Tag Archives: climate change

Comments on today’s (September 20, 2023) media briefing for the US National Science Foundation’s (NSF) inaugural Global Centers Competition awards

I almost missed the briefing but the folks at the US National Science Foundation (NSF) kindly allowed me to join the meeting despite being 10 minutes late. Before launching into my comments, here’s what we were discussing,

From a September 20, 2023 NSF media briefing (received via email),

U. S. National Science Foundation Media Briefing on the Inaugural Global Centers Awards  

Please join the U.S. National Science Foundation this Wednesday September 20th from 12:30 – 1:30 p.m. EST for a discussion and Q&A on the inaugural Global Centers Competition awards. Earlier this week, NSF along with partner funding agencies from Australia, Canada, and the United Kingdom — announced awards totaling $76.4 million for the inaugural Global Centers Competition. These international, interdisciplinary collaborative research centers will apply best practices of broadening participation and community engagement to develop use-inspired research on climate change and clean energy. The centers will also create and promote opportunities for students and early-career researchers to gain education and training in world-class research while enhancing diversity, equity, inclusion, and accessibility.

NSF will have a panel of experts on hand to discuss and answer questions about these new Global Centers and how they will sync talent across the globe to generate the discoveries and solutions needed to empower resilient communities everywhere.

What: Panel discussion and Q&A on NSF’s Global Centers

When: 12:30 – 1:30 p.m. EST, Wednesday, September 20th, 2023

Where: This briefing [is over.]

Who: Scheduled panelists include…

Anne Emig is the Section Chief for the Programs and Analysis Section in the National Science Foundation Office of International Science and Engineering

Dr. Tanya Berger-Wolf is the Principal Investigator for the Global Centers Track 1 project on AI and Biodiversity Change as well as the Director of the Translational Data Analytics Institute and a Professor of Computer Science Engineering, Electrical and Computer Engineering, as well as Evolution, Ecology, and Organismal Biology at the Ohio State University

Dr. Meng Tao is the Principal Investigator for the Global Centers Track 1 project Global Hydrogen Production Technologies Center as well as a Professor, School of Electrical, Computer and Energy Engineering at Arizona State University

Dr. Ashish Sharma is the Principal Investigator for the Global Centers Track 1 project Clean Energy and Equitable Transportation Solutions as well as the Climate and Urban Sustainability Lead at the Discovery Partners Institute, University of Illinois System

Note: This briefing is only open to members of the media

I’m glad to have learned about this effort and applaud the NSF for its outreach efforts. By comparison, Canadian agencies (I’m looking at you, Natural Sciences and Engineering Council of Canada [NSERC] and Social Science and Humanities Research Council of Canada [SSHRC]) have a lot to learn.

There’s a little more about the Global Centers Competition awards in a September 18, 2023 NSF news release,

Today [September 18, 2023], the U.S. National Science Foundation — along with partner funding agencies from Australia, Canada, and the United Kingdom — announced awards totaling $76.4 million for the inaugural Global Centers Competition. These international, interdisciplinary collaborative research centers will apply best practices of broadening participation and community engagement to develop use-inspired research on climate change and clean energy. The centers will also create and promote opportunities for students and early-career researchers to gain education and training in world-class research while enhancing diversity, equity, inclusion, and accessibility.

“NSF builds capacity and advances its priorities through these centers of research excellence by uniting diverse teams from around the world,” said NSF Director Sethuraman Panchanathan. “Global Centers will sync talent across the globe to generate the discoveries and solutions needed to empower resilient communities everywhere.”

Global Centers are sponsored in part by a multilateral funding activity led by NSF and four partner funding organizations: Australia’s Commonwealth Scientific and Industrial Research Organization (CSIRO), Canada’s Natural Sciences and Engineering Research Council (NSERC) and Social Science and Humanities Research Council (SSHRC), and the United Kingdom’s UK Research and Innovation (UKRI).

Both collectively and independently, the centers will support convergent interdisciplinary research collaborations focused on assessing and mitigating the impacts of climate change on society, people, and communities. Outcomes from Global Centers’ activities will inform and catalyze the development of innovative solutions and technologies to address climate change. Examples include: enhancing awareness of critical information; advancing and advocating for decarbonization efforts; creating climate change adaptation plans tailored to specific localities and groups; using artificial intelligence to study responses of nature to climate change; transboundary water issues; and scaling the production of next-generation technologies aimed at achieving net zero. Several projects include partnerships with tribal groups or historically Black colleges and universities that will broaden participation.

“The National Science Foundation Global Centres initiative provides students and researchers a platform to advance innovative and interdisciplinary research and gain education and training opportunities in world-class research while also enhancing diversity, equity, inclusion and accessibility,” said NSERC President Alejandro Adem. “We at NSERC look forward to seeing the outcomes of the work being done by some of Canada and the world’s best and brightest minds to tackle one of the biggest issues of our time.”

The awards are divided into two tracks. Track 1 are Implementation grants with co-funding from international partners. Track 2 are Design grants meant to provide seed funding to develop the teams and the science for future competitions. Many additional countries are involved in Track 2 and will increase global engagement.

There are seven Track 1 Global Centers that involve research partnerships with Australia, Canada, and the U.K. Each Track 1 Global Center will be implemented by internationally dispersed teams consisting of U.S. and foreign researchers. U.S. researchers will be supported by NSF up to $5 million over four to five years, while foreign researchers will be supported by their respective country’s funding agency (CSIRO, NSERC, SSHRC and UKRI) with a comparable amount of funds.

There are 14 Track 2 Global Centers that are at the community-driven design stage. These centers’ teams involve U.S. researchers in partnerships with foreign researchers from any country. NSF will provide the U.S. researchers up to $250,000 of seed funding over a two-year period. These multidisciplinary, international teams will coordinate the research and education efforts needed to become competitive for Track-1 funding in the future.

“Our combined investment in Global Centers enables exciting researcher and innovation-led international and interdisciplinary collaboration to drive the energy transition,” said UKRI CEO, Dame Ottoline Leyser. “I look forward to seeing the creative solutions developed through these global collaborations.”

Kirsten Rose, Acting Chief Executive of CSIRO, said as Australia’s national science agency, CSIRO is proud to be part of a strong national contribution to solving this critical global challenge. “Partnering with the NSF’s Global Centers means Australia remains at the global forefront of work to build a clean hydrogen industry, build integrated and equitable energy systems, and partnering with regions and industries for a low emissions future.”

Track 1 (Implementation)

  • Global Hydrogen Production Technologies (HyPT) Center
    Grant number: 2330525
    Arizona State University and U.S. partner institutions: University of Michigan, Stanford University and Navajo Technical University.
    Quadrilateral research partnership with Australia, Canada, and the U.K.
    Critical and Emerging Tech: green hydrogen (renewable energy generation).
     
  • Electric Power Innovation for a Carbon-free Society (EPICS)
    Grant number: 2330450
    The Johns Hopkins University and U.S. partner institutions: Georgia Institute of Technology, University of California, Davis, and Resources for the Future.
    Trilateral research partnership with Australia and the U.K.
    Critical and Emerging Tech: renewable energy storage.
     
  • Global Nitrogen Innovation Center for Clean Energy and Environment (NICCEE)
    Grant number: 2330502
    University of Maryland Center for Environmental Sciences and U.S. partner institutions: New York University and University of Massachusetts Amherst.
    Trilateral research partnership with Canada and the U.K.
    Critical & Emerging Tech: green ammonia (bioeconomy + agriculture).
     
  • Understanding Climate Change Impacts on Transboundary Waters
    Grant number: 2330317
    University of Michigan and U.S. partner institutions: Cornell University, College of the Menominee Nation, Red Lake Nation and University of Wisconsin–Madison.
    Bilateral research partnership with Canada.
    Critical and Emerging Tech: N/A.
     
  • AI and Biodiversity Change (ABC)
    Grant number: 2330423 
    The Ohio State University and U.S. partner institutions: University of Pittsburgh and Massachusetts Institute of Technology.
    Bilateral Research partnership with Canada.
    Critical and Emerging Tech: AI.
     
  • U.S.-Canada Center on Climate-Resilient Western Interconnected Grid
    Grant number: 2330582                
    The University of Utah and U.S. partner institutions: University of California San Diego, The University of New Mexico, and The Nevada System of Higher Education.     
    Bilateral Research partnership with Canada.
    Critical and Emerging Tech: AI.
     
  • Clean Energy and Equitable Transportation Solutions
    Grant number: 2330565
    University of Illinois at Urbana-Champaign and U.S. partner institutions: University Corporation for Atmospheric Research and Arizona State University.
    Bilateral Research partnership with the U.K.
    Critical and Emerging Tech: N/A
     

Track 2 (Design)

  • Developing Solutions to Decarbonize Emissions and Fuels
    Grant number: 2330509              
    University of Maryland, College Park.
    International collaboration with Japan, Israel, and Ghana.             
     
