planet? And then it just got me thinking about batteries and battery technology and energy and how we store that energy.”
On her return to Calgary, the accomplished geophysicist began looking into a better, greener way to mine lithium — the essential ingredient in lithium-ion batteries, which power electric cars and smartphones.
This led to her founding the company, Summit Nanotech in 2018 and developing nanotechnology, which works with materials at the molecular or atomic level to selectively filter lithium out of the wasted saltwater brine used in oil wells.
It’s completely different from the way lithium is traditionally mined.
Sarah Offin’s November 12, 2020 article for Global TV News offers insight into the technology developed by Hall’s company (Note: Links have been removed),
Since the downturn in the oil and gas industry, there have been repeated calls for Alberta to diversify its economy. The province invests hundreds of millions of dollars every year to help grow both the tech and green energy sectors, industries that could have a bright future in a province rich with talent.
Amanda Hall is a prime example of that. She was able to draw on her experience in resource extraction with Alberta’s oil and gas industry, developing green technology to be used in energy storage.
…
…
Hall developed the only female-led mining technology company in the world: Summit Nanotech Corp. Using nanotechnology, Hall and her team say they have created an improved method of lithium-ion resource extraction from produced brine water.
“We’ve come up with a much more elegant approach — I say, feminine, approach — at bringing a resource out of the ground, and then giving it to the electric vehicle sector,” Hall said.
…
Using sponges developed through nanoscience, Hall and her team have created technology that will allow producers to extract lithium directly from the wellhead without the need for expansive ponds and toxic chemicals. The process is expected to reduce costs and decrease chemical waste by 90 per cent.
The firm’s website touts that its process is the most “green lithium extraction in the world.”
“The sponge has lithium selective cavities in it, just the exact size of a lithium-ion. And so, as if you put a fluid in against this sponge, it will only suck up lithium, nothing else, and it holds on to it. And then when you wash it, you wash the lithium off the sponge just by changing the environment it’s in. So we don’t have to use any acids,” Hall said.
Hall and her team have spent the last two-and-a-half years in the lab perfecting their design and are now building the company’s first full-scale 12-metre tall unit. “It’s our baby, but it’s huge,” Hall said. “It’s a mini-refinery, essentially.”
That “mini-refinery” will then be sent via shipping container to the first of the company’s three pilot partners: Lithium Chile.
The other two partners are Saskatchewan-based Prairie Lithium and 3 Proton Lithium (3PL) Operating Inc. in Nevada.
denaLi 1.0 Direct Lithium Extraction (DLE) Process
Summit Nanotech has designed an innovative new method to generate battery grade lithium compounds from brine fluids, named denaLi. This process is the most green lithium extraction technology in the world. Lithium carbonate and lithium hydroxide can be sold at market value to supply the growing demand from electric vehicle battery manufacturers.
Interconnected modules using nanoporous membranes in a unique arrangement are synthesized with specific filtration functions. Carbon dioxide is used to initiate end product precipitation. Discrete power generation modules are selected to work together to harvest and store available geothermal, solar, wind, and hydroelectric power from the system’s environment.
Prairie Lithium, the Saskatchewan-based company mentioned in Offin’s article, co-founded a joint venture specifically dedicated to lithium extraction from brine (to begin with) in 2020 according to Jonathan Guignard in a June 3, 2020 article for Global TV news (Note: Links have been removed),
Saskatchewan will soon be home to a new lithium production project.
The Prairie-LiEP Critical Mineral (PLCM) joint venture is being undertaken by Prairie Lithium Corp. and LiEP Energy Ltd [headquarted in Calgary, Alberta].
Their two-stage pilot project will produce lithium hydroxide from some of the province’s oilfield brines.
…
The first stage of the project is based in Regina and is set to being in July. The second stage is set for the second half of 2021, with field operations in southern parts of the province.
…
“PLCM Joint Venture is excited to begin Stage 1 of the pilot operation in Saskatchewan this summer,” said Prairie president and CEO Zach Maurer and LiEP president and CEO Haafiz Hasham.
On another front, Lithium Chile, which seems to be headquartered in Calgary with extensive lithium mining projects in Chile, has a brief mention of their partnership with Summit Nanotech in a December 24, 2020 posting (on the News webpage) by Steve (Cochrane; president and chief executive officer),
Lastly our partnership with Summit continues to move forward and we are very happy to be working with them. I have attached our recently negotiated LOI [letter of intent] for our JV [joint venture] pilot project in Chile. We should have the definitive agreement signed early in the new year. They plan to have their pilot unit completed and shipped by July of 2021 so a planned test is scheduled for late summer next year. This gives us the time to get back on one or more of our lithium prospects to prepare for our pilot project. They continue to see great results in the lab and hope this is the breakthrough we all want to see for an efficient cost and environmentally effective method of producing lithium from brines.
I cannot find any further mention on the Lithium Chile website about their joint venture with Summit Nanotech.
The big question is whether or not this technology can be scaled for industrial use. I wish them good luck with the effort.
All this talk about lithium extraction and other natural resource extraction brought to mind Harold Innis and his staples theory of Canadian history, culture, and economy. From the Harold Innis Wikipedia entry (Note: Links have been removed),
Harold Adams Innis FRSC (1894 – 1952) was a Canadian professor of political economy at the University of Toronto and the author of seminal works on media, communication theory, and Canadian economic history. He helped develop the staples thesis, [emphasis mine] which holds that Canada’s culture, political history, and economy have been decisively influenced by the exploitation and export of a series of “staples” such as fur, fishing, lumber, wheat, mined metals [emphasis mine], and coal. The staple thesis dominated economic history in Canada from the 1930s to 1960s, and continues to be a fundamental part of the Canadian political economic tradition.[8]
Taking up from where I left off with my comments on Competing in a Global Innovation Economy: The Current State of R and D in Canada or as I prefer to call it the Third assessment of Canadas S&T (science and technology) and R&D (research and development). (Part 1 for anyone who missed it).
