Tag Archives: Northwest Territories

The decade that was (2010-19) and the decade to come (2020-29): Science culture in Canada (4 of 5)

I was hoping this would be the concluding part of this series but there was much more than I dreamed. (I know that’s repetitive but I’m truly gobsmacked.)

Citizen science

Astronomy and bird watching (ornithology) are probably the only two scientific endeavours that have consistently engaged nonexperts/amateurs/citizen scientists right from the earliest days through the 21st century. Medical research, physics, chemistry, and others have, until recently and despite their origins in ‘amateur’ (or citizen) science, become the exclusive domain of professional experts.

This situation seems to be changing both here in Canada and elsewhere. One of the earliest postings about citizen science on this blog was in 2010 and, one of the most amusing to me personally, was this March 21, 2013 posting titled: Comparing techniques, citizen science to expert science. It’s about a study by scientists at the University of East Anglia (UK) comparing data collection by citizen scientists with experts. In this particular project where undersea data was being collected and people with diving skills needed, the citizen scientists did a better job than the expert scientists of collecting data. (I’m not trying to suggest that experts can be replaced by amateurs but do suggest that there are advantages to working together.)

*As for the Canadian science (from a June 15, 2018 Innovation, Science and Economic Development Canada news release),*

Take a look at your car. The bus you take to work. The smart phone you tap on during your commute. They all have one thing in common: science. Science is all around us. It shapes the way we live, the meals we grab on the go and the commute that takes us to school and work.

That is why the Government of Canada is encouraging young Canadians’ interest in science. Research and innovation lead to breakthroughs in agriculture, transit, medicine, green technology and service delivery, improving the quality of life for all Canadians. The outcomes of research also create jobs, strengthen the economy and support a growing middle class.

The Honourable Kirsty Duncan, Minister of Science and Minister of Sport and Persons with Disabilities, carried that message to an audience of young students during her first citizen science Google Hangout today. The Hangout, run by Exploring by the Seat of Your Pants, a not-for-profit organization, featured frog exhibits from the Toronto Zoo and a demonstration of the FrogWatch citizen science project by Dr. Nancy Kingsbury of Environment and Climate Change Canada. Toronto Zoo frog expert Katherine Wright joined Minister Duncan at the zoo to share information about frogs that are local to Ontario.

Minister Duncan, Dr. Kingsbury and Ms. Wright then engaged with elementary school children across Canada in a live Q&A session about the frogs in their own backyards. The Minister highlighted the importance of getting young Canadians interested in science fields and talked about ways they can take part in citizen science projects in their communities. Citizen scientists can share their observations on social media using the hashtag #ScienceAroundMe.

Quotes

“Science is for everyone, and it is important that we encourage today’s youth to be curious. Young Canadians who engage in citizen science today will become the highly skilled workers—engineers, scientists, mathematicians, technology experts and entrepreneurs—of tomorrow. Through citizen science, children can nurture an interest in the natural world. These young people will then go on to discover, to innovate and to find solutions that will help us build a better Canada.”
– The Honourable Kirsty Duncan, Minister of Science and Minister of Sport and Persons with Disabilities

“The Toronto Zoo is proud to participate in and encourage citizen science programs, such as FrogWatch, within the community. The Toronto Zoo’s Adopt-A-Pond Wetland Conservation Programme works to engage citizen scientists and deliver impactful conservation-focused research, restoration and outreach that highlight the importance of saving Canada’s sensitive wetland species and their habitats.”
– Robin Hale, Interim Chief Executive Officer, Toronto Zoo

Quick facts

NatureWatch, of which FrogWatch is a component, is a community program that engages all Canadians in collecting scientific information on nature to understand our changing environment.

Exploring by the Seat of Your Pants aims to inspire the next generation of scientists, explorers and conservationists by bringing science, exploration, adventure and conservation into classrooms through virtual field trips run by programs like Google Hangout.

The Government of Canada’s Citizen Science Portal is a one-stop shop for science in the community. It showcases science programs, including NatureWatch programs, across the country.

Associated links

The portal is not nearly as Ontario-centric as the projects mentioned in the news release (in case you were wondering).

Aside: In part 2 of this series, Jesse Hildebrand, founder of Science Literacy Week was mentioned as also being the founder of Exploring by the Seat of Your Pants.

Going to the birds

While bird watching and ornithological studies are not new to the Canadian science culture scene, there were some interesting developments in the 2010-19 period.

Canadian Geographic (magazine) sponsored a contest in 2015, the National Bird Project, where almost 50,000 people submitted suggestions for a national bird. Voting online ensued and on August 31, 2016 popular voting was closed. Five birds attracted the top votes and in September 2016, the Royal Canadian Geographical Society put together an expert panel to debate and decide which would be Canada’s national bird. The choice was announced in November 2016 (Canadian Geographic National Bird Project).

The gray jay. Also known as the whiskey jack or Canada jay. Photo: Steve Phillips [downloaded from http://nationalbird.canadiangeographic.ca/]

From the National Bird Project webpage,

The gray jay (Perisoreus canadensis in Latin, Mésangeai du Canada in French) lives in all 13 provinces and territories — the friendly spirit in Canada’s wild northern boreal and mountain forests. It remains in Canada year-round, is neither hunted nor endangered, and from the Atlantic provinces to the West is an indicator of the health of the boreal and mountain forests and climate change, inspiring a conservation philosophy for all kinds of northern land uses. The gray jay has long been important to Indigenous Peoples, and will draw all Canadians to their national and provincial/territorial parks, yet unlike the loon and snowy owl, it is not already a provincial or territorial bird.

I found a more fulsome description on the What is the National Bird of Canada? webpage on the World Atlas website,

Gray jay is a passerine bird belonging to the family Corvidae. It is mostly found in the boreal forest of North America. The bird is fairly large and has pale gray underparts and dark grey upperpart. Gray jay is a friendly bird and often approach human for food. It is also popularly known as the camp robber, whisky jack, and venison-hawk. Gray jay is listed as Least Concern by the IUCN [International Union for Conservation of Nature]. However, the anthropogenic climate change in the southern range may adversely affect its population. In some Fist Nation cultures, the bird is associated with mythological figures including Wisakedjak who was anglicized to Whiskyjack.

For approximately 200 years, the gray jay was known as “Canadian Jay” to the English speakers. The bird was renamed the “gray jay” in 1957 by the American Ornithologists’ Union. However, scientifically the bird is referred to as Perisoreus Canadensis. The bird is found in almost all the provinces of territories of Canada. the preferred habitat for the species is Canada’s boreal and mountain forests. Gray jay is also one of the smartest birds in the world and has almost the same body-to-brain ratio as human beings.