  • Enhanced Wind Turbine Blade Durability
    Grant number: 2329911              
    Cornell University.
    International collaboration with Canada, the UK, Norway, Denmark, and Spain.
     
  • Building the Global Center for Forecasting Freshwater Futures
    Grant number: 2330211
    Virginia Tech.
    International collaboration with Australia.
     
  • Climate Risk and Resilience: Southeast Asia as a Living Lab (SEALL)
    Grant number: 2330308
    University of Illinois at Urbana-Champaign.
    International collaboration with Vietnam, Thailand, Singapore, and India.
     
  • Climate-Smart Food-Energy-Water Nexus in Small Farms
    Grant number: 2330505              
    The University of Tennessee Institute of Agriculture.        
    International collaboration with Argentina, Brazil, Guatemala, Panama, Cambodia, and Uganda.
     
  • Center for Household Energy and Thermal Resilience (HEaTR)
    Grant number: 2330533              
    Cornell University.
    International collaboration with India, the U.K, Ghana, and Singapore.
     
  • Enabling interdisciplinary wildfire research for community resilience
    Grant number: 2330343              
    Oregon State University.
    International collaborations with Australia and the U.K.
     
  • SuReMin: Sustainable, resilient, responsible global minerals supply chain
    Grant number: 2330041              
    Northwestern University.
    International collaboration with Chile.
     
  • Nature-based Urban Hydrology Center
    Grant number: 2330413              
    Villanova University.
    International collaboration with Canada, the U.K, Switzerland, Ireland, Australia, Chile, and Turkey.
     
  • A multi-disciplinary framework to combat climate-induced desert locust upsurges, outbreaks, and plagues in East Africa
    Grand number: 2330452
    Georgia State University.
    International collaboration with Ethiopia.
     
  • US-Africa Research Center for Clean Energy
    Grant number: 2330437
    Georgia Institute of Technology.
    International collaborations with Rwanda.
     
  • Equitable and User-Centric Energy Market for Resilient Grid-interactive Communities
    Grant number: 2330504
    Santa Clara University.
    International collaboration with Canada.
     
  • Energy Sovereignty for Indigenous Peoples (ESIP)
    Grant number: 2330387
    University of North Dakota.
    International collaboration with Canada.
     
  • Blue Climate Solutions
    Grant number: 2330518              
    University of Rhode Island.
    International collaboration with Indonesia.

For Canadian researchers who are interested, there’s a National Science Foundation Global Centres webpage on the NSERC website, which answers a lot of questions about the programme from a Canadian perspective. The application deadline for both tracks was May 10, 2023 and there’s no information (as of September 20, 2023) about future competitions. Nice to see the social science and humanities included in the form of a funding agency. (I think this might be the one compliment I deliver to a Canadian funding initiative this year. 🙂

For American researchers, there’s the NSF’s Global Centers webpage; for UK researchers, there’s the United Kingdom’s Research and Innovation’s Global Centres in clean energy and climate change webpage; and for Australian researchers, there’s the CSIRO’s National Science Foundation Global Centers webpage. Application deadlines have passed for all of these competitions and there’s no information (as of September 20, 2023) about future competitions.

A few comments

News about local and international affairs (see Seth Borenstein’s September 20, 2023 Associated Press article “UN chief warns of ‘gates of hell’ in climate summit, but carbon polluting nations stay silent”) and one’s own personal experience with climate issues can be discouraging at times so it’s heartening to see these efforts. Kudos to the organizers of the Global Centers programme and I wish all the researchers success.

Given how new these centers are, it’s understandable that the panelists would be a little fuzzy about specific although they’ve clearly considered and are attempting to address issues such as sharing data, trust, and outreach to various stakeholders and communities.

I wish I’d asked about cybersecurity when they were talking about data. Ah well, there was my question about outreach to people over the age of 50 or 55 as so much of their planning was focused on youth. The panelists who responded (Dr. Tanya Berger-Wolf, Dr. Meng Tao, and Dr. Ashish Sharma) did not seem to have done much thinking about seniors/elders/older people.

I believe bird watching (as mentioned by one of the panelists) does tend to attract older people but citizen science or other hobbies/programmes mentioned may or may not be a good source for seniors outreach. Almost all science outreach tilts to youth including citizen science.

With the planet is not doing so well and with the aging populations in Canada, the US, many European countries, China, Japan, and I’m sure many others perhaps some new thinking about ‘inclusivity’ might be in order. One suggestion, start thinking about age groups. In the same way that 20 is not 30, is not 40, so 55 is not 65, is not 75. One more thing, perhaps take into account life experience. Something that gets forgotten is that a lot of the programmes that people take for granted and a lot of the technology people use today was developed in the 1960s (e.g. Internet). That old person? Maybe it’s someone who founded the UN’s Environment Program (I was teaching a nanotechnology course in a seniors programme and asked students about themselves; I was intimidated by her credentials).

In the end, this Global Center initiative is heartening news.

Smart City tech brief: facial recognition, cybersecurity; privacy protection; and transparency

This May 10, 2022 Association for Computing Machinery (ACM) announcement (received via email) has an eye-catching head,

Should Smart Cities Adopt Facial Recognition, Remote Monitoring Software+Social Media to Police [verb] Info?

The Association for Computing Machinery, the largest and most prestigious computer science society worldwide (100,000 members) has released a report, ACM TechBrief: Smart Cities, for smart city planners to address 1) cybersecurity; 2) privacy protections; 3) fairness and transparency; and 4) sustainability when planning and designing systems, including climate impact. 

There’s a May 3, 2022 ACM news release about the latest technical brief,

The Association for Computing Machinery’s global Technology Policy Council (ACM TPC) just released, “ACM TechBrief: Smart Cities,” which highlights the challenges involved in deploying information and communication technology to create smart cities and calls for policy leaders planning such projects to do so without compromising security, privacy, fairness and sustainability. The TechBrief includes a primer on smart cities, key statistics about the growth and use of these technologies, and a short list of important policy implications.

“Smart cities” are municipalities that use a network of physical devices and computer technologies to make the delivery of public services more efficient and/or more environmentally friendly. Examples of smart city applications include using sensors to turn off streetlights when no one is present, monitoring traffic patterns to reduce roadway congestion and air pollution, or keeping track of home-bound medical patients in order to dispatch emergency responders when needed. Smart cities are an outgrowth of the Internet of Things (IoT), the rapidly growing infrastructure of literally billions of physical devices embedded with sensors that are connected to computers and the Internet.

The deployment of smart city technology is growing across the world, and these technologies offer significant benefits. For example, the TechBrief notes that “investing in smart cities could contribute significantly to achieving greenhouse gas emissions reduction targets,” and that “smart cities use digital innovation to make urban service delivery more efficient.”

Because of the meteoric growth and clear benefits of smart city technologies, the TechBrief notes that now is an urgent time to address some of the important public policy concerns that smart city technologies raise. The TechBrief lists four key policy implications that government officials, as well as the private companies that develop these technologies, should consider.

These include:

Cybersecurity risks must be considered at every stage of every smart city technology’s life cycle.

Effective privacy protection mechanisms must be an essential component of any smart city technology deployed.

Such mechanisms should be transparently fair to all city users, not just residents.

The climate impact of smart city infrastructures must be fully understood as they are being designed and regularly assessed after they are deployed

“Smart cities are fast becoming a reality around the world,”explains Chris Hankin, a Professor at Imperial College London and lead author of the ACM TechBrief on Smart Cities. “By 2025, 26% of all internet-connected devices will be used in a smart city application. As technologists, we feel we have a responsibility to raise important questions to ensure that these technologies best serve the public interest. For example, many people are unaware that some smart city technologies involve the collection of personally identifiable data. We developed this TechBrief to familiarize the public and lawmakers with this topic and present some key issues for consideration. Our overarching goal is to guide enlightened public policy in this area.”

“Our new TechBrief series builds on earlier and ongoing work by ACM’s technology policy committees,” added James Hendler, Professor at Rensselaer Polytechnic Institute and Chair of the ACM Technology Policy Council. “Because many smart city applications involve algorithms making decisions which impact people directly, this TechBrief calls for methods to ensure fairness and transparency in how these systems are developed. This reinforces an earlier statement we issued that outlined seven principles for algorithmic transparency and accountability. We also note that smart city infrastructures are especially vulnerable to malicious attacks.”

This TechBrief is the third in a series of short technical bulletins by ACM TPC that present scientifically grounded perspectives on the impact of specific developments or applications of technology. Designed to complement ACM’s activities in the policy arena, TechBriefs aim to inform policymakers, the public, and others about the nature and implications of information technologies. The first ACM TechBrief focused on climate change, while the second addressed facial recognition. Topics under consideration for future issues include quantum computing, election security, and encryption.