Is it possible to get past Hedy?
Interestingly (to me anyway), one of our R&D strengths, the visual and performing arts, features sectors where a preponderance of people are dedicated to creating culture in Canada and don’t spend a lot of time trying to make money so they can retire before the age of 40 as so many of our start-up founders do. (Retiring before the age of 40 just reminded me of Hollywood actresses {Hedy] who found and still do find that work was/is hard to come by after that age. You may be able but I’m not sure I can get past Hedy.) Perhaps our business people (start-up founders) could take a leaf out of the visual and performing arts handbook? Or, not. There is another question.
Does it matter if we continue to be a ‘branch plant’ economy? Somebody once posed that question to me when I was grumbling that our start-ups never led to larger businesses and acted more like incubators (which could describe our R&D as well),. He noted that Canadians have a pretty good standard of living and we’ve been running things this way for over a century and it seems to work for us. Is it that bad? I didn’t have an answer for him then and I don’t have one now but I think it’s a useful question to ask and no one on this (2018) expert panel or the previous expert panel (2013) seems to have asked.
I appreciate that the panel was constrained by the questions given by the government but given how they snuck in a few items that technically speaking were not part of their remit, I’m thinking they might have gone just a bit further. The problem with answering the questions as asked is that if you’ve got the wrong questions, your answers will be garbage (GIGO; garbage in, garbage out) or, as is said, where science is concerned, it’s the quality of your questions.
On that note, I would have liked to know more about the survey of top-cited researchers. I think looking at the questions could have been quite illuminating and I would have liked some information on from where (geographically and area of specialization) they got most of their answers. In keeping with past practice (2012 assessment published in 2013), there is no additional information offered about the survey questions or results. Still, there was this (from the report released April 10, 2018; Note: There may be some difference between the formatting seen here and that seen in the document),
3.1.2 International Perceptions of Canadian Research
As with the 2012 S&T report, the CCA commissioned a survey of top-cited researchers’ perceptions of Canada’s research strength in their field or subfield relative to that of other countries (Section 1.3.2). Researchers were asked to identify the top five countries in their field and subfield of expertise: 36% of respondents (compared with 37% in the 2012 survey) from across all fields of research rated Canada in the top five countries in their field (Figure B.1 and Table B.1 in the appendix). Canada ranks fourth out of all countries, behind the United States, United Kingdom, and Germany, and ahead of France. This represents a change of about 1 percentage point from the overall results of the 2012 S&T survey. There was a 4 percentage point decrease in how often France is ranked among the top five countries; the ordering of the top five countries, however, remains the same.
When asked to rate Canada’s research strength among other advanced countries in their field of expertise, 72% (4,005) of respondents rated Canadian research as “strong” (corresponding to a score of 5 or higher on a 7-point scale) compared with 68% in the 2012 S&T survey (Table 3.4). [pp. 40-41 Print; pp. 78-70 PDF]
Before I forget, there was mention of the international research scene,
Growth in research output, as estimated by number of publications, varies considerably for the 20 top countries. Brazil, China, India, Iran, and South Korea have had the most significant increases in publication output over the last 10 years. [emphases mine] In particular, the dramatic increase in China’s output means that it is closing the gap with the United States. In 2014, China’s output was 95% of that of the United States, compared with 26% in 2003. [emphasis mine]
Table 3.2 shows the Growth Index (GI), a measure of the rate at which the research output for a given country changed between 2003 and 2014, normalized by the world growth rate. If a country’s growth in research output is higher than the world average, the GI score is greater than 1.0. For example, between 2003 and 2014, China’s GI score was 1.50 (i.e., 50% greater than the world average) compared with 0.88 and 0.80 for Canada and the United States, respectively. Note that the dramatic increase in publication production of emerging economies such as China and India has had a negative impact on Canada’s rank and GI score (see CCA, 2016).
As long as I’ve been blogging (10 years), the international research community (in particular the US) has been looking over its shoulder at China.
Patents and intellectual property
As an inventor, Hedy got more than one patent. Much has been made of the fact that despite an agreement, the US Navy did not pay her or her partner (George Antheil) for work that would lead to significant military use (apparently, it was instrumental in the Bay of Pigs incident, for those familiar with that bit of history), GPS, WiFi, Bluetooth, and more.
Some comments about patents. They are meant to encourage more innovation by ensuring that creators/inventors get paid for their efforts .This is true for a set time period and when it’s over, other people get access and can innovate further. It’s not intended to be a lifelong (or inheritable) source of income. The issue in Lamarr’s case is that the navy developed the technology during the patent’s term without telling either her or her partner so, of course, they didn’t need to compensate them despite the original agreement. They really should have paid her and Antheil.
The current patent situation, particularly in the US, is vastly different from the original vision. These days patents are often used as weapons designed to halt innovation. One item that should be noted is that the Canadian federal budget indirectly addressed their misuse (from my March 16, 2018 posting),
Surprisingly, no one else seems to have mentioned a new (?) intellectual property strategy introduced in the document (from Chapter 2: Progress; scroll down about 80% of the way, Note: The formatting has been changed),
Budget 2018 proposes measures in support of a new Intellectual Property Strategy to help Canadian entrepreneurs better understand and protect intellectual property, and get better access to shared intellectual property.
What Is a Patent Collective?
A Patent Collective is a way for firms to share, generate, and license or purchase intellectual property. The collective approach is intended to help Canadian firms ensure a global “freedom to operate”, mitigate the risk of infringing a patent, and aid in the defence of a patent infringement suit.
