An October 28, 2024 news item on phys.org announces a breakthrough in cardiac imaging, Note: A link has been removed,
Researchers at the University of Ottawa have made a breakthrough in heart disease diagnostics. They have developed a new type of contrast agent for a medical imaging technique called intravascular optical coherence tomography (IV-OCT). This new agent, made from gold superclusters (AuSC), could improve doctors’ ability to diagnose heart conditions.
The research team, led by Adam J. Shuhendler, Associate Professor at uOttawa’s Department of Chemistry and Biomolecular Sciences, created these gold superclusters to work with the near-infrared light used in IV-OCT. These superclusters are made of tightly packed gold nanoparticles, which enhance the light scattering needed for clearer imaging. The study, titled “NIR-II Scattering Gold Superclusters for Intravascular Optical Coherence Tomography Molecular Imaging,” is published in Nature Nanotechnology.
“We’ve found a simple and quick way to produce these gold superclusters,” says Shuhendler. “We can also adjust them to make them perfect for improving IV-OCT imaging.”
The team coated the gold superclusters with a special polymer to stabilize them and allow targeting molecules to be attached.
This study focused on P-selectin, a marker of blood vessel inflammation. The new contrast agent, named AuSC@(13FS)2, showed strong binding to P-selectin in lab tests and improved IV-OCT imaging in rats with inflamed blood vessels.
One major benefit of this new agent is that it can provide detailed molecular information without changing the existing IV-OCT procedures used in clinics. The researchers found that when AuSC@(13FS)2 bound to inflamed blood vessels, it created distinct reflections in the IV-OCT images, similar to those seen with stents.
“Our new contrast agent could lead to more personalized heart disease treatments,” explains Shuhendler. “This technology might help doctors detect heart diseases earlier and assess the risk more accurately by providing detailed information about the blood vessels.”
The study also showed a direct link between the amount of P-selectin and the number of reflections seen in the images, suggesting that this method could measure the severity of inflammation.
This research is a big step forward in heart disease imaging and diagnostics. By enabling detailed imaging with IV-OCT, it offers new opportunities for early detection and personalized treatment of heart conditions.
Here’s a link to and a citation for the paper,
NIR-II scattering gold superclusters for intravascular optical coherence tomography molecular imaging by Nicholas D. Calvert, Joshua Baxter, Aidan A. Torrens, Jesse Thompson, Alexia Kirby, Jaspreet Walia, Spyridon Ntais, Eva Hemmer, Pierre Berini, Benjamin Hibbert, Lora Ramunno & Adam J. Shuhendler. Nature Nanotechnology (2024) DOI: https://doi.org/10.1038/s41565-024-01802-2 Published: 28 October 2024
Sense about Science is a UK “independent charity that promotes the public interest in sound science and evidence,” according to the organization’s homepage. An October 29, 2024 Sense About Science announcement arrived in my email box (also online here),
Unfortunately, we don’t yet live in a world where it is safe for researchers to always speak out openly and honestly about research findings, even when it is important for society that they do so. We need to be able to ask difficult and sometimes uncomfortable scientific questions if we are to make decisions that affect the lives of many on the best available evidence.
Fortunately, however, there are brave researchers around the world who bringing evidence to public debate despite the potential of facing harassment or intimidation. The Maddox Prize is awarded by Springer Nature and Sense about Science to individuals who have shown courage and integrity in standing up for sound science and evidence and encourages others to do the same.
This year the judges have shortlisted 8 inspiring individuals from all the nominations received. They are:
Patrick Ball for his rigorous statistical work identifying, cataloguing and prosecuting war crimes. Patrick founded the Human Rights Data Analyst Group (HRDAG) and has spent over thirty years producing analysis for truth commissions, non-governmental organisations, international criminal tribunals and United Nations missions.
Kelly Cobey for her work implementing open science and championing the need to reform research assessment. Kelly is an Associate Professor at the University of Ottawa, where she is also director of the Metaresearch and Open Science programme.
Sholto David for his active role in identifying fabricated studies and results and protecting the integrity of science. Sholto is an analytical scientist with a PhD in cell and molecular biology from Newcastle University.
Ann McNeill for her work on studying interventions to reduce threats posed by cigarette smoking. Ann is a Professor of Tobacco Addiction in the National Addiction Centre at the Institute of Psychiatry, Psychology and Neuroscience, King’s College London.
Ben Mol for his work exposing scientific fraud in obstetrics and gynaecology research and removing fabricated papers from the literature. Ben is a Professor of obstetrics/gynaecology at Monash University in Australia.
John Nkengasong for conducting epidemiological studies of the COVID-19 virus in Africa whilst he was the director of the Africa Centres for Disease Control and Prevention. His efforts played a huge part in protecting the African population from COVID-19 despite challenges such as testing in regions of conflict. John is a virologist currently serving as the Global AIDS Coordinator in the Biden administration.
Shiba Subedi for his dedication campaigning in Nepali society for better awareness and preparedness for earthquakes. Shiba currently works as a seismologist at the Nepal Academy of Science and Technology.
Carola Vinuesa for her work using genetic sequencing to prevent unwarranted accusation of parents that they have harmed their children. Carola is internationally renowned for her discoveries in genetic causes of autoimmunity, and currently works at the Francis Crick Institute in London.
The October 2024 issue of The Advance (Council of Canadian Academies [CCA] newsletter) arrived in my emailbox on October 15, 2024 with some interesting tidbits about artificial intelligence, Note: For anyone who wants to see the entire newsletter for themselves, you can sign up here or in French, vous pouvez vous abonner ici,
Artificial Intelligence and Canada’s Science Diplomacy Future
For nearly two decades, Canada has been a global leader in artificial intelligence (AI) research, contributing a significant percentage of the world’s top-cited scientific publications on the subject. In that time, the number of countries participating in international collaborations has grown significantly, supporting new partnerships and accounting for as much as one quarter of all published research articles.
“Opportunities for partnerships are growing rapidly alongside the increasing complexity of new scientific discoveries and emerging industry sectors,” wrote the CCA Expert Panel on International Science, Technology, Innovation and Knowledge Partnerships earlier this year, singling out Canada’s AI expertise. “At the same time, discussions of sovereignty and national interests abut the movement toward open science and transdisciplinary approaches.”
On Friday, November 22 [2024], the CCA will host “Strategy and Influence: AI and Canada’s Science Diplomacy Future” as part of the Canadian Science Policy Centre (CSPC) annual conference. The panel discussion will draw on case studies related to AI research collaboration to explore the ways in which such partnerships inform science diplomacy. Panellists include:
Monica Gattinger, chair of the CCA Expert Panel on International Science, Technology, Innovation and Knowledge Partnerships and director of the Institute for Science, Society and Policy at the University of Ottawa (picture omitted)
David Barnes, head of the British High Commission Science, Climate, and Energy Team
Constanza Conti, Professor of Numerical Analysis at the University of Florence and Scientific Attaché at the Italian Embassy in Ottawa
Jean-François Doulet, Attaché for Science and Higher Education at the Embassy of France in Canada
Konstantinos Kapsouropoulos, Digital and Research Counsellor at the Delegation of the European Union to Canada
For details on CSPC 2024, click here. [Here’s the theme and a few more details about the conference: Empowering Society: The Transformative Value of Science, Knowledge, and Innovation; The 16th annual Canadian Science Policy Conference (CSPC) will be held in person from November 20th to 22nd, 2024] For a user guide to Navigating Collaborative Futures, from the CCA’s Expert Panel on International Science, Technology, Innovation and Knowledge Partnerships, click here.
448: Strategy and Influence: AI and Canada’s Science Diplomacy Future
Friday, November 22 [2024] 1:00 pm – 2:30 pm EST
Science and International Affairs and Security
About
Organized By: Council of Canadian Academies (CCA)
Artificial intelligence has already begun to transform Canada’s economy and society, and the broader advantages of international collaboration in AI research have the potential to make an even greater impact. With three national AI institutes and a Pan-Canadian AI Strategy, Canada’s AI ecosystem is thriving and positions the country to build stronger international partnerships in this area, and to develop more meaningful international collaborations in other areas of innovation. This panel will convene science attachés to share perspectives on science diplomacy and partnerships, drawing on case studies related to AI research collaboration.
The newsletter also provides links to additional readings on various topics, here are the AI items,
In Ottawa, Prime Minister Justin Trudeau and President Emmanuel Macron of France renewed their commitment “to strengthening economic exchanges between Canadian and French AI ecosystems.” They also revealed that Canada would be named Country of the Year at Viva Technology’s annual conference, to be held next June in Paris.
A “slower, but more capable” version of OpenAI is impressing scientists with the strength of its responses to prompts, according to Nature. The new version, referred to as “o1,” outperformed a previous ChatGPT model on a standardized test involving chemistry, physics, and biology questions, and “beat PhD-level scholars on the hardest series of questions.” [Note: As of October 16, 2024, the Nature news article of October 1, 2024 appears to be open access. It’s unclear how long this will continue to be the case.]
…
In memoriam: Abhishek Gupta, the founder and principal researcher of the Montreal AI Ethics Institute and a member of the CCA Expert Panel on Artificial Intelligence for Science and Engineering, died on September 30 [2024]. His colleagues shared the news in a memorial post, writing, “It was during his time in Montreal that Abhishek envisioned a future where ethics and AI would intertwine—a vision that became the driving force behind his life’s work.”
Meeting in Ottawa on September 26, 2024, Justin Trudeau, the Prime Minister of Canada, and Emmanuel Macron, the President of the French Republic, issued a call to action to promote the development of a responsible approach to artificial intelligence (AI).
Our two countries will increase the coordination of our actions, as Canada will assume the Presidency of the G7 in 2025 and France will host the AI Action Summit on February 10 and 11, 2025.
Our two countries are working on the development and use of safe, secure and trustworthy AI as part of a risk-aware, human-centred and innovation-friendly approach. This cooperation is based on shared values. We believe that the development and use of AI need to be beneficial for individuals and the planet, for example by increasing human capabilities and developing creativity, ensuring the inclusion of under-represented people, reducing economic, social, gender and other inequalities, protecting information integrity and protecting natural environments, which in turn will promote inclusive growth, well-being, sustainable development and environmental sustainability.
We are committed to promoting the development and use of AI systems that respect the rule of law, human rights, democratic values and human-centred values. Respecting these values means developing and using AI systems that are transparent and explainable, robust, safe and secure, and whose stakeholders are held accountable for respecting these principles, in line with the Recommendation of the OECD Council on Artificial Intelligence, the Hiroshima AI Process, the G20 AI Principles and the International Partnership for Information and Democracy.
Based on these values and principles, Canada and France are working on high-quality scientific cooperation. In April 2023, we formalized the creation of a joint committee for science, technology and innovation. This committee has identified emerging technologies, including AI, as one of the priorities areas for cooperation between our two countries. In this context, a call for AI research projects was announced last July, scheduled for the end of 2024 and funded, on the French side, by the French National Research Agency, and, on the Canadian side, by a consortium made up of Canada’s three granting councils (the Natural Sciences and Engineering Research Council of Canada, the Social Sciences and Humanities Research Council of Canada and the Canadian Institutes of Health Research) and IVADO [Institut de valorisation des données], the AI research, training and transfer consortium.
We will also collaborate on the evaluation and safety of AI models. We have announced key AI safety initiatives, including the AI Safety Institute of Canada [emphasis mine; not to be confused with Artificial Intelligence Governance & Safety Canada (AIGS)], which will be launched soon, and France’s National Centre for AI evaluation. We expect these two agencies will work to improve knowledge and understanding of technical and socio-technical aspects related to the safety and evaluation of advanced AI systems.