Canadian Georgraphic offers more depth (and a map) in a November 16, 2016 article, by Nick Walker, titled, Canada, meet your national bird (Note: Links have been removed),

With 450 species in the country to choose from, Canadian Geographic’s decision was made neither lightly nor quickly.

This national debate has been running since January 2015, in fact. But after weighing the opinions and preferences of tens of thousands of Canadians, as well as the expertise of our National Conservation Partners at Bird Studies Canada and other ornithologists and conservationists, as well as cultural experts and Indigenous Peoples, that list was narrowed to five birds. And one finalist best met all reasonable criteria.
    
We give you the gray jay. …

Not only has the gray jay never been recorded outside of North America, the vast majority of its range is in Canada, with only a small percentage crossing into Alaska and the western mountains of the United States. The species’ preferred habitat is Canada’s boreal and mountain forests — ecozones that stretch from coast to coast and into the North, blanketing nearly two-thirds of the country.

Like the Canadian flag when it was selected in 1965, the gray jay is fresh and new and fitting. To quote David Bird, ornithologist and professor emeritus of wildlife biology at Montreal’s McGill University, we cannot think of a more Canadian bird.

Three sets of bird stamps were issued by Canada Post from 2016-2018 saluting “Canada’s avian citizens.” Here’s more from a July 12, 2016 Birds of Canada blog post on the Canada Post website announcing the first series of bird stamps,

Hatched by designer Kosta Tsetsekas and illustrator Keith Martin, these stamps are the first in a three-year series celebrating Canada’s avian citizens. Our first flock includes five official birds: the Atlantic puffin (Newfoundland and Labrador), the great horned owl (Alberta), the common raven (Yukon), the rock ptarmigan (Nunavut) and the sharp-tailed grouse (Saskatchewan).

An August 1, 2017 Canada Post blog post announced that year’s bird stamps and, finally, an August 20, 2018 Canada Post blog post announced the finale release. The 2018 series was released in time to celebrate the 27th International Ornithological Congress held in Vancouver (from the Vancouver Convention Centre congress webpage),

On behalf of the International Ornithologists’ Union, Vancouver is delighted to welcome ornithologists from around the world to the 27th International Ornithological Congress (IOCongress2018)! Considered the oldest and most prestigious of meetings for bird scientists, the Congress occurs every four years since first being held in Vienna, Austria, in 1884.

Canada has hosted only once previously, Ottawa in 1986, and Vancouver will be the first time the Congress has been on the Pacific Coast of the Americas. The Congress has broad national endorsement, including from the City of Vancouver, the province of British Columbia, Environment Canada, Simon Fraser University, Artists for Conservation, Tourism Vancouver plus an array of scientific societies and conservation organizations.

The convention centre’s webpage features an impressive list of events which were open to the public,

  • Stars of the Bird World Presentation (August 19): Dr. Rob Butler, chair of the Vancouver International Bird Festival, presents Flyways to Culture: How birds give rise to a cultural awakening, at look at how the growing interest in birds in particular and nature in general, is a foundation for a new Nature Culture in which nature becomes embedded into a west coast culture. 8:30-10 a.m. at the Vancouver Convention Centre. Admission by donation ($10 suggested).
  • Festival Opening Ceremony – Parade of Birds and a fanfare by Vancouver Symphony Brass Quintet (August 20): The festival begins with a Parade of Birds and a fanfare by the Vancouver Symphony Brass Quintet. The fanfare “Gathering Flock” was composed by Frederick Schipizky. 3:20 p.m. to 5:15 p.m. at the Vancouver Convention Centre.
  • Artists for Conservation Show (August 22): Artists for Conservation is the official visual arts partner for the festival and congress, showcasing some of the world’s best nature art through its annual juried exhibit, a collaborative mural, artist demo and lecture series and an artist booth expo. Official opening 6-10 p.m. at the Vancouver Convention Centre.
  • Nature & Bird Expo (until August 25): The three-day Bird Expo is the showcase of birds and nature in Canada, including exhibitors, speakers, yoga, poetry, art and more. Runs until Aug. 25 at the Vancouver Convention Centre. Check out a full event listing at www.vanbirdfest.com/calendar/nature-bird-expo.
  • Migration Songs – Poetry and Ornithology (August 23): Migration Songs brings together 11 contemporary poets to consider an array of bird species. Each poet was put in conversation with a particular ornithologist or scientist to consider their chosen species collaboratively. The poets involved include well-known west-coast authors, amongst them Governor General’s Award and Griffin Poetry Prize winners. A short book of these collaborations, Migration Songs, with cover art by poet, painter, and weaver Annie Ross, will be available. 6 p.m. at the Vancouver Convention Centre.
  • Unveiling of the Silent Skies Mural (August 23): A signature event of the week-long Artists for Conservation show is the unveiling of the Silent Skies mural made up of illustrations of the endangered birds of the world — 678 pieces, each depicting a different endangered bird, will make up the 100-foot-long installation that will form the artistic centrepiece for the 8th annual Artists for Conservation Festival, the 27th International Ornithological Congress and Vancouver International Bird Festival. The unveiling takes place at 6:30 p.m. at the Vancouver Convention Centre.
  • Stewardship Roundtable 2018 (August 24): A forum and showcase of innovative practices championed in B.C. province and beyond, presented by the Stewardship Centre for BC and Bird Studies Canada, in collaboration with the 27th International Ornithological Congress and Vancouver International Bird Festival. 8:30 a.m. until 9 p.m. at the Vancouver Convention Centre. For more information or to register, visit stewardshipcentrebc.ca/programs/wildife-species-risk/stewardship-roundtable.
  • Closing Ceremony (August 26): The closing ceremony will include remarks from officials and First Nations representatives, and a Heron Dance by the New Dance Centre from Saskatchewan. 5-6:30 p.m. at Vancouver Convention Centre.

I attended the opening ceremony where they announced the final set of stamps in the Birds of Canada series by introducing people who’d dressed for the parade as the birds in question.

The Canadian birding community has continued to create interesting new projects for science outreach. A December 19, 2019 posting by Natasha Barlow for Birds Canada (also known as Bird Studies Canada) announces a new interactive story map,

The Boreal Region is a massive expanse of forests, wetlands, and waterways covering much of the Northern Hemisphere. In Canada, this vast region stretches for 5000 kilometres from Newfoundland and Labrador through the country’s central regions and northwest to the Yukon.

