Tag Archives: University of Saskatchewan

News from the Canadian Light Source (CLS), Canadian Science Policy Conference (CSPC) 2020, the International Symposium on Electronic Arts (ISEA) 2020, and HotPopRobot

I have some news about conserving art; early bird registration deadlines for two events, and, finally, an announcement about contest winners.

Canadian Light Source (CLS) and modern art

Rita Letendre. Victoire [Victory], 1961. Oil on canvas, Overall: 202.6 × 268 cm. Art Gallery of Ontario. Gift of Jessie and Percy Waxer, 1974, donated by the Ontario Heritage Foundation, 1988. © Rita Letendre L74.8. Photography by Ian Lefebvre

This is one of three pieces by Rita Letendre that underwent chemical mapping according to an August 5, 2020 CLS news release by Victoria Martinez (also received via email),

Research undertaken at the Canadian Light Source (CLS) at the University of Saskatchewan was key to understanding how to conserve experimental oil paintings by Rita Letendre, one of Canada’s most respected living abstract artists.

The work done at the CLS was part of a collaborative research project between the Art Gallery of Ontario (AGO) and the Canadian Conservation Institute (CCI) that came out of a recent retrospective Rita Letendre: Fire & Light at the AGO. During close examination, Meaghan Monaghan, paintings conservator from the Michael and Sonja Koerner Centre for Conservation, observed that several of Letendre’s oil paintings from the fifties and sixties had suffered significant degradation, most prominently, uneven gloss and patchiness, snowy crystalline structures coating the surface known as efflorescence, and cracking and lifting of the paint in several areas.

Kate Helwig, Senior Conservation Scientist at the Canadian Conservation Institute, says these problems are typical of mid-20th century oil paintings. “We focused on three of Rita Letendre’s paintings in the AGO collection, which made for a really nice case study of her work and also fits into the larger question of why oil paintings from that period tend to have degradation issues.”

Growing evidence indicates that paintings from this period have experienced these problems due to the combination of the experimental techniques many artists employed and the additives paint manufacturers had begun to use.

In order to determine more precisely how these factors affected Letendre’s paintings, the research team members applied a variety of analytical techniques, using microscopic samples taken from key points in the works.

“The work done at the CLS was particularly important because it allowed us to map the distribution of materials throughout a paint layer such as an impasto stroke,” Helwig said. The team used Mid-IR chemical mapping at the facility, which provides a map of different molecules in a small sample.

For example, chemical mapping at the CLS allowed the team to understand the distribution of the paint additive aluminum stearate throughout the paint layers of the painting Méduse. This painting showed areas of soft, incompletely dried paint, likely due to the high concentration and incomplete mixing of this additive. 

The painting Victoire had a crumbling base paint layer in some areas and cracking and efflorescence at the surface in others.  Infrared mapping at the CLS allowed the team to determine that excess free fatty acids in the paint were linked to both problems; where the fatty acids were found at the base they formed zing “soaps” which led to crumbling and cracking, and where they had moved to the surface they had crystallized, causing the snowflake-like efflorescence.

AGO curators and conservators interviewed Letendre to determine what was important to her in preserving and conserving her works, and she highlighted how important an even gloss across the surface was to her artworks, and the philosophical importance of the colour black in her paintings. These priorities guided conservation efforts, while the insights gained through scientific research will help maintain the works in the long term.

In order to restore the black paint to its intended even finish for display, conservator Meaghan Monaghan removed the white crystallization from the surface of Victoire, but it is possible that it could begin to recur. Understanding the processes that lead to this degradation will be an important tool to keep Letendre’s works in good condition.

“The world of modern paint research is complicated; each painting is unique, which is why it’s important to combine theoretical work on model paint systems with this kind of case study on actual works of art” said Helwig. The team hopes to collaborate on studying a larger cross section of Letendre’s paintings in oil and acrylic in the future to add to the body of knowledge.

Here’s a link to and a citation for the paper,

Rita Letendre’s Oil Paintings from the 1960s: The Effect of Artist’s Materials on Degradation Phenomena by Kate Helwig, Meaghan Monaghan, Jennifer Poulin, Eric J. Henderson & Maeve Moriarty. Studies in Conservation (2020): 1-15 DOI: https://doi.org/10.1080/00393630.2020.1773055 Published online: 06 Jun 2020

This paper is behind a paywall.