Budget 2018 proposes to invest $85.3 million over five years, starting in 2018–19, with $10 million per year ongoing, in support of the strategy. The Minister of Innovation, Science and Economic Development will bring forward the full details of the strategy in the coming months, including the following initiatives to increase the intellectual property literacy of Canadian entrepreneurs, and to reduce costs and create incentives for Canadian businesses to leverage their intellectual property:
To better enable firms to access and share intellectual property, the Government proposes to provide $30 million in 2019–20 to pilot a Patent Collective. This collective will work with Canada’s entrepreneurs to pool patents, so that small and medium-sized firms have better access to the critical intellectual property they need to grow their businesses.
To support the development of intellectual property expertise and legal advice for Canada’s innovation community, the Government proposes to provide $21.5 million over five years, starting in 2018–19, to Innovation, Science and Economic Development Canada. This funding will improve access for Canadian entrepreneurs to intellectual property legal clinics at universities. It will also enable the creation of a team in the federal government to work with Canadian entrepreneurs to help them develop tailored strategies for using their intellectual property and expanding into international markets.
To support strategic intellectual property tools that enable economic growth, Budget 2018 also proposes to provide $33.8 million over five years, starting in 2018–19, to Innovation, Science and Economic Development Canada, including $4.5 million for the creation of an intellectual property marketplace. This marketplace will be a one-stop, online listing of public sector-owned intellectual property available for licensing or sale to reduce transaction costs for businesses and researchers, and to improve Canadian entrepreneurs’ access to public sector-owned intellectual property.
The Government will also consider further measures, including through legislation, in support of the new intellectual property strategy.
Helping All Canadians Harness Intellectual Property
Intellectual property is one of our most valuable resources, and every Canadian business owner should understand how to protect and use it.
To better understand what groups of Canadians are benefiting the most from intellectual property, Budget 2018 proposes to provide Statistics Canada with $2 million over three years to conduct an intellectual property awareness and use survey. This survey will help identify how Canadians understand and use intellectual property, including groups that have traditionally been less likely to use intellectual property, such as women and Indigenous entrepreneurs. The results of the survey should help the Government better meet the needs of these groups through education and awareness initiatives.
The Canadian Intellectual Property Office will also increase the number of education and awareness initiatives that are delivered in partnership with business, intermediaries and academia to ensure Canadians better understand, integrate and take advantage of intellectual property when building their business strategies. This will include targeted initiatives to support underrepresented groups.
Finally, Budget 2018 also proposes to invest $1 million over five years to enable representatives of Canada’s Indigenous Peoples to participate in discussions at the World Intellectual Property Organization related to traditional knowledge and traditional cultural expressions, an important form of intellectual property.
It’s not wholly clear what they mean by ‘intellectual property’. The focus seems to be on patents as they are the only intellectual property (as opposed to copyright and trademarks) singled out in the budget. As for how the ‘patent collective’ is going to meet all its objectives, this budget supplies no clarity on the matter. On the plus side, I’m glad to see that indigenous peoples’ knowledge is being acknowledged as “an important form of intellectual property” and I hope the discussions at the World Intellectual Property Organization are fruitful.
Over the past decade, the Canadian patent flow in all technical sectors has consistently decreased. Patent flow provides a partial picture of how patents in Canada are exploited. A negative flow represents a deficit of patented inventions owned by Canadian assignees versus the number of patented inventions created by Canadian inventors. The patent flow for all Canadian patents decreased from about −0.04 in 2003 to −0.26 in 2014 (Figure 4.7). This means that there is an overall deficit of 26% of patent ownership in Canada. In other words, fewer patents were owned by Canadian institutions than were invented in Canada.
This is a significant change from 2003 when the deficit was only 4%. The drop is consistent across all technical sectors in the past 10 years, with Mechanical Engineering falling the least, and Electrical Engineering the most (Figure 4.7). At the technical field level, the patent flow dropped significantly in Digital Communication and Telecommunications. For example, the Digital Communication patent flow fell from 0.6 in 2003 to −0.2 in 2014. This fall could be partially linked to Nortel’s US$4.5 billion patent sale [emphasis mine] to the Rockstar consortium (which included Apple, BlackBerry, Ericsson, Microsoft, and Sony) (Brickley, 2011). Food Chemistry and Microstructural [?] and Nanotechnology both also showed a significant drop in patent flow. [p. 83 Print; p. 121 PDF]
Despite a fall in the number of parents for ‘Digital Communication’, we’re still doing well according to statistics elsewhere in this report. Is it possible that patents aren’t that big a deal? Of course, it’s also possible that we are enjoying the benefits of past work and will miss out on future work. (Note: A video of the April 10, 2018 report presentation by Max Blouw features him saying something like that.)
One last note, Nortel died many years ago. Disconcertingly, this report, despite more than one reference to Nortel, never mentions the company’s demise.
Boxed text
While the expert panel wasn’t tasked to answer certain types of questions, as I’ve noted earlier they managed to sneak in a few items. One of the strategies they used was putting special inserts into text boxes including this (from the report released April 10, 2018),
Box 4.2
The FinTech Revolution
Financial services is a key industry in Canada. In 2015, the industry accounted for 4.4%
of Canadia jobs and about 7% of Canadian GDP (Burt, 2016). Toronto is the second largest financial services hub in North America and one of the most vibrant research hubs in FinTech. Since 2010, more than 100 start-up companies have been founded in Canada, attracting more than $1 billion in investment (Moffatt, 2016). In 2016 alone, venture-backed investment in Canadian financial technology companies grew by 35% to $137.7 million (Ho, 2017). The Toronto Financial Services Alliance estimates that there are approximately 40,000 ICT specialists working in financial services in Toronto alone.