Over 300 bird species regularly breed here, from tiny songbirds like kinglets and warblers to comparatively giant swans and cranes. The Boreal is home to literally billions of birds, and serves as the continent’s bird “nursery” since it is such an important breeding ground.

While extensive tracts of Canada’s northern Boreal still remain largely undisturbed from major industrial development, the human footprint is expanding and much of the southern Boreal is already being exploited for its resources.

Birds Canada, in partnership with the Nature Conservancy of Canada, has created an interactive story map that details the importance of the Boreal region for birds.

Click here to explore and share this colourful online resource, which celebrates the Boreal Region and its rich bird life.

H/t Nature Conservancy Canada January 29, 2020 blog posting.

Climate change, ecology, and Indigenous knowledge (science)

There is more focus on climate change everywhere in the world and much of the latest energy and focus internationally can be traced to Swedish teenager, Greta Thunberg who turned 17 in January 2020. Her influence has galvanized a number of youth climate strikes in Canada and around the world.

There is a category of science fiction or speculative fiction known as Climate Fiction (cli-fi or clifi). Margaret Atwood (of course) has produced a trilogy in that subgenre of speculative fiction, from the Climate Fiction Wikipedia entry, Note: Links have been removed,

Margaret Atwood explored the subject in her dystopian trilogy Oryx and Crake (2003), The Year of the Flood (2009) and MaddAddam (2013).[13] In Oryx and Crake Atwood presents a world where “social inequality, genetic technology and catastrophic climate change, has finally culminated in some apocalyptic event”.[14] The novel’s protagonist, Jimmy, lives in a “world split between corporate compounds”, gated communities that have grown into city-states and pleeblands, which are “unsafe, populous and polluted” urban areas where the working classes live.[15]

There is some other cli-fi literature by Canadians, notably an anthology of Canadian short stories edited by Bruce Meyer, from a March 9, 2018 review by Emilie Moorhouse published in Canada’s National Observer (review originally published in Prism magazine on March 8, 2018), Note: A link has been removed,

A woman waits in line to get her water ration. She hasn’t had a sip of water in nearly three days. Her mouth is parched; she stumbles as she waits her turn for over an hour in the hot sun. When she he finally gets to the iTap and inserts her card into the machine that controls the water flow, the light turns red and her card is rejected. Her water credits have run out.

This scenario from “The Way of Water” by Nina Munteanu is one of many contained in the recently published anthology of short stories, Cli-Fi: Canadian Tales of Climate Change. The seventeen stories in this book edited by Bruce Meyer examine how humankind might struggle with the potential devastation of climate change in the near or distant future. Soon after I finished reading the book, Cape Town—known in precolonial times as “the place where clouds gather”—announced that it was only a few months away from what it called “Day Zero,” the day the city would officially run out of water, making the similarities between fiction and reality more than unsettling. Munteanu’s story is set in a futuristic Canada that has been mined of all its water by thirsty corporations who have taken over control of the resource. Rain has not fallen on Canadian soil in years due to advances in geoengineering and weather manipulation preventing rain clouds from going anywhere north of the Canada-US border.

Indigenous knowledge (science)

The majority of Canada’s coastline is in the Arctic and climate change in that region is progressing at a disturbing pace. Weather, Climate Change, and Inuit Communities in the Western Canadian Arctic, a September 30, 2017 blog posting, by Dr. Laura Eerkes-Medrano at the University of Victoria (British Columbia) for Historical Climatology describes it this way (Note: A link has been removed),

Global climate change brings with it local weather that communities and cultures have difficulty anticipating. Unpredictable and socially impactful weather is having negative effects on the subsistence, cultural activities, and safety of indigenous peoples in Arctic communities. Since 2013, Professor David Atkinson and his team at the University of Victoria have been working with Inuvialuit communities in Tuktoyaktuk, Ulukhaktok, and Sachs Harbour. The main goal is to understand how impactful weather is affecting residents’ subsistence activities, particularly when they are on the water. The project involves site visits, interviews, and regular phone calls with residents.

Inuvialuit residents regularly observe the waves, winds, snow, and ice conditions that interfere with their hunting, fishing, camping, and other subsistence and cultural activities. In this project, communities identify specific weather events that impact their activities. These events are then linked to the broader atmospheric patterns that cause them. Summaries of the events will be provided to Environment Canada to hopefully assist with the forecasting process.

By taking this approach, the project links Western scientific knowledge and traditional knowledge to generate insights [emphasis mine] into how climate change is affecting Inuvialuit activities in the Canadian Arctic. An oversight committee has been established in each community to give direction to the project. This oversight committee includes representatives from each of the main community organizations, which ensures that the respective organizations provide direction to the project and advise on how to engage residents and communities.

Western science learning from and taking from traditional knowledge is not new. For example, many modern medicines are still derived from traditional remedies. Unfortunately, traditional practitioners have not benefited from sharing their knowledge.

It is to be hoped things are changing with projects like Atkinson’s and another one I mentioned in a December 2, 2019 posting featuring a discovery about ochre (a red dye used for rock art). The dye being examined was produced (in a manner that appears to be unique) in the Babine Lake region of British Columbia and the research may have applications for industrial use leading to economic benefits for the indigenous folks of that region. As important as the benefits, the science team worked closely with the indigenous communities in that area.

University in the Arctic

I was told several years ago that Canada is the only ‘arctic country’ that does not have a university in the high north. As of 2019 it seems the situation is changing, from a December 1, 2019 Global television news online item,

Canada will finally have its first Arctic university.

This past week [of December 1, 2019], the Yukon legislature passed a bill to make Yukon College a university. It will be an institution with an Indigenous flavour that will make it as unique as the region it is to serve.

“Everybody knows we’re moving toward something big and something special,” said Tom Ullyett, chairman of the board of governors.

The idea of a northern university has been kicked around since at least 2007 when a survey in all three territories found residents wanted more influence over Arctic research. Northern First Nations have been asking for one for 50 years.

Research is to centre on issues around environmental conservation and sustainable resource development. It will be conducted in a new, $26-million science building funded by Ottawa and currently being designed.

Indigenous content will be baked in.

“It’s about teaching with northern examples,” said Tosh Southwick, in charge of Indigenous engagement. “Every program will have a northern component.”

Science programs will have traditional knowledge embedded in them and talk about ravens and moose instead of, say, flamingos and giraffes. Anthropology classes will teach creation stories alongside archeological evidence.

