This May 10, 2022 Association for Computing Machinery (ACM) announcement (received via email) has an eye-catching head,
Should Smart Cities Adopt Facial Recognition, Remote Monitoring Software+Social Media to Police [verb] Info?
The Association for Computing Machinery, the largest and most prestigious computer science society worldwide (100,000 members) has released a report, ACM TechBrief: Smart Cities, for smart city planners to address 1) cybersecurity; 2) privacy protections; 3) fairness and transparency; and 4) sustainability when planning and designing systems, including climate impact.
The Association for Computing Machinery’s global Technology Policy Council (ACM TPC) just released, “ACM TechBrief: Smart Cities,” which highlights the challenges involved in deploying information and communication technology to create smart cities and calls for policy leaders planning such projects to do so without compromising security, privacy, fairness and sustainability. The TechBrief includes a primer on smart cities, key statistics about the growth and use of these technologies, and a short list of important policy implications.
“Smart cities” are municipalities that use a network of physical devices and computer technologies to make the delivery of public services more efficient and/or more environmentally friendly. Examples of smart city applications include using sensors to turn off streetlights when no one is present, monitoring traffic patterns to reduce roadway congestion and air pollution, or keeping track of home-bound medical patients in order to dispatch emergency responders when needed. Smart cities are an outgrowth of the Internet of Things (IoT), the rapidly growing infrastructure of literally billions of physical devices embedded with sensors that are connected to computers and the Internet.
The deployment of smart city technology is growing across the world, and these technologies offer significant benefits. For example, the TechBrief notes that “investing in smart cities could contribute significantly to achieving greenhouse gas emissions reduction targets,” and that “smart cities use digital innovation to make urban service delivery more efficient.”
Because of the meteoric growth and clear benefits of smart city technologies, the TechBrief notes that now is an urgent time to address some of the important public policy concerns that smart city technologies raise. The TechBrief lists four key policy implications that government officials, as well as the private companies that develop these technologies, should consider.
These include:
Cybersecurity risks must be considered at every stage of every smart city technology’s life cycle.
Effective privacy protection mechanisms must be an essential component of any smart city technology deployed.
Such mechanisms should be transparently fair to all city users, not just residents.
The climate impact of smart city infrastructures must be fully understood as they are being designed and regularly assessed after they are deployed
“Smart cities are fast becoming a reality around the world,”explains Chris Hankin, a Professor at Imperial College London and lead author of the ACM TechBrief on Smart Cities. “By 2025, 26% of all internet-connected devices will be used in a smart city application. As technologists, we feel we have a responsibility to raise important questions to ensure that these technologies best serve the public interest. For example, many people are unaware that some smart city technologies involve the collection of personally identifiable data. We developed this TechBrief to familiarize the public and lawmakers with this topic and present some key issues for consideration. Our overarching goal is to guide enlightened public policy in this area.”
“Our new TechBrief series builds on earlier and ongoing work by ACM’s technology policy committees,” added James Hendler, Professor at Rensselaer Polytechnic Institute and Chair of the ACM Technology Policy Council. “Because many smart city applications involve algorithms making decisions which impact people directly, this TechBrief calls for methods to ensure fairness and transparency in how these systems are developed. This reinforces an earlier statement we issued that outlined seven principles for algorithmic transparency and accountability. We also note that smart city infrastructures are especially vulnerable to malicious attacks.”
This TechBrief is the third in a series of short technical bulletins by ACM TPC that present scientifically grounded perspectives on the impact of specific developments or applications of technology. Designed to complement ACM’s activities in the policy arena, TechBriefs aim to inform policymakers, the public, and others about the nature and implications of information technologies. The first ACM TechBrief focused on climate change, while the second addressed facial recognition. Topics under consideration for future issues include quantum computing, election security, and encryption.
About the ACM Technology Policy Council
ACM’s global Technology Policy Council sets the agenda for ACM’s global policy activities and serves as the central convening point for ACM’s interactions with government organizations, the computing community, and the public in all matters of public policy related to computing and information technology. The Council’s members are drawn from ACM’s global membership. It coordinates the activities of ACM’s regional technology policy groups and sets the agenda for global initiatives to address evolving technology policy issues.
About ACM
ACM, the Association for Computing Machinery, is the world’s largest educational and scientific computing society, uniting educators, researchers and professionals to inspire dialogue, share resources and address the field’s challenges. ACM strengthens the computing profession’s collective voice through strong leadership, promotion of the highest standards, and recognition of technical excellence. ACM supports the professional growth of its members by providing opportunities for life-long learning, career development, and professional networking.
This is indeed a brief. I recommend reading it as it provides a very good overview to the topic of ‘smart cities’ and raises a question or two. For example, there’s this passage from the April 2022 Issue 3 Technical Brief on p. 2,
… policy makers should target broad and fair access and application of AI and, in general, ICT [information and communication technologies]. This can be achieved through transparent planning and decision-making processes for smart city infrastructure and application developments, such as open hearings, focus groups, and advisory panels. The goal must be to minimize potential harm while maximizing the benefits that algorithmic decision-making [emphasis mine] can bring
Is this algorithmic decision-making under human supervision? It doesn’t seem to be specified in the brief itself. It’s possible the answer lies elsewhere. After all, this is the third in the series.
Years ago someone asked me if there was any nanotechnology research into carbon capture. I couldn’t answer the question at the time but since then I’ve been on the lookout for more on the topic. So, I’m happy to add this February 25, 2021 news item on Nanowerk to my growing number of carbon capture posts (Note: A link has been removed),
One of the main culprits of global warming is the vast amount of carbon dioxide pumped out into the atmosphere mostly from burning fossil fuels and the production of steel and cement. In response, scientists have been trying out a process that can sequester waste carbon dioxide, transporting it into a storage site, and then depositing it at a place where it cannot enter the atmosphere.
The problem is that capturing carbon from power plants and industrial emissions isn’t very cost-effective. The main reason is that waste carbon dioxide isn’t emitted pure, but is mixed with nitrogen and other gases, and extracting it from industrial emissions requires extra energy consumption – meaning a pricier bill.
Scientists have been trying to develop an energy-efficient carbon dioxide-filter. Referred to as a “membrane”, this technology can extract carbon dioxide out of the gas mix, which can then be either stored or converted into useful chemicals. “However, the performance of current carbon dioxide filters has been limited by the fundamental properties of currently available materials,” explains Professor Kumar Varoon Agrawal at EPFL’s School of Basic Sciences (EPFL Valais Wallis).
Now, Agrawal has led a team of chemical engineers to develop the world’s thinnest filter from graphene, the world-famous “wonder material” that won the Physics Nobel in 2010. But the graphene filter isn’t just the thinnest in the world, it can also separate carbon dioxide from a mix of gases such as those coming out of industrial emissions and do so with an efficiency and speed that surpasses most current filters.
“Our approach was simple,” says Agrawal. “We made carbon dioxide-sized holes in graphene, which allowed carbon dioxide to flow through while blocking other gases such as nitrogen, which are larger than carbon dioxide.” The result is a record-high carbon dioxide-capture performance.
For comparison, current filters are required to exceed 1000 gas permeation units (GPUs), while their carbon-capturing specificity, referred to as their “carbon dioxide/nitrogen separation factor” must be above 20. The membranes that the EPFL scientists developed show more than ten-fold higher carbon dioxide permeance at 11,800 GPUs, while their separation factor stands at 22.5.
“We estimate that this technology will drop the cost of carbon capture close to $30 per ton of carbon dioxide, in contrast to commercial processes where the cost is two-to-four time higher,” says Agrawal. His team is now working on scaling up the process by developing a pilot plant demonstrator to capture 10 kg carbon dioxide per day, in a project funded by the Swiss government and Swiss industry.
A research team led by UCLA materials scientists has demonstrated ways to make super white paint that reflects as much as 98% of incoming heat from the sun. The advance shows practical pathways for designing paints that, if used on rooftops and other parts of a building, could significantly reduce cooling costs, beyond what standard white ‘cool-roof’ paints can achieve.
The findings, published online in Joule, are a major and practical step towards keeping buildings cooler by passive daytime radiative cooling — a spontaneous process in which a surface reflects sunlight and radiates heat into space, cooling down to potentially sub-ambient temperatures. This can lower indoor temperatures and help cut down on air conditioner use and associated carbon dioxide emissions.
“When you wear a white T-shirt on a hot sunny day, you feel cooler than if you wore one that’s darker in color — that’s because the white shirt reflects more sunlight and it’s the same concept for buildings,” said Aaswath Raman, an assistant professor of materials science and engineering at UCLA Samueli School of Engineering, and the principal investigator on the study. “A roof painted white will be cooler inside than one in a darker shade. But those paints also do something else: they reject heat at infrared wavelengths, which we humans cannot see with our eyes. This could allow buildings to cool down even more by radiative cooling.”
The best performing white paints currently available typically reflect around 85% of incoming solar radiation. The remainder is absorbed by the chemical makeup of the paint. The researchers showed that simple modifications in a paint’s ingredients could offer a significant jump, reflecting as much as 98% of incoming radiation.
Current white paints with high solar reflectance use titanium oxide. While the compound is very reflective of most visible and near-infrared light, it also absorbs ultraviolet and violet light. The compound’s UV absorption qualities make it useful in sunscreen lotions, but they also lead to heating under sunlight – which gets in the way of keeping a building as cool as possible.
The researchers examined replacing titanium oxide with inexpensive and readily available ingredients such as barite, which is an artist’s pigment, and pow[d]ered polytetrafluoroethylene, better known as Teflon. These ingredients help paints reflect UV light. The team also made further refinements to the paint’s formula, including reducing the concentration of polymer binders, which also absorb heat.
“The potential cooling benefits this can yield may be realized in the near future because the modifications we propose are within the capabilities of the paint and coatings industry,” said UCLA postdoctoral scholar Jyotirmoy Mandal, a Schmidt Science Fellow working in Raman’s research group and the co-corresponding author on the research.