About the ACM Technology Policy Council

ACM’s global Technology Policy Council sets the agenda for ACM’s global policy activities and serves as the central convening point for ACM’s interactions with government organizations, the computing community, and the public in all matters of public policy related to computing and information technology. The Council’s members are drawn from ACM’s global membership. It coordinates the activities of ACM’s regional technology policy groups and sets the agenda for global initiatives to address evolving technology policy issues.

About ACM

ACM, the Association for Computing Machinery, is the world’s largest educational and scientific computing society, uniting educators, researchers and professionals to inspire dialogue, share resources and address the field’s challenges. ACM strengthens the computing profession’s collective voice through strong leadership, promotion of the highest standards, and recognition of technical excellence. ACM supports the professional growth of its members by providing opportunities for life-long learning, career development, and professional networking.

This is indeed a brief. I recommend reading it as it provides a very good overview to the topic of ‘smart cities’ and raises a question or two. For example, there’s this passage from the April 2022 Issue 3 Technical Brief on p. 2,

… policy makers should target broad and fair access and application of AI and, in general, ICT [information and communication technologies]. This can be achieved through transparent planning and decision-making processes for smart city infrastructure and application developments, such as open hearings, focus groups, and advisory panels. The goal must be to minimize potential harm while maximizing the benefits that algorithmic decision-making [emphasis mine] can bring

Is this algorithmic decision-making under human supervision? It doesn’t seem to be specified in the brief itself. It’s possible the answer lies elsewhere. After all, this is the third in the series.

Making carbon capture more efficient and cheaper with graphene filters

Years ago someone asked me if there was any nanotechnology research into carbon capture. I couldn’t answer the question at the time but since then I’ve been on the lookout for more on the topic. So, I’m happy to add this February 25, 2021 news item on Nanowerk to my growing number of carbon capture posts (Note: A link has been removed),

One of the main culprits of global warming is the vast amount of carbon dioxide pumped out into the atmosphere mostly from burning fossil fuels and the production of steel and cement. In response, scientists have been trying out a process that can sequester waste carbon dioxide, transporting it into a storage site, and then depositing it at a place where it cannot enter the atmosphere.

The problem is that capturing carbon from power plants and industrial emissions isn’t very cost-effective. The main reason is that waste carbon dioxide isn’t emitted pure, but is mixed with nitrogen and other gases, and extracting it from industrial emissions requires extra energy consumption – meaning a pricier bill.

Scientists have been trying to develop an energy-efficient carbon dioxide-filter. Referred to as a “membrane”, this technology can extract carbon dioxide out of the gas mix, which can then be either stored or converted into useful chemicals. “However, the performance of current carbon dioxide filters has been limited by the fundamental properties of currently available materials,” explains Professor Kumar Varoon Agrawal at EPFL’s School of Basic Sciences (EPFL Valais Wallis).

Now, Agrawal has led a team of chemical engineers to develop the world’s thinnest filter from graphene, the world-famous “wonder material” that won the Physics Nobel in 2010. But the graphene filter isn’t just the thinnest in the world, it can also separate carbon dioxide from a mix of gases such as those coming out of industrial emissions and do so with an efficiency and speed that surpasses most current filters.

A March 3, 2021 Ecole Polytechnique Fédérale de Lausanne (EPFL) press release (also on EurekAlert but published February 25, 2021), which originated the news item, delves further into the topic,

“Our approach was simple,” says Agrawal. “We made carbon dioxide-sized holes in graphene, which allowed carbon dioxide to flow through while blocking other gases such as nitrogen, which are larger than carbon dioxide.” The result is a record-high carbon dioxide-capture performance.

For comparison, current filters are required to exceed 1000 gas permeation units (GPUs), while their carbon-capturing specificity, referred to as their “carbon dioxide/nitrogen separation factor” must be above 20. The membranes that the EPFL scientists developed show more than ten-fold higher carbon dioxide permeance at 11,800 GPUs, while their separation factor stands at 22.5.

“We estimate that this technology will drop the cost of carbon capture close to $30 per ton of carbon dioxide, in contrast to commercial processes where the cost is two-to-four time higher,” says Agrawal. His team is now working on scaling up the process by developing a pilot plant demonstrator to capture 10 kg carbon dioxide per day, in a project funded by the Swiss government and Swiss industry.

Here’s a link to and a citation for the paper,

Millisecond lattice gasification for high-density CO2– and O2-sieving nanopores in single-layer graphene by Shiqi Huang, Shaoxian Li, Luis Francisco Villalobos, Mostapha Dakhchoune, Marina Micari, Deepu J. Babu, Mohammad Tohidi Vahdat, Mounir Mensi, Emad Oveisi and Kumar Varoon Agrawal. Science Advances 24 Feb 2021: Vol. 7, no. 9, eabf0116 DOI: 10.1126/sciadv.abf0116

This paper appears to be open access.

Keep your building cool with super paint

As temperatures rise and the Arctic melts, scientists are searching for ways to keep us and our buildings cool without adding unduly to our current problems. A July 8, 2020 University of California at Los Angeles news release (also on EurekAlert) announces a new paint,

A research team led by UCLA materials scientists has demonstrated ways to make super white paint that reflects as much as 98% of incoming heat from the sun. The advance shows practical pathways for designing paints that, if used on rooftops and other parts of a building, could significantly reduce cooling costs, beyond what standard white ‘cool-roof’ paints can achieve.

The findings, published online in Joule, are a major and practical step towards keeping buildings cooler by passive daytime radiative cooling — a spontaneous process in which a surface reflects sunlight and radiates heat into space, cooling down to potentially sub-ambient temperatures. This can lower indoor temperatures and help cut down on air conditioner use and associated carbon dioxide emissions.

“When you wear a white T-shirt on a hot sunny day, you feel cooler than if you wore one that’s darker in color — that’s because the white shirt reflects more sunlight and it’s the same concept for buildings,” said Aaswath Raman, an assistant professor of materials science and engineering at UCLA Samueli School of Engineering, and the principal investigator on the study. “A roof painted white will be cooler inside than one in a darker shade. But those paints also do something else: they reject heat at infrared wavelengths, which we humans cannot see with our eyes. This could allow buildings to cool down even more by radiative cooling.”

The best performing white paints currently available typically reflect around 85% of incoming solar radiation. The remainder is absorbed by the chemical makeup of the paint. The researchers showed that simple modifications in a paint’s ingredients could offer a significant jump, reflecting as much as 98% of incoming radiation.

Current white paints with high solar reflectance use titanium oxide. While the compound is very reflective of most visible and near-infrared light, it also absorbs ultraviolet and violet light. The compound’s UV absorption qualities make it useful in sunscreen lotions, but they also lead to heating under sunlight – which gets in the way of keeping a building as cool as possible.

The researchers examined replacing titanium oxide with inexpensive and readily available ingredients such as barite, which is an artist’s pigment, and pow[d]ered polytetrafluoroethylene, better known as Teflon. These ingredients help paints reflect UV light. The team also made further refinements to the paint’s formula, including reducing the concentration of polymer binders, which also absorb heat.

“The potential cooling benefits this can yield may be realized in the near future because the modifications we propose are within the capabilities of the paint and coatings industry,” said UCLA postdoctoral scholar Jyotirmoy Mandal, a Schmidt Science Fellow working in Raman’s research group and the co-corresponding author on the research.

Beyond the advance, the authors suggested several long-term implications for further study, including mapping where such paints could make a difference, studying the effect of pollution on radiative cooling technologies, and on a global scale, if they could make a dent on the earth’s own ability to reflect heat from the sun.

The researchers also noted that many municipalities and governments, including the state of California and New York City, have started to encourage cool-roof technologies for new buildings.

“We hope that the work will spur future initiatives in super-white coatings for not only energy savings in buildings, but also mitigating the heat island effects of cities, and perhaps even showing a practical way that, if applied on a massive, global scale could affect climate change,” said Mandal, who has studied cooling paint technologies for several years. “This would require a collaboration among experts in diverse fields like optics, materials science and meteorology, and experts from the industry and policy sectors.”

Here’s a link (also in the news release) to and a citation for the paper,

Paints as a Scalable and Effective Radiative Cooling Technology for Buildings by Jyotirmoy Mandal, Yuan Yang, Nanfang Yu, Aaswath P. Raman. Joule DOI: https://doi.org/10.1016/j.joule.2020.04.010 Published: May 29, 2020

This paper is behind a paywall.

Glass sponge reefs: ‘living dinosaurs’ of the Pacific Northwest waters

Glass sponges in Howe Sound. Credit: Adam Taylor, MLSS [Marine Life Sanctuaries Society]

One of them looks to be screaming (Edvard Munch, anyone?) and none of it looks how I imagined an oceanic ‘living dinosaur’ might. While the news is not in my main area of interest (emerging technology), it is close to home. A June 1, 2020 University of British Columbia news release (also on EurekAlert) describes the glass sponge reefs (living dinosaurs) in the Pacific Northwest and current concerns about their welfare,

Warming ocean temperatures and acidification drastically reduce the skeletal strength and filter-feeding capacity of glass sponges, according to new UBC research.