The institution will report to Yukon’s 14 First Nations as well as to the territorial legislature. More than one-quarter of its current students are Indigenous.

“Our vision is to be that first northern university that focuses on Indigenous governance, that focuses on sustainable natural resources, that focuses on northern climate, and everything that flows from that.”

Climate adaptation and/or choices

While we have participated in a number of initiatives and projects concerned with climate change, I believe there is general agreement we should have done more. That said I would prefer to remain hopeful.

A January 23, 2020 Yukon College news release announces the appointment of a staff member to an Canadian federal government institute’s advisory committee,

A newly launched institute for climate policy research will have a Yukon connection. Brian Horton, Manager of Northern Climate ExChange at the Yukon Research Centre, has been named to the Canadian Institute for Climate Choices expert advisory panel for Climate Adaptation.   

The Institute, launched Tuesday morning, aims to bring clarity to Canada’s climate policy choices. The Institute’s initial report, Charting our Course, describes the current climate landscape in Canada and provides recommendations for policy makers and governments seeking to implement more effective policy.  

In order to remain grounded in issues of importance to Canadians, the Institute has appointed three Expert Advisory Panels (Adaptation, Mitigation and Clean Growth) to provide evidence-based research, analysis and engagement advice to support integrative policy decisions. 

“It is exciting to have a role to play in this dynamic new network,” said Horton. “The climate is rapidly changing in the North and affecting our landscapes and lives daily. I look forward to contributing a Northern voice to this impactful pan-Canadian expert collaboration.” 

At Yukon College, Horton’s research team focusses on applied research of climate impacts and adaptation in Yukon and Northwest Territories.  Northern Climate ExChange works with communities, governments, and the private sector to answer questions about permafrost, hydrology, and social factors to facilitate adaptation to climate change.

By the way, the Canadian Institute for Climate Choices was launched on January 21, 2020 (news release),

January 21, 2020 | OTTAWA — Dozens of academics and policy experts today launched the Canadian Institute for Climate Choices, a new independent national research body. The Institute aims to bring clarity to the transformative challenges, opportunities and choices ahead for Canada as governments at all levels work to address climate change.

Experimental Lakes Area

This is a very special research effort originally funded and managed by the Canadian federal government. Rather controversially, Stephen Harper’s Conservative government defunded the research but that may not have been the tragedy many believed (from the Experimental Lakes Area Wikipedia entry),

IISD Experimental Lakes Area (IISD-ELA, known as ELA before 2014)[1] is an internationally unique research station encompassing 58 formerly pristine freshwater lakes in Kenora District Ontario, Canada.[2][3] Previously run by Fisheries and Oceans Canada, after being de-funded by the Canadian Federal Government, the facility is now managed and operated by the International Institute for Sustainable Development (IISD) and has a mandate to investigate the aquatic effects of a wide variety of stresses on lakes and their catchments. IISD-ELA uses the whole ecosystem approach and makes long-term, whole-lake investigations of freshwater focusing on eutrophication.[4][5]

In an article[2] published in AAAS’s well-known scientific journal Science, Eric Stokstad described ELA’s “extreme science”[2] as the manipulation of whole lake ecosystem with ELA researchers collecting long-term records for climatology, hydrology, and limnology that address key issues in water management.[4] The site has influenced public policy in water management in Canada, the USA, and around the world.[2]

Minister of State for Science and Technology, Gary Goodyear, argued that “our government has been working hard to ensure that the Experimental Lakes Area facility is transferred to a non-governmental operator better suited to conducting the type of world-class research that can be undertaken at this facility” and that “[t]he federal government has been leading negotiations in order to secure an operator with an international track record.” On April 1, 2014, the International Institute for Sustainable Development announced that it had signed three agreements to ensure that it will be the long-term operator of the research facility and that the facility would henceforth be called IISD Experimental Lakes Area.[6] Since taking over the facility, IISD has expanded the function of the site to include educational and outreach opportunities[7] and a broader research portfolio.[8]

You can find the IISD Experimental Lakes Area website here.

Part 5 is to a large extent a grab bag for everything I didn’t fit into parts 1 -4. As for what you can expect to find in Part 5: some science podcasting, eco art, a Saskatchewan lab with an artist-in-residence, and more.

For anyone who missed them:

Part 1 covers science communication, science media (mainstream and others such as blogging) and arts as exemplified by music and dance: The decade that was (2010-19) and the decade to come (2020-29): Science culture in Canada (1 of 5).

Part 2 covers art/science (or art/sci or sciart) efforts, science festivals both national and local, international art and technology conferences held in Canada, and various bar/pub/café events: The decade that was (2010-19) and the decade to come (2020-29): Science culture in Canada (2 of 5).

Part 3 covers comedy, do-it-yourself (DIY) biology, chief science advisor, science policy, mathematicians, and more: The decade that was (2010-19) and the decade to come (2020-29): Science culture in Canada (3 of 5)

* ETA April 24, 2020 at 1515 PT Added the line and link *As for the Canadian science (from a June 15, 2018 Innovation, Science and Economic Development Canada news release),*

The Hedy Lamarr of international research: Canada’s Third assessment of The State of Science and Technology and Industrial Research and Development in Canada (2 of 2)

Taking up from where I left off with my comments on Competing in a Global Innovation Economy: The Current State of R and D in Canada or as I prefer to call it the Third assessment of Canadas S&T (science and technology) and R&D (research and development). (Part 1 for anyone who missed it).

Is it possible to get past Hedy?

Interestingly (to me anyway), one of our R&D strengths, the visual and performing arts, features sectors where a preponderance of people are dedicated to creating culture in Canada and don’t spend a lot of time trying to make money so they can retire before the age of 40 as so many of our start-up founders do. (Retiring before the age of 40 just reminded me of Hollywood actresses {Hedy] who found and still do find that work was/is hard to come by after that age. You may be able but I’m not sure I can get past Hedy.) Perhaps our business people (start-up founders) could take a leaf out of the visual and performing arts handbook? Or, not. There is another question.

Does it matter if we continue to be a ‘branch plant’ economy? Somebody once posed that question to me when I was grumbling that our start-ups never led to larger businesses and acted more like incubators (which could describe our R&D as well),. He noted that Canadians have a pretty good standard of living and we’ve been running things this way for over a century and it seems to work for us. Is it that bad? I didn’t have an  answer for him then and I don’t have one now but I think it’s a useful question to ask and no one on this (2018) expert panel or the previous expert panel (2013) seems to have asked.