Canada and France are committed to strengthening economic exchanges between Canadian and French AI ecosystems, whether by organizing delegations, like the one organized by Scale AI with 60 Canadian companies at the latest Viva Technology conference in Paris, or showcasing France at the ALL IN event in Montréal on September 11 and 12, 2024, through cooperation between companies, for example, through large companies’ adoption of services provided by small companies or through the financial support that investment funds provide to companies on both sides of the Atlantic. Our two countries will continue their cooperation at the upcoming Viva Technology conference in Paris, where Canada will be the Country of the Year.
We want to strengthen our cooperation in terms of developing AI capabilities. We specifically want to promote access to AI’s compute capabilities in order to support national and international technological advances in research and business, notably in emerging markets and developing countries, while committing to strengthening their efforts to make the necessary improvements to the energy efficiency of these infrastructures. We are also committed to sharing their experience in initiatives to develop AI skills and training in order to accelerate workforce deployment.
Canada and France cooperate on the international stage to ensure the alignment and convergence of AI regulatory frameworks, given the economic potential and the global social consequences of this technological revolution. Under our successive G7 presidencies in 2018 and 2019, we worked to launch the Global Partnership on Artificial Intelligence (GPAI), which now has 29 members from all over the world, and whose first two centres of expertise were opened in Montréal and Paris. We support the creation of the new integrated partnership, which brings together OECD and GPAI member countries, and welcomes new members, including emerging and developing economies. We hope that the implementation of this new model will make it easier to participate in joint research projects that are of public interest, reduce the global digital divide and support constructive debate between the various partners on standards and the interoperability of their AI-related regulations.
We will continue our cooperation at the AI Action Summit in France on February 10 and 11, 2025, where we will strive to find solutions to meet our common objectives, such as the fight against disinformation or the reduction of the environmental impact of AI. With the objective of actively and tangibly promoting the use of the French language in the creation, production, distribution and dissemination of AI, taking into account its richness and diversity, and in compliance with copyright, we will attempt to identify solutions that are in line with the five themes of the summit: AI that serves the public interest, the future of work, innovation and culture, trust in AI and global AI governance.
Canada has accepted to co-chair the working group on global AI governance in order to continue the work already carried out by the GPAI, the OECD, the United Nations and its various bodies, the G7 and the G20. We would like to highlight and advance debates on the cultural challenges of AI in order to accelerate the joint development of relevant responses to the challenges faced. We would also like to develop the change management policies needed to support all of the affected cultural sectors. We will continue these discussions together during our successive G7 presidencies in 2025 and 2026.
I checked out the In memoriam notice for Abhishek Gupta and found this, Note: Links have been removed except the link to the Abhishek Gupta’s memorial page hosting tributes, stories, and more. The link is in the highlighted paragraph,
Honoring the Life and Legacy of a Leader in AI Ethics
In accordance with his family’s wishes, it is with profound sadness that we announce the passing of Abhishek Gupta, Founder and Principal Researcher of the Montreal AI Ethics Institute (MAIEI), Director for Responsible AI at the Boston Consulting Group (BCG), and a pioneering voice in the field of AI ethics. Abhishek passed away peacefully in his sleep on September 30, 2024 in India, surrounded by his loving family. He is survived by his father, Ashok Kumar Gupta; his mother, Asha Gupta; and his younger brother, Abhijay Gupta.
Note: Details of a memorial service will be announced in the coming weeks. For those who wish to share stories, personal anecdotes, and photos of Abhishek, please visit www.forevermissed.com/abhishekgupta — your contributions will be greatly appreciated by his family and loved ones.
Born on December 20, 1992, in India, Abhishek’s intellectual curiosity and drive to understand technology led him on a remarkable journey. After excelling at Delhi Public School, Abhishek attended McGill University in Montreal, where he earned a Bachelor of Science in Computer Science (BSc’15). Following his graduation, Abhishek worked as a software engineer at Ericsson. He later joined Microsoft as a machine learning engineer, where he also served on the CSE Responsible AI Board. It was during his time in Montreal that Abhishek envisioned a future where ethics and AI would intertwine—a vision that became the driving force behind his life’s work.
The Beginnings: Building a Global AI Ethics Community
Abhishek’s vision for MAIEI was rooted in community building. He began hosting in-person AI Ethics Meetups in Montreal throughout 2017. These gatherings were unique—participants completed assigned readings in advance, split into small groups for discussion, and then reconvened to share insights. This approach fostered deep, structured conversations and made AI ethics accessible to everyone, regardless of their background. The conversations and insights from these meetups became the foundation of MAIEI, which was launched in May 2018.
When the pandemic hit, Abhishek adapted the meetup format to an online setting, enabling MAIEI to expand worldwide. It was his idea to bring these conversations to a global stage, using virtual platforms to ensure voices from all corners of the world could join in. He passionately stood up for the “little guy,” making sure that those whose voices might be overlooked or unheard in traditional forums had a platform. Under his stewardship, MAIEI emerged as a globally recognized leader in fostering public discussions on the ethical implications of artificial intelligence. Through MAIEI, Abhishek fulfilled his mission of democratizing AI ethics literacy, empowering individuals from all backgrounds to engage with the future of technology.
…
I offer my sympathies to his family, friends, and communities for their profound loss.
While this research team was heavily dominated by researchers from the University of Ottawa, there were two members associated with the University of Talca (Universidad de Talca; located in Chile), two members associated with the University of Montreal (Université de Montréal), and one member with McGill University (located in Montréal).
Combining biomedical finesse and nature-inspired engineering, a uOttawa-led team of scientists have created a jelly-like material that shows great potential for on-the-spot repair to a remarkable range of damaged organs and tissues in the human body.
Cutting-edge research co-led by uOttawa Faculty of Medicine Associate Professor Dr. Emilio I. Alarcón could eventually impact millions of lives with peptide-based hydrogels that will close skin wounds, deliver therapeutics to damaged heart muscle, as well as reshape and heal injured corneas.
“We are using peptides to fabricate therapeutic solutions. The team is drawing inspiration from nature to develop simple solutions for wound closure and tissue repair,” says Dr. Alarcón, a scientist and director at the BioEngineering and Therapeutic Solutions (BEaTS) group at the University of Ottawa Heart Institutek whose innovative research work is focused on developing new materials with capabilities for tissue regeneration.
Peptides are molecules in living organisms and hydrogels are a water-based material with a gelatinous texture that have proven useful in therapeutics.
The approach used in the study – just published in Advanced Functional Materials and co-led by Dr. Erik Suuronen & Dr. Marc Ruel – is unique. Most hydrogels explored in tissue engineering are animal-derived and protein-based materials, but the biomaterial created by the collaborative team is supercharged by engineered peptides. This makes it more clinically translatable.
Dr. Ruel, a full professor in the uOttawa Faculty of Medicine’s Department of Cellular and Molecular Medicine and the endowed chair of research in the Division of Cardiac Surgery at the University of Ottawa Heart Institute, says the study’s insights could be a game changer.
“Despite millennia of evolution, the human response to wound healing still remains imperfect,” Dr. Ruel says. “We see maladapted scarring in everything from skin incisions to eye injuries, to heart repair after a myocardial infarction. Drs. Alarcón, Suuronen, and the rest of our team have focused on this problem for almost two decades. The publication by Dr. Alarcón in Advanced Functional Materials reveals a novel way to make wound healing, organ healing, and even basic scarring after surgery much more therapeutically modulatable and, therefore, optimizable for human health.”
Indeed, the ability to modulate the peptide-based biomaterial is key. The uOttawa-led team’s hydrogels are designed to be customizable, making the durable material adaptable for use in a surprising range of tissues. Essentially, the two-component recipe could be adjusted to ramp up adhesivity or dial down other components depending on the part of the body needing repair.
“We were in fact very surprised by the range of applications our materials can achieve,” says Dr. Alarcón. “Our technology offers an integrated solution that is customizable depending on the targeted tissue.”
Dr. Alarcón says that not only does the study’s data suggest that the therapeutic action of the biomimetic hydrogels are highly effective, but its application is far simpler and cost-effective than other regenerative approaches.
The materials are engineered in a low-cost and scalable manner – hugely important qualities for any number of major biomedical applications. The team also devised a rapid-screening system that allowed them to significantly slash the design costs and testing timespans.
“This significant reduction in cost and time not only makes our material more economically viable but also accelerates its potential for clinical use,” Dr. Alarcón says.
What are next steps for the talent-rich research team? They will conduct large animal tests in preparation for tests in human subjects. So far, heart and skin tests were conducted with rodents, and the cornea work was done ex vivo.
Part of the work for this study was funded by the uOttawa Faculty of Medicine’s “Path to Patenting & Pre-Commercialization” (3P), an innovation-focused approach to provide our community’s top-flight researchers with the assistance needed to bring their most promising breakthroughs to the wider world.
Here’s a link to and a citation for the paper,
Multipurpose On-the-Spot Peptide-Based Hydrogels for Skin, Cornea, and Heart Repair by Alex Ross, Xixi Guo, German A. Mercado Salazar, Sergio David Garcia Schejtman, Jinane El-Hage, Maxime Comtois-Bona, Aidan Macadam, Irene Guzman-Soto, Hiroki Takaya, Kevin Hu, Bryan Liu, Ryan Tu, Bilal Siddiqi, Erica Anderson, Marcelo Muñoz, Patricio Briones-Rebolledo, Tianqin Ning, May Griffith, Benjamin Rotsein, Horacio Poblete, Jianyu Li, Marc Ruel, Erik J. Suuronen, Emilio I. Alarcon. Advanced Functional Materials DOI: https://doi.org/10.1002/adfm.202402564 First published: 23 April 2024
Unless something really exciting happens, this will be my last post about the upcoming 2023 (and 15th annual) Canadian Science Policy Conference. I will be highlighting a few of the sessions but, first, there’s this from an October 26, 2023 Canadian Science Policy Centre announcement (received via email),
Only Two Weeks Left to Register for CSPC [Canadian Science Policy Conference] 2023!
Only two weeks left to register for CSPC 2023! The deadline to register is Friday, November 10th! With the overarching theme of ‘Science and Innovation in a Time of Transformation’ CSPC 2023 expects more than 1000 participants, 300+ speakers in 50+ panel sessions, and will include a spectacular Gala Dinner featuring its award ceremony which has become a signature annual event to celebrate Canadian science and innovation policy achievements.
CSPC 2023 will feature more than 300 amazing speakers. To view the list of speakers, click here, and here are some of the international speakers:
Multiple ticket discounts are also available. CSPC offers a 5% discount on groups of 5-9 registrations and a 10% discount for 10 registrations or more. Please note GROUP REGISTRATION DISCOUNTS are available until Friday, November 10th. Please contact conference@sciencepolicy.ca for more information.
Register now by clicking the button below! Register Now
View the CSPC 2023 Program and Speakers List!
The biggest and most comprehensive annual Science and Innovation Policy Conference, CSPC 2023, is fast approaching! Explore more than 60 concurrent and plenary panel sessions. Navigate the CSPC 2023 Program: the Interactive Agenda is available here, and the Agenda at a Glance can be viewed here.