Beyond the advance, the authors suggested several long-term implications for further study, including mapping where such paints could make a difference, studying the effect of pollution on radiative cooling technologies, and on a global scale, if they could make a dent on the earth’s own ability to reflect heat from the sun.
The researchers also noted that many municipalities and governments, including the state of California and New York City, have started to encourage cool-roof technologies for new buildings.
“We hope that the work will spur future initiatives in super-white coatings for not only energy savings in buildings, but also mitigating the heat island effects of cities, and perhaps even showing a practical way that, if applied on a massive, global scale could affect climate change,” said Mandal, who has studied cooling paint technologies for several years. “This would require a collaboration among experts in diverse fields like optics, materials science and meteorology, and experts from the industry and policy sectors.”
Here’s a link (also in the news release) to and a citation for the paper,
Glass sponges in Howe Sound. Credit: Adam Taylor, MLSS [Marine Life Sanctuaries Society]
One of them looks to be screaming (Edvard Munch, anyone?) and none of it looks how I imagined an oceanic ‘living dinosaur’ might. While the news is not in my main area of interest (emerging technology), it is close to home. A June 1, 2020 University of British Columbia news release (also on EurekAlert) describes the glass sponge reefs (living dinosaurs) in the Pacific Northwest and current concerns about their welfare,
Warming ocean temperatures and acidification drastically reduce the skeletal strength and filter-feeding capacity of glass sponges, according to new UBC research.
The findings, published in Scientific Reports, indicate that ongoing climate change could have serious, irreversible impacts on the sprawling glass sponge reefs of the Pacific Northwest and their associated marine life – the only known reefs of their kind in the world.
Ranging from the Alaska-Canada border and down through the Strait of Georgia, the reefs play an essential role in water quality by filtering microbes and cycling nutrients through food chains. They also provide critical habitat for many fish and invertebrates, including rockfish, spot prawns, herring, halibut and sharks.
“Glass sponge reefs are ‘living dinosaurs’ thought to have been extinct for 40 million years before they were re-discovered in B.C. in 1986,” said Angela Stevenson, who led the study as a postdoctoral fellow at UBC Zoology. “Their sheer size and tremendous filtration capacity put them at the heart of a lush and productive underwater system, so we wanted to examine how climate change might impact their survival.”
Although the reefs are subject to strong, ongoing conservation efforts focused on limiting damage to their delicate glass structures, scientists know little about how these sponges respond to environmental changes.
For the study, Stevenson harvested Aphrocallistes vastus, one of three types of reef-building glass sponges, from Howe Sound and brought them to UBC where she ran the first successful long-term lab experiment involving live sponges by simulating their natural environment as closely as possible.
She then tested their resilience by placing them in warmer and more acidic waters that mimicked future projected ocean conditions.
Over a period of four months, Stevenson measured changes to their pumping capacity, body condition and skeletal strength, which are critical indicators of their ability to feed and build reefs.
Within one month, ocean acidification and warming, alone and in combination, reduced the sponges’ pumping capacity by more than 50 per cent and caused tissue losses of 10 to 25 per cent, which could starve the sponges.
“Most worryingly, pumping began to slow within two weeks of exposure to elevated temperatures,” said Stevenson.
The combination of acidification and warming also made their bodies weaker and more elastic by half. That could curtail reef formation and cause brittle reefs to collapse under the weight of growing sponges or animals walking and swimming among them.
Year-long temperature data collected from Howe Sound reefs in 2016 suggest it’s only a matter of time before sponges are exposed to conditions which exceed these thresholds.
“In Howe Sound, we want to figure out a way to track changes in sponge growth, size and area and area in the field so we can better understand potential climate implications at a larger scale,” said co-author Jeff Marliave, senior research scientist at the Ocean Wise Research Institute. “We also want to understand the microbial food webs that support sponges and how they might be influenced by climate cycles.”
Stevenson credits bottom-up community-led efforts and strong collaborations with government for the healthy, viable state of the B.C. reefs today. Added support for such community efforts and educational programs will be key to relieving future pressures.
“When most people think about reefs, they think of tropical shallow-water reefs like the beautiful Great Barrier Reef in Australia,” added Stevenson. “But we have these incredible deep-water reefs in our own backyard in Canada. If we don’t do our best to stand up for them, it will be like discovering a herd of dinosaurs and then immediately dropping dynamite on them.”
Background:
The colossal reefs can grow to 19 metres in height and are built by larval sponges settling atop the fused dead skeletons of previous generations. In northern B.C. the reefs are found at depths of 90 to 300 metres, while in southern B.C., they can be found as shallow as 22 metres.
The sponges feed by pumping sea water through their delicate bodies, filtering almost 80 per cent of microbes and particles and expelling clean water.
It’s estimated that the 19 known reefs in the Salish Sea can filter 100 billion litres of water every day, equivalent to one per cent of the total water volume in the Strait of Georgia and Howe Sound combined.
Almost finally, there’s a brief video of the glass sponges in their habitat,
Circling back to Edvard Munch,
Courtesy of www.EdvardMunch.org [downloaded from https://www.edvardmunch.org/the-scream.jsp]
Here’s more about the painting, from The Scream webpage on edvardmunch.org,
Munch’s The Scream is an icon of modern art, the Mona Lisa for our time. As Leonardo da Vinci evoked a Renaissance ideal of serenity and self-control, Munch defined how we see our own age – wracked with anxiety and uncertainty.
Essentially The Scream is autobiographical, an expressionistic construction based on Munch’s actual experience of a scream piercing through nature while on a walk, after his two companions, seen in the background, had left him. …
For all the times I’ve seen the image, I had no idea the inspiration was acoustic.
In any event, the image seems sadly à propos both for the glass sponge reefs (and nature generally) and with regard to Black Lives Matter (BLM). A worldwide conflagration was ignited by George Floyd’s death in Minneapolis on May 25, 2020. This African-American man died while saying, “I can’t breathe,” as a police officer held Floyd down with a knee on his neck. RIP (rest in peace) George Floyd while the rest of us make the changes necessary, no matter how difficult to create a just and respectful world for all. Black Lives Matter.
I was hoping this would be the concluding part of this series but there was much more than I dreamed. (I know that’s repetitive but I’m truly gobsmacked.)
Citizen science
Astronomy and bird watching (ornithology) are probably the only two scientific endeavours that have consistently engaged nonexperts/amateurs/citizen scientists right from the earliest days through the 21st century. Medical research, physics, chemistry, and others have, until recently and despite their origins in ‘amateur’ (or citizen) science, become the exclusive domain of professional experts.
This situation seems to be changing both here in Canada and elsewhere. One of the earliest postings about citizen science on this blog was in 2010 and, one of the most amusing to me personally, was this March 21, 2013 posting titled: Comparing techniques, citizen science to expert science. It’s about a study by scientists at the University of East Anglia (UK) comparing data collection by citizen scientists with experts. In this particular project where undersea data was being collected and people with diving skills needed, the citizen scientists did a better job than the expert scientists of collecting data. (I’m not trying to suggest that experts can be replaced by amateurs but do suggest that there are advantages to working together.)
Take a look at your car. The bus you take to work. The smart phone you tap on during your commute. They all have one thing in common: science. Science is all around us. It shapes the way we live, the meals we grab on the go and the commute that takes us to school and work.
That is why the Government of Canada is encouraging young Canadians’ interest in science. Research and innovation lead to breakthroughs in agriculture, transit, medicine, green technology and service delivery, improving the quality of life for all Canadians. The outcomes of research also create jobs, strengthen the economy and support a growing middle class.
The Honourable Kirsty Duncan, Minister of Science and Minister of Sport and Persons with Disabilities, carried that message to an audience of young students during her first citizen science Google Hangout today. The Hangout, run by Exploring by the Seat of Your Pants, a not-for-profit organization, featured frog exhibits from the Toronto Zoo and a demonstration of the FrogWatch citizen science project by Dr. Nancy Kingsbury of Environment and Climate Change Canada. Toronto Zoo frog expert Katherine Wright joined Minister Duncan at the zoo to share information about frogs that are local to Ontario.
Minister Duncan, Dr. Kingsbury and Ms. Wright then engaged with elementary school children across Canada in a live Q&A session about the frogs in their own backyards. The Minister highlighted the importance of getting young Canadians interested in science fields and talked about ways they can take part in citizen science projects in their communities. Citizen scientists can share their observations on social media using the hashtag #ScienceAroundMe.
Quotes
“Science is for everyone, and it is important that we encourage today’s youth to be curious. Young Canadians who engage in citizen science today will become the highly skilled workers—engineers, scientists, mathematicians, technology experts and entrepreneurs—of tomorrow. Through citizen science, children can nurture an interest in the natural world. These young people will then go on to discover, to innovate and to find solutions that will help us build a better Canada.” – The Honourable Kirsty Duncan, Minister of Science and Minister of Sport and Persons with Disabilities
“The Toronto Zoo is proud to participate in and encourage citizen science programs, such as FrogWatch, within the community. The Toronto Zoo’s Adopt-A-Pond Wetland Conservation Programme works to engage citizen scientists and deliver impactful conservation-focused research, restoration and outreach that highlight the importance of saving Canada’s sensitive wetland species and their habitats.” – Robin Hale, Interim Chief Executive Officer, Toronto Zoo
Quick facts
NatureWatch, of which FrogWatch is a component, is a community program that engages all Canadians in collecting scientific information on nature to understand our changing environment.
Exploring by the Seat of Your Pants aims to inspire the next generation of scientists, explorers and conservationists by bringing science, exploration, adventure and conservation into classrooms through virtual field trips run by programs like Google Hangout.
The Government of Canada’s Citizen Science Portal is a one-stop shop for science in the community. It showcases science programs, including NatureWatch programs, across the country.
The portal is not nearly as Ontario-centric as the projects mentioned in the news release (in case you were wondering).
Aside: In part 2 of this series, Jesse Hildebrand, founder of Science Literacy Week was mentioned as also being the founder of Exploring by the Seat of Your Pants.