I appreciate that the panel was constrained by the questions given by the government but given how they snuck in a few items that technically speaking were not part of their remit, I’m thinking they might have gone just a bit further. The problem with answering the questions as asked is that if you’ve got the wrong questions, your answers will be garbage (GIGO; garbage in, garbage out) or, as is said, where science is concerned, it’s the quality of your questions.

On that note, I would have liked to know more about the survey of top-cited researchers. I think looking at the questions could have been quite illuminating and I would have liked some information on from where (geographically and area of specialization) they got most of their answers. In keeping with past practice (2012 assessment published in 2013), there is no additional information offered about the survey questions or results. Still, there was this (from the report released April 10, 2018; Note: There may be some difference between the formatting seen here and that seen in the document),

3.1.2 International Perceptions of Canadian Research
As with the 2012 S&T report, the CCA commissioned a survey of top-cited researchers’ perceptions of Canada’s research strength in their field or subfield relative to that of other countries (Section 1.3.2). Researchers were asked to identify the top five countries in their field and subfield of expertise: 36% of respondents (compared with 37% in the 2012 survey) from across all fields of research rated Canada in the top five countries in their field (Figure B.1 and Table B.1 in the appendix). Canada ranks fourth out of all countries, behind the United States, United Kingdom, and Germany, and ahead of France. This represents a change of about 1 percentage point from the overall results of the 2012 S&T survey. There was a 4 percentage point decrease in how often France is ranked among the top five countries; the ordering of the top five countries, however, remains the same.

When asked to rate Canada’s research strength among other advanced countries in their field of expertise, 72% (4,005) of respondents rated Canadian research as “strong” (corresponding to a score of 5 or higher on a 7-point scale) compared with 68% in the 2012 S&T survey (Table 3.4). [pp. 40-41 Print; pp. 78-70 PDF]

Before I forget, there was mention of the international research scene,

Growth in research output, as estimated by number of publications, varies considerably for the 20 top countries. Brazil, China, India, Iran, and South Korea have had the most significant increases in publication output over the last 10 years. [emphases mine] In particular, the dramatic increase in China’s output means that it is closing the gap with the United States. In 2014, China’s output was 95% of that of the United States, compared with 26% in 2003. [emphasis mine]

Table 3.2 shows the Growth Index (GI), a measure of the rate at which the research output for a given country changed between 2003 and 2014, normalized by the world growth rate. If a country’s growth in research output is higher than the world average, the GI score is greater than 1.0. For example, between 2003 and 2014, China’s GI score was 1.50 (i.e., 50% greater than the world average) compared with 0.88 and 0.80 for Canada and the United States, respectively. Note that the dramatic increase in publication production of emerging economies such as China and India has had a negative impact on Canada’s rank and GI score (see CCA, 2016).

As long as I’ve been blogging (10 years), the international research community (in particular the US) has been looking over its shoulder at China.

Patents and intellectual property

As an inventor, Hedy got more than one patent. Much has been made of the fact that  despite an agreement, the US Navy did not pay her or her partner (George Antheil) for work that would lead to significant military use (apparently, it was instrumental in the Bay of Pigs incident, for those familiar with that bit of history), GPS, WiFi, Bluetooth, and more.

Some comments about patents. They are meant to encourage more innovation by ensuring that creators/inventors get paid for their efforts .This is true for a set time period and when it’s over, other people get access and can innovate further. It’s not intended to be a lifelong (or inheritable) source of income. The issue in Lamarr’s case is that the navy developed the technology during the patent’s term without telling either her or her partner so, of course, they didn’t need to compensate them despite the original agreement. They really should have paid her and Antheil.

The current patent situation, particularly in the US, is vastly different from the original vision. These days patents are often used as weapons designed to halt innovation. One item that should be noted is that the Canadian federal budget indirectly addressed their misuse (from my March 16, 2018 posting),

Surprisingly, no one else seems to have mentioned a new (?) intellectual property strategy introduced in the document (from Chapter 2: Progress; scroll down about 80% of the way, Note: The formatting has been changed),

Budget 2018 proposes measures in support of a new Intellectual Property Strategy to help Canadian entrepreneurs better understand and protect intellectual property, and get better access to shared intellectual property.

What Is a Patent Collective?
A Patent Collective is a way for firms to share, generate, and license or purchase intellectual property. The collective approach is intended to help Canadian firms ensure a global “freedom to operate”, mitigate the risk of infringing a patent, and aid in the defence of a patent infringement suit.

Budget 2018 proposes to invest $85.3 million over five years, starting in 2018–19, with $10 million per year ongoing, in support of the strategy. The Minister of Innovation, Science and Economic Development will bring forward the full details of the strategy in the coming months, including the following initiatives to increase the intellectual property literacy of Canadian entrepreneurs, and to reduce costs and create incentives for Canadian businesses to leverage their intellectual property:

  • To better enable firms to access and share intellectual property, the Government proposes to provide $30 million in 2019–20 to pilot a Patent Collective. This collective will work with Canada’s entrepreneurs to pool patents, so that small and medium-sized firms have better access to the critical intellectual property they need to grow their businesses.
  • To support the development of intellectual property expertise and legal advice for Canada’s innovation community, the Government proposes to provide $21.5 million over five years, starting in 2018–19, to Innovation, Science and Economic Development Canada. This funding will improve access for Canadian entrepreneurs to intellectual property legal clinics at universities. It will also enable the creation of a team in the federal government to work with Canadian entrepreneurs to help them develop tailored strategies for using their intellectual property and expanding into international markets.
  • To support strategic intellectual property tools that enable economic growth, Budget 2018 also proposes to provide $33.8 million over five years, starting in 2018–19, to Innovation, Science and Economic Development Canada, including $4.5 million for the creation of an intellectual property marketplace. This marketplace will be a one-stop, online listing of public sector-owned intellectual property available for licensing or sale to reduce transaction costs for businesses and researchers, and to improve Canadian entrepreneurs’ access to public sector-owned intellectual property.

The Government will also consider further measures, including through legislation, in support of the new intellectual property strategy.

Helping All Canadians Harness Intellectual Property
Intellectual property is one of our most valuable resources, and every Canadian business owner should understand how to protect and use it.

To better understand what groups of Canadians are benefiting the most from intellectual property, Budget 2018 proposes to provide Statistics Canada with $2 million over three years to conduct an intellectual property awareness and use survey. This survey will help identify how Canadians understand and use intellectual property, including groups that have traditionally been less likely to use intellectual property, such as women and Indigenous entrepreneurs. The results of the survey should help the Government better meet the needs of these groups through education and awareness initiatives.