The findings, published in Scientific Reports, indicate that ongoing climate change could have serious, irreversible impacts on the sprawling glass sponge reefs of the Pacific Northwest and their associated marine life – the only known reefs of their kind in the world.

Ranging from the Alaska-Canada border and down through the Strait of Georgia, the reefs play an essential role in water quality by filtering microbes and cycling nutrients through food chains. They also provide critical habitat for many fish and invertebrates, including rockfish, spot prawns, herring, halibut and sharks.

“Glass sponge reefs are ‘living dinosaurs’ thought to have been extinct for 40 million years before they were re-discovered in B.C. in 1986,” said Angela Stevenson, who led the study as a postdoctoral fellow at UBC Zoology. “Their sheer size and tremendous filtration capacity put them at the heart of a lush and productive underwater system, so we wanted to examine how climate change might impact their survival.”

Although the reefs are subject to strong, ongoing conservation efforts focused on limiting damage to their delicate glass structures, scientists know little about how these sponges respond to environmental changes.

For the study, Stevenson harvested Aphrocallistes vastus, one of three types of reef-building glass sponges, from Howe Sound and brought them to UBC where she ran the first successful long-term lab experiment involving live sponges by simulating their natural environment as closely as possible.

She then tested their resilience by placing them in warmer and more acidic waters that mimicked future projected ocean conditions.

Over a period of four months, Stevenson measured changes to their pumping capacity, body condition and skeletal strength, which are critical indicators of their ability to feed and build reefs.

Within one month, ocean acidification and warming, alone and in combination, reduced the sponges’ pumping capacity by more than 50 per cent and caused tissue losses of 10 to 25 per cent, which could starve the sponges.

“Most worryingly, pumping began to slow within two weeks of exposure to elevated temperatures,” said Stevenson.

The combination of acidification and warming also made their bodies weaker and more elastic by half. That could curtail reef formation and cause brittle reefs to collapse under the weight of growing sponges or animals walking and swimming among them.

Year-long temperature data collected from Howe Sound reefs in 2016 suggest it’s only a matter of time before sponges are exposed to conditions which exceed these thresholds.

“In Howe Sound, we want to figure out a way to track changes in sponge growth, size and area and area in the field so we can better understand potential climate implications at a larger scale,” said co-author Jeff Marliave, senior research scientist at the Ocean Wise Research Institute. “We also want to understand the microbial food webs that support sponges and how they might be influenced by climate cycles.”

Stevenson credits bottom-up community-led efforts and strong collaborations with government for the healthy, viable state of the B.C. reefs today. Added support for such community efforts and educational programs will be key to relieving future pressures.

“When most people think about reefs, they think of tropical shallow-water reefs like the beautiful Great Barrier Reef in Australia,” added Stevenson. “But we have these incredible deep-water reefs in our own backyard in Canada. If we don’t do our best to stand up for them, it will be like discovering a herd of dinosaurs and then immediately dropping dynamite on them.”

Background:

The colossal reefs can grow to 19 metres in height and are built by larval sponges settling atop the fused dead skeletons of previous generations. In northern B.C. the reefs are found at depths of 90 to 300 metres, while in southern B.C., they can be found as shallow as 22 metres.

The sponges feed by pumping sea water through their delicate bodies, filtering almost 80 per cent of microbes and particles and expelling clean water.

It’s estimated that the 19 known reefs in the Salish Sea can filter 100 billion litres of water every day, equivalent to one per cent of the total water volume in the Strait of Georgia and Howe Sound combined.

Here’s a link to and a citation for the paper,

Warming and acidification threaten glass sponge Aphrocallistes vastus pumping and reef formation by A. Stevenson, S. K. Archer, J. A. Schultz, A. Dunham, J. B. Marliave, P. Martone & C. D. G. Harley. Scientific Reports volume 10, Article number: 8176 (2020) DOI: https://doi.org/10.1038/s41598-020-65220-9 Published 18 May 2020

This paper is open access.

Almost finally, there’s a brief video of the glass sponges in their habitat,

Circling back to Edvard Munch,

Courtesy of www.EdvardMunch.org [downloaded from https://www.edvardmunch.org/the-scream.jsp]

Here’s more about the painting, from The Scream webpage on edvardmunch.org,

Munch’s The Scream is an icon of modern art, the Mona Lisa for our time. As Leonardo da Vinci evoked a Renaissance ideal of serenity and self-control, Munch defined how we see our own age – wracked with anxiety and uncertainty.

Essentially The Scream is autobiographical, an expressionistic construction based on Munch’s actual experience of a scream piercing through nature while on a walk, after his two companions, seen in the background, had left him. …

For all the times I’ve seen the image, I had no idea the inspiration was acoustic.

In any event, the image seems sadly à propos both for the glass sponge reefs (and nature generally) and with regard to Black Lives Matter (BLM). A worldwide conflagration was ignited by George Floyd’s death in Minneapolis on May 25, 2020. This African-American man died while saying, “I can’t breathe,” as a police officer held Floyd down with a knee on his neck. RIP (rest in peace) George Floyd while the rest of us make the changes necessary, no matter how difficult to create a just and respectful world for all. Black Lives Matter.

The decade that was (2010-19) and the decade to come (2020-29): Science culture in Canada (4 of 5)

I was hoping this would be the concluding part of this series but there was much more than I dreamed. (I know that’s repetitive but I’m truly gobsmacked.)

Citizen science

Astronomy and bird watching (ornithology) are probably the only two scientific endeavours that have consistently engaged nonexperts/amateurs/citizen scientists right from the earliest days through the 21st century. Medical research, physics, chemistry, and others have, until recently and despite their origins in ‘amateur’ (or citizen) science, become the exclusive domain of professional experts.

This situation seems to be changing both here in Canada and elsewhere. One of the earliest postings about citizen science on this blog was in 2010 and, one of the most amusing to me personally, was this March 21, 2013 posting titled: Comparing techniques, citizen science to expert science. It’s about a study by scientists at the University of East Anglia (UK) comparing data collection by citizen scientists with experts. In this particular project where undersea data was being collected and people with diving skills needed, the citizen scientists did a better job than the expert scientists of collecting data. (I’m not trying to suggest that experts can be replaced by amateurs but do suggest that there are advantages to working together.)

*As for the Canadian science (from a June 15, 2018 Innovation, Science and Economic Development Canada news release),*

Take a look at your car. The bus you take to work. The smart phone you tap on during your commute. They all have one thing in common: science. Science is all around us. It shapes the way we live, the meals we grab on the go and the commute that takes us to school and work.

That is why the Government of Canada is encouraging young Canadians’ interest in science. Research and innovation lead to breakthroughs in agriculture, transit, medicine, green technology and service delivery, improving the quality of life for all Canadians. The outcomes of research also create jobs, strengthen the economy and support a growing middle class.

The Honourable Kirsty Duncan, Minister of Science and Minister of Sport and Persons with Disabilities, carried that message to an audience of young students during her first citizen science Google Hangout today. The Hangout, run by Exploring by the Seat of Your Pants, a not-for-profit organization, featured frog exhibits from the Toronto Zoo and a demonstration of the FrogWatch citizen science project by Dr. Nancy Kingsbury of Environment and Climate Change Canada. Toronto Zoo frog expert Katherine Wright joined Minister Duncan at the zoo to share information about frogs that are local to Ontario.

Minister Duncan, Dr. Kingsbury and Ms. Wright then engaged with elementary school children across Canada in a live Q&A session about the frogs in their own backyards. The Minister highlighted the importance of getting young Canadians interested in science fields and talked about ways they can take part in citizen science projects in their communities. Citizen scientists can share their observations on social media using the hashtag #ScienceAroundMe.

Quotes

“Science is for everyone, and it is important that we encourage today’s youth to be curious. Young Canadians who engage in citizen science today will become the highly skilled workers—engineers, scientists, mathematicians, technology experts and entrepreneurs—of tomorrow. Through citizen science, children can nurture an interest in the natural world. These young people will then go on to discover, to innovate and to find solutions that will help us build a better Canada.”
– The Honourable Kirsty Duncan, Minister of Science and Minister of Sport and Persons with Disabilities

“The Toronto Zoo is proud to participate in and encourage citizen science programs, such as FrogWatch, within the community. The Toronto Zoo’s Adopt-A-Pond Wetland Conservation Programme works to engage citizen scientists and deliver impactful conservation-focused research, restoration and outreach that highlight the importance of saving Canada’s sensitive wetland species and their habitats.”
– Robin Hale, Interim Chief Executive Officer, Toronto Zoo

Quick facts

NatureWatch, of which FrogWatch is a component, is a community program that engages all Canadians in collecting scientific information on nature to understand our changing environment.