Going to the birds
While bird watching and ornithological studies are not new to the Canadian science culture scene, there were some interesting developments in the 2010-19 period.
Canadian Geographic (magazine) sponsored a contest in 2015, the National Bird Project, where almost 50,000 people submitted suggestions for a national bird. Voting online ensued and on August 31, 2016 popular voting was closed. Five birds attracted the top votes and in September 2016, the Royal Canadian Geographical Society put together an expert panel to debate and decide which would be Canada’s national bird. The choice was announced in November 2016 (Canadian Geographic National Bird Project).
The gray jay. Also known as the whiskey jack or Canada jay. Photo: Steve Phillips [downloaded from http://nationalbird.canadiangeographic.ca/]
The gray jay (Perisoreus canadensis in Latin, Mésangeai du Canada in French) lives in all 13 provinces and territories — the friendly spirit in Canada’s wild northern boreal and mountain forests. It remains in Canada year-round, is neither hunted nor endangered, and from the Atlantic provinces to the West is an indicator of the health of the boreal and mountain forests and climate change, inspiring a conservation philosophy for all kinds of northern land uses. The gray jay has long been important to Indigenous Peoples, and will draw all Canadians to their national and provincial/territorial parks, yet unlike the loon and snowy owl, it is not already a provincial or territorial bird.
Gray jay is a passerine bird belonging to the family Corvidae. It is mostly found in the boreal forest of North America. The bird is fairly large and has pale gray underparts and dark grey upperpart. Gray jay is a friendly bird and often approach human for food. It is also popularly known as the camp robber, whisky jack, and venison-hawk. Gray jay is listed as Least Concern by the IUCN [International Union for Conservation of Nature]. However, the anthropogenic climate change in the southern range may adversely affect its population. In some Fist Nation cultures, the bird is associated with mythological figures including Wisakedjak who was anglicized to Whiskyjack.
…
For approximately 200 years, the gray jay was known as “Canadian Jay” to the English speakers. The bird was renamed the “gray jay” in 1957 by the American Ornithologists’ Union. However, scientifically the bird is referred to as Perisoreus Canadensis. The bird is found in almost all the provinces of territories of Canada. the preferred habitat for the species is Canada’s boreal and mountain forests. Gray jay is also one of the smartest birds in the world and has almost the same body-to-brain ratio as human beings.
Canadian Georgraphic offers more depth (and a map) in a November 16, 2016 article, by Nick Walker, titled, Canada, meet your national bird (Note: Links have been removed),
With 450 species in the country to choose from, Canadian Geographic’s decision was made neither lightly nor quickly.
This national debate has been running since January 2015, in fact. But after weighing the opinions and preferences of tens of thousands of Canadians, as well as the expertise of our National Conservation Partners at Bird Studies Canada and other ornithologists and conservationists, as well as cultural experts and Indigenous Peoples, that list was narrowed to five birds. And one finalist best met all reasonable criteria.
We give you the gray jay. …
…
Not only has the gray jay never been recorded outside of North America, the vast majority of its range is in Canada, with only a small percentage crossing into Alaska and the western mountains of the United States. The species’ preferred habitat is Canada’s boreal and mountain forests — ecozones that stretch from coast to coast and into the North, blanketing nearly two-thirds of the country.
…
Like the Canadian flag when it was selected in 1965, the gray jay is fresh and new and fitting. To quote David Bird, ornithologist and professor emeritus of wildlife biology at Montreal’s McGill University, we cannot think of a more Canadian bird.
Three sets of bird stamps were issued by Canada Post from 2016-2018 saluting “Canada’s avian citizens.” Here’s more from a July 12, 2016 Birds of Canada blog post on the Canada Post website announcing the first series of bird stamps,
Hatched by designer Kosta Tsetsekas and illustrator Keith Martin, these stamps are the first in a three-year series celebrating Canada’s avian citizens. Our first flock includes five official birds: the Atlantic puffin (Newfoundland and Labrador), the great horned owl (Alberta), the common raven (Yukon), the rock ptarmigan (Nunavut) and the sharp-tailed grouse (Saskatchewan).
On behalf of the International Ornithologists’ Union, Vancouver is delighted to welcome ornithologists from around the world to the 27th International Ornithological Congress (IOCongress2018)! Considered the oldest and most prestigious of meetings for bird scientists, the Congress occurs every four years since first being held in Vienna, Austria, in 1884.
Canada has hosted only once previously, Ottawa in 1986, and Vancouver will be the first time the Congress has been on the Pacific Coast of the Americas. The Congress has broad national endorsement, including from the City of Vancouver, the province of British Columbia, Environment Canada, Simon Fraser University, Artists for Conservation, Tourism Vancouver plus an array of scientific societies and conservation organizations.
The convention centre’s webpage features an impressive list of events which were open to the public,
Stars of the Bird World Presentation (August 19): Dr. Rob Butler, chair of the Vancouver International Bird Festival, presents Flyways to Culture: How birds give rise to a cultural awakening, at look at how the growing interest in birds in particular and nature in general, is a foundation for a new Nature Culture in which nature becomes embedded into a west coast culture. 8:30-10 a.m. at the Vancouver Convention Centre. Admission by donation ($10 suggested).
Festival Opening Ceremony – Parade of Birds and a fanfare by Vancouver Symphony Brass Quintet (August 20): The festival begins with a Parade of Birds and a fanfare by the Vancouver Symphony Brass Quintet. The fanfare “Gathering Flock” was composed by Frederick Schipizky. 3:20 p.m. to 5:15 p.m. at the Vancouver Convention Centre.
Artists for Conservation Show (August 22): Artists for Conservation is the official visual arts partner for the festival and congress, showcasing some of the world’s best nature art through its annual juried exhibit, a collaborative mural, artist demo and lecture series and an artist booth expo. Official opening 6-10 p.m. at the Vancouver Convention Centre.
Nature & Bird Expo (until August 25): The three-day Bird Expo is the showcase of birds and nature in Canada, including exhibitors, speakers, yoga, poetry, art and more. Runs until Aug. 25 at the Vancouver Convention Centre. Check out a full event listing at www.vanbirdfest.com/calendar/nature-bird-expo.
Migration Songs – Poetry and Ornithology (August 23): Migration Songs brings together 11 contemporary poets to consider an array of bird species. Each poet was put in conversation with a particular ornithologist or scientist to consider their chosen species collaboratively. The poets involved include well-known west-coast authors, amongst them Governor General’s Award and Griffin Poetry Prize winners. A short book of these collaborations, Migration Songs, with cover art by poet, painter, and weaver Annie Ross, will be available. 6 p.m. at the Vancouver Convention Centre.
Unveiling of the Silent Skies Mural (August 23): A signature event of the week-long Artists for Conservation show is the unveiling of the Silent Skies mural made up of illustrations of the endangered birds of the world — 678 pieces, each depicting a different endangered bird, will make up the 100-foot-long installation that will form the artistic centrepiece for the 8th annual Artists for Conservation Festival, the 27th International Ornithological Congress and Vancouver International Bird Festival. The unveiling takes place at 6:30 p.m. at the Vancouver Convention Centre.
Stewardship Roundtable 2018 (August 24): A forum and showcase of innovative practices championed in B.C. province and beyond, presented by the Stewardship Centre for BC and Bird Studies Canada, in collaboration with the 27th International Ornithological Congress and Vancouver International Bird Festival. 8:30 a.m. until 9 p.m. at the Vancouver Convention Centre. For more information or to register, visit stewardshipcentrebc.ca/programs/wildife-species-risk/stewardship-roundtable.
Closing Ceremony (August 26): The closing ceremony will include remarks from officials and First Nations representatives, and a Heron Dance by the New Dance Centre from Saskatchewan. 5-6:30 p.m. at Vancouver Convention Centre.
I attended the opening ceremony where they announced the final set of stamps in the Birds of Canada series by introducing people who’d dressed for the parade as the birds in question.
The Canadian birding community has continued to create interesting new projects for science outreach. A December 19, 2019 posting by Natasha Barlow for Birds Canada (also known as Bird Studies Canada) announces a new interactive story map,
The Boreal Region is a massive expanse of forests, wetlands, and waterways covering much of the Northern Hemisphere. In Canada, this vast region stretches for 5000 kilometres from Newfoundland and Labrador through the country’s central regions and northwest to the Yukon.
Over 300 bird species regularly breed here, from tiny songbirds like kinglets and warblers to comparatively giant swans and cranes. The Boreal is home to literally billions of birds, and serves as the continent’s bird “nursery” since it is such an important breeding ground.
While extensive tracts of Canada’s northern Boreal still remain largely undisturbed from major industrial development, the human footprint is expanding and much of the southern Boreal is already being exploited for its resources.
Birds Canada, in partnership with the Nature Conservancy of Canada, has created an interactive story map that details the importance of the Boreal region for birds.
Climate change, ecology, and Indigenous knowledge (science)
There is more focus on climate change everywhere in the world and much of the latest energy and focus internationally can be traced to Swedish teenager, Greta Thunberg who turned 17 in January 2020. Her influence has galvanized a number of youth climate strikes in Canada and around the world.
There is a category of science fiction or speculative fiction known as Climate Fiction (cli-fi or clifi). Margaret Atwood (of course) has produced a trilogy in that subgenre of speculative fiction, from the Climate Fiction Wikipedia entry, Note: Links have been removed,
…
Margaret Atwood explored the subject in her dystopian trilogy Oryx and Crake (2003), The Year of the Flood (2009) and MaddAddam (2013).[13] In Oryx and Crake Atwood presents a world where “social inequality, genetic technology and catastrophic climate change, has finally culminated in some apocalyptic event”.[14] The novel’s protagonist, Jimmy, lives in a “world split between corporate compounds”, gated communities that have grown into city-states and pleeblands, which are “unsafe, populous and polluted” urban areas where the working classes live.[15]
…
There is some other cli-fi literature by Canadians, notably an anthology of Canadian short stories edited by Bruce Meyer, from a March 9, 2018 review by Emilie Moorhouse published in Canada’s National Observer (review originally published in Prism magazine on March 8, 2018), Note: A link has been removed,
A woman waits in line to get her water ration. She hasn’t had a sip of water in nearly three days. Her mouth is parched; she stumbles as she waits her turn for over an hour in the hot sun. When she he finally gets to the iTap and inserts her card into the machine that controls the water flow, the light turns red and her card is rejected. Her water credits have run out.