The Canadian Intellectual Property Office will also increase the number of education and awareness initiatives that are delivered in partnership with business, intermediaries and academia to ensure Canadians better understand, integrate and take advantage of intellectual property when building their business strategies. This will include targeted initiatives to support underrepresented groups.

Finally, Budget 2018 also proposes to invest $1 million over five years to enable representatives of Canada’s Indigenous Peoples to participate in discussions at the World Intellectual Property Organization related to traditional knowledge and traditional cultural expressions, an important form of intellectual property.

It’s not wholly clear what they mean by ‘intellectual property’. The focus seems to be on  patents as they are the only intellectual property (as opposed to copyright and trademarks) singled out in the budget. As for how the ‘patent collective’ is going to meet all its objectives, this budget supplies no clarity on the matter. On the plus side, I’m glad to see that indigenous peoples’ knowledge is being acknowledged as “an important form of intellectual property” and I hope the discussions at the World Intellectual Property Organization are fruitful.

As for the patent situation in Canada (from the report released April 10, 2018),

Over the past decade, the Canadian patent flow in all technical sectors has consistently decreased. Patent flow provides a partial picture of how patents in Canada are exploited. A negative flow represents a deficit of patented inventions owned by Canadian assignees versus the number of patented inventions created by Canadian inventors. The patent flow for all Canadian patents decreased from about −0.04 in 2003 to −0.26 in 2014 (Figure 4.7). This means that there is an overall deficit of 26% of patent ownership in Canada. In other words, fewer patents were owned by Canadian institutions than were invented in Canada.

This is a significant change from 2003 when the deficit was only 4%. The drop is consistent across all technical sectors in the past 10 years, with Mechanical Engineering falling the least, and Electrical Engineering the most (Figure 4.7). At the technical field level, the patent flow dropped significantly in Digital Communication and Telecommunications. For example, the Digital Communication patent flow fell from 0.6 in 2003 to −0.2 in 2014. This fall could be partially linked to Nortel’s US$4.5 billion patent sale [emphasis mine] to the Rockstar consortium (which included Apple, BlackBerry, Ericsson, Microsoft, and Sony) (Brickley, 2011). Food Chemistry and Microstructural [?] and Nanotechnology both also showed a significant drop in patent flow. [p. 83 Print; p. 121 PDF]

Despite a fall in the number of parents for ‘Digital Communication’, we’re still doing well according to statistics elsewhere in this report. Is it possible that patents aren’t that big a deal? Of course, it’s also possible that we are enjoying the benefits of past work and will miss out on future work. (Note: A video of the April 10, 2018 report presentation by Max Blouw features him saying something like that.)

One last note, Nortel died many years ago. Disconcertingly, this report, despite more than one reference to Nortel, never mentions the company’s demise.

Boxed text

While the expert panel wasn’t tasked to answer certain types of questions, as I’ve noted earlier they managed to sneak in a few items.  One of the strategies they used was putting special inserts into text boxes including this (from the report released April 10, 2018),

Box 4.2
The FinTech Revolution

Financial services is a key industry in Canada. In 2015, the industry accounted for 4.4%

of Canadia jobs and about 7% of Canadian GDP (Burt, 2016). Toronto is the second largest financial services hub in North America and one of the most vibrant research hubs in FinTech. Since 2010, more than 100 start-up companies have been founded in Canada, attracting more than $1 billion in investment (Moffatt, 2016). In 2016 alone, venture-backed investment in Canadian financial technology companies grew by 35% to $137.7 million (Ho, 2017). The Toronto Financial Services Alliance estimates that there are approximately 40,000 ICT specialists working in financial services in Toronto alone.

AI, blockchain, [emphasis mine] and other results of ICT research provide the basis for several transformative FinTech innovations including, for example, decentralized transaction ledgers, cryptocurrencies (e.g., bitcoin), and AI-based risk assessment and fraud detection. These innovations offer opportunities to develop new markets for established financial services firms, but also provide entry points for technology firms to develop competing service offerings, increasing competition in the financial services industry. In response, many financial services companies are increasing their investments in FinTech companies (Breznitz et al., 2015). By their own account, the big five banks invest more than $1 billion annually in R&D of advanced software solutions, including AI-based innovations (J. Thompson, personal communication, 2016). The banks are also increasingly investing in university research and collaboration with start-up companies. For instance, together with several large insurance and financial management firms, all big five banks have invested in the Vector Institute for Artificial Intelligence (Kolm, 2017).

I’m glad to see the mention of blockchain while AI (artificial intelligence) is an area where we have innovated (from the report released April 10, 2018),

AI has attracted researchers and funding since the 1960s; however, there were periods of stagnation in the 1970s and 1980s, sometimes referred to as the “AI winter.” During this period, the Canadian Institute for Advanced Research (CIFAR), under the direction of Fraser Mustard, started supporting AI research with a decade-long program called Artificial Intelligence, Robotics and Society, [emphasis mine] which was active from 1983 to 1994. In 2004, a new program called Neural Computation and Adaptive Perception was initiated and renewed twice in 2008 and 2014 under the title, Learning in Machines and Brains. Through these programs, the government provided long-term, predictable support for high- risk research that propelled Canadian researchers to the forefront of global AI development. In the 1990s and early 2000s, Canadian research output and impact on AI were second only to that of the United States (CIFAR, 2016). NSERC has also been an early supporter of AI. According to its searchable grant database, NSERC has given funding to research projects on AI since at least 1991–1992 (the earliest searchable year) (NSERC, 2017a).

The University of Toronto, the University of Alberta, and the Université de Montréal have emerged as international centres for research in neural networks and deep learning, with leading experts such as Geoffrey Hinton and Yoshua Bengio. Recently, these locations have expanded into vibrant hubs for research in AI applications with a diverse mix of specialized research institutes, accelerators, and start-up companies, and growing investment by major international players in AI development, such as Microsoft, Google, and Facebook. Many highly influential AI researchers today are either from Canada or have at some point in their careers worked at a Canadian institution or with Canadian scholars.