There are four sessions that seem particularly interesting to me. First, from the session webpage,
804 – Discussion between Dr. Mona Nemer and Dr. Sethuraman Panchanathan, moderated by Dr. Alejandro Adem
Monday, November 13, 20231:00 PM – 2:00 PM
This year’s CSPC opening panel will bring together two of North America’s most recognized science leaders for a discussion about their experience in the Canadian and U.S research landscape. Panelists will discuss the importance of societally-relevant science, broadening participation in science, the increasing need for open science, and science & technology in green economic development, as well as their vision for the role of science in international relations.
Organized by: Canada Research Coordinating Committee
Speakers
Dr. Alejandro Adem President of the Natural Sciences and Engineering Research Council of Canada (NSERC)
Dr. Mona Nemer Canada’s Chief Science Advisor, Government of Canada
Dr. Sethuraman Panchanathan Computer Scientist and Engineer 15th Director of the U.S. National Science Foundation (NSF)
901 – The new challenges of information in parliaments
Monday, November 13, 20232:30 PM – 4:00 PM
In a democratic environment, members of parliament work with information gathered from parliamentary staff, media, lobbies and experts. With the aim of maintaining a strong democracy, parliaments around the world have developed mechanisms to facilitate access to high-quality information for elected representatives, with variations according to continent, language and culture. This panel proposes an overview of these mechanisms including a discussion on emerging issues impacting them, such as the integration of artificial intelligence and the risks of digital interference in democratic processes.
277 – Science for Social Justice: Advancing the agenda set by the 2022 Cape Town World Science Forum
Tuesday, November 14, 202310:30 AM – 12:00 PM
South Africa had hosted the 10th World Science Forum (WSF), a platform for global science policy dialogue, in Cape Town in December 2022. The WSF is co-organised by a partnership involving global science organisations including UNESCO, the AAAS and the International Science Council, and Hungarian Academy of Science. The theme of the 2022 WSF was “Science for Social Justice.” During a week of intense debate more than 3000 participants from across the world debated the role of science in advancing social justice. This session will review the outcomes of the Forum, including the WSF Declaration on Science for Social Justice.
Organized by: South African Department of Science and Innovation
Speakers
…
The fourth and final session to be mentioned here, from the session webpage,
910 – Canada’s Quantum potential : critical partnerships and public policy to advance Canada’s leadership in Quantum science and technology.
Tuesday, November 14, 202310:30 AM – 12:00 PM
Canada’s early commitment to invest in Quantum research and technology has made our nation one of the global leaders in that field, and the $360 million earmarked over a seven-year period to foster the National Quantum Strategy (NQS) is a testament to Canada’s leadership ambition in the future. This panel discussion will address the ever-evolving field of quantum science and technology and offer a unique opportunity to explore its policy dimensions including the current state of the field, its advancements and potential applications, and the overall impact of quantum innovations across various sectors. It will explore the transformative impact of quantum science and technologies, and the quantum revolution 2.0 on society, from diverse expert perspectives, using examples such as the impact of quantum computing on drug discovery or financial modelling, as well as discussing the ethical considerations and potential for misuse in surveillance or disinformation campaigns. This panel will examine a variety of policy and social implications of Quantum technologies, including the impact of foundational research and training, approaches to support Quantum industries at their development stages, risks, obstacles to commercialization, and opportunities for better inclusion.
Organized by: University of Ottawa
Speakers
Dr. Khabat Heshami Research Officer at the National Research Council Canada [NRC]
Jeff Kinder Project Director Council of Canadian Academies
Professor Ebrahim Karimi Co-Director the Nexus for Quantum Technologies Research Institute University of Ottawa
Professor Ghassan Jabbour Canada Research Chair in Engineered Advanced Materials and Devices University of Ottawa – Faculty of Engineering
Rafal Janik Chief Operating Officer Xanadu
Tina Dekker Research Fellow of the University of Ottawa Research Chair in Technology and Society
A few comments
I have highlighted speakers from two of the sessions as I’m going to make a few comments. Dr. Mona Nemer who’s part of the opening panel discussion and Canada’s Chief Science Advisor and Dr. Mehrdad Hariri, the founder and current Chief Executive Officer (CEO) for Canadian Science Policy Centre, which organizes the conference, are both from a region that is experiencing war.
I imagine this is a particularly difficult time for many people in Canada whose family and friends are from the various communities in that region. Along with many others, I hope one day there is peace for everyone. For anyone who might want a little insight into the issues, there’s an October 15, 2023 CBC (Canadian Broadcasting Corporation) radio programme segement on ‘The Sunday Magazine with Piya Chattopadhyay’,
How to maintain solidarity in Canadian Jewish and Palestinian communities
The events in Israel and Gaza in the last week have sparked high levels of grief, pain and outrage, deepening long-simmering divides in the region and closer to home. For years, Raja Khouri and Jeffrey Wilkinson have embarked on a joint project to bring North American Palestinian and Jewish communities together. They join Piya Chattopadhyay to discuss how the events of the last week are challenging that ongoing mission in Canada… and how to strive for solidarity in a time of grief and trauma.
The Wall Between is a book about the wall that exists between Jewish and Palestinian communities in the Diaspora. Distrust, enmity, and hate are common currencies. They manifest at university campuses, schools and school boards, at political events, on social media, and in academic circles. For Jews, Israel must exist; for Palestinians, the historic injustice being committed since 1948 must be reversed. Neither wants to know why the Other cannot budge on these issues. The wall is up.
These responses emanate, primarily, from the two “metanarratives” of Jews and Palestinians: the Holocaust and the Nakba. Virtually every response to the struggle, from a member of either community, can be traced back to issues of identity, trauma, and victimhood as they relate to their respective metanarrative. This book examines the role that propaganda and disinformation play in cementing trauma-induced fears for the purpose of making the task of humanizing and acknowledging the Other not just difficult, but almost inconceivable. The authors utilize recent cognitive research on the psychological and social barriers that keep Jews and Palestinians in their camps, walled off from each other. They present a clear way through, one that is justice-centered, rather than trauma-and propaganda-driven.
The authors have lived these principles and traveled this journey, away from their tribal traumas, through embracing the principles of justice. They insist that commitment to the Other means grappling with seemingly incompatible narratives until shared values are decided and acted upon. This book is a call to justice that challenges the status quo of Zionism while at the same time dealing directly with the complex histories that have created the situation today. The book is both realistic and hopeful—a guide for anyone who is open to new possibilities within the Israel-Palestine discourse in the West.
Also, thank you to Dr. Nemer and Dr. Hariri for the science policy work they’ve done here in Canada and their efforts to expand our discussions.
On a much lighter note, the ‘quantum session’ panel is dominated by academics from the University of Ottawa, a policy wonk from Ottawa, and a representative from a company based in Toronto (approximately 450 km from Ottawa by road). Couldn’t the panel organizers have made some effort to widen geographical representation? This seems particularly odd since the policy wonk (Jeff Kinder) is currently working with the Canadian Council of Academies’ Expert Panel on the Responsible Adoption of Quantum Technologies, which does have wider geographical representation.
This CSPC 2023 panel also seems to be another example of what appears to be a kind of rivalry between D-Wave Systems (based in the Vancouver area) and Xanadu Quantum Technologies (Toronto-based) or perhaps another east-west Canada rivalry. See my May 4, 2021 posting (scroll down to the ‘National Quantum Strategy’ subhead) for an overview of sorts of the seeming rivalry; there’s my July 26, 2022 posting for speculation about Canada’s quantum scene and what appears to be an east/west divide; and for a very brief comment in my April 17, 2023 posting (scroll down to the ‘The quantum crew’ subhead.)
As for the conference itself, there’s been a significant increase in conference registration fees this year (see my July 28, 203 posting) and, for the insatiable, there’s my March 29, 2023 posting featuring the call for submissions and topic streams.
For the first time in the 15 years this blog has been around, the Nobel prizes awarded in medicine, physics, and chemistry all are in areas discussed here at one or another. As usual where people are concerned, some of these scientists had a tortuous journey to this prestigious outcome.
Medicine
Two people (Katalin Karikó and Drew Weissman) were awarded the prize in medicine according to the October 2, 2023 Nobel Prize press release, Note: Links have been removed,
The Nobel Assembly at Karolinska Institutet [Sweden]
has today decided to award
the 2023 Nobel Prize in Physiology or Medicine
jointly to
Katalin Karikó and Drew Weissman
for their discoveries concerning nucleoside base modifications that enabled the development of effective mRNA vaccines against COVID-19
The discoveries by the two Nobel Laureates were critical for developing effective mRNA vaccines against COVID-19 during the pandemic that began in early 2020. Through their groundbreaking findings, which have fundamentally changed our understanding of how mRNA interacts with our immune system, the laureates contributed to the unprecedented rate of vaccine development during one of the greatest threats to human health in modern times.
Vaccines before the pandemic
Vaccination stimulates the formation of an immune response to a particular pathogen. This gives the body a head start in the fight against disease in the event of a later exposure. Vaccines based on killed or weakened viruses have long been available, exemplified by the vaccines against polio, measles, and yellow fever. In 1951, Max Theiler was awarded the Nobel Prize in Physiology or Medicine for developing the yellow fever vaccine.
Thanks to the progress in molecular biology in recent decades, vaccines based on individual viral components, rather than whole viruses, have been developed. Parts of the viral genetic code, usually encoding proteins found on the virus surface, are used to make proteins that stimulate the formation of virus-blocking antibodies. Examples are the vaccines against the hepatitis B virus and human papillomavirus. Alternatively, parts of the viral genetic code can be moved to a harmless carrier virus, a “vector.” This method is used in vaccines against the Ebola virus. When vector vaccines are injected, the selected viral protein is produced in our cells, stimulating an immune response against the targeted virus.
Producing whole virus-, protein- and vector-based vaccines requires large-scale cell culture. This resource-intensive process limits the possibilities for rapid vaccine production in response to outbreaks and pandemics. Therefore, researchers have long attempted to develop vaccine technologies independent of cell culture, but this proved challenging.
In our cells, genetic information encoded in DNA is transferred to messenger RNA (mRNA), which is used as a template for protein production. During the 1980s, efficient methods for producing mRNA without cell culture were introduced, called in vitro transcription. This decisive step accelerated the development of molecular biology applications in several fields. Ideas of using mRNA technologies for vaccine and therapeutic purposes also took off, but roadblocks lay ahead. In vitro transcribed mRNA was considered unstable and challenging to deliver, requiring the development of sophisticated carrier lipid systems to encapsulate the mRNA. Moreover, in vitro-produced mRNA gave rise to inflammatory reactions. Enthusiasm for developing the mRNA technology for clinical purposes was, therefore, initially limited.
These obstacles did not discourage the Hungarian biochemist Katalin Karikó, who was devoted to developing methods to use mRNA for therapy. During the early 1990s, when she was an assistant professor at the University of Pennsylvania, she remained true to her vision of realizing mRNA as a therapeutic despite encountering difficulties in convincing research funders of the significance of her project. A new colleague of Karikó at her university was the immunologist Drew Weissman. He was interested in dendritic cells, which have important functions in immune surveillance and the activation of vaccine-induced immune responses. Spurred by new ideas, a fruitful collaboration between the two soon began, focusing on how different RNA types interact with the immune system.
The breakthrough
Karikó and Weissman noticed that dendritic cells recognize in vitro transcribed mRNA as a foreign substance, which leads to their activation and the release of inflammatory signaling molecules. They wondered why the in vitro transcribed mRNA was recognized as foreign while mRNA from mammalian cells did not give rise to the same reaction. Karikó and Weissman realized that some critical properties must distinguish the different types of mRNA.