Canadian Science Policy Conference (CSPC) 2020

The latest news from the CSPC 2020 (November 16 – 20 with preconference events from Nov. 1 -14) organizers is that registration is open and early birds have a deadline of September 27, 2020 (from an August 6, 2020 CSPC 2020 announcement received via email),

It’s time! Registration for the 12th Canadian Science Policy Conference (CSPC 2020) is open now. Early Bird registration is valid until Sept. 27th [2020].

CSPC 2020 is coming to your offices and homes:

Register for full access to 3 weeks of programming of the biggest science and innovation policy forum of 2020 under the overarching theme: New Decade, New Realities: Hindsight, Insight, Foresight.

2500+ Participants

300+ Speakers from five continents

65+ Panel sessions, 15 pre conference sessions and symposiums

50+ On demand videos and interviews with the most prominent figures of science and innovation policy 

20+ Partner-hosted functions

15+ Networking sessions

15 Open mic sessions to discuss specific topics

The virtual conference features an exclusive array of offerings:

3D Lounge and Exhibit area

Advance access to the Science Policy Magazine, featuring insightful reflections from the frontier of science and policy innovation

Many more

Don’t miss this unique opportunity to engage in the most important discussions of science and innovation policy with insights from around the globe, just from your office, home desk, or your mobile phone.

Benefit from significantly reduced registration fees for an online conference with an option for discount for multiple ticket purchases

Register now to benefit from the Early Bird rate!

The preliminary programme can be found here. This year there will be some discussion of a Canadian synthetic biology roadmap, presentations on various Indigenous concerns (mostly health), a climate challenge presentation focusing on Mexico and social vulnerability and another on parallels between climate challenges and COVID-19. There are many presentations focused on COVID-19 and.or health.

There doesn’t seem to be much focus on cyber security and, given that we just lost two ice caps (see Brandon Spektor’s August 1, 2020 article [Two Canadian ice caps have completely vanished from the Arctic, NASA imagery shows] on the Live Science website), it’s surprising that there are no presentations concerning the Arctic.

International Symposium on Electronic Arts (ISEA) 2020

According to my latest information, the early bird rate for ISEA 2020 (Oct. 13 -18) ends on August 13, 2020. (My June 22, 2020 posting describes their plans for the online event.)

You can find registration information here.

Margaux Davoine has written up a teaser for the 2020 edition of ISEA in the form of an August 6, 2020 interview with Yan Breuleux. I’ve excerpted one bit,

Finally, thinking about this year’s theme [Why Sentience?], there might be something a bit ironic about exploring the notion of sentience (historically reserved for biological life, and quite a small subsection of it) through digital media and electronic arts. There’s been much work done in the past 25 years to loosen the boundaries between such distinctions: how do you imagine ISEA2020 helping in that?

The similarities shared between humans, animals, and machines are fundamental in cybernetic sciences. According to the founder of cybernetics Norbert Wiener, the main tenets of the information paradigm – the notion of feedback – can be applied to humans, animals as well as the material world. Famously, the AA predictor (as analysed by Peter Galison in 1994) can be read as a first attempt at human-machine fusion (otherwise known as a cyborg).

The infamous Turing test also tends to blur the lines between humans and machines, between language and informational systems. Second-order cybernetics are often associated with biologists Francisco Varela and Humberto Maturana. The very notion of autopoiesis (a system capable of maintaining a certain level of stability in an unstable environment) relates back to the concept of homeostasis formulated by Willam Ross [William Ross Ashby] in 1952. Moreover, the concept of “ecosystems” emanates directly from the field of second-order cybernetics, providing researchers with a clearer picture of the interdependencies between living and non-living organisms. In light of these theories, the absence of boundaries between animals, humans, and machines constitutes the foundation of the technosciences paradigm. New media, technological arts, virtual arts, etc., partake in the dialogue between humans and machines, and thus contribute to the prolongation of this paradigm. Frank Popper nearly called his book “Techno Art” instead of “Virtual Art”, in reference to technosciences (his editor suggested the name change). For artists in the technological arts community, Jakob von Uexkull’s notion of “human-animal milieu” is an essential reference. Also present in Simondon’s reflections on human environments (both natural and artificial), the notion of “milieu” is quite important in the discourses about art and the environment. Concordia University’s artistic community chose the concept of “milieu” as the rallying point of its research laboratories.