AI, blockchain, [emphasis mine] and other results of ICT research provide the basis for several transformative FinTech innovations including, for example, decentralized transaction ledgers, cryptocurrencies (e.g., bitcoin), and AI-based risk assessment and fraud detection. These innovations offer opportunities to develop new markets for established financial services firms, but also provide entry points for technology firms to develop competing service offerings, increasing competition in the financial services industry. In response, many financial services companies are increasing their investments in FinTech companies (Breznitz et al., 2015). By their own account, the big five banks invest more than $1 billion annually in R&D of advanced software solutions, including AI-based innovations (J. Thompson, personal communication, 2016). The banks are also increasingly investing in university research and collaboration with start-up companies. For instance, together with several large insurance and financial management firms, all big five banks have invested in the Vector Institute for Artificial Intelligence (Kolm, 2017).
I’m glad to see the mention of blockchain while AI (artificial intelligence) is an area where we have innovated (from the report released April 10, 2018),
AI has attracted researchers and funding since the 1960s; however, there were periods of stagnation in the 1970s and 1980s, sometimes referred to as the “AI winter.” During this period, the Canadian Institute for Advanced Research (CIFAR), under the direction of Fraser Mustard, started supporting AI research with a decade-long program called Artificial Intelligence, Robotics and Society, [emphasis mine] which was active from 1983 to 1994. In 2004, a new program called Neural Computation and Adaptive Perception was initiated and renewed twice in 2008 and 2014 under the title, Learning in Machines and Brains. Through these programs, the government provided long-term, predictable support for high- risk research that propelled Canadian researchers to the forefront of global AI development. In the 1990s and early 2000s, Canadian research output and impact on AI were second only to that of the United States (CIFAR, 2016). NSERC has also been an early supporter of AI. According to its searchable grant database, NSERC has given funding to research projects on AI since at least 1991–1992 (the earliest searchable year) (NSERC, 2017a).
The University of Toronto, the University of Alberta, and the Université de Montréal have emerged as international centres for research in neural networks and deep learning, with leading experts such as Geoffrey Hinton and Yoshua Bengio. Recently, these locations have expanded into vibrant hubs for research in AI applications with a diverse mix of specialized research institutes, accelerators, and start-up companies, and growing investment by major international players in AI development, such as Microsoft, Google, and Facebook. Many highly influential AI researchers today are either from Canada or have at some point in their careers worked at a Canadian institution or with Canadian scholars.
…
As international opportunities in AI research and the ICT industry have grown, many of Canada’s AI pioneers have been drawn to research institutions and companies outside of Canada. According to the OECD, Canada’s share of patents in AI declined from 2.4% in 2000 to 2005 to 2% in 2010 to 2015. Although Canada is the sixth largest producer of top-cited scientific publications related to machine learning, firms headquartered in Canada accounted for only 0.9% of all AI-related inventions from 2012 to 2014 (OECD, 2017c). Canadian AI researchers, however, remain involved in the core nodes of an expanding international network of AI researchers, most of whom continue to maintain ties with their home institutions. Compared with their international peers, Canadian AI researchers are engaged in international collaborations far more often than would be expected by Canada’s level of research output, with Canada ranking fifth in collaboration. [p. 97-98 Print; p. 135-136 PDF]
The only mention of robotics seems to be here in this section and it’s only in passing. This is a bit surprising given its global importance. I wonder if robotics has been somehow hidden inside the term artificial intelligence, although sometimes it’s vice versa with robot being used to describe artificial intelligence. I’m noticing this trend of assuming the terms are synonymous or interchangeable not just in Canadian publications but elsewhere too. ’nuff said.
Getting back to the matter at hand, t he report does note that patenting (technometric data) is problematic (from the report released April 10, 2018),
The limitations of technometric data stem largely from their restricted applicability across areas of R&D. Patenting, as a strategy for IP management, is similarly limited in not being equally relevant across industries. Trends in patenting can also reflect commercial pressures unrelated to R&D activities, such as defensive or strategic patenting practices. Finally, taxonomies for assessing patents are not aligned with bibliometric taxonomies, though links can be drawn to research publications through the analysis of patent citations. [p. 105 Print; p. 143 PDF]
It’s interesting to me that they make reference to many of the same issues that I mention but they seem to forget and don’t use that information in their conclusions.
Box 6.3
Open Science: An Emerging Approach to Create New Linkages
Open Science is an umbrella term to describe collaborative and open approaches to
undertaking science, which can be powerful catalysts of innovation. This includes
the development of open collaborative networks among research performers, such
as the private sector, and the wider distribution of research that usually results when
restrictions on use are removed. Such an approach triggers faster translation of ideas
among research partners and moves the boundaries of pre-competitive research to
later, applied stages of research. With research results freely accessible, companies
can focus on developing new products and processes that can be commercialized.
Two Canadian organizations exemplify the development of such models. In June
2017, Genome Canada, the Ontario government, and pharmaceutical companies
invested $33 million in the Structural Genomics Consortium (SGC) (Genome Canada,
2017). Formed in 2004, the SGC is at the forefront of the Canadian open science
movement and has contributed to many key research advancements towards new
treatments (SGC, 2018). McGill University’s Montréal Neurological Institute and
Hospital has also embraced the principles of open science. Since 2016, it has been
sharing its research results with the scientific community without restriction, with
the objective of expanding “the impact of brain research and accelerat[ing] the
discovery of ground-breaking therapies to treat patients suffering from a wide range
of devastating neurological diseases” (neuro, n.d.).
This is exciting stuff and I’m happy the panel featured it. (I wrote about the Montréal Neurological Institute initiative in a Jan. 22, 2016 posting.)