Exploring by the Seat of Your Pants aims to inspire the next generation of scientists, explorers and conservationists by bringing science, exploration, adventure and conservation into classrooms through virtual field trips run by programs like Google Hangout.

The Government of Canada’s Citizen Science Portal is a one-stop shop for science in the community. It showcases science programs, including NatureWatch programs, across the country.

Associated links

The portal is not nearly as Ontario-centric as the projects mentioned in the news release (in case you were wondering).

Aside: In part 2 of this series, Jesse Hildebrand, founder of Science Literacy Week was mentioned as also being the founder of Exploring by the Seat of Your Pants.

Going to the birds

While bird watching and ornithological studies are not new to the Canadian science culture scene, there were some interesting developments in the 2010-19 period.

Canadian Geographic (magazine) sponsored a contest in 2015, the National Bird Project, where almost 50,000 people submitted suggestions for a national bird. Voting online ensued and on August 31, 2016 popular voting was closed. Five birds attracted the top votes and in September 2016, the Royal Canadian Geographical Society put together an expert panel to debate and decide which would be Canada’s national bird. The choice was announced in November 2016 (Canadian Geographic National Bird Project).

The gray jay. Also known as the whiskey jack or Canada jay. Photo: Steve Phillips [downloaded from http://nationalbird.canadiangeographic.ca/]

From the National Bird Project webpage,

The gray jay (Perisoreus canadensis in Latin, Mésangeai du Canada in French) lives in all 13 provinces and territories — the friendly spirit in Canada’s wild northern boreal and mountain forests. It remains in Canada year-round, is neither hunted nor endangered, and from the Atlantic provinces to the West is an indicator of the health of the boreal and mountain forests and climate change, inspiring a conservation philosophy for all kinds of northern land uses. The gray jay has long been important to Indigenous Peoples, and will draw all Canadians to their national and provincial/territorial parks, yet unlike the loon and snowy owl, it is not already a provincial or territorial bird.

I found a more fulsome description on the What is the National Bird of Canada? webpage on the World Atlas website,

Gray jay is a passerine bird belonging to the family Corvidae. It is mostly found in the boreal forest of North America. The bird is fairly large and has pale gray underparts and dark grey upperpart. Gray jay is a friendly bird and often approach human for food. It is also popularly known as the camp robber, whisky jack, and venison-hawk. Gray jay is listed as Least Concern by the IUCN [International Union for Conservation of Nature]. However, the anthropogenic climate change in the southern range may adversely affect its population. In some Fist Nation cultures, the bird is associated with mythological figures including Wisakedjak who was anglicized to Whiskyjack.

For approximately 200 years, the gray jay was known as “Canadian Jay” to the English speakers. The bird was renamed the “gray jay” in 1957 by the American Ornithologists’ Union. However, scientifically the bird is referred to as Perisoreus Canadensis. The bird is found in almost all the provinces of territories of Canada. the preferred habitat for the species is Canada’s boreal and mountain forests. Gray jay is also one of the smartest birds in the world and has almost the same body-to-brain ratio as human beings.

Canadian Georgraphic offers more depth (and a map) in a November 16, 2016 article, by Nick Walker, titled, Canada, meet your national bird (Note: Links have been removed),

With 450 species in the country to choose from, Canadian Geographic’s decision was made neither lightly nor quickly.

This national debate has been running since January 2015, in fact. But after weighing the opinions and preferences of tens of thousands of Canadians, as well as the expertise of our National Conservation Partners at Bird Studies Canada and other ornithologists and conservationists, as well as cultural experts and Indigenous Peoples, that list was narrowed to five birds. And one finalist best met all reasonable criteria.
    
We give you the gray jay. …

Not only has the gray jay never been recorded outside of North America, the vast majority of its range is in Canada, with only a small percentage crossing into Alaska and the western mountains of the United States. The species’ preferred habitat is Canada’s boreal and mountain forests — ecozones that stretch from coast to coast and into the North, blanketing nearly two-thirds of the country.

Like the Canadian flag when it was selected in 1965, the gray jay is fresh and new and fitting. To quote David Bird, ornithologist and professor emeritus of wildlife biology at Montreal’s McGill University, we cannot think of a more Canadian bird.

Three sets of bird stamps were issued by Canada Post from 2016-2018 saluting “Canada’s avian citizens.” Here’s more from a July 12, 2016 Birds of Canada blog post on the Canada Post website announcing the first series of bird stamps,

Hatched by designer Kosta Tsetsekas and illustrator Keith Martin, these stamps are the first in a three-year series celebrating Canada’s avian citizens. Our first flock includes five official birds: the Atlantic puffin (Newfoundland and Labrador), the great horned owl (Alberta), the common raven (Yukon), the rock ptarmigan (Nunavut) and the sharp-tailed grouse (Saskatchewan).

An August 1, 2017 Canada Post blog post announced that year’s bird stamps and, finally, an August 20, 2018 Canada Post blog post announced the finale release. The 2018 series was released in time to celebrate the 27th International Ornithological Congress held in Vancouver (from the Vancouver Convention Centre congress webpage),

On behalf of the International Ornithologists’ Union, Vancouver is delighted to welcome ornithologists from around the world to the 27th International Ornithological Congress (IOCongress2018)! Considered the oldest and most prestigious of meetings for bird scientists, the Congress occurs every four years since first being held in Vienna, Austria, in 1884.

Canada has hosted only once previously, Ottawa in 1986, and Vancouver will be the first time the Congress has been on the Pacific Coast of the Americas. The Congress has broad national endorsement, including from the City of Vancouver, the province of British Columbia, Environment Canada, Simon Fraser University, Artists for Conservation, Tourism Vancouver plus an array of scientific societies and conservation organizations.

The convention centre’s webpage features an impressive list of events which were open to the public,

  • Stars of the Bird World Presentation (August 19): Dr. Rob Butler, chair of the Vancouver International Bird Festival, presents Flyways to Culture: How birds give rise to a cultural awakening, at look at how the growing interest in birds in particular and nature in general, is a foundation for a new Nature Culture in which nature becomes embedded into a west coast culture. 8:30-10 a.m. at the Vancouver Convention Centre. Admission by donation ($10 suggested).
  • Festival Opening Ceremony – Parade of Birds and a fanfare by Vancouver Symphony Brass Quintet (August 20): The festival begins with a Parade of Birds and a fanfare by the Vancouver Symphony Brass Quintet. The fanfare “Gathering Flock” was composed by Frederick Schipizky. 3:20 p.m. to 5:15 p.m. at the Vancouver Convention Centre.
  • Artists for Conservation Show (August 22): Artists for Conservation is the official visual arts partner for the festival and congress, showcasing some of the world’s best nature art through its annual juried exhibit, a collaborative mural, artist demo and lecture series and an artist booth expo. Official opening 6-10 p.m. at the Vancouver Convention Centre.
  • Nature & Bird Expo (until August 25): The three-day Bird Expo is the showcase of birds and nature in Canada, including exhibitors, speakers, yoga, poetry, art and more. Runs until Aug. 25 at the Vancouver Convention Centre. Check out a full event listing at www.vanbirdfest.com/calendar/nature-bird-expo.
  • Migration Songs – Poetry and Ornithology (August 23): Migration Songs brings together 11 contemporary poets to consider an array of bird species. Each poet was put in conversation with a particular ornithologist or scientist to consider their chosen species collaboratively. The poets involved include well-known west-coast authors, amongst them Governor General’s Award and Griffin Poetry Prize winners. A short book of these collaborations, Migration Songs, with cover art by poet, painter, and weaver Annie Ross, will be available. 6 p.m. at the Vancouver Convention Centre.
  • Unveiling of the Silent Skies Mural (August 23): A signature event of the week-long Artists for Conservation show is the unveiling of the Silent Skies mural made up of illustrations of the endangered birds of the world — 678 pieces, each depicting a different endangered bird, will make up the 100-foot-long installation that will form the artistic centrepiece for the 8th annual Artists for Conservation Festival, the 27th International Ornithological Congress and Vancouver International Bird Festival. The unveiling takes place at 6:30 p.m. at the Vancouver Convention Centre.
  • Stewardship Roundtable 2018 (August 24): A forum and showcase of innovative practices championed in B.C. province and beyond, presented by the Stewardship Centre for BC and Bird Studies Canada, in collaboration with the 27th International Ornithological Congress and Vancouver International Bird Festival. 8:30 a.m. until 9 p.m. at the Vancouver Convention Centre. For more information or to register, visit stewardshipcentrebc.ca/programs/wildife-species-risk/stewardship-roundtable.
  • Closing Ceremony (August 26): The closing ceremony will include remarks from officials and First Nations representatives, and a Heron Dance by the New Dance Centre from Saskatchewan. 5-6:30 p.m. at Vancouver Convention Centre.

I attended the opening ceremony where they announced the final set of stamps in the Birds of Canada series by introducing people who’d dressed for the parade as the birds in question.