RNA contains four bases, abbreviated A, U, G, and C, corresponding to A, T, G, and C in DNA, the letters of the genetic code. Karikó and Weissman knew that bases in RNA from mammalian cells are frequently chemically modified, while in vitro transcribed mRNA is not. They wondered if the absence of altered bases in the in vitro transcribed RNA could explain the unwanted inflammatory reaction. To investigate this, they produced different variants of mRNA, each with unique chemical alterations in their bases, which they delivered to dendritic cells. The results were striking: The inflammatory response was almost abolished when base modifications were included in the mRNA. This was a paradigm change in our understanding of how cells recognize and respond to different forms of mRNA. Karikó and Weissman immediately understood that their discovery had profound significance for using mRNA as therapy. These seminal results were published in 2005, fifteen years before the COVID-19 pandemic.
In further studies published in 2008 and 2010, Karikó and Weissman showed that the delivery of mRNA generated with base modifications markedly increased protein production compared to unmodified mRNA. The effect was due to the reduced activation of an enzyme that regulates protein production. Through their discoveries that base modifications both reduced inflammatory responses and increased protein production, Karikó and Weissman had eliminated critical obstacles on the way to clinical applications of mRNA.
mRNA vaccines realized their potential
Interest in mRNA technology began to pick up, and in 2010, several companies were working on developing the method. Vaccines against Zika virus and MERS-CoV were pursued; the latter is closely related to SARS-CoV-2. After the outbreak of the COVID-19 pandemic, two base-modified mRNA vaccines encoding the SARS-CoV-2 surface protein were developed at record speed. Protective effects of around 95% were reported, and both vaccines were approved as early as December 2020.
The impressive flexibility and speed with which mRNA vaccines can be developed pave the way for using the new platform also for vaccines against other infectious diseases. In the future, the technology may also be used to deliver therapeutic proteins and treat some cancer types.
Several other vaccines against SARS-CoV-2, based on different methodologies, were also rapidly introduced, and together, more than 13 billion COVID-19 vaccine doses have been given globally. The vaccines have saved millions of lives and prevented severe disease in many more, allowing societies to open and return to normal conditions. Through their fundamental discoveries of the importance of base modifications in mRNA, this year’s Nobel laureates critically contributed to this transformative development during one of the biggest health crises of our time.
Katalin Karikó was born in 1955 in Szolnok, Hungary. She received her PhD from Szeged’s University in 1982 and performed postdoctoral research at the Hungarian Academy of Sciences in Szeged until 1985. She then conducted postdoctoral research at Temple University, Philadelphia, and the University of Health Science, Bethesda. In 1989, she was appointed Assistant Professor at the University of Pennsylvania, where she remained until 2013. After that, she became vice president and later senior vice president at BioNTech RNA Pharmaceuticals. Since 2021, she has been a Professor at Szeged University and an Adjunct Professor at Perelman School of Medicine at the University of Pennsylvania.
Drew Weissman was born in 1959 in Lexington, Massachusetts, USA. He received his MD, PhD degrees from Boston University in 1987. He did his clinical training at Beth Israel Deaconess Medical Center at Harvard Medical School and postdoctoral research at the National Institutes of Health. In 1997, Weissman established his research group at the Perelman School of Medicine at the University of Pennsylvania. He is the Roberts Family Professor in Vaccine Research and Director of the Penn Institute for RNA Innovations.
The University of Pennsylvania messenger RNA pioneers whose years of scientific partnership unlocked understanding of how to modify mRNA to make it an effective therapeutic—enabling a platform used to rapidly develop lifesaving vaccines amid the global COVID-19 pandemic—have been named winners of the 2023 Nobel Prize in Physiology or Medicine. They become the 28th and 29th Nobel laureates affiliated with Penn, and join nine previous Nobel laureates with ties to the University of Pennsylvania who have won the Nobel Prize in Medicine.
Nearly three years after the rollout of mRNA vaccines across the world, Katalin Karikó, PhD, an adjunct professor of Neurosurgery in Penn’s Perelman School of Medicine, and Drew Weissman, MD, PhD, the Roberts Family Professor of Vaccine Research in the Perelman School of Medicine, are recipients of the prize announced this morning by the Nobel Assembly in Solna, Sweden.
After a chance meeting in the late 1990s while photocopying research papers, Karikó and Weissman began investigating mRNA as a potential therapeutic. In 2005, they published a key discovery: mRNA could be altered and delivered effectively into the body to activate the body’s protective immune system. The mRNA-based vaccines elicited a robust immune response, including high levels of antibodies that attack a specific infectious disease that has not previously been encountered. Unlike other vaccines, a live or attenuated virus is not injected or required at any point.
When the COVID-19 pandemic struck, the true value of the pair’s lab work was revealed in the most timely of ways, as companies worked to quickly develop and deploy vaccines to protect people from the virus. Both Pfizer/BioNTech and Moderna utilized Karikó and Weissman’s technology to build their highly effective vaccines to protect against severe illness and death from the virus. In the United States alone, mRNA vaccines make up more than 655 million total doses of SARS-CoV-2 vaccines that have been administered since they became available in December 2020.
…
Editor’s Note:The Pfizer/BioNTech and Moderna COVID-19 mRNA vaccines both use licensed University of Pennsylvania technology. As a result of these licensing relationships, Penn, Karikó and Weissman have received and may continue to receive significant financial benefits in the future based on the sale of these products. BioNTech provides funding for Weissman’s research into the development of additional infectious disease vaccines.
Science can be brutal
Now for the interesting bit: it’s in my March 5, 2021 posting (mRNA, COVID-19 vaccines, treating genetic diseases before birth, and the scientist who started it all),
…
Before messenger RNA was a multibillion-dollar idea, it was a scientific backwater. And for the Hungarian-born scientist behind a key mRNA discovery, it was a career dead-end.
Katalin Karikó spent the 1990s collecting rejections. Her work, attempting to harness the power of mRNA to fight disease, was too far-fetched for government grants, corporate funding, and even support from her own colleagues.
…
“Every night I was working: grant, grant, grant,” Karikó remembered, referring to her efforts to obtain funding. “And it came back always no, no, no.”
By 1995, after six years on the faculty at the University of Pennsylvania, Karikó got demoted. [emphasis mine] She had been on the path to full professorship, but with no money coming in to support her work on mRNA, her bosses saw no point in pressing on.
She was back to the lower rungs of the scientific academy.
“Usually, at that point, people just say goodbye and leave because it’s so horrible,” Karikó said.
There’s no opportune time for demotion, but 1995 had already been uncommonly difficult. Karikó had recently endured a cancer scare, and her husband was stuck in Hungary sorting out a visa issue. Now the work to which she’d devoted countless hours was slipping through her fingers.
…
In time, those better experiments came together. After a decade of trial and error, Karikó and her longtime collaborator at Penn — Drew Weissman [emphasis mine], an immunologist with a medical degree and Ph.D. from Boston University — discovered a remedy for mRNA’s Achilles’ heel.
…
You can get the whole story from my March 5, 2021 posting, scroll down to the “mRNA—it’s in the details, plus, the loneliness of pioneer researchers, a demotion, and squabbles” subhead. If you are very curious about mRNA and the rough and tumble of the world of science, there’s my August 20, 2021 posting “Getting erased from the mRNA/COVID-19 story” where Ian MacLachlan is featured as a researcher who got erased and where Karikó credits his work.
Karikó’s daughter is a two-time gold medal Olympic athlete as the Canadian Broadcasting Corporation’s (CBC) radio programme, As It Happens, notes in an interview with the daughter (Susan Francia). From an October 4, 2023 As It Happens article (with embedded audio programme excerpt) by Sheena Goodyear,
Olympic gold medallist Susan Francia is coming to terms with the fact that she’s no longer the most famous person in her family.
That’s because the retired U.S. rower’s mother, Katalin Karikó, just won a Nobel Prize in Medicine. The biochemist was awarded alongside her colleague, vaccine researcher Drew Weissman, for their groundbreaking work that led to the development of COVID-19 vaccines.
“Now I’m like, ‘Shoot! All right, I’ve got to work harder,'” Francia said with a laugh during an interview with As It Happens host Nil Köksal.
But in all seriousness, Francia says she’s immensely proud of her mother’s accomplishments. In fact, it was Karikó’s fierce dedication to science that inspired Francia to win Olympic gold medals in 2008 and 2012.
“Sport is a lot like science in that, you know, you have a passion for something and you just go and you train, attain your goal, whether it be making this discovery that you truly believe in, or for me, it was trying to be the best in the world,” Francia said.
“It’s a grind and, honestly, I love that grind. And my mother did too.”
…
… one of her [Karikó] favourite headlines so far comes from a little blurb on the rowing website Row 2K: “Rowing Mom Wins Nobel.”
…
Nowadays, scientists are trying to harness the power of mRNA to fight cancer, malaria, influenza and rabies. But when Karikó first began her work, it was a fringe concept. For decades, she toiled in relative obscurity, struggling to secure funding for her research.
“That’s also that same passion that I took into my rowing,” Francia said.
But even as Karikó struggled to make a name for herself, she says her own mother, Zsuzsanna, always believed she would earn a Nobel Prize one day.
Every year, as the Nobel Prize announcement approached, she would tell Karikó she’d be watching for her name.
“I was laughing [and saying] that, ‘Mom, I am not getting anything,'” she said.
But her mother, who died a few years ago, ultimately proved correct.
…
Congratulations to both Katalin Karikó and Drew Weissman and thank you both for persisting!
Physics
This prize is for physics at the attoscale.
Aaron W. Harrison (Assistant Professor of Chemistry, Austin College, Texas, US) attempts an explanation of an attosecond in his October 3, 2023 essay (in English “What is an attosecond? A physical chemist explains the tiny time scale behind Nobel Prize-winning research” and in French “Nobel de physique : qu’est-ce qu’une attoseconde?”) for The Conversation, Note: Links have been removed,
…
“Atto” is the scientific notation prefix that represents 10-18, which is a decimal point followed by 17 zeroes and a 1. So a flash of light lasting an attosecond, or 0.000000000000000001 of a second, is an extremely short pulse of light.
In fact, there are approximately as many attoseconds in one second as there are seconds in the age of the universe.
Previously, scientists could study the motion of heavier and slower-moving atomic nuclei with femtosecond (10-15) light pulses. One thousand attoseconds are in 1 femtosecond. But researchers couldn’t see movement on the electron scale until they could generate attosecond light pulses – electrons move too fast for scientists to parse exactly what they are up to at the femtosecond level.
…
Harrison does a very good job of explaining something that requires a leap of imagination. He also explains why scientists engage in attosecond research. h/t October 4, 2023 news item on phys.org
Amelle Zaïr (Imperial College London) offers a more technical explanation in her October 4, 2023 essay about the 2023 prize winners for The Conversation. h/t October 4, 2023 news item on phys.org
The Royal Swedish Academy of Sciences has decided to award the Nobel Prize in Physics 2023 to
Pierre Agostini The Ohio State University, Columbus, USA
Ferenc Krausz Max Planck Institute of Quantum Optics, Garching and Ludwig-Maximilians-Universität München, Germany
Anne L’Huillier Lund University, Sweden
“for experimental methods that generate attosecond pulses of light for the study of electron dynamics in matter”
Experiments with light capture the shortest of moments
The three Nobel Laureates in Physics 2023 are being recognised for their experiments, which have given humanity new tools for exploring the world of electrons inside atoms and molecules. Pierre Agostini, Ferenc Krausz and Anne L’Huillier have demonstrated a way to create extremely short pulses of light that can be used to measure the rapid processes in which electrons move or change energy.