More than once, the report notes the difficulties with using bibliometric and technometric data as measures of scientific achievement and progress and open science (along with its cousins, open data and open access) are contributing to the difficulties as James Somers notes in his April 5, 2018 article ‘The Scientific Paper is Obsolete’ for The Atlantic (Note: Links have been removed),
The scientific paper—the actual form of it—was one of the enabling inventions of modernity. Before it was developed in the 1600s, results were communicated privately in letters, ephemerally in lectures, or all at once in books. There was no public forum for incremental advances. By making room for reports of single experiments or minor technical advances, journals made the chaos of science accretive. Scientists from that point forward became like the social insects: They made their progress steadily, as a buzzing mass.
The earliest papers were in some ways more readable than papers are today. They were less specialized, more direct, shorter, and far less formal. Calculus had only just been invented. Entire data sets could fit in a table on a single page. What little “computation” contributed to the results was done by hand and could be verified in the same way.
The more sophisticated science becomes, the harder it is to communicate results. Papers today are longer than ever and full of jargon and symbols. They depend on chains of computer programs that generate data, and clean up data, and plot data, and run statistical models on data. These programs tend to be both so sloppily written and so central to the results that it’s [sic] contributed to a replication crisis, or put another way, a failure of the paper to perform its most basic task: to report what you’ve actually discovered, clearly enough that someone else can discover it for themselves.
Perhaps the paper itself is to blame. Scientific methods evolve now at the speed of software; the skill most in demand among physicists, biologists, chemists, geologists, even anthropologists and research psychologists, is facility with programming languages and “data science” packages. And yet the basic means of communicating scientific results hasn’t changed for 400 years. Papers may be posted online, but they’re still text and pictures on a page.
What would you get if you designed the scientific paper from scratch today? A little while ago I spoke to Bret Victor, a researcher who worked at Apple on early user-interface prototypes for the iPad and now runs his own lab in Oakland, California, that studies the future of computing. Victor has long been convinced that scientists haven’t yet taken full advantage of the computer. “It’s not that different than looking at the printing press, and the evolution of the book,” he said. After Gutenberg, the printing press was mostly used to mimic the calligraphy in bibles. It took nearly 100 years of technical and conceptual improvements to invent the modern book. “There was this entire period where they had the new technology of printing, but they were just using it to emulate the old media.”Victor gestured at what might be possible when he redesigned a journal article by Duncan Watts and Steven Strogatz, “Collective dynamics of ‘small-world’ networks.” He chose it both because it’s one of the most highly cited papers in all of science and because it’s a model of clear exposition. (Strogatz is best known for writing the beloved “Elements of Math” column for The New York Times.)
The Watts-Strogatz paper described its key findings the way most papers do, with text, pictures, and mathematical symbols. And like most papers, these findings were still hard to swallow, despite the lucid prose. The hardest parts were the ones that described procedures or algorithms, because these required the reader to “play computer” in their head, as Victor put it, that is, to strain to maintain a fragile mental picture of what was happening with each step of the algorithm.Victor’s redesign interleaved the explanatory text with little interactive diagrams that illustrated each step. In his version, you could see the algorithm at work on an example. You could even control it yourself….
For anyone interested in the evolution of how science is conducted and communicated, Somers’ article is a fascinating and in depth look at future possibilities.
Subregional R&D
I didn’t find this quite as compelling as the last time and that may be due to the fact that there’s less information and I think the 2012 report was the first to examine the Canadian R&D scene with a subregional (in their case, provinces) lens. On a high note, this report also covers cities (!) and regions, as well as, provinces.
Ontario leads Canada in R&D investment and performance. The province accounts for almost half of R&D investment and personnel, research publications and collaborations, and patents. R&D activity in Ontario produces high-quality publications in each of Canada’s five R&D strengths, reflecting both the quantity and quality of universities in the province. Quebec lags Ontario in total investment, publications, and patents, but performs as well (citations) or better (R&D intensity) by some measures. Much like Ontario, Quebec researchers produce impactful publications across most of Canada’s five R&D strengths. Although it invests an amount similar to that of Alberta, British Columbia does so at a significantly higher intensity. British Columbia also produces more highly cited publications and patents, and is involved in more international research collaborations. R&D in British Columbia and Alberta clusters around Vancouver and Calgary in areas such as physics and ICT and in clinical medicine and energy, respectively. [emphasis mine] Smaller but vibrant R&D communities exist in the Prairies and Atlantic Canada [also referred to as the Maritime provinces or Maritimes] (and, to a lesser extent, in the Territories) in natural resource industries.
Globally, as urban populations expand exponentially, cities are likely to drive innovation and wealth creation at an increasing rate in the future. In Canada, R&D activity clusters around five large cities: Toronto, Montréal, Vancouver, Ottawa, and Calgary. These five cities create patents and high-tech companies at nearly twice the rate of other Canadian cities. They also account for half of clusters in the services sector, and many in advanced manufacturing.
Many clusters relate to natural resources and long-standing areas of economic and research strength. Natural resource clusters have emerged around the location of resources, such as forestry in British Columbia, oil and gas in Alberta, agriculture in Ontario, mining in Quebec, and maritime resources in Atlantic Canada. The automotive, plastics, and steel industries have the most individual clusters as a result of their economic success in Windsor, Hamilton, and Oshawa. Advanced manufacturing industries tend to be more concentrated, often located near specialized research universities. Strong connections between academia and industry are often associated with these clusters. R&D activity is distributed across the country, varying both between and within regions. It is critical to avoid drawing the wrong conclusion from this fact. This distribution does not imply the existence of a problem that needs to be remedied. Rather, it signals the benefits of diverse innovation systems, with differentiation driven by the needs of and resources available in each province. [pp. 132-133 Print; pp. 170-171 PDF]
Intriguingly, there’s no mention that in British Columbia (BC), there are leading areas of research: Visual & Performing Arts, Psychology & Cognitive Sciences, and Clinical Medicine (according to the table on p. 117 Print, p. 153 PDF).