The Canadian birding community has continued to create interesting new projects for science outreach. A December 19, 2019 posting by Natasha Barlow for Birds Canada (also known as Bird Studies Canada) announces a new interactive story map,

The Boreal Region is a massive expanse of forests, wetlands, and waterways covering much of the Northern Hemisphere. In Canada, this vast region stretches for 5000 kilometres from Newfoundland and Labrador through the country’s central regions and northwest to the Yukon.

Over 300 bird species regularly breed here, from tiny songbirds like kinglets and warblers to comparatively giant swans and cranes. The Boreal is home to literally billions of birds, and serves as the continent’s bird “nursery” since it is such an important breeding ground.

While extensive tracts of Canada’s northern Boreal still remain largely undisturbed from major industrial development, the human footprint is expanding and much of the southern Boreal is already being exploited for its resources.

Birds Canada, in partnership with the Nature Conservancy of Canada, has created an interactive story map that details the importance of the Boreal region for birds.

Click here to explore and share this colourful online resource, which celebrates the Boreal Region and its rich bird life.

H/t Nature Conservancy Canada January 29, 2020 blog posting.

Climate change, ecology, and Indigenous knowledge (science)

There is more focus on climate change everywhere in the world and much of the latest energy and focus internationally can be traced to Swedish teenager, Greta Thunberg who turned 17 in January 2020. Her influence has galvanized a number of youth climate strikes in Canada and around the world.

There is a category of science fiction or speculative fiction known as Climate Fiction (cli-fi or clifi). Margaret Atwood (of course) has produced a trilogy in that subgenre of speculative fiction, from the Climate Fiction Wikipedia entry, Note: Links have been removed,

Margaret Atwood explored the subject in her dystopian trilogy Oryx and Crake (2003), The Year of the Flood (2009) and MaddAddam (2013).[13] In Oryx and Crake Atwood presents a world where “social inequality, genetic technology and catastrophic climate change, has finally culminated in some apocalyptic event”.[14] The novel’s protagonist, Jimmy, lives in a “world split between corporate compounds”, gated communities that have grown into city-states and pleeblands, which are “unsafe, populous and polluted” urban areas where the working classes live.[15]

There is some other cli-fi literature by Canadians, notably an anthology of Canadian short stories edited by Bruce Meyer, from a March 9, 2018 review by Emilie Moorhouse published in Canada’s National Observer (review originally published in Prism magazine on March 8, 2018), Note: A link has been removed,

A woman waits in line to get her water ration. She hasn’t had a sip of water in nearly three days. Her mouth is parched; she stumbles as she waits her turn for over an hour in the hot sun. When she he finally gets to the iTap and inserts her card into the machine that controls the water flow, the light turns red and her card is rejected. Her water credits have run out.

This scenario from “The Way of Water” by Nina Munteanu is one of many contained in the recently published anthology of short stories, Cli-Fi: Canadian Tales of Climate Change. The seventeen stories in this book edited by Bruce Meyer examine how humankind might struggle with the potential devastation of climate change in the near or distant future. Soon after I finished reading the book, Cape Town—known in precolonial times as “the place where clouds gather”—announced that it was only a few months away from what it called “Day Zero,” the day the city would officially run out of water, making the similarities between fiction and reality more than unsettling. Munteanu’s story is set in a futuristic Canada that has been mined of all its water by thirsty corporations who have taken over control of the resource. Rain has not fallen on Canadian soil in years due to advances in geoengineering and weather manipulation preventing rain clouds from going anywhere north of the Canada-US border.

Indigenous knowledge (science)

The majority of Canada’s coastline is in the Arctic and climate change in that region is progressing at a disturbing pace. Weather, Climate Change, and Inuit Communities in the Western Canadian Arctic, a September 30, 2017 blog posting, by Dr. Laura Eerkes-Medrano at the University of Victoria (British Columbia) for Historical Climatology describes it this way (Note: A link has been removed),

Global climate change brings with it local weather that communities and cultures have difficulty anticipating. Unpredictable and socially impactful weather is having negative effects on the subsistence, cultural activities, and safety of indigenous peoples in Arctic communities. Since 2013, Professor David Atkinson and his team at the University of Victoria have been working with Inuvialuit communities in Tuktoyaktuk, Ulukhaktok, and Sachs Harbour. The main goal is to understand how impactful weather is affecting residents’ subsistence activities, particularly when they are on the water. The project involves site visits, interviews, and regular phone calls with residents.

Inuvialuit residents regularly observe the waves, winds, snow, and ice conditions that interfere with their hunting, fishing, camping, and other subsistence and cultural activities. In this project, communities identify specific weather events that impact their activities. These events are then linked to the broader atmospheric patterns that cause them. Summaries of the events will be provided to Environment Canada to hopefully assist with the forecasting process.

By taking this approach, the project links Western scientific knowledge and traditional knowledge to generate insights [emphasis mine] into how climate change is affecting Inuvialuit activities in the Canadian Arctic. An oversight committee has been established in each community to give direction to the project. This oversight committee includes representatives from each of the main community organizations, which ensures that the respective organizations provide direction to the project and advise on how to engage residents and communities.

Western science learning from and taking from traditional knowledge is not new. For example, many modern medicines are still derived from traditional remedies. Unfortunately, traditional practitioners have not benefited from sharing their knowledge.

It is to be hoped things are changing with projects like Atkinson’s and another one I mentioned in a December 2, 2019 posting featuring a discovery about ochre (a red dye used for rock art). The dye being examined was produced (in a manner that appears to be unique) in the Babine Lake region of British Columbia and the research may have applications for industrial use leading to economic benefits for the indigenous folks of that region. As important as the benefits, the science team worked closely with the indigenous communities in that area.

University in the Arctic

I was told several years ago that Canada is the only ‘arctic country’ that does not have a university in the high north. As of 2019 it seems the situation is changing, from a December 1, 2019 Global television news online item,

Canada will finally have its first Arctic university.

This past week [of December 1, 2019], the Yukon legislature passed a bill to make Yukon College a university. It will be an institution with an Indigenous flavour that will make it as unique as the region it is to serve.

“Everybody knows we’re moving toward something big and something special,” said Tom Ullyett, chairman of the board of governors.

The idea of a northern university has been kicked around since at least 2007 when a survey in all three territories found residents wanted more influence over Arctic research. Northern First Nations have been asking for one for 50 years.

Research is to centre on issues around environmental conservation and sustainable resource development. It will be conducted in a new, $26-million science building funded by Ottawa and currently being designed.

Indigenous content will be baked in.

“It’s about teaching with northern examples,” said Tosh Southwick, in charge of Indigenous engagement. “Every program will have a northern component.”

Science programs will have traditional knowledge embedded in them and talk about ravens and moose instead of, say, flamingos and giraffes. Anthropology classes will teach creation stories alongside archeological evidence.

The institution will report to Yukon’s 14 First Nations as well as to the territorial legislature. More than one-quarter of its current students are Indigenous.

“Our vision is to be that first northern university that focuses on Indigenous governance, that focuses on sustainable natural resources, that focuses on northern climate, and everything that flows from that.”

Climate adaptation and/or choices

While we have participated in a number of initiatives and projects concerned with climate change, I believe there is general agreement we should have done more. That said I would prefer to remain hopeful.

A January 23, 2020 Yukon College news release announces the appointment of a staff member to an Canadian federal government institute’s advisory committee,

A newly launched institute for climate policy research will have a Yukon connection. Brian Horton, Manager of Northern Climate ExChange at the Yukon Research Centre, has been named to the Canadian Institute for Climate Choices expert advisory panel for Climate Adaptation.   

The Institute, launched Tuesday morning, aims to bring clarity to Canada’s climate policy choices. The Institute’s initial report, Charting our Course, describes the current climate landscape in Canada and provides recommendations for policy makers and governments seeking to implement more effective policy.  

In order to remain grounded in issues of importance to Canadians, the Institute has appointed three Expert Advisory Panels (Adaptation, Mitigation and Clean Growth) to provide evidence-based research, analysis and engagement advice to support integrative policy decisions. 

“It is exciting to have a role to play in this dynamic new network,” said Horton. “The climate is rapidly changing in the North and affecting our landscapes and lives daily. I look forward to contributing a Northern voice to this impactful pan-Canadian expert collaboration.” 

At Yukon College, Horton’s research team focusses on applied research of climate impacts and adaptation in Yukon and Northwest Territories.  Northern Climate ExChange works with communities, governments, and the private sector to answer questions about permafrost, hydrology, and social factors to facilitate adaptation to climate change.

By the way, the Canadian Institute for Climate Choices was launched on January 21, 2020 (news release),

January 21, 2020 | OTTAWA — Dozens of academics and policy experts today launched the Canadian Institute for Climate Choices, a new independent national research body. The Institute aims to bring clarity to the transformative challenges, opportunities and choices ahead for Canada as governments at all levels work to address climate change.