This scenario from “The Way of Water” by Nina Munteanu is one of many contained in the recently published anthology of short stories, Cli-Fi: Canadian Tales of Climate Change. The seventeen stories in this book edited by Bruce Meyer examine how humankind might struggle with the potential devastation of climate change in the near or distant future. Soon after I finished reading the book, Cape Town—known in precolonial times as “the place where clouds gather”—announced that it was only a few months away from what it called “Day Zero,” the day the city would officially run out of water, making the similarities between fiction and reality more than unsettling. Munteanu’s story is set in a futuristic Canada that has been mined of all its water by thirsty corporations who have taken over control of the resource. Rain has not fallen on Canadian soil in years due to advances in geoengineering and weather manipulation preventing rain clouds from going anywhere north of the Canada-US border.
…
Indigenous knowledge (science)
The majority of Canada’s coastline is in the Arctic and climate change in that region is progressing at a disturbing pace. Weather, Climate Change, and Inuit Communities in the Western Canadian Arctic, a September 30, 2017 blog posting, by Dr. Laura Eerkes-Medrano at the University of Victoria (British Columbia) for Historical Climatology describes it this way (Note: A link has been removed),
Global climate change brings with it local weather that communities and cultures have difficulty anticipating. Unpredictable and socially impactful weather is having negative effects on the subsistence, cultural activities, and safety of indigenous peoples in Arctic communities. Since 2013, Professor David Atkinson and his team at the University of Victoria have been working with Inuvialuit communities in Tuktoyaktuk, Ulukhaktok, and Sachs Harbour. The main goal is to understand how impactful weather is affecting residents’ subsistence activities, particularly when they are on the water. The project involves site visits, interviews, and regular phone calls with residents.
Inuvialuit residents regularly observe the waves, winds, snow, and ice conditions that interfere with their hunting, fishing, camping, and other subsistence and cultural activities. In this project, communities identify specific weather events that impact their activities. These events are then linked to the broader atmospheric patterns that cause them. Summaries of the events will be provided to Environment Canada to hopefully assist with the forecasting process.
By taking this approach, the project links Western scientific knowledge and traditional knowledge to generate insights [emphasis mine] into how climate change is affecting Inuvialuit activities in the Canadian Arctic. An oversight committee has been established in each community to give direction to the project. This oversight committee includes representatives from each of the main community organizations, which ensures that the respective organizations provide direction to the project and advise on how to engage residents and communities.
…
Western science learning from and taking from traditional knowledge is not new. For example, many modern medicines are still derived from traditional remedies. Unfortunately, traditional practitioners have not benefited from sharing their knowledge.
It is to be hoped things are changing with projects like Atkinson’s and another one I mentioned in a December 2, 2019 posting featuring a discovery about ochre (a red dye used for rock art). The dye being examined was produced (in a manner that appears to be unique) in the Babine Lake region of British Columbia and the research may have applications for industrial use leading to economic benefits for the indigenous folks of that region. As important as the benefits, the science team worked closely with the indigenous communities in that area.
University in the Arctic
I was told several years ago that Canada is the only ‘arctic country’ that does not have a university in the high north. As of 2019 it seems the situation is changing, from a December 1, 2019 Global television news online item,
Canada will finally have its first Arctic university.
This past week [of December 1, 2019], the Yukon legislature passed a bill to make Yukon College a university. It will be an institution with an Indigenous flavour that will make it as unique as the region it is to serve.
“Everybody knows we’re moving toward something big and something special,” said Tom Ullyett, chairman of the board of governors.
The idea of a northern university has been kicked around since at least 2007 when a survey in all three territories found residents wanted more influence over Arctic research. Northern First Nations have been asking for one for 50 years.
…
Research is to centre on issues around environmental conservation and sustainable resource development. It will be conducted in a new, $26-million science building funded by Ottawa and currently being designed.
Indigenous content will be baked in.
“It’s about teaching with northern examples,” said Tosh Southwick, in charge of Indigenous engagement. “Every program will have a northern component.”
Science programs will have traditional knowledge embedded in them and talk about ravens and moose instead of, say, flamingos and giraffes. Anthropology classes will teach creation stories alongside archeological evidence.
…
The institution will report to Yukon’s 14 First Nations as well as to the territorial legislature. More than one-quarter of its current students are Indigenous.
…
“Our vision is to be that first northern university that focuses on Indigenous governance, that focuses on sustainable natural resources, that focuses on northern climate, and everything that flows from that.”
…
Climate adaptation and/or choices
While we have participated in a number of initiatives and projects concerned with climate change, I believe there is general agreement we should have done more. That said I would prefer to remain hopeful.
A newly launched institute for climate policy research will have a Yukon connection. Brian Horton, Manager of Northern Climate ExChange at the Yukon Research Centre, has been named to the Canadian Institute for Climate Choices expert advisory panel for Climate Adaptation.
The Institute, launched Tuesday morning, aims to bring clarity to Canada’s climate policy choices. The Institute’s initial report, Charting our Course, describes the current climate landscape in Canada and provides recommendations for policy makers and governments seeking to implement more effective policy.
In order to remain grounded in issues of importance to Canadians, the Institute has appointed three Expert Advisory Panels (Adaptation, Mitigation and Clean Growth) to provide evidence-based research, analysis and engagement advice to support integrative policy decisions.
“It is exciting to have a role to play in this dynamic new network,” said Horton. “The climate is rapidly changing in the North and affecting our landscapes and lives daily. I look forward to contributing a Northern voice to this impactful pan-Canadian expert collaboration.”
At Yukon College, Horton’s research team focusses on applied research of climate impacts and adaptation in Yukon and Northwest Territories. Northern Climate ExChange works with communities, governments, and the private sector to answer questions about permafrost, hydrology, and social factors to facilitate adaptation to climate change.
January 21, 2020 | OTTAWA — Dozens of academics and policy experts today launched the Canadian Institute for Climate Choices, a new independent national research body. The Institute aims to bring clarity to the transformative challenges, opportunities and choices ahead for Canada as governments at all levels work to address climate change.
…
Experimental Lakes Area
This is a very special research effort originally funded and managed by the Canadian federal government. Rather controversially, Stephen Harper’s Conservative government defunded the research but that may not have been the tragedy many believed (from the Experimental Lakes Area Wikipedia entry),
IISD Experimental Lakes Area (IISD-ELA, known as ELA before 2014)[1] is an internationally unique research station encompassing 58 formerly pristine freshwater lakes in Kenora District Ontario, Canada.[2][3] Previously run by Fisheries and Oceans Canada, after being de-funded by the Canadian Federal Government, the facility is now managed and operated by the International Institute for Sustainable Development (IISD) and has a mandate to investigate the aquatic effects of a wide variety of stresses on lakes and their catchments. IISD-ELA uses the whole ecosystem approach and makes long-term, whole-lake investigations of freshwater focusing on eutrophication.[4][5]
In an article[2] published in AAAS’s well-known scientific journal Science, Eric Stokstad described ELA’s “extreme science”[2] as the manipulation of whole lake ecosystem with ELA researchers collecting long-term records for climatology, hydrology, and limnology that address key issues in water management.[4] The site has influenced public policy in water management in Canada, the USA, and around the world.[2]
Minister of State for Science and Technology, Gary Goodyear, argued that “our government has been working hard to ensure that the Experimental Lakes Area facility is transferred to a non-governmental operator better suited to conducting the type of world-class research that can be undertaken at this facility” and that “[t]he federal government has been leading negotiations in order to secure an operator with an international track record.” On April 1, 2014, the International Institute for Sustainable Development announced that it had signed three agreements to ensure that it will be the long-term operator of the research facility and that the facility would henceforth be called IISD Experimental Lakes Area.[6] Since taking over the facility, IISD has expanded the function of the site to include educational and outreach opportunities[7] and a broader research portfolio.[8]
Part 5 is to a large extent a grab bag for everything I didn’t fit into parts 1 -4. As for what you can expect to find in Part 5: some science podcasting, eco art, a Saskatchewan lab with an artist-in-residence, and more.
* ETA April 24, 2020 at 1515 PT Added the line and link *As for the Canadian science (from a June 15, 2018 Innovation, Science and Economic Development Canada news release),*
A July 3, 2019 news item on Nanowerk describes research coming from India and South Korea where nano gold is turned into black nanogold (Note: A link has been removed),
One of the main cause of global warming is the increase in the atmospheric CO2 level. The main source of this CO2 is from the burning of fossil fuels (electricity, vehicles, industry and many more).
Researchers at TIFR [Tata Institute of Fundamental Research] have developed the solution phase synthesis of Dendritic Plasmonic Colloidosomes (DPCs) with varying interparticle distances between the gold Nanoparticles (AU NPs) using a cycle-by-cycle growth approach by optimizing the nucleation-growth step. These DPCs absorb the entire visible and near-infrared region of solar light, due to interparticle plasmonic coupling as well as the heterogeneity in the Au NP [gold nanoparticle] sizes, which transformed golden gold material to black gold (Chemical Science, “Plasmonic colloidosomes of black gold for solar energy harvesting and hotspots directed catalysis for CO2 to fuel conversion”).
Black (nano)gold was able to catalyze CO2 to methane (fuel) conversion at atmospheric pressure and temperature, using solar energy. They also observed the significant effect of the plasmonic hotspots on the performance of these DPCs for the purification of seawater to drinkable water via steam generation, temperature jump assisted protein unfolding, oxidation of cinnamyl alcohol using pure oxygen as the oxidant, and hydrosilylation of aldehydes.