As I said and hinted earlier, we’ve got brains; they’re just not the kind of brains that command respect.
Final comments
My hat’s off to the expert panel and staff of the Council of Canadian Academies. Combining two previous reports into one could not have been easy. As well, kudos to their attempts to broaden the discussion by mentioning initiative such as open science and for emphasizing the problems with bibliometrics, technometrics, and other measures. I have covered only parts of this assessment, (Competing in a Global Innovation Economy: The Current State of R&D in Canada), there’s a lot more to it including a substantive list of reference materials (bibliography).
While I have argued that perhaps the situation isn’t quite as bad as the headlines and statistics may suggest, there are some concerning trends for Canadians but we have to acknowledge that many countries have stepped up their research game and that’s good for all of us. You don’t get better at anything unless you work with and play with others who are better than you are. For example, both India and Italy surpassed us in numbers of published research papers. We slipped from 7th place to 9th. Thank you, Italy and India. (And, Happy ‘Italian Research in the World Day’ on April 15, 2018, the day’s inaugural year. In Italian: Piano Straordinario “Vivere all’Italiana” – Giornata della ricerca Italiana nel mondo.)
Unfortunately, the reading is harder going than previous R&D assessments in the CCA catalogue. And in the end, I can’t help thinking we’re just a little bit like Hedy Lamarr. Not really appreciated in all of our complexities although the expert panel and staff did try from time to time. Perhaps the government needs to find better ways of asking the questions.
***ETA April 12, 2018 at 1500 PDT: Talking about missing the obvious! I’ve been ranting on about how research strength in visual and performing arts and in philosophy and theology, etc. is perfectly fine and could lead to ‘traditional’ science breakthroughs without underlining the point by noting that Antheil was a musician, Lamarr was as an actress and they set the foundation for work by electrical engineers (or people with that specialty) for their signature work leading to WiFi, etc.***
There is, by the way, a Hedy-Canada connection. In 1998, she sued Canadian software company Corel, for its unauthorized use of her image on their Corel Draw 8 product packaging. She won.
More stuff
For those who’d like to see and hear the April 10, 2017 launch for “Competing in a Global Innovation Economy: The Current State of R&D in Canada” or the Third Assessment as I think of it, go here.
For anyone curious about ‘Bombshell: The Hedy Lamarr Story’ to be broadcast on May 18, 2018 as part of PBS’s American Masters series, there’s this trailer,
For the curious, I did find out more about the Hedy Lamarr and Corel Draw. John Lettice’s December 2, 1998 article The Rgister describes the suit and her subsequent victory in less than admiring terms,
Our picture doesn’t show glamorous actress Hedy Lamarr, who yesterday [Dec. 1, 1998] came to a settlement with Corel over the use of her image on Corel’s packaging. But we suppose that following the settlement we could have used a picture of Corel’s packaging. Lamarr sued Corel earlier this year over its use of a CorelDraw image of her. The picture had been produced by John Corkery, who was 1996 Best of Show winner of the Corel World Design Contest. Corel now seems to have come to an undisclosed settlement with her, which includes a five-year exclusive (oops — maybe we can’t use the pack-shot then) licence to use “the lifelike vector illustration of Hedy Lamarr on Corel’s graphic software packaging”. Lamarr, bless ‘er, says she’s looking forward to the continued success of Corel Corporation, …
There’s this excerpt from a Sept. 21, 2015 posting (a pictorial essay of Lamarr’s life) by Shahebaz Khan on The Blaze Blog,
6. CorelDRAW:
For several years beginning in 1997, the boxes of Corel DRAW’s software suites were graced by a large Corel-drawn image of Lamarr. The picture won Corel DRAW’s yearly software suite cover design contest in 1996. Lamarr sued Corel for using the image without her permission. Corel countered that she did not own rights to the image. The parties reached an undisclosed settlement in 1998.
There’s also a Nov. 23, 1998 Corel Draw 8 product review by Mike Gorman on mymac.com, which includes a screenshot of the packaging that precipitated the lawsuit. Once they settled, it seems Corel used her image at least one more time.
Researchers at Michigan State University (MSU; US) claim to have discovered organic nanowires that are superior to the engineered kind according to a March 24, 2016 news item on ScienceDaily,
A microbial protein fiber discovered by a Michigan State University scientist transports charges at rates high enough to be applied in humanmade nanotechnologies.
The discovery, featured in the current issue of Scientific Reports, describes the high-speed protein fiber produced by uranium-reducing Geobacter bacteria. The fibers are hair-like protein filaments called “pili” that have the unique property of transporting charges at speeds of 1 billion electrons per second.
“This microbial nanowire is made of but a single peptide subunit,” said Gemma Reguera, lead author and MSU microbiologist. “Being made of protein, these organic nanowires are biodegradable and biocompatible. This discovery thus opens many applications in nanoelectronics such as the development of medical sensors and electronic devices that can be interfaced with human tissues.”
Since existing nanotechnologies incorporate exotic metals into their designs, the cost of organic nanowires is much more cost effective as well, she added.
How the nanowires function in nature is comparable to breathing. Bacterial cells, like humans, have to breathe. The process of respiration involves moving electrons out of an organism. Geobacter bacteria use the protein nanowires to bind and breathe metal-containing minerals such as iron oxides and soluble toxic metals such as uranium. The toxins are mineralized on the nanowires’ surface, preventing the metals from permeating the cell.
Reguera’s team purified their protein fibers, which are about 2 nanometers in diameter. Using the same toolset of nanotechnologists, the scientists were able to measure the high velocities at which the proteins were passing electrons.
“They are like power lines at the nanoscale,” Reguera said. “This also is the first study to show the ability of electrons to travel such long distances — more than a 1,000 times what’s been previously proven — along proteins.”