Fast-moving events flow into each other when perceived by humans, just like a film that consists of still images is perceived as continual movement. If we want to investigate really brief events, we need special technology. In the world of electrons, changes occur in a few tenths of an attosecond – an attosecond is so short that there are as many in one second as there have been seconds since the birth of the universe.
The laureates’ experiments have produced pulses of light so short that they are measured in attoseconds, thus demonstrating that these pulses can be used to provide images of processes inside atoms and molecules.
In 1987, Anne L’Huillier discovered that many different overtones of light arose when she transmitted infrared laser light through a noble gas. Each overtone is a light wave with a given number of cycles for each cycle in the laser light. They are caused by the laser light interacting with atoms in the gas; it gives some electrons extra energy that is then emitted as light. Anne L’Huillier has continued to explore this phenomenon, laying the ground for subsequent breakthroughs.
In 2001, Pierre Agostini succeeded in producing and investigating a series of consecutive light pulses, in which each pulse lasted just 250 attoseconds. At the same time, Ferenc Krausz was working with another type of experiment, one that made it possible to isolate a single light pulse that lasted 650 attoseconds.
The laureates’ contributions have enabled the investigation of processes that are so rapid they were previously impossible to follow.
“We can now open the door to the world of electrons. Attosecond physics gives us the opportunity to understand mechanisms that are governed by electrons. The next step will be utilising them,” says Eva Olsson, Chair of the Nobel Committee for Physics.
There are potential applications in many different areas. In electronics, for example, it is important to understand and control how electrons behave in a material. Attosecond pulses can also be used to identify different molecules, such as in medical diagnostics.
Pierre Agostini. PhD 1968 from Aix-Marseille University, France. Professor at The Ohio State University, Columbus, USA.
Ferenc Krausz, born 1962 in Mór, Hungary. PhD 1991 from Vienna University of Technology, Austria. Director at Max Planck Institute of Quantum Optics, Garching and Professor at Ludwig-Maximilians-Universität München, Germany.
Anne L’Huillier, born 1958 in Paris, France. PhD 1986 from University Pierre and Marie Curie, Paris, France. Professor at Lund University, Sweden.
Three scientists have won the Nobel Prize in physics Tuesday for giving us the first split-second glimpse into the superfast world of spinning electrons, a field that could one day lead to better electronics or disease diagnoses.
The award went to French-Swedish physicist Anne L’Huillier, French scientist Pierre Agostini and Hungarian-born Ferenc Krausz for their work with the tiny part of each atom that races around the centre, and that is fundamental to virtually everything: chemistry, physics, our bodies and our gadgets.
Electrons move around so fast that they have been out of reach of human efforts to isolate them. But by looking at the tiniest fraction of a second possible, scientists now have a “blurry” glimpse of them, and that opens up whole new sciences, experts said.
“The electrons are very fast, and the electrons are really the workforce in everywhere,” Nobel Committee member Mats Larsson said. “Once you can control and understand electrons, you have taken a very big step forward.”
L’Huillier is the fifth woman to receive a Nobel in Physics.
…
L’Huillier was teaching basic engineering physics to about 100 undergraduates at Lund when she got the call that she had won, but her phone was on silent and she didn’t pick up. She checked it during a break and called the Nobel Committee.
Then she went back to teaching.
…
Agostini, an emeritus professor at Ohio State University, was in Paris and could not be reached by the Nobel Committee before it announced his win to the world
Krausz, of the Max Planck Institute of Quantum Optics and Ludwig Maximilian University of Munich, told reporters that he was bewildered.
“I have been trying to figure out since 11 a.m. whether I’m in reality or it’s just a long dream,” the 61-year-old said.
Last year, Krausz and L’Huillier won the prestigious Wolf prize in physics for their work, sharing it with University of Ottawa scientist Paul Corkum [emphasis mine]. Nobel prizes are limited to only three winners and Krausz said it was a shame that it could not include Corkum.
Corkum was key to how the split-second laser flashes could be measured [emphasis mine], which was crucial, Krausz said.
…
Congratulations to Pierre Agostini, Ferenc Krausz and Anne L’Huillier and a bow to Paul Corkum!
For those who are curious. a ‘Paul Corkum’ search should bring up a few postings on this blog but I missed this piece of news, a May 4, 2023 University of Ottawa news release about Corkum and the 2022 Wolf Prize, which he shared with Krausz and L’Huillier,
Chemistry
There was a little drama where this prize was concerned, It was announced too early according to an October 4, 2023 news item on phys.org and, again, in another October 4, 2023 news item on phys.org (from the Oct. 4, 2023 news item by Karl Ritter for the Associated Press),
Oops! Nobel chemistry winners are announced early in a rare slip-up
The most prestigious and secretive prize in science ran headfirst into the digital era Wednesday when Swedish media got an emailed press release revealing the winners of the Nobel Prize in chemistry and the news prematurely went public.
The Royal Swedish Academy of Sciences has decided to award the Nobel Prize in Chemistry 2023 to
Moungi G. Bawendi Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
Louis E. Brus Columbia University, New York, NY, USA
Alexei I. Ekimov Nanocrystals Technology Inc., New York, NY, USA
“for the discovery and synthesis of quantum dots”
They planted an important seed for nanotechnology
The Nobel Prize in Chemistry 2023 rewards the discovery and development of quantum dots, nanoparticles so tiny that their size determines their properties. These smallest components of nanotechnology now spread their light from televisions and LED lamps, and can also guide surgeons when they remove tumour tissue, among many other things.
Everyone who studies chemistry learns that an element’s properties are governed by how many electrons it has. However, when matter shrinks to nano-dimensions quantum phenomena arise; these are governed by the size of the matter. The Nobel Laureates in Chemistry 2023 have succeeded in producing particles so small that their properties are determined by quantum phenomena. The particles, which are called quantum dots, are now of great importance in nanotechnology.
“Quantum dots have many fascinating and unusual properties. Importantly, they have different colours depending on their size,” says Johan Åqvist, Chair of the Nobel Committee for Chemistry.
Physicists had long known that in theory size-dependent quantum effects could arise in nanoparticles, but at that time it was almost impossible to sculpt in nanodimensions. Therefore, few people believed that this knowledge would be put to practical use.
However, in the early 1980s, Alexei Ekimov succeeded in creating size-dependent quantum effects in coloured glass. The colour came from nanoparticles of copper chloride and Ekimov demonstrated that the particle size affected the colour of the glass via quantum effects.
A few years later, Louis Brus was the first scientist in the world to prove size-dependent quantum effects in particles floating freely in a fluid.
In 1993, Moungi Bawendi revolutionised the chemical production of quantum dots, resulting in almost perfect particles. This high quality was necessary for them to be utilised in applications.
Quantum dots now illuminate computer monitors and television screens based on QLED technology. They also add nuance to the light of some LED lamps, and biochemists and doctors use them to map biological tissue.
Quantum dots are thus bringing the greatest benefit to humankind. Researchers believe that in the future they could contribute to flexible electronics, tiny sensors, thinner solar cells and encrypted quantum communication – so we have just started exploring the potential of these tiny particles.
Moungi G. Bawendi, born 1961 in Paris, France. PhD 1988 from University of Chicago, IL, USA. Professor at Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
Louis E. Brus, born 1943 in Cleveland, OH, USA. PhD 1969 from Columbia University, New York, NY, USA. Professor at Columbia University, New York, NY, USA.
Alexei I. Ekimov, born 1945 in the former USSR. PhD 1974 from Ioffe Physical-Technical Institute, Saint Petersburg, Russia. Formerly Chief Scientist at Nanocrystals Technology Inc., New York, NY, USA.
Proving yet again that scientists can have a bumpy trip to a Nobel prize, an October 4, 2023 news item on phys.org describes how one of the winners flunked his first undergraduate chemistry test, Note: Links have been removed,
Talk about bouncing back. MIT professor Moungi Bawendi is a co-winner of this year’s Nobel chemistry prize for helping develop “quantum dots”—nanoparticles that are now found in next generation TV screens and help illuminate tumors within the body.
But as an undergraduate, he flunked his very first chemistry exam, recalling that the experience nearly “destroyed” him.
The 62-year-old of Tunisian and French heritage excelled at science throughout high school, without ever having to break a sweat.
But when he arrived at Harvard University as an undergraduate in the late 1970s, he was in for a rude awakening.
…
You can find more about the winners and quantum dots in an October 4, 2023 news item on Nanowerk and in Dr. Andrew Maynard’s (Professor of Advanced Technology Transitions, Arizona State University) October 4, 2023 essay for The Conversation (h/t October 4, 2023 news item on phys.org), Note: Links have been removed,
…
This year’s prize recognizes Moungi Bawendi, Louis Brus and Alexei Ekimov for the discovery and development of quantum dots. For many years, these precisely constructed nanometer-sized particles – just a few hundred thousandths the width of a human hair in diameter – were the darlings of nanotechnology pitches and presentations. As a researcher and adviser on nanotechnology [emphasis mine], I’ve [Dr. Andrew Maynard] even used them myself when talking with developers, policymakers, advocacy groups and others about the promise and perils of the technology.
The origins of nanotechnology predate Bawendi, Brus and Ekimov’s work on quantum dots – the physicist Richard Feynman speculated on what could be possible through nanoscale engineering as early as 1959, and engineers like Erik Drexler were speculating about the possibilities of atomically precise manufacturing in the the 1980s. However, this year’s trio of Nobel laureates were part of the earliest wave of modern nanotechnology where researchers began putting breakthroughs in material science to practical use.
Quantum dots brilliantly fluoresce: They absorb one color of light and reemit it nearly instantaneously as another color. A vial of quantum dots, when illuminated with broad spectrum light, shines with a single vivid color. What makes them special, though, is that their color is determined by how large or small they are. Make them small and you get an intense blue. Make them larger, though still nanoscale, and the color shifts to red.
There’s also an October 4, 2023 overview article by Tekla S. Perry and Margo Anderson for the IEEE Spectrum about the magazine’s almost twenty-five years of reporting on quantum dots
Image credit: Brandon Palacio/IEEE Spectrum
Your Guide to the Newest Nobel Prize: Quantum Dots
What you need to know—and what we’ve reported—about this year’s Chemistry award
…
It’s not a long article and it has a heavy focus on the IEEEE’s (Institute of Electrical and Electtronics Engineers) the road quantum dots have taken to become applications and being commercialized.
Congratulations to Moungi Bawendi, Louis Brus, and Alexei Ekimov!
I have two news releases about this reseach, one from March 2023 focused on the technology and one from May 2023 focused on the graffiti.
Simon Fraser University (SFU) and the technology
While this looks like an impressionist painting (to me), I believe it’s a still from the spatial reality capture of the temple the researchers were studying,
Photo Credit: Simon Fraser University
A March 30, 2023 news item on phys.org announces the latest technology for research on Egyptian graffiti (Note: A link has been removed),
Simon Fraser University [SFU; Canada] researchers are learning more about ancient graffiti—and their intriguing comparisons to modern graffiti—as they produce a state-of-the-art 3D recording of the Temple of Isis in Philae, Egypt.
Working with the University of Ottawa, the researchers published their early findings in Egyptian Archaeology and have returned to Philae to advance the project.
“It’s fascinating because there are similarities with today’s graffiti,” says SFU geography professor Nick Hedley, co-investigator of the project. “The iconic architecture of ancient Egypt was built by those in positions of power and wealth, but the graffiti records the voices and activities of everybody else. The building acts like a giant sponge or notepad for generations of people from different cultures for over 2,000 years.”