This was attributed to varying interparticle distances and particle sizes in these DPCs. The results indicate the synergistic effects of EM and thermal hotspots as well as hot electrons on DPCs performance. Thus, DPCs catalysts can effectively be utilized as Vis-NIR light photo-catalysts, and the design of new plasmonic nanocatalysts for a wide range of other chemical reactions may be possible using the concept of plasmonic coupling.
Raman thermometry and SERS (Surface-enhanced Raman Spectroscopy) provided information about the thermal and electromagnetic hotspots and local temperatures which was found to be dependent on the interparticle plasmonic coupling. The spatial distribution of the localized surface plasmon modes by STEM-EELS plasmon mapping confirmed the role of the interparticle distances in the SPR (Surface Plasmon Resonance) of the material.
Thus, in this work, by using the techniques of nanotechnology, the researchers transformed golden gold to black gold, by changing the size and gaps between gold nanoparticles. Similar to the real trees, which use CO2, sunlight and water to produce food, the developed black gold acts like an artificial tree that uses CO2, sunlight and water to produce fuel, which can be used to run our cars. Notably, black gold can also be used to convert sea water into drinkable water using the heat that black gold generates after it captures sunlight.
This work is a way forward to develop “Artificial Trees” which capture and convert CO2 to fuel and useful chemicals. Although at this stage, the production rate of fuel is low, in coming years, these challenges can be resolved. We may be able to convert CO2 to fuel using sunlight at atmospheric condition, at a commercially viable scale and CO2 may then become our main source of clean energy.
Here’s an image illustrating the work
Caption: Use of black gold can get us one step closer to combat climate change.
Credit: Royal Society of Chemistry, Chemical Science
A “black” gold material has been developed to harvest sunlight, and then use the energy to turn carbon dioxide (CO2) into useful chemicals and fuel.
In addition to this, the material can also be used for applications including water purification, heating – and could help further research into new, efficient catalysts.
“In this work, by using the techniques of nanotechnology, we transformed golden gold to black gold, by simply changing the size and gaps between gold nanoparticles,” said Professor Vivek Polshettiwar from Tata Institute of Fundamental Research (TIFR) in India.
Tuning the size and gaps between gold nanoparticles created thermal and electromagnetic hotspots, which allowed the material to absorb the entire visible and near-infrared region of sunlight’s wavelength – making the gold “black”.
The team of researchers, from TIFR and Seoul National University in South Korea, then demonstrated that this captured energy could be used to combat climate change.
Professor Polshettiwar said: “It not only harvests solar energy but also captures and converts CO2 to methane (fuel). Synthesis and use of black gold for CO2-to-fuel conversion, which is reported for the first time, has the potential to resolve the global CO2 challenge.
“Now, like real trees which use CO2, sunlight and water to produce food, our developed black gold acts like an artificial tree to produce fuel – which we can use to run our cars,” he added. Although production is low at this stage, Professor Polshettiwar (who was included in the RSC’s 175 Faces of Chemistry) believes that the commercially-viable conversion of CO2 to fuel at atmospheric conditions is possible in the coming years.
He said: “It’s the only goal of my life – to develop technology to capture and convert CO2 and combat climate change, by using the concepts of nanotechnology.”
Other experiments described in the Chemical Science paper demonstrate using black gold to efficiently convert sea water into drinkable water via steam generation.
It was also used for protein unfolding, alcohol oxidation, and aldehyde hydrosilylation: and the team believe their methodology could lead to novel and efficient catalysts for a range of chemical transformations.
Years ago I was asked about carbon sequestration and nanotechnology and could not come up with any examples. At last I have something for the next time the question is asked. From a June 11, 2019 news item on ScienceDaily,
University of Colorado Boulder researchers have developed nanobio-hybrid organisms capable of using airborne carbon dioxide and nitrogen to produce a variety of plastics and fuels, a promising first step toward low-cost carbon sequestration and eco-friendly manufacturing for chemicals.
By using light-activated quantum dots to fire particular enzymes within microbial cells, the researchers were able to create “living factories” that eat harmful CO2 and convert it into useful products such as biodegradable plastic, gasoline, ammonia and biodiesel.
“The innovation is a testament to the power of biochemical processes,” said Prashant Nagpal, lead author of the research and an assistant professor in CU Boulder’s Department of Chemical and Biological Engineering. “We’re looking at a technique that could improve CO2 capture to combat climate change and one day even potentially replace carbon-intensive manufacturing for plastics and fuels.”
The project began in 2013, when Nagpal and his colleagues began exploring the broad potential of nanoscopic quantum dots, which are tiny semiconductors similar to those used in television sets. Quantum dots can be injected into cells passively and are designed to attach and self-assemble to desired enzymes and then activate these enzymes on command using specific wavelengths of light.
Nagpal wanted to see if quantum dots could act as a spark plug to fire particular enzymes within microbial cells that have the means to convert airborne CO2 and nitrogen, but do not do so naturally due to a lack of photosynthesis.
By diffusing the specially-tailored dots into the cells of common microbial species found in soil, Nagpal and his colleagues bridged the gap. Now, exposure to even small amounts of indirect sunlight would activate the microbes’ CO2 appetite, without a need for any source of energy or food to carry out the energy-intensive biochemical conversions.
“Each cell is making millions of these chemicals and we showed they could exceed their natural yield by close to 200 percent,” Nagpal said.
The microbes, which lie dormant in water, release their resulting product to the surface, where it can be skimmed off and harvested for manufacturing. Different combinations of dots and light produce different products: Green wavelengths cause the bacteria to consume nitrogen and produce ammonia while redder wavelengths make the microbes feast on CO2 to produce plastic instead.
The process also shows promising signs of being able to operate at scale. The study found that even when the microbial factories were activated consistently for hours at a time, they showed few signs of exhaustion or depletion, indicating that the cells can regenerate and thus limit the need for rotation.
“We were very surprised that it worked as elegantly as it did,” Nagpal said. “We’re just getting started with the synthetic applications.”
The ideal futuristic scenario, Nagpal said, would be to have single-family homes and businesses pipe their CO2 emissions directly to a nearby holding pond, where microbes would convert them to a bioplastic. The owners would be able to sell the resulting product for a small profit while essentially offsetting their own carbon footprint.
“Even if the margins are low and it can’t compete with petrochemicals on a pure cost basis, there is still societal benefit to doing this,” Nagpal said. “If we could convert even a small fraction of local ditch ponds, it would have a sizeable impact on the carbon output of towns. It wouldn’t be asking much for people to implement. Many already make beer at home, for example, and this is no more complicated.”
The focus now, he said, will shift to optimizing the conversion process and bringing on new undergraduate students. Nagpal is looking to convert the project into an undergraduate lab experiment in the fall semester, funded by a CU Boulder Engineering Excellence Fund grant. Nagpal credits his current students with sticking with the project over the course of many years.
“It has been a long journey and their work has been invaluable,” he said. “I think these results show that it was worth it.”
This bacterium (bacteria being the plural) loves gold, which is lucky for anyone trying to develop artificial photosynthesis.From an October 9, 2018 news item on ScienceDaily,
A bacterium named Moorella thermoacetica won’t work for free. But UC Berkeley [University of California at Berkeley] researchers have figured out it has an appetite for gold. And in exchange for this special treat, the bacterium has revealed a more efficient path to producing solar fuels through artificial photosynthesis.
M. thermoacetica first made its debut as the first non-photosensitive bacterium to carry out artificial photosynthesis (link is external) in a study led by Peidong Yang, a professor in UC Berkeley’s College of Chemistry. By attaching light-absorbing nanoparticles made of cadmium sulfide (CdS) to the bacterial membrane exterior, the researchers turned M. thermoacetica into a tiny photosynthesis machine, converting sunlight and carbon dioxide into useful chemicals.
Now Yang and his team of researchers have found a better way to entice this CO2-hungry bacterium into being even more productive. By placing light-absorbing gold nanoclusters inside the bacterium, they have created a biohybrid system that produces a higher yield of chemical products than previously demonstrated. The research, funded by the National Institutes of Health, was published on Oct. 1 in Nature Nanotechnology (link is external).
For the first hybrid model, M. thermoacetica-CdS, the researchers chose cadmium sulfide as the semiconductor for its ability to absorb visible light. But because cadmium sulfide is toxic to bacteria, the nanoparticles had to be attached to the cell membrane “extracellularly,” or outside the M. thermoacetica-CdS system. Sunlight excites each cadmium-sulfide nanoparticle into generating a charged particle known as an electron. As these light-generated electrons travel through the bacterium, they interact with multiple enzymes in a process known as “CO2 reduction,” triggering a cascade of reactions that eventually turns CO2 into acetate, a valuable chemical for making solar fuels.
But within the extracellular model, the electrons end up interacting with other chemicals that have no part in turning CO2 into acetate. And as a result, some electrons are lost and never reach the enzymes. So to improve what’s known as “quantum efficiency,” or the bacterium’s ability to produce acetate each time it gains an electron, the researchers found another semiconductor: nanoclusters made of 22 gold atoms (Au22), a material that M. thermoacetica took a surprising shine to.
Figure: A single nanocluster of 22 gold atoms – Au22 – is only 1 nanometer in diameter, allowing it to easily slip through the bacterial cell wall.
“We selected Au22 because it’s ideal for absorbing visible light and has the potential for driving the CO2 reduction process, but we weren’t sure whether it would be compatible with the bacteria,” Yang said. “When we inspected them under the microscope, we discovered that the bacteria were loaded with these Au22 clusters – and were still happily alive.”
The researchers also selected Au22 – dubbed by the researchers as “magic” gold nanoclusters – for its ultrasmall size: A single Au22nanocluster is only 1 nanometer in diameter, allowing each nanocluster to easily slip through the bacterial cell wall.
“By feeding bacteria with Au22 nanoclusters, we’ve effectively streamlined the electron transfer process for the CO2 reduction pathway inside the bacteria, as evidenced by a 2.86 percent quantum efficiency – or 33 percent more acetate produced within the M. thermoacetica-Au22 system than the CdS model,” Yang said.