The researchers also identified metal traps on the surface of the protein nanowires that bind uranium with great affinity and could potentially trap other metals. These findings could provide the basis for systems that integrate protein nanowires to mine gold and other precious metals, scrubbers that can be deployed to immobilize uranium at remediation sites and more.
Reguera’s nanowires also can be modified to seek out other materials in which to help them breathe.
“The Geobacter cells are making these protein fibers naturally to breathe certain metals. We can use genetic engineering to tune the electronic and biochemical properties of the nanowires and enable new functionalities. We also can mimic the natural manufacturing process in the lab to mass-produce them in inexpensive and environmentally friendly processes,” Reguera said. “This contrasts dramatically with the manufacturing of humanmade inorganic nanowires, which involve high temperatures, toxic solvents, vacuums and specialized equipment.”
This discovery came from truly listening to bacteria, Reguera said.
“The protein is getting the credit, but we can’t forget to thank the bacteria that invented this,” she said. “It’s always wise to go back and ask bacteria what else they can teach us. In a way, we are eavesdropping on microbial conversations. It’s like listening to our elders, learning from their wisdom and taking it further.”
Asking what else bacteria can teach us? That’s a lovely thought and different from the still common ‘let’s wipe them all out’ approach to bacteria. It suggests scientific research that is more amenable to sharing the planet with all forms of life.
Here’s a link to and a citation for the paper,
Thermally activated charge transport in microbial protein nanowires by Sanela Lampa-Pastirk, Joshua P. Veazey, Kathleen A. Walsh, Gustavo T. Feliciano, Rebecca J. Steidl, Stuart H. Tessmer, & Gemma Reguera. Scientific Reports 6, Article number: 23517 (2016) doi:10.1038/srep23517 Published online: 24 March 2016
South African academics Nosipho Moloto, Associate Professor, Department of Chemistry, University of the Witwatersrand and Siyabonga P. Ngubane, Lecturer in Chemistry, University of the Witwatersrand have written a Feb. 17, 2016 article for The Conversation (also available on the South African Broadcasting Corporation website) about South Africa’s energy needs and its nanotechnology efforts (Note: Links have been removed),
Energy is an economic driver of both developed and developing countries. South Africa over the past few years has faced an energy crisis with rolling blackouts between 2008 and 2015. Part of the problem has been attributed to mismanagement by the state-owned utility company Eskom, particularly the shortcomings of maintenance plans on several plants.
But South Africa has two things going for it that could help it out of its current crisis. By developing a strong nanotechnology capability and applying this to its rich mineral reserves the country is well-placed to develop new energy technologies.
…
Nanotechnology has already shown that it has the potential to alleviate energy problems. …
It can also yield materials with new properties and the miniaturisation of devices. For example, since the discovery of graphene, a single atomic layer of graphite, several applications in biological engineering, electronics and composite materials have been identified. These include economic and efficient devices like solar cells and lithium ion secondary batteries.
Nanotechnology has seen an incredible increase in commercialisation. Nearly 10,000 patents have been filed by large corporations since its beginning in 1991. There are already a number of nanotechnology products and solutions on the market. Examples include Miller’s beer bottling composites, Armor’s N-Force line bulletproof vests and printed solar cells produced by Nanosolar – as well as Samsung’s nanotechnology television.
The advent of nanotechnology in South Africa began with the South African Nanotechnology Initiative in 2002. This was followed by the a [sic] national nanotechnology strategy in 2003.
The government has spent more than R450 million [Rand] in nanotechnology and nanosciences research since 2006. For example, two national innovation centres have been set up and funding has been made available for equipment. There has also been flagship funding.
The country could be globally competitive in this field due to the infancy of the technology. As such, there are plenty of opportunities to make novel discoveries in South Africa.
Mineral wealth
There is another major advantage South Africa has that could help diversify its energy supply. It has an abundance of mineral wealth with an estimated value of US$2.5 trillion. The country has the world’s largest reserves of manganese and platinum group metals. It also has massive reserves of gold, diamonds, chromite ore and vanadium.
Through beneficiation and nanotechnology these resources could be used to cater for the development of new energy technologies. Research in beneficiation of minerals for energy applications is gaining momentum. For example, Anglo American and the Department of Science and Technology have embarked on a partnership to convert hydrogen into electricity.
The Council for Scientific and Industrial research also aims to develop low cost lithium ion batteries and supercapacitors using locally mined manganese and titanium ores. There is collaborative researchto use minerals like gold to synthesize nanomaterials for application in photovoltaics.
…
The current photovoltaic market relies on importing solar cells or panels from Europe, Asia and the US for local assembly to produce arrays. South African UV index is one of the highest in the world which reduces the lifespan of solar panels. The key to a thriving and profitable photovoltaic sector therefore lies in local production and research and development to support the sector.
It’s worth reading the article in its entirety if you’re interested in a perspective on South Africa’s energy and nanotechnology efforts.
Robert Pelton, Songtao Yang, and colleagues at McMaster University (in Hamilton, Ontario) have devised a means of recovering almost 100% of the mining ores being separated in a process called froth flotation. Here’s a description of the usual froth flotation process (from the Sept. 15, 201 news item in Science Daily),
Robert Pelton and colleagues explain that companies use a technique termed froth flotation to process about 450 million tons of minerals each year. The process involves crushing the minerals into small particles, and then floating the particles in water to separate the commercially valuable particles from the waste rock.
Currently, mining companies add a ‘collector’ particle which attaches to the valuable mineral particles, repels water, and causes the mineral to rise to the surface of the water for easy separation from the rocks.
The team from McMaster has developed a new collector particle, a hydrophobic (water-repelling) nanoparticle which ensures, in laboratory tests, almost 100% ore recovery.