ISEA2020’s theme resonates particularly well with the recent eruption of processing and artificial intelligence technologies. For me, Sentience is a purely human and animal idea: machines can only simulate our ways of thinking and feeling. Partly in an effort to explore the illusion of sentience in computers, Louis-Philippe Rondeau, Benoît Melançon and I have established the Mimesis laboratory at NAD University. Processing and AI technologies are especially useful in the creation of “digital doubles”, “Vactors”, real-time avatar generation, Deep Fakes and new forms of personalised interactions.

I adhere to the epistemological position that the living world is immeasurable. Through their ability to simulate, machines can merely reduce complex logics to a point of understandability. The utopian notion of empathetic computers is an idea mostly explored by popular science-fiction movies. Nonetheless, research into computer sentience allows us to devise possible applications, explore notions of embodiment and agency, and thereby develop new forms of interaction. Beyond my own point of view, the idea that machines can somehow feel emotions gives artists and researchers the opportunity to experiment with certain findings from the fields of the cognitive sciences, computer sciences and interactive design. For example, in 2002 I was particularly marked by an immersive installation at Universal Exhibition in Neuchatel, Switzerland titled Ada: Intelligence Space. The installation comprised an artificial environment controlled by a computer, which interacted with the audience on the basis of artificial emotion. The system encouraged visitors to participate by intelligently analysing their movements and sounds. Another example, Louis-Philippe Demers’ Blind Robot (2012),  demonstrates how artists can be both critical of, and amazed by, these new forms of knowledge. Additionally, the 2016 BIAN (Biennale internationale d’art numérique), organized by ELEKTRA (Alain Thibault) explored the various ways these concepts were appropriated in installation and interactive art. The way I see it, current works of digital art operate as boundary objects. The varied usages and interpretations of a particular work of art allow it to be analyzed from nearly every angle or field of study. Thus, philosophers can ask themselves: how does a computer come to understand what being human really is?

I have yet to attend conferences or exchange with researchers on that subject. Although the sheer number of presentation propositions sent to ISEA2020, I have no doubt that the symposium will be the ideal context to reflect on the concept of Sentience and many issues raised therein.

For the last bit of news.

HotPopRobot, one of six global winners of 2020 NASA SpaceApps COVID-19 challenge

I last wrote about HotPopRobot’s (Artash and Arushi with a little support from their parents) response to the 2020 NASA (US National Aeronautics and Space Administration) SpaceApps challenge in my July 1, 2020 post, Toronto COVID-19 Lockdown Musical: a data sonification project from HotPopRobot. (You’ll find a video of the project embedded in the post.)

Here’s more news from HotPopRobot’s August 4, 2020 posting (Note: Links have been removed),

Artash (14 years) and Arushi (10 years). Toronto.

We are excited to become the global winners of the 2020 NASA SpaceApps COVID-19 Challenge from among 2,000 teams from 150 countries. The six Global Winners will be invited to visit a NASA Rocket Launch site to view a spacecraft launch along with the SpaceApps Organizing team once travel is deemed safe. They will also receive an invitation to present their projects to NASA, ESA [European Space Agency], JAXA [Japan Aerospace Exploration Agency], CNES [Centre National D’Etudes Spatiales; France], and CSA [Canadian Space Agency] personnel. https://covid19.spaceappschallenge.org/awards

15,000 participants joined together to submit over 1400 projects for the COVID-19 Global Challenge that was held on 30-31 May 2020. 40 teams made to the Global Finalists. Amongst them, 6 teams became the global winners!

The 2020 SpaceApps was an international collaboration between NASA, Canadian Space Agency, ESA, JAXA, CSA,[sic] and CNES focused on solving global challenges. During a period of 48 hours, participants from around the world were required to create virtual teams and solve any of the 12 challenges related to the COVID-19 pandemic posted on the SpaceApps website. More details about the 2020 SpaceApps COVID-19 Challenge:  https://sa-2019.s3.amazonaws.com/media/documents/Space_Apps_FAQ_COVID_.pdf

We have been participating in NASA Space Challenge for the last seven years since 2014. We were only 8 years and 5 years respectively when we participated in our very first SpaceApps 2014.

We have grown up learning more about space, tacking global challenges, making hardware and software projects, participating in meetings, networking with mentors and teams across the globe, and giving presentations through the annual NASA Space Apps Challenges. This is one challenge we look forward to every year.

It has been a fun and exciting journey meeting so many people and astronauts and visiting several fascinating places on the way! We hope more kids, youths, and families are inspired by our space journey. Space is for all and is yours to discover!

If you have the time, I recommend reading HotPopRobot’s August 4, 2020 posting in its entirety.