The magic gold nanocluster is the latest discovery coming out of Yang’s lab, which for the past six years has focused on using biohybrid nanostructures to convert CO2 into useful chemicals as part of an ongoing effort to find affordable, abundant resources for renewable fuels, and potential solutions to thwart the effects of climate change.
“Next, we’d like to find a way to reduce costs, improve the lifetimes for these biohybrid systems, and improve quantum efficiency,” Yang said. “By continuing to look at the fundamental aspect of how gold nanoclusters are being photoactivated, and by following the electron transfer process within the CO2 reduction pathway, we hope to find even better solutions.”
Co-authors with Yang are UC Berkeley graduate student Hao Zhang and former postdoctoral fellow Hao Liu, now at Donghua University in Shanghai, China.
These don’t look like any clams I’ve ever seen but that is the point of Cynthia Barnett’s absorbing Sept. 10, 2018 article for The Atlantic (Note: A link has been removed),
Snorkeling amid the tree-tangled rock islands of Ngermid Bay in the western Pacific nation of Palau, Alison Sweeney lingers at a plunging coral ledge, photographing every giant clam she sees along a 50-meter transect. In Palau, as in few other places in the world, this means she is going to be underwater for a skin-wrinkling long time.
At least the clams are making it easy for Sweeney, a biophysicist at the University of Pennsylvania. The animals plump from their shells like painted lips, shimmering in blues, purples, greens, golds, and even electric browns. The largest are a foot across and radiate from the sea floor, but most are the smallest of the giant clams, five-inch Tridacna crocea, living higher up on the reef. Their fleshy Technicolor smiles beam in all directions from the corals and rocks of Ngermid Bay.
…
… Some of the corals are bleached from the conditions in Ngermid Bay, where naturally high temperatures and acidity mirror the expected effects of climate change on the global oceans. (Ngermid Bay is more commonly known as “Nikko Bay,” but traditional leaders and government officials are working to revive the indigenous name of Ngermid.)
Even those clams living on bleached corals are pulsing color, like wildflowers in a white-hot desert. Sweeney’s ponytail flows out behind her as she nears them with her camera. They startle back into their fluted shells. Like bashful fairytale creatures cursed with irresistible beauty, they cannot help but draw attention with their sparkly glow.
Barnett makes them seem magical and perhaps they are (Note: A link has been removed),
It’s the glow that drew Sweeney’s attention to giant clams, and to Palau, a tiny republic of more than 300 islands between the Philippines and Guam. Its sun-laden waters are home to seven of the world’s dozen giant-clam species, from the storied Tridacna gigas—which can weigh an estimated 550 pounds and measure over four feet across—to the elegantly fluted Tridacna squamosa. Sweeney first came to the archipelago in 2009, while working on animal iridescence as a post-doctoral fellow at the University of California at Santa Barbara. Whether shimmering from a blue morpho butterfly’s wings or a squid’s skin, iridescence is almost always associated with a visual signal—one used to attract mates or confuse predators. Giant clams’ luminosity is not such a signal. So, what is it?
In the years since, Sweeney and her colleagues have discovered that the clams’ iridescence is essentially the outer glow of a solar transformer—optimized over millions of years to run on sunlight and algal biofuel. Giant clams reach their cartoonish proportions thanks to an exceptional ability to grow their own photosynthetic algae in vertical farms spread throughout their flesh. Sweeney and other scientists think this evolved expertise may shed light on alternative fuel technologies and other industrial solutions for a warming world.
Barnett goes on to describe Palau’s relationship to the clams and the clams’ environment,
Palau’s islands have been inhabited for at least 3,400 years, and from the start, giant clams were a staple of diet, daily life, and even deity. Many of the islands’ oldest-surviving tools are crafted of thick giant-clam shell: arched-blade adzes, fishhooks, gougers, heavy taro-root pounders. Giant-clam shell makes up more than three-fourths of some of the oldest shell middens in Palau, a percentage that decreases through the centuries. Archaeologists suggest that the earliest islanders depleted the giant clams that crowded the crystalline shallows, then may have self-corrected. Ancient Palauan conservation law, known as bul, prohibited fishing during critical spawning periods, or when a species showed signs of over-harvesting.
Before the Christianity that now dominates Palauan religion sailed in on eighteenth-century mission ships, the culture’s creation lore began with a giant clam called to life in an empty sea. The clam grew bigger and bigger until it sired Latmikaik, the mother of human children, who birthed them with the help of storms and ocean currents.
The legend evokes giant clams in their larval phase, moving with the currents for their first two weeks of life. Before they can settle, the swimming larvae must find and ingest one or two photosynthetic alga, which later multiply, becoming self-replicating fuel cells. After the larvae down the alga and develop a wee shell and a foot, they kick around like undersea farmers, looking for a sunny spot for their crop. When they’ve chosen a well-lit home in a shallow lagoon or reef, they affix to the rock, their shell gaping to the sky. After the sun hits and photosynthesis begins, the microalgae will multiply to millions, or in the case of T. gigas, billions, and clam and algae will live in symbiosis for life.
…
Giant clam is a beloved staple in Palau and many other Pacific islands, prepared raw with lemon, simmered into coconut soup, baked into a savory pancake, or sliced and sautéed in a dozen other ways. But luxury demand for their ivory-like shells and their adductor muscle, which is coveted as high-end sashimi and an alleged aphrodisiac, has driven T. gigas extinct in China, Taiwan, and other parts of their native habitat. Some of the toughest marine-protection laws in the world, along with giant-clam aquaculture pioneered here, have helped Palau’s wild clams survive. The Palau Mariculture Demonstration Center raises hundreds of thousands of giant clams a year, supplying local clam farmers who sell to restaurants and the aquarium trade and keeping pressure off the wild population. But as other nations have wiped out their clams, Palau’s 230,000-square-mile ocean territory is an increasing target of illegal foreign fishers.
Barnett delves into how the country of Palau is responding to the voracious appetite for the giant clams and other marine life,
Palau, drawing on its ancient conservation tradition of bul, is fighting back. In 2015, President Tommy Remengesau Jr. signed into law the Palau National Marine Sanctuary Act, which prohibits fishing in 80 percent of Palau’s Exclusive Economic Zone and creates a domestic fishing area in the remaining 20 percent, set aside for local fishers selling to local markets. In 2016, the nation received a $6.6 million grant from Japan to launch a major renovation of the Palau Mariculture Demonstration Center. Now under construction at the waterfront on the southern tip of Malakal Island, the new facility will amp up clam-aquaculture research and increase giant-clam production five-fold, to more than a million seedlings a year.
Last year, Palau amended its immigration policy to require that all visitors sign a pledge to behave in an ecologically responsible manner. The pledge, stamped into passports by an immigration officer who watches you sign, is written to the island’s children:
Children of Palau, I take this pledge, as your guest, to preserve and protect your beautiful and unique island home. I vow to tread lightly, act kindly and explore mindfully. I shall not take what is not given. I shall not harm what does not harm me. The only footprints I shall leave are those that will wash away.
The pledge is winning hearts and public-relations awards. But Palau’s existential challenge is still the collective “we,” the world’s rising carbon emissions and the resulting upturns in global temperatures, sea levels, and destructive storms.
F. Umiich Sengebau, Palau’s Minister for Natural Resources, Environment, and Tourism, grew up on Koror and is full of giant-clam proverbs, wisdom and legends from his youth. He tells me a story I also heard from an elder in the state of Airai: that in old times, giant clams were known as “stormy-weather food,” the fresh staple that was easy to collect and have on hand when it was too stormy to go out fishing.
As Palau faces the storms of climate change, Sengebau sees giant clams becoming another sort of stormy-weather food, serving as a secure source of protein; a fishing livelihood; a glowing icon for tourists; and now, an inspiration for alternative energy and other low-carbon technologies. “In the old days, clams saved us,” Sengebau tells me. “I think there’s a lot of power in that, a great power and meaning in the history of clams as food, and now clams as science.”
The Atlantic is expanding the global footprint of its science writing today with a multi-year series to investigate life in all of its multitudes. The series, “Life Up Close,” created with support from Howard Hughes Medical Institute’s Department of Science Education (HHMI), begins today at TheAtlantic.com. In the first piece for the project, “The Zombie Diseases of Climate Change,” The Atlantic’s Robinson Meyer travels to Greenland to report on the potentially dangerous microbes emerging from thawing Arctic permafrost.
The project is ambitious in both scope and geographic reach, and will explore how life is adapting to our changing planet. Journalists will travel the globe to examine these changes as they happen to microbes, plants, and animals in oceans, grasslands, forests, deserts, and the icy poles. The Atlantic will question where humans should look for life next: from the Martian subsurface, to Europa’s oceans, to the atmosphere of nearby stars and beyond. “Life Up Close” will feature at least twenty reported pieces continuing through 2018.
“The Atlantic has been around for 160 years, but that’s a mere pinpoint in history when it comes to questions of life and where it started, and where we’re going,” said Ross Andersen, The Atlantic’s senior editor who oversees science, tech, and health. “The questions that this project will set out to tackle are critical; and this support will allow us to cover new territory in new and more ambitious ways.”
…
About The Atlantic:
Founded in 1857 and today one of the fastest growing media platforms in the industry, The Atlantic has throughout its history championed the power of big ideas and continues to shape global debate across print, digital, events, and video platforms. With its award-winning digital presence TheAtlantic.com and CityLab.com on cities around the world, The Atlantic is a multimedia forum on the most critical issues of our times—from politics, business, urban affairs, and the economy, to technology, arts, and culture. The Atlantic is celebrating its 160th anniversary this year. Bob Cohn is president of The Atlantic and Jeffrey Goldberg is editor in chief.
About the Howard Hughes Medical Institute (HHMI) Department of Science Education:
HHMI is the leading private nonprofit supporter of scientific research and science education in the United States. The Department of Science Education’s BioInteractive division produces free, high quality educational media for science educators and millions of students around the globe, its HHMI Tangled Bank Studios unit crafts powerful stories of scientific discovery for television and big screens, and its grants program aims to transform science education in universities and colleges. For more information, visit www.hhmi.org.