Experimental Lakes Area

This is a very special research effort originally funded and managed by the Canadian federal government. Rather controversially, Stephen Harper’s Conservative government defunded the research but that may not have been the tragedy many believed (from the Experimental Lakes Area Wikipedia entry),

IISD Experimental Lakes Area (IISD-ELA, known as ELA before 2014)[1] is an internationally unique research station encompassing 58 formerly pristine freshwater lakes in Kenora District Ontario, Canada.[2][3] Previously run by Fisheries and Oceans Canada, after being de-funded by the Canadian Federal Government, the facility is now managed and operated by the International Institute for Sustainable Development (IISD) and has a mandate to investigate the aquatic effects of a wide variety of stresses on lakes and their catchments. IISD-ELA uses the whole ecosystem approach and makes long-term, whole-lake investigations of freshwater focusing on eutrophication.[4][5]

In an article[2] published in AAAS’s well-known scientific journal Science, Eric Stokstad described ELA’s “extreme science”[2] as the manipulation of whole lake ecosystem with ELA researchers collecting long-term records for climatology, hydrology, and limnology that address key issues in water management.[4] The site has influenced public policy in water management in Canada, the USA, and around the world.[2]

Minister of State for Science and Technology, Gary Goodyear, argued that “our government has been working hard to ensure that the Experimental Lakes Area facility is transferred to a non-governmental operator better suited to conducting the type of world-class research that can be undertaken at this facility” and that “[t]he federal government has been leading negotiations in order to secure an operator with an international track record.” On April 1, 2014, the International Institute for Sustainable Development announced that it had signed three agreements to ensure that it will be the long-term operator of the research facility and that the facility would henceforth be called IISD Experimental Lakes Area.[6] Since taking over the facility, IISD has expanded the function of the site to include educational and outreach opportunities[7] and a broader research portfolio.[8]

You can find the IISD Experimental Lakes Area website here.

Part 5 is to a large extent a grab bag for everything I didn’t fit into parts 1 -4. As for what you can expect to find in Part 5: some science podcasting, eco art, a Saskatchewan lab with an artist-in-residence, and more.

For anyone who missed them:

Part 1 covers science communication, science media (mainstream and others such as blogging) and arts as exemplified by music and dance: The decade that was (2010-19) and the decade to come (2020-29): Science culture in Canada (1 of 5).

Part 2 covers art/science (or art/sci or sciart) efforts, science festivals both national and local, international art and technology conferences held in Canada, and various bar/pub/café events: The decade that was (2010-19) and the decade to come (2020-29): Science culture in Canada (2 of 5).

Part 3 covers comedy, do-it-yourself (DIY) biology, chief science advisor, science policy, mathematicians, and more: The decade that was (2010-19) and the decade to come (2020-29): Science culture in Canada (3 of 5)

* ETA April 24, 2020 at 1515 PT Added the line and link *As for the Canadian science (from a June 15, 2018 Innovation, Science and Economic Development Canada news release),*

Climate change and black gold

A July 3, 2019 news item on Nanowerk describes research coming from India and South Korea where nano gold is turned into black nanogold (Note: A link has been removed),

One of the main cause of global warming is the increase in the atmospheric CO2 level. The main source of this CO2 is from the burning of fossil fuels (electricity, vehicles, industry and many more).

Researchers at TIFR [Tata Institute of Fundamental Research] have developed the solution phase synthesis of Dendritic Plasmonic Colloidosomes (DPCs) with varying interparticle distances between the gold Nanoparticles (AU NPs) using a cycle-by-cycle growth approach by optimizing the nucleation-growth step. These DPCs absorb the entire visible and near-infrared region of solar light, due to interparticle plasmonic coupling as well as the heterogeneity in the Au NP [gold nanoparticle] sizes, which transformed golden gold material to black gold (Chemical Science, “Plasmonic colloidosomes of black gold for solar energy harvesting and hotspots directed catalysis for CO2 to fuel conversion”).

A July 3, 2019 Tata Institute of Fundamental Research (TIFR) press release on EurekAlert, which originated the news item, provides more technical detail,

Black (nano)gold was able to catalyze CO2 to methane (fuel) conversion at atmospheric pressure and temperature, using solar energy. They also observed the significant effect of the plasmonic hotspots on the performance of these DPCs for the purification of seawater to drinkable water via steam generation, temperature jump assisted protein unfolding, oxidation of cinnamyl alcohol using pure oxygen as the oxidant, and hydrosilylation of aldehydes.

This was attributed to varying interparticle distances and particle sizes in these DPCs. The results indicate the synergistic effects of EM and thermal hotspots as well as hot electrons on DPCs performance. Thus, DPCs catalysts can effectively be utilized as Vis-NIR light photo-catalysts, and the design of new plasmonic nanocatalysts for a wide range of other chemical reactions may be possible using the concept of plasmonic coupling.

Raman thermometry and SERS (Surface-enhanced Raman Spectroscopy) provided information about the thermal and electromagnetic hotspots and local temperatures which was found to be dependent on the interparticle plasmonic coupling. The spatial distribution of the localized surface plasmon modes by STEM-EELS plasmon mapping confirmed the role of the interparticle distances in the SPR (Surface Plasmon Resonance) of the material.

Thus, in this work, by using the techniques of nanotechnology, the researchers transformed golden gold to black gold, by changing the size and gaps between gold nanoparticles. Similar to the real trees, which use CO2, sunlight and water to produce food, the developed black gold acts like an artificial tree that uses CO2, sunlight and water to produce fuel, which can be used to run our cars. Notably, black gold can also be used to convert sea water into drinkable water using the heat that black gold generates after it captures sunlight.

This work is a way forward to develop “Artificial Trees” which capture and convert CO2 to fuel and useful chemicals. Although at this stage, the production rate of fuel is low, in coming years, these challenges can be resolved. We may be able to convert CO2 to fuel using sunlight at atmospheric condition, at a commercially viable scale and CO2 may then become our main source of clean energy.

Here’s an image illustrating the work

Caption: Use of black gold can get us one step closer to combat climate change. Credit: Royal Society of Chemistry, Chemical Science

A July 3, 2019 Royal Society of Chemistry Highlight features more information about the research,

A “black” gold material has been developed to harvest sunlight, and then use the energy to turn carbon dioxide (CO2) into useful chemicals and fuel.

In addition to this, the material can also be used for applications including water purification, heating – and could help further research into new, efficient catalysts.

“In this work, by using the techniques of nanotechnology, we transformed golden gold to black gold, by simply changing the size and gaps between gold nanoparticles,” said Professor Vivek Polshettiwar from Tata Institute of Fundamental Research (TIFR) in India.

Tuning the size and gaps between gold nanoparticles created thermal and electromagnetic hotspots, which allowed the material to absorb the entire visible and near-infrared region of sunlight’s wavelength – making the gold “black”.

The team of researchers, from TIFR and Seoul National University in South Korea, then demonstrated that this captured energy could be used to combat climate change.

Professor Polshettiwar said: “It not only harvests solar energy but also captures and converts CO2 to methane (fuel). Synthesis and use of black gold for CO2-to-fuel conversion, which is reported for the first time, has the potential to resolve the global CO2 challenge.

“Now, like real trees which use CO2, sunlight and water to produce food, our developed black gold acts like an artificial tree to produce fuel – which we can use to run our cars,” he added.
Although production is low at this stage, Professor Polshettiwar (who was included in the RSC’s 175 Faces of Chemistry) believes that the commercially-viable conversion of CO2 to fuel at atmospheric conditions is possible in the coming years.

He said: “It’s the only goal of my life – to develop technology to capture and convert CO2 and combat climate change, by using the concepts of nanotechnology.”

Other experiments described in the Chemical Science paper demonstrate using black gold to efficiently convert sea water into drinkable water via steam generation.

It was also used for protein unfolding, alcohol oxidation, and aldehyde hydrosilylation: and the team believe their methodology could lead to novel and efficient catalysts for a range of chemical transformations.

Here’s a link to and a citation for the paper,

Plasmonic colloidosomes of black gold for solar energy harvesting and hotspots directed catalysis for CO2 to fuel conversion by Mahak Dhiman, Ayan Maity, Anirban Das, Rajesh Belgamwar, Bhagyashree Chalke, Yeonhee Lee, Kyunjong Sim, Jwa-Min Nam and Vivek Polshettiwar. Chem. Sci., 2019, Advance Article. DOI: 10.1039/C9SC02369K First published on July 3, 2019

This paper is freely available in the open access journal Chemical Science.

Low-cost carbon sequestration and eco-friendly manufacturing for chemicals with nanobio hybrid organisms

Years ago I was asked about carbon sequestration and nanotechnology and could not come up with any examples. At last I have something for the next time the question is asked. From a June 11, 2019 news item on ScienceDaily,

University of Colorado Boulder researchers have developed nanobio-hybrid organisms capable of using airborne carbon dioxide and nitrogen to produce a variety of plastics and fuels, a promising first step toward low-cost carbon sequestration and eco-friendly manufacturing for chemicals.