As an expert in spatial reality capture, Hedley leads the team’s innovative visualization efforts, documenting the graffiti, their architectural context, and the spaces they are found in using advanced methods like photogrammetry, raking light, and laser scanning. “I’m recording reality in three-dimensions — the dimensionality in which it exists,” he explains.
With hundreds if not thousands of graffiti, some carved less than a millimeter deep on the temple’s columns, walls, and roof, precision is essential.
Typically, the graffiti would be recorded through a series of photographs — a step above hand-drawn documents — allowing researchers to take pieces of the site away and continue working.
Sabrina Higgins, an SFU archaeologist and project co-investigator, says photographs and two-dimensional plans do not allow the field site to be viewed as a dynamic, multi-layered, and evolving space. “The techniques we are applying to the project will completely change how the graffiti, and the temple, can be studied,” she says.
Hedley is moving beyond basic two-dimensional imaging to create a cutting-edge three-dimensional recording of the temple’s entire surface. This will allow the interior and exterior of the temple, and the graffiti, to be viewed and studied at otherwise impossible viewpoints, from virtually anywhere— without compromising detail.
This three-dimensional visualization will also enable researchers to study the relationship between a figural graffito, any graffiti that surrounds it, and its location in relation to the structure of temple architecture.
While this is transformative for viewing and studying the temple and its inscriptions, Hedley points to the big-picture potential of applying spatial reality capture technology to the field of archaeology, and beyond.
“Though my primary role in this project is to help build the definitive set of digital wall plans for the Mammisi at Philae, I’m also demonstrating how emerging spatial reality capture methods can fundamentally change how we gather and produce data and transform our ability to interpret and analyze these spaces. This is a space to watch!” says Hedley.
Did Hedley mean to make a pun with the comment used to end the news release? I hope so.
University of Ottawa and ancient Egyptian graffiti
Egypt’s Philae temple complex is one of the country’s most famed archeological sites. It is dedicated to the goddess Isis, who was one of the most important deities in ancient Egyptian religion. The main temple is a stunning example of the country’s ancient architecture, with its towering columns and detailed carvings depicting Isis and other gods.
In a world-first,The Philae Temple Graffiti Project research team was able to digitally capture the temple’s graffiti by recording and studying a novel group of neglected evidence for personal religious piety dating to the Graeco-Roman and Late Antique periods. By using advanced recording techniques, like photogrammetry and laser scanning, researchers were able to create a photographic recording of the graffiti, digitizing them in 3D to fully capture their details and surroundings.
“This is not only the first study of circa 400 figural graffiti from one of the most famous temples in Egypt, the Isis temple at Philae,” explains project director Dr. Jitse H.F. Dijkstra, a professor of Classics in the Faculty of Arts at the University of Ottawa (uOttawa). “It is the first to use advanced, cutting-edge methods to record these signs of personal piety in an accurate manner and within their architectural context. This is digital humanities in action.”
Professor Dijkstra collaborates in the project with co-investigators Nicholas Hedley, a geography professor at Simon Fraser University (SFU), Sabrina Higgins, an archaeologist and art historian also at SFU, and Roxanne Bélanger Sarrazin, a uOttawa alumna, now a post-doctoral fellow at the University of Oslo.
Temple walls reveal their messages
The newly available state-of-the-art technology has allowed the team to uncover hundreds of 2,000-year-old figural graffiti (a type of graffito consisting of figures or images rather than symbols or text) on the Isis temple’s walls. They have also been able to study them from vantage points that would otherwise have been difficult to reach.
Today, graffiti are seen as an art form that serves as a means of communication, to mark a name or ‘tag,’ or to leave a reference to one’s presence at a given site. The 2,000-year-old graffiti of ancient civilisations served a similar purpose. The research team has found drawings – some carved only 1mm deep – of feet, animals, deities and other figures meant to express the personal religious piety of the maker in the temple complex.
Using 3D renderings of the interior and exterior of the temple, the team gained detailed knowledge about where the graffiti are found on the walls, and their meaning. Although the majority of the graffiti are intended to ask for divine protection, others were playful gameboards; Old Egyptian temples functioned as a focus of worship and more ephemeral activities.
A first for this UNESCO heritage site, the innovative fieldwork is at the forefront of Egyptian archaeology and digital humanities (which explores human interactions and culture).
“What ancient Egyptian graffiti have in common with modern graffiti is they are left in places not originally foreseen for that purpose,” adds Professor Dijkstra. “The big difference, however, is that ancient Egyptian graffiti were left by individuals at temples in order to receive divine protection forever, which is why we find hundreds of graffiti on every Egyptian temple’s walls.”
The Philae Temple Graffiti Project was initiated in 2016 under the aegis of the Philae Temple Text Project of the Austrian Academy of Sciences and the Swiss Institute for Architectural and Archaeological Research on Ancient Egypt, Cairo. It is funded by the Social Sciences and Humanities Research Council of Canada (SSHRC) and aims to study the figural graffiti from one of the most spectacular temple complexes of Egypt, Philae, in order to better understand the daily practice of the goddess’ worship.
The study’s first findings were published in Egyptian Archeology
Fascinatingly for a project where new technology has been vital, the work has been published in a periodical (Egyptian Archaeology) that is not available online. It is published by the Egypt Exploration Society (EES) which also produces the similarly titled “Journal of Egyptian Archaeology”.
You can purchase the relevant issue of “Egyptian Archaeology” here. The EES describes it as a “… full-colour magazine, reporting on current excavations, surveys and research in Egypt and Sudan, showcasing the work of the EES as well as of other missions and researchers.”
Here’s a citation for the article,
Figures that Matter: Graffiti of the Isis Temple at Philae by Roxanne Bélanger Sarrazin, Jitse Dijkstra, Nicholas Hedley and Sabrina Higgins. Egyptian Archaeology, Spring 2022, [issue no.] 60.
The Canadian Science Policy Centre (CSPC) sent a May 11, 2023 notice (via email) about an upcoming event but first, congratulations (Bravo!) are in order,
The Science Meets Parliament [SMP] Program 2023 is now complete and was a huge success. 43 Delegates from across Canada met with 62 Parliamentarians from across the political spectrum on the Hill on May 1-2, 2023.
The SMP Program is championed by CSPC and Canada’s Chief Science Advisor, Dr. Mona Nemer [through the Office of the Chief Science Advisor {OCSA}].
This Program would not have been possible without the generous support of our sponsors: The Royal Military College of Canada, The Stem Cell Network, and the University of British Columbia.
There are 443 seats in Canada’s Parliament with 338 in the House of Commons and 105 in the Senate and 2023 is the third time the SMP programme has been offered. (It was previously held in 2018 and 2022 according to the SMP program page.)
The Canadian programme is relatively new compared to Australia where they’ve had a Science Meets Parliament programme since 1999 (according to a March 20, 2017 essay by Ken Baldwin, Director of Energy Change Institute at Australian National University for The Conversation). The Scottish have had a Science and the Parliament programme since 2000 (according to this 2022 event notice on the Royal Society of Chemistry’s website).
By comparison to the other two, the Canadian programme is a toddler. (We tend not to recognize walking for the major achievement it is.) So, bravo to the CSPC and OCSA on getting 62 Parliamentarians to make time in their schedules to meet a scientist.
Advances in neurotechnology are redefining the possibilities of improving neurologic health and mental wellbeing, but related ethical, legal, and societal concerns such as privacy of brain data, manipulation of personal autonomy and agency, and non-medical and dual uses are increasingly pressing concerns [emphasis mine]. In this regard, neurotechnology presents challenges not only to Canada’s federal and provincial health care systems, but to existing laws and regulations that govern responsible innovation. In December 2019, just before the pandemic, the OECD [Organisation for Economic Cooperation and Development] Council adopted a Recommendation on Responsible Innovation in Neurotechnology. It is now urging that member states develop right-fit implementation strategies.
What should these strategies look like for Canada? We will propose and discuss opportunities that balance and leverage different professional and governance approaches towards the goal of achieving responsible innovation for the current state of the art, science, engineering, and policy, and in anticipation of the rapid and vast capabilities expected for neurotechnology in the future by and for this country.
Dr. Graeme Moffat Neurotechnology entrepreneur & Senior Fellow, Munk School of Global Affairs & Public Policy [University of Toronto]
Dr. Graeme Moffat is a co-founder and scientist with System2 Neurotechnology. He previously was Chief Scientist and VP of Regulatory Affairs at Interaxon, Chief Scientist with ScienceScape (later Chan-Zuckerberg Meta), and a research engineer at Neurelec (a division of Oticon Medical). He served as Managing Editor of Frontiers in Neuroscience, the largest open access scholarly journal series in the field of neuroscience. Dr. Moffat is a Senior Fellow at the Munk School of Global Affairs and Public Policy and an advisor to the OECD’s neurotechnology policy initiative.
Professor Jennifer Chandler Professor of Law at the Centre for Health Law, Policy and Ethics, University of Ottawa
Jennifer Chandler is Professor of Law at the Centre for Health Law, Policy and Ethics, University of Ottawa. She leads the “Neuroethics Law and Society” Research Pillar for the Brain Mind Research Institute and sits on its Scientific Advisory Council. Her research focuses on the ethical, legal and policy issues in brain sciences and the law. She teaches mental health law and neuroethics, tort law, and medico-legal issues. She is a member of the advisory board for CIHR’s Institute for Neurosciences, Mental Health and Addiction (IMNA) and serves on international editorial boards in the field of law, ethics and neuroscience, including Neuroethics, the Springer Book Series Advances in Neuroethics, and the Palgrave-MacMillan Book Series Law, Neuroscience and Human Behavior. She has published widely in legal, bioethical and health sciences journals and is the co-editor of the book Law and Mind: Mental Health Law and Policy in Canada (2016). Dr. Chandler brings a unique perspective to this panel as her research focuses on the ethical, legal and policy issues at the intersection of the brain sciences and the law. She is active in Canadian neuroscience research funding policy, and regularly contributes to Canadian governmental policy on contentious matters of biomedicine.
Ian Burkhart Neurotech Advocate and Founder of BCI [brain-computer interface] Pioneers Coalition
Ian is a C5 tetraplegic [also known as quadriplegic] from a diving accident in 2010. He participated in a ground-breaking clinical trial using a brain-computer interface to control muscle stimulation. He is the founder of the BCI Pioneers Coalition, which works to establish ethics, guidelines and best practices for future patients, clinicians, and commercial entities engaging with BCI research. Ian serves as Vice President of the North American Spinal Cord Injury Consortium and chairs their project review committee. He has also worked with Unite2Fight Paralysis to advocate for $9 million of SCI research in his home state of Ohio. Ian has been a Reeve peer mentor since 2015 and helps lead two local SCI networking groups. As the president of the Ian Burkhart Foundation, he raises funds for accessible equipment for the independence of others with SCI. Ian is also a full-time consultant working with multiple medical device companies.
Andrew Atkinson Manager, Emerging Science Policy, Health Canada
Andrew Atkinson is the Manager of the Emerging Sciences Policy Unit under the Strategic Policy Branch of Health Canada. He oversees coordination of science policy issues across the various regulatory and research programs under the mandate of Health Canada. Prior to Health Canada, he was a manager under Environment Canada’s CEPA new chemicals program, where he oversaw chemical and nanomaterial risk assessments, and the development of risk assessment methodologies. In parallel to domestic work, he has been actively engaged in ISO [International Organization for Standardization and OECD nanotechnology efforts.