First major literary work (Chaucer’s Canterbury Tales) developed as an app

I wanted something completely different today and found it in a May 2, 2020 article, by Lucie Laumonier for University Affairs, about a multimedia app featuring the Canterbury Tales narrated in middle English,

Four historians from Canada and England have launched the General Prologue app, the first app featuring an audio performance of Geoffrey Chaucer’s The Canterbury Tales in its original 14th-century English.

“Here bygynneth the Book of the tales of Caunterbury,” says the expressive voice of the narrator. The strange Middle English words comprise the opening verse of the medieval masterpiece composed by Chaucer more than 600 years ago. The app, which launched on February 3, is available for iOS and Android users, and through a dedicated website.

A February 2, 2020 University of Saskatchewan news release (also on EurekAlert), announced news of the app’s launch and the international collaboration, which included an academic at University College London (UCL), and the late Terry Jones (of Monty Python fame),

A University of Saskatchewan-led international team has produced the first web and mobile phone app of Geoffrey Chaucer’s The Canterbury Tales–the first major literary work augmented by new scholarship, in any language, presented in an app.

“We want the public, not just academics, to see the manuscript as Chaucer would have likely thought of it–as a performance that mixed drama and humor,” said University of Saskatchewan (USask) English professor Peter Robinson, leader of the project.

“We have become convinced, over many years, that the best way to read the Tales is to hear it performed–just as we imagine that Chaucer himself might have performed it at the court of Richard II.”

The free app is the first edition in a planned series. The app features a 45-minute audio performance of the General Prologue of the Tales–the masterpiece work by the most important English writer before Shakespeare–along with the digitized original manuscript. While listening to the reading, users have access to supporting content such as a translation in modern English, commentary, notes and vocabulary explaining Middle English words used by Chaucer.

The app, an offshoot of Robinson’s 25-year work to digitize the Canterbury Tales, contains key new research work. This includes a new edited text of the Prologue created by USask sessional lecturer Barbara Bordalejo, a new reading of the Tales by former USask student Colin Gibbings, and new findings about the Tales by UCL (University College London) medievalist professor Richard North. The National Library of Wales offered its digitized version of the Prologue‘s original manuscript for the app.

The late Monty Python star Terry Jones, who was a medievalist with two influential books on Chaucer, was also instrumental in developing the content of the app. His translation of The General Prologue and his books feature in the introduction and notes. This work on the app is thought to have been the last major academic project that Jones worked on before his passing on January 21.

The app was released on Android and Apple IoS just after Jones’ birthday on February 1st, in celebration of Jones’ academic work.

“We were so pleased that Terry was able to see and hear this app in the last weeks of his life. His work and his passion for Chaucer was an inspiration to us,” said Robinson, whose work on the Tales has been supported by USask and by the federal Social Sciences and Humanities Research Council (SSHRC). “We talked a lot about Chaucer and it was his idea that the Tales would be turned into a performance.”

Because Chaucer left the Tales unfinished at his death, there is no single text of the Tales, and scholars have to re-construct the text from over 80 distinct manuscripts, mostly written by hand before 1500.

“While the app has material which should be of interest to every Chaucer scholar, it is particularly designed to be useful to people reading Chaucer for the first time. These include not only bachelor of arts university students and school children but also members of the public who have their own interest in Chaucer and his works,” said UCL’s North.

Robinson’s Canterbury Tales project, based at USask since 2010, includes several students who are transcribing all 30,000 pages of the manuscripts into the computer to discover how they are related to each other and to Chaucer’s lost original.

“The app is important for people who do not know the history behind the production of the Canterbury Tales, and to understand how the modern concept of author didn’t exist back then,” said Robinson. “We have many manuscripts copied by hand over time, and the Canterbury Tales Project hopes to establish where they come from, how they were created and who produced them as part of that history.”

Robinson said that the team has ready materials to develop at least two more apps, in particular Miller’s Tale, the second story in the Canterbury Tales.

The General Prologue app was built around the Hengwrt manuscript of the Tales, commonly regarded as the best source for Chaucer’s text and held at The National Library of Wales. The specialist preservation and digitization work undertaken at The National Library of Wales enabled the images of the original manuscript to be presented with supporting content for readers via the app.

North’s academic research on the project includes several new discoveries. For instance, he has found evidence suggesting that Chaucer’s Knight, one of the main characters of the Tales, is at the siege of Algeciras near Gilbraltar, in the south of Spain, in 1369 instead of the commonly assumed date 1342-44.