By using light-activated quantum dots to fire particular enzymes within microbial cells, the researchers were able to create “living factories” that eat harmful CO2 and convert it into useful products such as biodegradable plastic, gasoline, ammonia and biodiesel.

A June 11, 2019 University of Colorado at Boulder news release (also on EurekAlert) by Trent Knoss, which originated the news item, provides a deeper dive into the research,

“The innovation is a testament to the power of biochemical processes,” said Prashant Nagpal, lead author of the research and an assistant professor in CU Boulder’s Department of Chemical and Biological Engineering. “We’re looking at a technique that could improve CO2 capture to combat climate change and one day even potentially replace carbon-intensive manufacturing for plastics and fuels.”

The project began in 2013, when Nagpal and his colleagues began exploring the broad potential of nanoscopic quantum dots, which are tiny semiconductors similar to those used in television sets. Quantum dots can be injected into cells passively and are designed to attach and self-assemble to desired enzymes and then activate these enzymes on command using specific wavelengths of light.

Nagpal wanted to see if quantum dots could act as a spark plug to fire particular enzymes within microbial cells that have the means to convert airborne CO2 and nitrogen, but do not do so naturally due to a lack of photosynthesis.

By diffusing the specially-tailored dots into the cells of common microbial species found in soil, Nagpal and his colleagues bridged the gap. Now, exposure to even small amounts of indirect sunlight would activate the microbes’ CO2 appetite, without a need for any source of energy or food to carry out the energy-intensive biochemical conversions.

“Each cell is making millions of these chemicals and we showed they could exceed their natural yield by close to 200 percent,” Nagpal said.

The microbes, which lie dormant in water, release their resulting product to the surface, where it can be skimmed off and harvested for manufacturing. Different combinations of dots and light produce different products: Green wavelengths cause the bacteria to consume nitrogen and produce ammonia while redder wavelengths make the microbes feast on CO2 to produce plastic instead.

The process also shows promising signs of being able to operate at scale. The study found that even when the microbial factories were activated consistently for hours at a time, they showed few signs of exhaustion or depletion, indicating that the cells can regenerate and thus limit the need for rotation.

“We were very surprised that it worked as elegantly as it did,” Nagpal said. “We’re just getting started with the synthetic applications.”

The ideal futuristic scenario, Nagpal said, would be to have single-family homes and businesses pipe their CO2 emissions directly to a nearby holding pond, where microbes would convert them to a bioplastic. The owners would be able to sell the resulting product for a small profit while essentially offsetting their own carbon footprint.

“Even if the margins are low and it can’t compete with petrochemicals on a pure cost basis, there is still societal benefit to doing this,” Nagpal said. “If we could convert even a small fraction of local ditch ponds, it would have a sizeable impact on the carbon output of towns. It wouldn’t be asking much for people to implement. Many already make beer at home, for example, and this is no more complicated.”

The focus now, he said, will shift to optimizing the conversion process and bringing on new undergraduate students. Nagpal is looking to convert the project into an undergraduate lab experiment in the fall semester, funded by a CU Boulder Engineering Excellence Fund grant. Nagpal credits his current students with sticking with the project over the course of many years.

“It has been a long journey and their work has been invaluable,” he said. “I think these results show that it was worth it.”

Here’s a link to and a citation for the paper,

Nanorg Microbial Factories: Light-Driven Renewable Biochemical Synthesis Using Quantum Dot-Bacteria Nanobiohybrids by Yuchen Ding, John R. Bertram, Carrie Eckert, Rajesh Reddy Bommareddy, Rajan Patel, Alex Conradie, Samantha Bryan, Prashant Nagpal. J. Am. Chem. Soc.2019XXXXXXXXXX-XXX DOI: https://doi.org/10.1021/jacs.9b02549 Publication Date:June 7, 2019
Copyright © 2019 American Chemical Society

This paper is behind a paywall.

Unusual appetite for gold

This bacterium (bacteria being the plural) loves gold, which is lucky for anyone trying to develop artificial photosynthesis.From an October 9, 2018 news item on ScienceDaily,

A bacterium named Moorella thermoacetica won’t work for free. But UC Berkeley [University of California at Berkeley] researchers have figured out it has an appetite for gold. And in exchange for this special treat, the bacterium has revealed a more efficient path to producing solar fuels through artificial photosynthesis.

An October 5, 2018 UC Berkeley news release by Theresa Duque (also on EurekAlert but published on October 9, 2018), which originated the news item, expands on the theme,

M. thermoacetica first made its debut as the first non-photosensitive bacterium to carry out artificial photosynthesis (link is external) in a study led by Peidong Yang, a professor in UC Berkeley’s College of Chemistry. By attaching light-absorbing nanoparticles made of cadmium sulfide (CdS) to the bacterial membrane exterior, the researchers turned M. thermoacetica into a tiny photosynthesis machine, converting sunlight and carbon dioxide into useful chemicals.

Now Yang and his team of researchers have found a better way to entice this CO2-hungry bacterium into being even more productive. By placing light-absorbing gold nanoclusters inside the bacterium, they have created a biohybrid system that produces a higher yield of chemical products than previously demonstrated. The research, funded by the National Institutes of Health, was published on Oct. 1 in Nature Nanotechnology (link is external).

For the first hybrid model, M. thermoacetica-CdS, the researchers chose cadmium sulfide as the semiconductor for its ability to absorb visible light. But because cadmium sulfide is toxic to bacteria, the nanoparticles had to be attached to the cell membrane “extracellularly,” or outside the M. thermoacetica-CdS system. Sunlight excites each cadmium-sulfide nanoparticle into generating a charged particle known as an electron. As these light-generated electrons travel through the bacterium, they interact with multiple enzymes in a process known as “CO2 reduction,” triggering a cascade of reactions that eventually turns CO2 into acetate, a valuable chemical for making solar fuels.

But within the extracellular model, the electrons end up interacting with other chemicals that have no part in turning CO2 into acetate. And as a result, some electrons are lost and never reach the enzymes. So to improve what’s known as “quantum efficiency,” or the bacterium’s ability to produce acetate each time it gains an electron, the researchers found another semiconductor: nanoclusters made of 22 gold atoms (Au22), a material that M. thermoacetica took a surprising shine to.

A single nanocluster of 22 gold atoms

Figure: A single nanocluster of 22 gold atoms – Au22 – is only 1 nanometer in diameter, allowing it to easily slip through the bacterial cell wall.

“We selected Au22 because it’s ideal for absorbing visible light and has the potential for driving the CO2 reduction process, but we weren’t sure whether it would be compatible with the bacteria,” Yang said. “When we inspected them under the microscope, we discovered that the bacteria were loaded with these Au22 clusters – and were still happily alive.”

Imaging of the M. thermoacetica-Au22 system was done at UC Berkeley’s Molecular Imaging Center (link is external).

The researchers also selected Au22 ­– dubbed by the researchers as “magic” gold nanoclusters – for its ultrasmall size: A single Au22nanocluster is only 1 nanometer in diameter, allowing each nanocluster to easily slip through the bacterial cell wall.

“By feeding bacteria with Au22 nanoclusters, we’ve effectively streamlined the electron transfer process for the CO2 reduction pathway inside the bacteria, as evidenced by a 2.86 percent quantum efficiency – or 33 percent more acetate produced within the M. thermoacetica-Au22 system than the CdS model,” Yang said.

The magic gold nanocluster is the latest discovery coming out of Yang’s lab, which for the past six years has focused on using biohybrid nanostructures to convert CO2 into useful chemicals as part of an ongoing effort to find affordable, abundant resources for renewable fuels, and potential solutions to thwart the effects of climate change.

“Next, we’d like to find a way to reduce costs, improve the lifetimes for these biohybrid systems, and improve quantum efficiency,” Yang said. “By continuing to look at the fundamental aspect of how gold nanoclusters are being photoactivated, and by following the electron transfer process within the CO2 reduction pathway, we hope to find even better solutions.”

Co-authors with Yang are UC Berkeley graduate student Hao Zhang and former postdoctoral fellow Hao Liu, now at Donghua University in Shanghai, China.

Here’s a link to and a citation for the paper,

Bacteria photosensitized by intracellular gold nanoclusters for solar fuel production by Hao Zhang, Hao Liu, Zhiquan Tian, Dylan Lu, Yi Yu, Stefano Cestellos-Blanco, Kelsey K. Sakimoto, & Peidong Yang. Nature Nanotechnologyvolume 13, pages900–905 (2018). DOI: https://doi.org/10.1038/s41565-018-0267-z Published: 01 October 2018

This paper is behind a paywall.

For lovers of animation, the folks at UC Berkeley have produced this piece about the ‘gold-loving’ bacterium,