As international opportunities in AI research and the ICT industry have grown, many of Canada’s AI pioneers have been drawn to research institutions and companies outside of Canada. According to the OECD, Canada’s share of patents in AI declined from 2.4% in 2000 to 2005 to 2% in 2010 to 2015. Although Canada is the sixth largest producer of top-cited scientific publications related to machine learning, firms headquartered in Canada accounted for only 0.9% of all AI-related inventions from 2012 to 2014 (OECD, 2017c). Canadian AI researchers, however, remain involved in the core nodes of an expanding international network of AI researchers, most of whom continue to maintain ties with their home institutions. Compared with their international peers, Canadian AI researchers are engaged in international collaborations far more often than would be expected by Canada’s level of research output, with Canada ranking fifth in collaboration. [p. 97-98 Print; p. 135-136 PDF]

The only mention of robotics seems to be here in this section and it’s only in passing. This is a bit surprising given its global importance. I wonder if robotics has been somehow hidden inside the term artificial intelligence, although sometimes it’s vice versa with robot being used to describe artificial intelligence. I’m noticing this trend of assuming the terms are synonymous or interchangeable not just in Canadian publications but elsewhere too.  ’nuff said.

Getting back to the matter at hand, t he report does note that patenting (technometric data) is problematic (from the report released April 10, 2018),

The limitations of technometric data stem largely from their restricted applicability across areas of R&D. Patenting, as a strategy for IP management, is similarly limited in not being equally relevant across industries. Trends in patenting can also reflect commercial pressures unrelated to R&D activities, such as defensive or strategic patenting practices. Finally, taxonomies for assessing patents are not aligned with bibliometric taxonomies, though links can be drawn to research publications through the analysis of patent citations. [p. 105 Print; p. 143 PDF]

It’s interesting to me that they make reference to many of the same issues that I mention but they seem to forget and don’t use that information in their conclusions.

There is one other piece of boxed text I want to highlight (from the report released April 10, 2018),

Box 6.3
Open Science: An Emerging Approach to Create New Linkages

Open Science is an umbrella term to describe collaborative and open approaches to
undertaking science, which can be powerful catalysts of innovation. This includes
the development of open collaborative networks among research performers, such
as the private sector, and the wider distribution of research that usually results when
restrictions on use are removed. Such an approach triggers faster translation of ideas
among research partners and moves the boundaries of pre-competitive research to
later, applied stages of research. With research results freely accessible, companies
can focus on developing new products and processes that can be commercialized.

Two Canadian organizations exemplify the development of such models. In June
2017, Genome Canada, the Ontario government, and pharmaceutical companies
invested $33 million in the Structural Genomics Consortium (SGC) (Genome Canada,
2017). Formed in 2004, the SGC is at the forefront of the Canadian open science
movement and has contributed to many key research advancements towards new
treatments (SGC, 2018). McGill University’s Montréal Neurological Institute and
Hospital has also embraced the principles of open science. Since 2016, it has been
sharing its research results with the scientific community without restriction, with
the objective of expanding “the impact of brain research and accelerat[ing] the
discovery of ground-breaking therapies to treat patients suffering from a wide range
of devastating neurological diseases” (neuro, n.d.).

This is exciting stuff and I’m happy the panel featured it. (I wrote about the Montréal Neurological Institute initiative in a Jan. 22, 2016 posting.)

More than once, the report notes the difficulties with using bibliometric and technometric data as measures of scientific achievement and progress and open science (along with its cousins, open data and open access) are contributing to the difficulties as James Somers notes in his April 5, 2018 article ‘The Scientific Paper is Obsolete’ for The Atlantic (Note: Links have been removed),

The scientific paper—the actual form of it—was one of the enabling inventions of modernity. Before it was developed in the 1600s, results were communicated privately in letters, ephemerally in lectures, or all at once in books. There was no public forum for incremental advances. By making room for reports of single experiments or minor technical advances, journals made the chaos of science accretive. Scientists from that point forward became like the social insects: They made their progress steadily, as a buzzing mass.

The earliest papers were in some ways more readable than papers are today. They were less specialized, more direct, shorter, and far less formal. Calculus had only just been invented. Entire data sets could fit in a table on a single page. What little “computation” contributed to the results was done by hand and could be verified in the same way.

The more sophisticated science becomes, the harder it is to communicate results. Papers today are longer than ever and full of jargon and symbols. They depend on chains of computer programs that generate data, and clean up data, and plot data, and run statistical models on data. These programs tend to be both so sloppily written and so central to the results that it’s [sic] contributed to a replication crisis, or put another way, a failure of the paper to perform its most basic task: to report what you’ve actually discovered, clearly enough that someone else can discover it for themselves.

Perhaps the paper itself is to blame. Scientific methods evolve now at the speed of software; the skill most in demand among physicists, biologists, chemists, geologists, even anthropologists and research psychologists, is facility with programming languages and “data science” packages. And yet the basic means of communicating scientific results hasn’t changed for 400 years. Papers may be posted online, but they’re still text and pictures on a page.

What would you get if you designed the scientific paper from scratch today? A little while ago I spoke to Bret Victor, a researcher who worked at Apple on early user-interface prototypes for the iPad and now runs his own lab in Oakland, California, that studies the future of computing. Victor has long been convinced that scientists haven’t yet taken full advantage of the computer. “It’s not that different than looking at the printing press, and the evolution of the book,” he said. After Gutenberg, the printing press was mostly used to mimic the calligraphy in bibles. It took nearly 100 years of technical and conceptual improvements to invent the modern book. “There was this entire period where they had the new technology of printing, but they were just using it to emulate the old media.”Victor gestured at what might be possible when he redesigned a journal article by Duncan Watts and Steven Strogatz, “Collective dynamics of ‘small-world’ networks.” He chose it both because it’s one of the most highly cited papers in all of science and because it’s a model of clear exposition. (Strogatz is best known for writing the beloved “Elements of Math” column for The New York Times.)

The Watts-Strogatz paper described its key findings the way most papers do, with text, pictures, and mathematical symbols. And like most papers, these findings were still hard to swallow, despite the lucid prose. The hardest parts were the ones that described procedures or algorithms, because these required the reader to “play computer” in their head, as Victor put it, that is, to strain to maintain a fragile mental picture of what was happening with each step of the algorithm.Victor’s redesign interleaved the explanatory text with little interactive diagrams that illustrated each step. In his version, you could see the algorithm at work on an example. You could even control it yourself….

For anyone interested in the evolution of how science is conducted and communicated, Somers’ article is a fascinating and in depth look at future possibilities.

Subregional R&D

I didn’t find this quite as compelling as the last time and that may be due to the fact that there’s less information and I think the 2012 report was the first to examine the Canadian R&D scene with a subregional (in their case, provinces) lens. On a high note, this report also covers cities (!) and regions, as well as, provinces.