Andrew is currently a member of the Canadian delegation to the OECD Working Party on Biotechnology, Nanotechnology and Converging Technologies (BNCT). BNCT aims to contribute original policy analysis on emerging science and technologies, such as gene editing and neurotechnology, including messaging to the global community, convening key stakeholders in the field, and making ground-breaking proposals to policy makers.
Professor Judy Illes Professor, Division of Neurology, Department of Medicine, Faculty of Medicine, UBC [University of British Columbia]
Dr. Illes is Professor of Neurology and Distinguished Scholar in Neuroethics at the University of British Columbia. She is the Director of Neuroethics Canada, and among her many leadership positions in Canada, she is Vice Chair of the Canadian Institutes of Health Research (CIHR) Advisory Board of the Institute on Neuroscience, Mental Health and Addiction (INMHA), and chair of the International Brain Initiative (www.internationalbraininitiative.org; www.canadianbrain.ca), Director at Large of the Canadian Academy of Health Sciences, and a member of the Board of Directors of the Council of Canadian Academies.
Dr. Illes is a world-renown expert whose research, teaching and outreach are devoted to ethical, legal, social and policy challenges at the intersection of the brain sciences and biomedical ethics. She has made ground breaking contributions to neuroethical thinking for neuroscience discovery and clinical translation across the life span, including in entrepreneurship and in the commercialization of health care. Dr. Illes has a unique and comprehensive overview of the field of neurotechnology and the relevant sectors in Canada.
One concern I don’t see mentioned is bankruptcy (in other words, what happens if the company that made your neural implant goes bankrupt?) either in the panel description or in the OECD recommendation. My April 5, 2022 posting “Going blind when your neural implant company flirts with bankruptcy (long read)” explored that topic and while many of the excerpted materials present a US perspective, it’s easy to see how it could also apply in Canada and elsewhere.
For those of us on the West Coast, this session starts at 9 am. Enjoy!
*June 20, 2023: This sentence changed (We tend not to recognize that walking for the major achievement it is.) to We tend not to recognize walking for the major achievement it is.
Government of Canada launches Advisory Panel on the Federal Research Support System
Members to recommend enhancements to system to position Canadian researchers for success
October 6, 2022 – Ottawa, Ontario
Canada’s success is in large part due to our world-class researchers and their teams who are globally recognized for unleashing bold new ideas, driving technological breakthroughs and addressing complex societal challenges. The Government of Canada recognizes that for Canada to achieve its full potential, support for science and research must evolve as Canadians push beyond what is currently imaginable and continue to find Canadian-made solutions to the world’s toughest problems.
Today [October 6, 2022], the Honourable François-Philippe Champagne, Minister of Innovation, Science and Industry, and the Honourable Jean-Yves Duclos, Minister of Health, launched the Advisory Panel on the Federal Research Support System. Benefiting from the insights of leaders in the science, research and innovation ecosystem, the panel will provide independent, expert policy advice on the structure, governance and management of the federal system supporting research and talent. This will ensure that Canadian researchers are positioned for even more success now and in the future.
As the COVID-19 pandemic and climate crisis have shown, addressing the world’s most pressing challenges requires greater collaboration within the Canadian research community, government and industry, as well as with the international community. A cohesive and agile research support system will ensure Canadian researchers can quickly and effectively respond to the questions of today and tomorrow. Optimizing Canada’s research support system will equip researchers to transcend disciplines and borders, seize new opportunities and be responsive to emerging needs and interests to improve Canadians’ health, well-being and prosperity.
Quotes
“Canada is known for world-class research thanks to the enormous capabilities of our researchers. Canadian researchers transform curiosity into bold new ideas that can significantly enhance Canadians’ lives and well-being. With this advisory panel, our government will ensure our support for their research is just as cutting-edge as Canada’s science and research community.” – The Honourable François-Philippe Champagne, Minister of Innovation, Science and Industry
“Our priority is to support Canada’s world-class scientific community so it can respond effectively to the challenges of today and the future. That’s why we are leveraging the expertise and perspectives of a newly formed advisory panel to maximize the impact of research and downstream innovation, which contributes significantly to Canadians’ well-being and prosperity.” – The Honourable Jean-Yves Duclos, Minister of Health
Quick facts
The Advisory Panel on the Federal Research Support System has seven members, including the Chair. The members were selected by the Minister of Innovation, Science and Industry and the Minister of Health. The panel will consult with experts and stakeholders to draw on their diverse experiences, expertise and opinions.
Since 2016, the Government of Canada has committed more than $14 billion to support research and science across Canada.
Here’s a list of advisory panel members I’ve assembled from the Advisory Panel on the Federal Research Support System: Member biographies webpage,
Frédéric Bouchard (Chair) is Dean of the Faculty of Arts and Sciences at the Université de Montréal, where he has been a professor of philosophy of science since 2005.
Janet Rossant is a Senior Scientist Emeritus in the Developmental and Stem Cell Biology Program, the Hospital for Sick Children and a Professor Emeritus at the University of Toronto’s Department of Molecular Genetics.
[Gilles Patry] is Professor Emeritus and President Emeritus at the University of Ottawa. Following a distinguished career as a consulting engineer, researcher and university administrator, Gilles Patry is now a consultant and board director [Royal Canadian Mint].
Yolande E. Chan joined McGill University’s Desautels Faculty of Management as Dean and James McGill Professor in 2021. Her research focuses on innovation, knowledge strategy, digital strategy, digital entrepreneurship, and business-IT alignment.
Laurel Schafer is a Professor at the Department of Chemistry at the University of British Columbia. Her research focuses on developing novel organometallic catalysts to carry out difficult transformations in small molecule organic chemistry.
Vianne Timmons is the President and Vice-Chancellor of Memorial University of Newfoundland since 2020. She is a nationally and internationally recognized researcher and advocate in the field of inclusive education.
Dr. Baljit Singh is a highly accomplished researcher, … . He began his role as Vice-President Research at the University of Saskatchewan in 2021, after serving as Dean of the University of Calgary Faculty of Veterinary Medicine (2016 – 2020), and as Associate Dean of Research at the Western College of Veterinary Medicine at the University of Saskatchewan (2010 – 2016).
Nobody from the North. Nobody who’s worked there or lived there or researched there. It’s not the first time I’ve noticed a lack of representation for the North.
Canada’s golden triangle (Montréal, Toronto, Ottawa) is well represented and, as is often the case, there’s representation for other regions: one member from the Prairies, one member from the Maritimes or Atlantic provinces, and one member from the West.
The mandate indicates they could have five to eight members. With seven spots filled, they could include one more member, one from the North.
Even if they don’t add an eighth member, I’m not ready to abandon all hope for involvement from the North when there’s this, from the mandate,
Communications and deliverables
In pursuing its mandate, and to strengthen its advice, the panel may engage with experts and stakeholders to expand access [emphasis mine] to diverse experience, expertise and opinion, and enhance members’ understanding of the topics at hand.
To allow for frank and open discussion, internal panel deliberations among members will be closed.
The panel will deliver a final confidential report by December 2022 [emphasis mine] to the Ministers including recommendations and considerations regarding the modernization of the research support system. A summary of the panel’s observations on the state of the federal research support system may be made public once its deliberations have concluded. The Ministers may also choose to seek confidential advice and/or feedback from the panel on other issues related to the research system.
The panel may also be asked to deliver an interim confidential report to the Ministers by November 2022 [emphases mine], which will provide the panel’s preliminary observations up to that point.
it seems odd there’s no mention of the Pan-Canadian Artificial Intelligence Strategy. It’s my understanding that the funding goes directly from the federal government to the Canadian Institute for Advanced Research (CIFAR), which then distributes the funds. There are other unmentioned science funding agencies, e.g., the National Research Council of Canada and Genome Canada, which (as far as I know) also receive direct funding. It seems that the panel will not be involved in a comprehensive review of Canada’s research support ecosystem.
Plus, I wonder why everything is being kept ‘confidential’. According the government news release, the panel is tasked with finding ways of “optimizing Canada’s research support system.” Do they have security concerns or is this a temporary state of affairs while the government analysts examine the panel’s report?
The Canadian Science Policy Centre (CSPC) in a September 15, 2022 announcement (received via email) announced an event (Age of AI and Big Data – Impact on Justice, Human Rights and Privacy) centered on some of the latest government doings on artificial intelligence and privacy (Bill C-27),
In an increasingly connected world, we share a large amount of our data in our daily lives without our knowledge while browsing online, traveling, shopping, etc. More and more companies are collecting our data and using it to create algorithms or AI. The use of our data against us is becoming more and more common. The algorithms used may often be discriminatory against racial minorities and marginalized people.
As technology moves at a high pace, we have started to incorporate many of these technologies into our daily lives without understanding its consequences. These technologies have enormous impacts on our very own identity and collectively on civil society and democracy.
Recently, the Canadian Government introduced the Artificial Intelligence and Data Act (AIDA) and Bill C-27 [which includes three acts in total] in parliament regulating the use of AI in our society. In this panel, we will discuss how our AI and Big data is affecting us and its impact on society, and how the new regulations affect us.
For some reason, there was no information about the moderator and panelists, other than their names, titles, and affiliations. Here’s a bit more:
Moderator: Yuan Stevens (from her eponymous website’s About page), Note: Links have been removed,
Yuan (“You-anne”) Stevens (she/they) is a legal and policy expert focused on sociotechnical security and human rights.
She works towards a world where powerful actors—and the systems they build—are held accountable to the public, especially when it comes to marginalized communities.
She brings years of international experience to her role at the Leadership Lab at Toronto Metropolitan University [formerly Ryerson University], having examined the impacts of technology on vulnerable populations in Canada, the US and Germany.
Committed to publicly accessible legal and technical knowledge, Yuan has written for popular media outlets such as the Toronto Star and Ottawa Citizen and has been quoted in news stories by the New York Times, the CBC and the Globe & Mail.
Yuan is a research fellow at the Centre for Law, Technology and Society at the University of Ottawa and a research affiliate at Data & Society Research Institute. She previously worked at Harvard University’s Berkman Klein Center for Internet & Society during her studies in law at McGill University.
She has been conducting research on artificial intelligence since 2017 and is currently exploring sociotechnical security as an LL.M candidate at University of Ottawa’s Faculty of Law working under Florian Martin-Bariteau.
Brenda McPhail is the director of the Canadian Civil Liberties Association’s Privacy, Surveillance and Technology Project. Her recent work includes guiding the Canadian Civil Liberties Association’s interventions in key court cases that raise privacy issues, most recently at the Supreme Court of Canada in R v. Marakah and R v. Jones, which focused on privacy rights in sent text messages; research into surveillance of dissent, government information sharing, digital surveillance capabilities and privacy in relation to emergent technologies; and developing resources and presentations to drive public awareness about the importance of privacy as a social good.
My research has spanned many areas such as resource allocation in networking, smart grids, social information networks, machine learning. Broadly, my interest lies in gaining a fundamental understanding of a given system and the design of robust algorithms.
More recently my research focus has been in privacy in machine learning. I’m interested in understanding how robust machine learning methods are to perturbation, and privacy and fairness constraints, with the goal of designing practical algorithms that achieve privacy and fairness.