Cameron Chai at Azonano offers a little more detail in his Sept. 17, 2011 article about the new technology. I haven’t seen mention in either article as to what happens to the waste resulting from froth flotation.
Some of the McMaster team’s funding came from Vale, formerly Inco a 100 year old nickel mining Canadian company.
A tungsten needle that’s one atom thick got a team of researchers led by Dr. Robert Wolkow, Canada’s National Institute of Nanotechnology (NINT) Principal Investigator and University of Alberta Physics Professor, Dr. Jason Pitters, Research Council Officer at NINT and Dr. Mohamed Rezeq, formerly of NINT and currently at the Institute of Materials Research & Engineering in Singapore into the Guinness Book of World Records. From the March 1, 2011 news item on Nanowerk,
A very tiny, very sharp object has put Canadian researchers at the National Institute for Nanotechnology (NINT) and University of Alberta into the Guinness Book of World Records.
Only one atom at its end point, the tip used in electron microscopes is the sharpest man-made object. It is made of Tungsten and fabricated using a patented controlled etching method. It is currently being evaluated for its commercial potential.
“We did not start out to set a world record; we were trying to make a better tool for our research.” Team leader Robert Wolkow said in reaction to the record “Having a world record is a fun achievement, but we are really interested in commercializing this product.”
The needle was first created in 2006. From the Mar. 2, 2011 news article by Mariam Ibrahim in The Edmonton Journal [this excerpt is not from the online version of the article],
Four years ago, Wolkow and his research team created the tiny microscope tip out of tungsten to be used for a scanned probe microscope, which operates similar to the way a record player needle feels bumps and grooves that are imprinted on a record. The extremely sharp point of the tungsten tip can be moved around a surface to feel out the minuscule grooves and bumps, a task that proved difficult and unreliable before his team’s invention, said Wolkow, who is also a physics professor at the University of Alberta.
The imaging gathered from the microscope tip can be mapped to provide scientists a more accurate image of what they’re studying.
…
The tip, which scientists continue to refine, was fashioned out of tungsten because of the material’s strength and durability. Since it was created, scientists have realized the tip can also be used to change the topography of a surface on an atomic scale, which could lead to developments in electronic devices such as computer processors, Wolkow said.
“We’re talking about the possibility of making computers that would consume about 1,000 times less energy than today’s computers,” he said.
“It’s really exciting.” Along the way, two new uses for the creation have emerged. The tip is an exquisite source for both ions and electrons and can be used in microscopes that operate using both types of particles, Wolkow said.
Bravo to Robert Wolkow, Jason Pitters, Mohamed Rezeq and NINT!
Professor Scott Dunbar at the University of British Columbia’s (Canada) Norman B. Keevil Institute of Mining Engineering needed to partner with colleagues Sue Curtis and Ross MacGillivray from the Centre for Blood Research and the Department of Biochemistry and Molecular Biology after (from the media release on Nanowerk News),
“I read an article about bacteriophage – viruses that infect bacteria – being used to create nanodevices in which proteins on the phage surface are engineered to bind to gold and zinc sulfide,” says Dunbar. “And it struck me: if zinc sulfide, why not copper sulfide? And if so, then it might be possible to use these bio-engineered proteins to separate common economic sulfide minerals from waste during mineral extraction.”
Together the researchers have developed a procedure called “biopanning.” It’s a kind of genetic engineering which could lead to some useful applications.
It turns out that the phage that bind to a mineral do affect the mineral surfaces, causing them to have a different electrical charge than other minerals. The proteins on the phage also form links to each other leading to aggregation of the specific sulfide particles. “The physical and chemical changes caused by phage may be the basis for a highly selective method of mineral separation with better recovery. Another possible application is bioremediation, where metals are removed from contaminated water” says Dunbar.
In other BC news, the University of Victoria (Canada) will be getting a new microscope which senses at subatomic levels. (From the media release on Azonano),
The new microscope-called a Scanning Transmission Electron Holography Microscope (STEHM) — will use an electron beam and holography techniques to observe the inside of materials and their surfaces to an expected resolution as small as one-fiftieth the size of an atom.
This is being done in collaboration with Hitachi High-Technologies which is building the microscope in Japan and installing it at U Vic in late 2010. The microscope will be located in a specially adapted room where work to prepare and calibrate it will continue until it becomes operational sometime in 2011.
After my recent series on robots and human enhancement, I feel moved to comment on the situation in the US vis a vis Henry Louis Gates, Jr. and his arrest by the police officer, James Crowley. It’s reported here and elsewhere that neither the recording of the 911 call nor the concerned neighbour who made the call support Sergeant Crowley’s contention that the two men allegedly breaking into the house were described as ‘black’.
Only the participants know what happened and I don’t fully understand the nuances of race, class, and cultural differences that exist in the US so I can’t comment on anything other than this. It is human to hear what we expect to hear and I have an example from a much less charged situation.
Many years ago, I was transcribing notes from a taped interview (one of my first) for an article that I was writing for a newsletter. As I was transcribing, I noticed that I kept changing words so that the interview subject sounded more like me. They were synonyms but they were my words not his. Over the years I’ve gotten much better at being more exact but I’ve never forgotten how easy it is to insert your pet words (biased or not) when you’re remembering what someone said. Note: I was not in a stressful situation and I could rewind and listen again at my leisure.
I hope that Crowley and Gates, Jr. are able to work this out in some fashion and I really hope that it is done in a way that is respectful to both men and not a rush to a false resolution for the benefit of the cameras. For a more informed discussion of the situation, you may find this essay by Richard Thompson Ford in Slate helpful. It was written before the recording of the 911 call was made public but I think it still stands.
My reason for mentioning this incident is that human nature tends to assert itself in all kinds of situations including the building of robots and the debates on human enhancement, something I did not mention in my series posted (July 22 – 24, 27, 2009).