Here’s the conclusion (from the report released April 10, 2018),

Ontario leads Canada in R&D investment and performance. The province accounts for almost half of R&D investment and personnel, research publications and collaborations, and patents. R&D activity in Ontario produces high-quality publications in each of Canada’s five R&D strengths, reflecting both the quantity and quality of universities in the province. Quebec lags Ontario in total investment, publications, and patents, but performs as well (citations) or better (R&D intensity) by some measures. Much like Ontario, Quebec researchers produce impactful publications across most of Canada’s five R&D strengths. Although it invests an amount similar to that of Alberta, British Columbia does so at a significantly higher intensity. British Columbia also produces more highly cited publications and patents, and is involved in more international research collaborations. R&D in British Columbia and Alberta clusters around Vancouver and Calgary in areas such as physics and ICT and in clinical medicine and energy, respectively. [emphasis mine] Smaller but vibrant R&D communities exist in the Prairies and Atlantic Canada [also referred to as the Maritime provinces or Maritimes] (and, to a lesser extent, in the Territories) in natural resource industries.

Globally, as urban populations expand exponentially, cities are likely to drive innovation and wealth creation at an increasing rate in the future. In Canada, R&D activity clusters around five large cities: Toronto, Montréal, Vancouver, Ottawa, and Calgary. These five cities create patents and high-tech companies at nearly twice the rate of other Canadian cities. They also account for half of clusters in the services sector, and many in advanced manufacturing.

Many clusters relate to natural resources and long-standing areas of economic and research strength. Natural resource clusters have emerged around the location of resources, such as forestry in British Columbia, oil and gas in Alberta, agriculture in Ontario, mining in Quebec, and maritime resources in Atlantic Canada. The automotive, plastics, and steel industries have the most individual clusters as a result of their economic success in Windsor, Hamilton, and Oshawa. Advanced manufacturing industries tend to be more concentrated, often located near specialized research universities. Strong connections between academia and industry are often associated with these clusters. R&D activity is distributed across the country, varying both between and within regions. It is critical to avoid drawing the wrong conclusion from this fact. This distribution does not imply the existence of a problem that needs to be remedied. Rather, it signals the benefits of diverse innovation systems, with differentiation driven by the needs of and resources available in each province. [pp.  132-133 Print; pp. 170-171 PDF]

Intriguingly, there’s no mention that in British Columbia (BC), there are leading areas of research: Visual & Performing Arts, Psychology & Cognitive Sciences, and Clinical Medicine (according to the table on p. 117 Print, p. 153 PDF).

As I said and hinted earlier, we’ve got brains; they’re just not the kind of brains that command respect.

Final comments

My hat’s off to the expert panel and staff of the Council of Canadian Academies. Combining two previous reports into one could not have been easy. As well, kudos to their attempts to broaden the discussion by mentioning initiative such as open science and for emphasizing the problems with bibliometrics, technometrics, and other measures. I have covered only parts of this assessment, (Competing in a Global Innovation Economy: The Current State of R&D in Canada), there’s a lot more to it including a substantive list of reference materials (bibliography).

While I have argued that perhaps the situation isn’t quite as bad as the headlines and statistics may suggest, there are some concerning trends for Canadians but we have to acknowledge that many countries have stepped up their research game and that’s good for all of us. You don’t get better at anything unless you work with and play with others who are better than you are. For example, both India and Italy surpassed us in numbers of published research papers. We slipped from 7th place to 9th. Thank you, Italy and India. (And, Happy ‘Italian Research in the World Day’ on April 15, 2018, the day’s inaugural year. In Italian: Piano Straordinario “Vivere all’Italiana” – Giornata della ricerca Italiana nel mondo.)

Unfortunately, the reading is harder going than previous R&D assessments in the CCA catalogue. And in the end, I can’t help thinking we’re just a little bit like Hedy Lamarr. Not really appreciated in all of our complexities although the expert panel and staff did try from time to time. Perhaps the government needs to find better ways of asking the questions.

***ETA April 12, 2018 at 1500 PDT: Talking about missing the obvious! I’ve been ranting on about how research strength in visual and performing arts and in philosophy and theology, etc. is perfectly fine and could lead to ‘traditional’ science breakthroughs without underlining the point by noting that Antheil was a musician, Lamarr was as an actress and they set the foundation for work by electrical engineers (or people with that specialty) for their signature work leading to WiFi, etc.***

There is, by the way, a Hedy-Canada connection. In 1998, she sued Canadian software company Corel, for its unauthorized use of her image on their Corel Draw 8 product packaging. She won.

More stuff

For those who’d like to see and hear the April 10, 2017 launch for “Competing in a Global Innovation Economy: The Current State of R&D in Canada” or the Third Assessment as I think of it, go here.

The report can be found here.

For anyone curious about ‘Bombshell: The Hedy Lamarr Story’ to be broadcast on May 18, 2018 as part of PBS’s American Masters series, there’s this trailer,

For the curious, I did find out more about the Hedy Lamarr and Corel Draw. John Lettice’s December 2, 1998 article The Rgister describes the suit and her subsequent victory in less than admiring terms,

Our picture doesn’t show glamorous actress Hedy Lamarr, who yesterday [Dec. 1, 1998] came to a settlement with Corel over the use of her image on Corel’s packaging. But we suppose that following the settlement we could have used a picture of Corel’s packaging. Lamarr sued Corel earlier this year over its use of a CorelDraw image of her. The picture had been produced by John Corkery, who was 1996 Best of Show winner of the Corel World Design Contest. Corel now seems to have come to an undisclosed settlement with her, which includes a five-year exclusive (oops — maybe we can’t use the pack-shot then) licence to use “the lifelike vector illustration of Hedy Lamarr on Corel’s graphic software packaging”. Lamarr, bless ‘er, says she’s looking forward to the continued success of Corel Corporation,  …

There’s this excerpt from a Sept. 21, 2015 posting (a pictorial essay of Lamarr’s life) by Shahebaz Khan on The Blaze Blog,

6. CorelDRAW:
For several years beginning in 1997, the boxes of Corel DRAW’s software suites were graced by a large Corel-drawn image of Lamarr. The picture won Corel DRAW’s yearly software suite cover design contest in 1996. Lamarr sued Corel for using the image without her permission. Corel countered that she did not own rights to the image. The parties reached an undisclosed settlement in 1998.

There’s also a Nov. 23, 1998 Corel Draw 8 product review by Mike Gorman on mymac.com, which includes a screenshot of the packaging that precipitated the lawsuit. Once they settled, it seems Corel used her image at least one more time.