Getting back to the giant clams, sometimes all you can do is marvel, eh?
Kudos to anyone who recognized the reference to Pauline Kael (she changed film criticism forever) and her book “I Lost it at the Movies.” Of course, her book title was a bit of sexual innuendo, quite risqué for an important film critic in 1965 but appropriate for a period (the 1960s) associated with a sexual revolution. (There’s more about the 1960’s sexual revolution in the US along with mention of a prior sexual revolution in the 1920s in this Wikipedia entry.)
The title for this commentary is based on an anecdote from Dr. Andrew Maynard’s (director of the Arizona State University [ASU] Risk Innovation Lab) popular science and technology book, “Films from the Future: The Technology and Morality of Sci-Fi Movies.”
The ‘title-inspiring’ anecdote concerns Maynard’s first viewing of ‘2001: A Space Odyssey, when as a rather “bratty” 16-year-old who preferred to read science fiction, he discovered new ways of seeing and imaging the world. Maynard isn’t explicit about when he became a ‘techno nerd’ or how movies gave him an experience books couldn’t but presumably at 16 he was already gearing up for a career in the sciences. That ‘movie’ revelation received in front of a black and white television on January 1,1982 eventually led him to write, “Films from the Future.” (He has a PhD in physics which he is now applying to the field of risk innovation. For a more detailed description of Dr. Maynard and his work, there’s his ASU profile webpage and, of course, the introduction to his book.)
The book is quite timely. I don’t know how many people have noticed but science and scientific innovation is being covered more frequently in the media than it has been in many years. Science fairs and festivals are being founded on what seems to be a daily basis and you can now find science in art galleries. (Not to mention the movies and television where science topics are covered in comic book adaptations, in comedy, and in standard science fiction style.) Much of this activity is centered on what’s called ’emerging technologies’. These technologies are why people argue for what’s known as ‘blue sky’ or ‘basic’ or ‘fundamental’ science for without that science there would be no emerging technology.
Films from the Future
Isn’t reading the Table of Contents (ToC) the best way to approach a book? (From Films from the Future; Note: The formatting has been altered),
Table of Contents Chapter One
In the Beginning 14
Beginnings 14
Welcome to the Future 16
The Power of Convergence 18
Socially Responsible Innovation 21
A Common Point of Focus 25
Spoiler Alert 26 Chapter Two
Jurassic Park: The Rise of Resurrection Biology 27
When Dinosaurs Ruled the World 27
De-Extinction 31
Could We, Should We? 36
The Butterfly Effect 39
Visions of Power 43 Chapter Three
Never Let Me Go: A Cautionary Tale of Human Cloning 46
Sins of Futures Past 46
Cloning 51
Genuinely Human? 56
Too Valuable to Fail? 62 Chapter Four
Minority Report: Predicting Criminal Intent 64
Criminal Intent 64
The “Science” of Predicting Bad Behavior 69
Criminal Brain Scans 74
Machine Learning-Based Precognition 77
Big Brother, Meet Big Data 79 Chapter Five
Limitless: Pharmaceutically-enhanced Intelligence 86
A Pill for Everything 86
The Seduction of Self-Enhancement 89
Nootropics 91
If You Could, Would You? 97
Privileged Technology 101
Our Obsession with Intelligence 105 Chapter Six
Elysium: Social Inequity in an Age of Technological
Extremes 110
The Poor Shall Inherit the Earth 110
Bioprinting Our Future Bodies 115
The Disposable Workforce 119
Living in an Automated Future 124 Chapter Seven
Ghost in the Shell: Being Human in an
Augmented Future 129
Through a Glass Darkly 129
Body Hacking 135
More than “Human”? 137
Plugged In, Hacked Out 142
Your Corporate Body 147 Chapter Eight
Ex Machina: AI and the Art of Manipulation 154
Plato’s Cave 154
The Lure of Permissionless Innovation 160
Technologies of Hubris 164
Superintelligence 169
Defining Artificial Intelligence 172
Artificial Manipulation 175 Chapter Nine
Transcendence: Welcome to the Singularity 180
Visions of the Future 180
Technological Convergence 184
Enter the Neo-Luddites 190
Techno-Terrorism 194
Exponential Extrapolation 200
Make-Believe in the Age of the Singularity 203 Chapter Ten
The Man in the White Suit: Living in a Material World 208
There’s Plenty of Room at the Bottom 208
Mastering the Material World 213
Myopically Benevolent Science 220
Never Underestimate the Status Quo 224
It’s Good to Talk 227 Chapter Eleven
Inferno: Immoral Logic in an Age of
Genetic Manipulation 231
Decoding Make-Believe 231
Weaponizing the Genome 234
Immoral Logic? 238
The Honest Broker 242
Dictating the Future 248 Chapter Twelve
The Day After Tomorrow: Riding the Wave of
Climate Change 251
Our Changing Climate 251
Fragile States 255
A Planetary “Microbiome” 258
The Rise of the Anthropocene 260
Building Resiliency 262
Geoengineering the Future 266 Chapter Thirteen
Contact: Living by More than Science Alone 272
An Awful Waste of Space 272
More than Science Alone 277
Occam’s Razor 280
What If We’re Not Alone? 283 Chapter Fourteen
Looking to the Future 288
Acknowledgments 293
The ToC gives the reader a pretty clue as to where the author is going with their book and Maynard explains how he chose his movies in his introductory chapter (from Films from the Future),
“There are some quite wonderful science fiction movies that didn’t make the cut because they didn’t fit the overarching narrative (Blade Runner and its sequel Blade Runner 2049, for instance, and the first of the Matrix trilogy). There are also movies that bombed with the critics, but were included because they ably fill a gap in the bigger story around emerging and converging technologies. Ultimately, the movies that made the cut were chosen because, together, they create an overarching narrative around emerging trends in biotechnologies, cybertechnologies, and materials-based technologies, and they illuminate a broader landscape around our evolving relationship with science and technology. And, to be honest, they are all movies that I get a kick out of watching.” (p. 17)
Jurassic Park (Chapter Two)
Dinosaurs do not interest me—they never have. Despite my profound indifference I did see the movie, Jurassic Park, when it was first released (someone talked me into going). And, I am still profoundly indifferent. Thankfully, Dr. Maynard finds meaning and a connection to current trends in biotechnology,
Jurassic Park is unabashedly a movie about dinosaurs. But it’s also a movie about greed, ambition, genetic engineering, and human folly—all rich pickings for thinking about the future, and what could possibly go wrong. (p. 28)
…
What really stands out with Jurassic Park, over twenty-five years later, is how it reveals a very human side of science and technology. This comes out in questions around when we should tinker with technology and when we should leave well enough alone. But there is also a narrative here that appears time and time again with the movies in this book, and that is how we get our heads around the sometimes oversized roles mega-entrepreneurs play in dictating how new tech is used, and possibly abused. These are all issues that are just as relevant now as they were in 1993, and are front and center of ensuring that the technologyenabled future we’re building is one where we want to live, and not one where we’re constantly fighting for our lives. (pp. 30-1)
He also describes a connection to current trends in biotechnology,
De-Extinction
In a far corner of Siberia, two Russians—Sergey Zimov and his son Nikita—are attempting to recreate the Ice Age. More precisely, their vision is to reconstruct the landscape and ecosystem of northern Siberia in the Pleistocene, a period in Earth’s history that stretches from around two and a half million years ago to eleven thousand years ago. This was a time when the environment was much colder than now, with huge glaciers and ice sheets flowing over much of the Earth’s northern hemisphere. It was also a time when humans
coexisted with animals that are long extinct, including saber-tooth cats, giant ground sloths, and woolly mammoths.
The Zimovs’ ambitions are an extreme example of “Pleistocene rewilding,” a movement to reintroduce relatively recently extinct large animals, or their close modern-day equivalents, to regions where they were once common. In the case of the Zimovs, the
father-and-son team believe that, by reconstructing the Pleistocene ecosystem in the Siberian steppes and elsewhere, they can slow down the impacts of climate change on these regions. These areas are dominated by permafrost, ground that never thaws through
the year. Permafrost ecosystems have developed and survived over millennia, but a warming global climate (a theme we’ll come back to in chapter twelve and the movie The Day After Tomorrow) threatens to catastrophically disrupt them, and as this happens, the impacts
on biodiversity could be devastating. But what gets climate scientists even more worried is potentially massive releases of trapped methane as the permafrost disappears.
Methane is a powerful greenhouse gas—some eighty times more effective at exacerbating global warming than carbon dioxide— and large-scale releases from warming permafrost could trigger catastrophic changes in climate. As a result, finding ways to keep it in the ground is important. And here the Zimovs came up with a rather unusual idea: maintaining the stability of the environment by reintroducing long-extinct species that could help prevent its destruction, even in a warmer world. It’s a wild idea, but one that has some merit.8 As a proof of concept, though, the Zimovs needed somewhere to start. And so they set out to create a park for deextinct Siberian animals: Pleistocene Park.9
Pleistocene Park is by no stretch of the imagination a modern-day Jurassic Park. The dinosaurs in Hammond’s park date back to the Mesozoic period, from around 250 million years ago to sixty-five million years ago. By comparison, the Pleistocene is relatively modern history, ending a mere eleven and a half thousand years ago. And the vision behind Pleistocene Park is not thrills, spills, and profit, but the serious use of science and technology to stabilize an increasingly unstable environment. Yet there is one thread that ties them together, and that’s using genetic engineering to reintroduce extinct species. In this case, the species in question is warm-blooded and furry: the woolly mammoth.
The idea of de-extinction, or bringing back species from extinction (it’s even called “resurrection biology” in some circles), has been around for a while. It’s a controversial idea, and it raises a lot of tough ethical questions. But proponents of de-extinction argue
that we’re losing species and ecosystems at such a rate that we can’t afford not to explore technological interventions to help stem the flow.