Bio
Before joining the University of Alberta, I spent many years in industry research labs. Most recently, I was a Research team lead at Borealis AI (a research institute at Royal Bank of Canada), where my team worked on privacy-preserving methods for machine learning models and other applied problems for RBC. Prior to that, I spent many years in research labs in Europe working on a variety of interesting and impactful problems. I was a researcher at Bell Labs, Nokia, in France from January 2015 to March 2018, where I led a new team focussed on Maths and Algorithms for Machine Learning in Networks and Systems, in the Maths and Algorithms group of Bell Labs. I also spent a few years at the Technicolor Paris Research Lab working on social network analysis, smart grids, and privacy in recommendations.
Benjamin Faveri is a Research and Policy Analyst at the Responsible AI Institute (RAII) [headquarted in Austin, Texas]. Currently, he is developing their Responsible AI Certification Program and leading it through Canada’s national accreditation process. Over the last several years, he has worked on numerous certification program-related research projects such as fishery economics and certification programs, police body-worn camera policy certification, and emerging AI certifications and assurance systems. Before his work at RAII, Benjamin completed a Master of Public Policy and Administration at Carleton University, where he was a Canada Graduate Scholar, Ontario Graduate Scholar, Social Innovation Fellow, and Visiting Scholar at UC Davis School of Law. He holds undergraduate degrees in criminology and psychology, finishing both with first class standing. Outside of work, Benjamin reads about how and why certification and private governance have been applied across various industries.
Panelist: Ori Freiman (from his eponymous website’s About page)
I research at the forefront of technological innovation. This website documents some of my academic activities.
My formal background is in Analytic Philosophy, Library and Information Science, and Science & Technology Studies. Until September 22′ [September 2022], I was a Post-Doctoral Fellow at the Ethics of AI Lab, at the University of Toronto’s Centre for Ethics. Before joining the Centre, I submitted my dissertation, about trust in technology, to The Graduate Program in Science, Technology and Society at Bar-Ilan University.
I have also found a number of overviews and bits of commentary about the Canadian federal government’s proposed Bill C-27, which I think of as an omnibus bill as it includes three proposed Acts.
The lawyers are excited but I’m starting with the Responsible AI Institute’s (RAII) response first as one of the panelists (Benjamin Faveri) works for them and it’s a view from a closely neighbouring country, from a June 22, 2022 RAII news release, Note: Links have been removed,
Business Implications of Canada’s Draft AI and Data Act
On June 16 [2022], the Government of Canada introduced the Artificial Intelligence and Data Act (AIDA), as part of the broader Digital Charter Implementation Act 2022 (Bill C-27). Shortly thereafter, it also launched the second phase of the Pan-Canadian Artificial Intelligence Strategy.
Both RAII’s Certification Program, which is currently under review by the Standards Council of Canada, and the proposed AIDA legislation adopt the same approach of gauging an AI system’s risk level in context; identifying, assessing, and mitigating risks both pre-deployment and on an ongoing basis; and pursuing objectives such as safety, fairness, consumer protection, and plain-language notification and explanation.
Businesses should monitor the progress of Bill C-27 and align their AI governance processes, policies, and controls to its requirements. Businesses participating in RAII’s Certification Program will already be aware of requirements, such as internal Algorithmic Impact Assessments to gauge risk level and Responsible AI Management Plans for each AI system, which include system documentation, mitigation measures, monitoring requirements, and internal approvals.
…
The AIDA draft is focused on the impact of any “high-impact system”. Companies would need to assess whether their AI systems are high-impact; identify, assess, and mitigate potential harms and biases flowing from high-impact systems; and “publish on a publicly available website a plain-language description of the system” if making a high-impact system available for use. The government elaborated in a press briefing that it will describe in future regulations the classes of AI systems that may have high impact.
The AIDA draft also outlines clear criminal penalties for entities which, in their AI efforts, possess or use unlawfully obtained personal information or knowingly make available for use an AI system that causes serious harm or defrauds the public and causes substantial economic loss to an individual.
If enacted, AIDA would establish the Office of the AI and Data Commissioner, to support Canada’s Minister of Innovation, Science and Economic Development, with powers to monitor company compliance with the AIDA, to order independent audits of companies’ AI activities, and to register compliance orders with courts. The Commissioner would also help the Minister ensure that standards for AI systems are aligned with international standards.
…
Apart from being aligned with the approach and requirements of Canada’s proposed AIDA legislation, RAII is also playing a key role in the Standards Council of Canada’s AI accreditation pilot. The second phase of the Pan-Canadian includes funding for the Standards Council of Canada to “advance the development and adoption of standards and a conformity assessment program related to AI/”
The AIDA’s introduction shows that while Canada is serious about governing AI systems, its approach to AI governance is flexible and designed to evolve as the landscape changes.
Charles Mandel’s June 16, 2022 article for Betakit (Canadian Startup News and Tech Innovation) provides an overview of the government’s overall approach to data privacy, AI, and more,
The federal Liberal government has taken another crack at legislating privacy with the introduction of Bill C-27 in the House of Commons.
Among the bill’s highlights are new protections for minors as well as Canada’s first law regulating the development and deployment of high-impact AI systems.
“It [Bill C-27] will address broader concerns that have been expressed since the tabling of a previous proposal, which did not become law,” a government official told a media technical briefing on the proposed legislation.
François-Philippe Champagne, the Minister of Innovation, Science and Industry, together with David Lametti, the Minister of Justice and Attorney General of Canada, introduced the Digital Charter Implementation Act, 2022. The ministers said Bill C-27 will significantly strengthen Canada’s private sector privacy law, create new rules for the responsible development and use of artificial intelligence (AI), and continue to put in place Canada’s Digital Charter.
The Digital Charter Implementation Act includes three proposed acts: the Consumer Privacy Protection Act, the Personal Information and Data Protection Tribunal Act, and the Artificial Intelligence and Data Act (AIDA)- all of which have implications for Canadian businesses.
Bill C-27 follows an attempt by the Liberals to introduce Bill C-11 in 2020. The latter was the federal government’s attempt to reform privacy laws in Canada, but it failed to gain passage in Parliament after the then-federal privacy commissioner criticized the bill.
The proposed Artificial Intelligence and Data Act is meant to protect Canadians by ensuring high-impact AI systems are developed and deployed in a way that identifies, assesses and mitigates the risks of harm and bias.
For businesses developing or implementing AI this means that the act will outline criminal prohibitions and penalties regarding the use of data obtained unlawfully for AI development or where the reckless deployment of AI poses serious harm and where there is fraudulent intent to cause substantial economic loss through its deployment.
..
An AI and data commissioner will support the minister of innovation, science, and industry in ensuring companies comply with the act. The commissioner will be responsible for monitoring company compliance, ordering third-party audits, and sharing information with other regulators and enforcers as appropriate.
The commissioner would also be expected to outline clear criminal prohibitions and penalties regarding the use of data obtained unlawfully for AI development or where the reckless deployment of AI poses serious harm and where there is fraudulent intent to cause substantial economic loss through its deployment.
…
Canada already collaborates on AI standards to some extent with a number of countries. Canada, France, and 13 other countries launched an international AI partnership to guide policy development and “responsible adoption” in 2020.
The federal government also has the Pan-Canadian Artificial Intelligence Strategy for which it committed an additional $443.8 million over 10 years in Budget 2021. Ahead of the 2022 budget, Trudeau [Canadian Prime Minister Justin Trudeau] had laid out an extensive list of priorities for the innovation sector, including tasking Champagne with launching or expanding national strategy on AI, among other things.
Within the AI community, companies and groups have been looking at AI ethics for some time. Scotiabank donated $750,000 in funding to the University of Ottawa in 2020 to launch a new initiative to identify solutions to issues related to ethical AI and technology development. And Richard Zemel, co-founder of the Vector Institute [formed as part of the Pan-Canadian Artificial Intelligence Strategy], joined Integrate.AI as an advisor in 2018 to help the startup explore privacy and fairness in AI.
When it comes to the Consumer Privacy Protection Act, the Liberals said the proposed act responds to feedback received on the proposed legislation, and is meant to ensure that the privacy of Canadians will be protected, and that businesses can benefit from clear rules as technology continues to evolve.
“A reformed privacy law will establish special status for the information of minors so that they receive heightened protection under the new law,” a federal government spokesperson told the technical briefing.
..
The act is meant to provide greater controls over Canadians’ personal information, including how it is handled by organizations as well as giving Canadians the freedom to move their information from one organization to another in a secure manner.
The act puts the onus on organizations to develop and maintain a privacy management program that includes the policies, practices and procedures put in place to fulfill obligations under the act. That includes the protection of personal information, how requests for information and complaints are received and dealt with, and the development of materials to explain an organization’s policies and procedures.
The bill also ensures that Canadians can request that their information be deleted from organizations.
The bill provides the privacy commissioner of Canada with broad powers, including the ability to order a company to stop collecting data or using personal information. The commissioner will be able to levy significant fines for non-compliant organizations—with fines of up to five percent of global revenue or $25 million, whichever is greater, for the most serious offences.
The proposed Personal Information and Data Protection Tribunal Act will create a new tribunal to enforce the Consumer Privacy Protection Act.
Although the Liberal government said it engaged with stakeholders for Bill C-27, the Council of Canadian Innovators (CCI) expressed reservations about the process. Nick Schiavo, CCI’s director of federal affairs, said it had concerns over the last version of privacy legislation, and had hoped to present those concerns when the bill was studied at committee, but the previous bill died before that could happen.
…
Now the lawyers. Simon Hodgett, Kuljit Bhogal, and Sam Ip have written a June 27, 2022 overview, which highlights the key features from the perspective of Osler, a leading business law firm practising internationally from offices across Canada and in New York.
Maya Medeiros and Jesse Beatson authored a June 23, 2022 article for Norton Rose Fulbright, a global law firm, which notes a few ‘weak’ spots in the proposed legislation,
…
… While the AIDA is directed to “high-impact” systems and prohibits “material harm,” these and other key terms are not yet defined. Further, the quantum of administrative penalties will be fixed only upon the issuance of regulations.
Moreover, the AIDA sets out publication requirements but it is unclear if there will be a public register of high-impact AI systems and what level of technical detail about the AI systems will be available to the public. More clarity should come through Bill C-27’s second and third readings in the House of Commons, and subsequent regulations if the bill passes.
The AIDA may have extraterritorial application if components of global AI systems are used, developed, designed or managed in Canada. The European Union recently introduced its Artificial Intelligence Act, which also has some extraterritorial application. Other countries will likely follow. Multi-national companies should develop a coordinated global compliance program.
…
I have two podcasts from Michael Geist, a lawyer and Canada Research Chair in Internet and E-Commerce Law at the University of Ottawa.
June 26, 2022: The Law Bytes Podcast, Episode 132: Ryan Black on the Government’s Latest Attempt at Privacy Law Reform “The privacy reform bill that is really three bills in one: a reform of PIPEDA, a bill to create a new privacy tribunal, and an artificial intelligence regulation bill. What’s in the bill from a privacy perspective and what’s changed? Is this bill any likelier to become law than an earlier bill that failed to even advance to committee hearings? To help sort through the privacy aspects of Bill C-27, Ryan Black, a Vancouver-based partner with the law firm DLA Piper (Canada) …” (about 45 mins.)
August 15, 2022: The Law Bytes Podcast, Episode 139: Florian Martin-Bariteau on the Artificial Intelligence and Data Act “Critics argue that regulations are long overdue, but have expressed concern about how much of the substance is left for regulations that are still to be developed. Florian Martin-Bariteau is a friend and colleague at the University of Ottawa, where he holds the University Research Chair in Technology and Society and serves as director of the Centre for Law, Technology and Society. He is currently a fellow at the Harvard’s Berkman Klein Center for Internet and Society …” (about 38 mins.)