Early approaches to bringing species back from the dead have involved selective breeding. The idea was simple—if you have modern ancestors of a recently extinct species, selectively breeding specimens that have a higher genetic similarity to their forebears can potentially help reconstruct their genome in living animals. This approach is being used in attempts to bring back the aurochs, an ancestor of modern cattle.10 But it’s slow, and it depends on
the fragmented genome of the extinct species still surviving in its modern-day equivalents.
An alternative to selective breeding is cloning. This involves finding a viable cell, or cell nucleus, in an extinct but well-preserved animal and growing a new living clone from it. It’s definitely a more appealing route for impatient resurrection biologists, but it does mean getting your hands on intact cells from long-dead animals and devising ways to “resurrect” these, which is no mean feat. Cloning has potential when it comes to recently extinct species whose cells have been well preserved—for instance, where the whole animal has become frozen in ice. But it’s still a slow and extremely limited option.
Which is where advances in genetic engineering come in.
The technological premise of Jurassic Park is that scientists can reconstruct the genome of long-dead animals from preserved DNA fragments. It’s a compelling idea, if you think of DNA as a massively long and complex instruction set that tells a group of biological molecules how to build an animal. In principle, if we could reconstruct the genome of an extinct species, we would have the basic instruction set—the biological software—to reconstruct
individual members of it.
The bad news is that DNA-reconstruction-based de-extinction is far more complex than this. First you need intact fragments of DNA, which is not easy, as DNA degrades easily (and is pretty much impossible to obtain, as far as we know, for dinosaurs). Then you
need to be able to stitch all of your fragments together, which is akin to completing a billion-piece jigsaw puzzle without knowing what the final picture looks like. This is a Herculean task, although with breakthroughs in data manipulation and machine learning,
scientists are getting better at it. But even when you have your reconstructed genome, you need the biological “wetware”—all the stuff that’s needed to create, incubate, and nurture a new living thing, like eggs, nutrients, a safe space to grow and mature, and so on. Within all this complexity, it turns out that getting your DNA sequence right is just the beginning of translating that genetic code into a living, breathing entity. But in some cases, it might be possible.
In 2013, Sergey Zimov was introduced to the geneticist George Church at a conference on de-extinction. Church is an accomplished scientist in the field of DNA analysis and reconstruction, and a thought leader in the field of synthetic biology (which we’ll come
back to in chapter nine). It was a match made in resurrection biology heaven. Zimov wanted to populate his Pleistocene Park with mammoths, and Church thought he could see a way of
achieving this.
What resulted was an ambitious project to de-extinct the woolly mammoth. Church and others who are working on this have faced plenty of hurdles. But the technology has been advancing so fast that, as of 2017, scientists were predicting they would be able to reproduce the woolly mammoth within the next two years.
One of those hurdles was the lack of solid DNA sequences to work from. Frustratingly, although there are many instances of well preserved woolly mammoths, their DNA rarely survives being frozen for tens of thousands of years. To overcome this, Church and others
have taken a different tack: Take a modern, living relative of the mammoth, and engineer into it traits that would allow it to live on the Siberian tundra, just like its woolly ancestors.
Church’s team’s starting point has been the Asian elephant. This is their source of base DNA for their “woolly mammoth 2.0”—their starting source code, if you like. So far, they’ve identified fifty plus gene sequences they think they can play with to give their modern-day woolly mammoth the traits it would need to thrive in Pleistocene Park, including a coat of hair, smaller ears, and a constitution adapted to cold.
The next hurdle they face is how to translate the code embedded in their new woolly mammoth genome into a living, breathing animal. The most obvious route would be to impregnate a female Asian elephant with a fertilized egg containing the new code. But Asian elephants are endangered, and no one’s likely to allow such cutting edge experimentation on the precious few that are still around, so scientists are working on an artificial womb for their reinvented woolly mammoth. They’re making progress with mice and hope to crack the motherless mammoth challenge relatively soon.
It’s perhaps a stretch to call this creative approach to recreating a species (or “reanimation” as Church refers to it) “de-extinction,” as what is being formed is a new species. … (pp. 31-4)
This selection illustrates what Maynard does so very well throughout the book where he uses each film as a launching pad for a clear, readable description of relevant bits of science so you understand why the premise was likely, unlikely, or pure fantasy while linking it to contemporary practices, efforts, and issues. In the context of Jurassic Park, Maynard goes on to raise some fascinating questions such as: Should we revive animals rendered extinct (due to obsolescence or inability to adapt to new conditions) when we could develop new animals?
General thoughts
‘Films for the Future’ offers readable (to non-scientific types) science, lively writing, and the occasional ‘memorish’ anecdote. As well, Dr. Maynard raises the curtain on aspects of the scientific enterprise that most of us do not get to see. For example, the meeting between Sergey Zimov and George Church and how it led to new ‘de-extinction’ work’. He also describes the problems that the scientists encountered and are encountering. This is in direct contrast to how scientific work is usually presented in the news media as one glorious breakthrough after the next.
Maynard does discuss the issues of social inequality and power and ownership. For example, who owns your transplant or data? Puzzlingly, he doesn’t touch on the current environment where scientists in the US and elsewhere are encouraged/pressured to start up companies commercializing their work.
Nor is there any mention of how universities are participating in this grand business experiment often called ‘innovation’. (My March 15, 2017 posting describes an outcome for the CRISPR [gene editing system] patent fight taking place between Harvard University’s & MIT’s [Massachusetts Institute of Technology] Broad Institute vs the University of California at Berkeley and my Sept. 11, 2018 posting about an art/science exhibit in Vancouver [Canada] provides an update for round 2 of the Broad Institute vs. UC Berkeley patent fight [scroll down about 65% of the way.) *To read about how my ‘cultural blindness’ shows up here scroll down to the single asterisk at the end.*
There’s a foray through machine-learning and big data as applied to predictive policing in Maynard’s ‘Minority Report’ chapter (my November 23, 2017 posting describes Vancouver’s predictive policing initiative [no psychics involved], the first such in Canada). There’s no mention of surveillance technology, which if I recall properly was part of the future environment, both by the state and by corporations. (Mia Armstrong’s November 15, 2018 article for Slate on Chinese surveillance being exported to Venezuela provides interesting insight.)
The gaps are interesting and various. This of course points to a problem all science writers have when attempting an overview of science. (Carl Zimmer’s latest, ‘She Has Her Mother’s Laugh: The Powers, Perversions, and Potential of Heredity’] a doorstopping 574 pages, also has some gaps despite his focus on heredity,)
Maynard has worked hard to give an comprehensive overview in a remarkably compact 279 pages while developing his theme about science and the human element. In other words, science is not monolithic; it’s created by human beings and subject to all the flaws and benefits that humanity’s efforts are always subject to—scientists are people too.
The readership for ‘Films from the Future’ spans from the mildly interested science reader to someone like me who’s been writing/blogging about these topics (more or less) for about 10 years. I learned a lot reading this book.
Next time, I’m hopeful there’ll be a next time, Maynard might want to describe the parameters he’s set for his book in more detail that is possible in his chapter headings. He could have mentioned that he’s not a cinéaste so his descriptions of the movies are very much focused on the story as conveyed through words. He doesn’t mention colour palates, camera angles, or, even, cultural lenses.
Take for example, his chapter on ‘Ghost in the Shell’. Focused on the Japanese animation film and not the live action Hollywood version he talks about human enhancement and cyborgs. The Japanese have a different take on robots, inanimate objects, and, I assume, cyborgs than is found in Canada or the US or Great Britain, for that matter (according to a colleague of mine, an Englishwoman who lived in Japan for ten or more years). There’s also the chapter on the Ealing comedy, The Man in The White Suit, an English film from the 1950’s. That too has a cultural (as well as, historical) flavour but since Maynard is from England, he may take that cultural flavour for granted. ‘Never let me go’ in Chapter Two was also a UK production, albeit far more recent than the Ealing comedy and it’s interesting to consider how a UK production about cloning might differ from a US or Chinese or … production on the topic. I am hearkening back to Maynard’s anecdote about movies giving him new ways of seeing and imagining the world.
There’s a corrective. A couple of sentences in Maynard’s introductory chapter cautioning that in depth exploration of ‘cultural lenses’ was not possible without expanding the book to an unreadable size followed by a sentence in each of the two chapters that there are cultural differences.
One area where I had a significant problem was with regard to being “programmed” and having “instinctual” behaviour,
As a species, we are embarrassingly programmed to see “different” as “threatening,” and to take instinctive action against it. It’s a trait that’s exploited in many science fiction novels and movies, including those in this book. If we want to see the rise of increasingly augmented individuals, we need to be prepared for some social strife. (p. 136)
These concepts are much debated in the social sciences and there are arguments for and against ‘instincts regarding strangers and their possible differences’. I gather Dr. Maynard hies to the ‘instinct to defend/attack’ school of thought.
One final quandary, there was no sex and I was expecting it in the Ex Machina chapter, especially now that sexbots are about to take over the world (I exaggerate). Certainly, if you’re talking about “social strife,” then sexbots would seem to be fruitful line of inquiry, especially when there’s talk of how they could benefit families (my August 29, 2018 posting). Again, there could have been a sentence explaining why Maynard focused almost exclusively in this chapter on the discussions about artificial intelligence and superintelligence.
Taken in the context of the book, these are trifling issues and shouldn’t stop you from reading Films from the Future. What Maynard has accomplished here is impressive and I hope it’s just the beginning.
Final note
Bravo Andrew! (Note: We’ve been ‘internet acquaintances/friends since the first year I started blogging. When I’m referring to him in his professional capacity, he’s Dr. Maynard and when it’s not strictly in his professional capacity, it’s Andrew. For this commentary/review I wanted to emphasize his professional status.)
*Nov. 23, 2018: I should have been more specific and said ‘academic scientists’. In Canada, the great percentage of scientists are academic. It’s to the point where the OECD (Organization for Economic Cooperation and Development) has noted that amongst industrialized countries, Canada has very few industrial scientists in comparison to the others.