North believes that putting the Knight at this siege puts his age nearer to 50 years old when the reader encounters him with the other pilgrims in the Tabard in the General Prologue–about the age of Chaucer himself.

Brigit Katz covered the story in a February 5, 2020 article for Smithsonian Magazine. Medievallists.net also posted a story (no date) which included two trailers for the app (you’ll find a 1:39 trailer below),

Here’s where you’ll find the app and more,

Enjoy! And for those who caught it, “something completely different” was a reference to Monty Python’s “And Now for Something Completely Different.”

Creative destruction for Canada’s fundamental science

After receiving an ‘invitation’ from the Canadian Science Policy Centre, I wrote an opinion piece, drawing on my submission for the public consultation on Canada’s fundamental science research. It seems the invitation was more of a ‘call’ for submissions and my piece did not end up being selected for inclusion on the website. So rather than waste the piece, here it is,

Creative destruction for Canada’s fundamental science

At a time when we are dealing with the consequences of our sins and virtues, fundamental science, at heart, an exercise in imagination, can seem a waste of precious time. Pollution and climate change (sins: ill-considered uses of technology) and food security and water requirements (virtues: efforts to improve health and save more lives) would seem to demand solutions not the flights of fancy associated with basic science. After all, what does the ‘big bang’ have to do with potable water?

It’s not an unfair question despite the impatience some might feel when answering it by citing a number of practical applications which are the result of all that ‘fanciful’ or ‘blue sky’ science. The beauty and importance of the question is that it will always be asked and can never be definitively answered, rendering it a near constant goad or insurance against complacency.

In many ways Canada’s review of fundamental science (deadline for comments was Sept. 30, 2016) is not just an examination of the current funding schemes but an opportunity to introduce more ‘goads’ or ‘anti-complacency’ measures into Canada’s fundamental science efforts for a kind of ‘creative destruction’.

Introduced by economist Joseph Schumpeter, the concept is derived from Karl Marx’s work but these days is associated with disruptive, painful, and regenerative innovation of all kinds and Canadian fundamental science needs more ‘creative destruction’. There’s at least one movement in this direction (found both in Canada and internationally) which takes us beyond uncomfortable, confrontative questions and occasional funding reviews—the integration of arts and humanities as an attempt at ‘creative destruction’ of the science endeavour.

At one point in the early 2000s, Canada developed a programme where the National Research Council could get joint funding with the Canada Council for the Arts for artists to work with their scientists. It was abandoned a few years later, as a failure. But, since then, several informal attempts at combining arts, sciences, and humanities have sprung up.

For example, Curiosity Collider (founded in 2015) hosts artists and scientists presenting their art/science pieces at various events in Vancouver. Beakerhead has mashed up science, engineering, arts, and entertainment in a festival founded and held in Calgary since 2013. Toronto’s ArtSci Salon hosts events and installations for local, national, and international collaborations of artists and scientists. And, getting back to Vancouver, Anecdotal Evidence is a science storytelling series which has been appearing sporadically since 2015.

There is a tendency to dismiss these types of collaboration as a form of science outreach designed to amuse or entertain but they can be much more than that. Illustrators have taught botanists a thing or two about plants. Markus Buehler at the Massachusetts Institute of Technology has used his understanding of music to explore material science (spider’s webs). Domenico Vicinanza has sonified data from space vehicle, Voyager 1, to produce a symphony, which is also a highly compressed means of communicating data.

C. P. Snow’s ‘The Two Cultures’ (lecture and book) covered much of the same territory in 1959 noting the idea that the arts and sciences (and humanities) can and should be linked in some fashion was not new. For centuries the sciences were referred to as Natural Philosophy (humanities), albeit only chemistry and physics were considered sciences, and many universities have or had faculties of arts and sciences or colleges of arts and science (e.g., the University of Saskatchewan still has such a college).

The current art/sci or sci-art movement can be seen as more than an attempt to resuscitate a ‘golden’ period from the past. It could be a means of embedding a continuous state of regeneration or ‘creative destruction’ for fundamental science in Canada.

Silicene in Saskatchewan (Canada)

There’s some very exciting news coming out of the province of Saskatchewan (Canada) about silicene, a material some view as a possible rival to graphene (although that’s problematic according to my Jan. 12, 2014 posting) while others (US National Argonne Laboratory) challenge its existence (my Aug. 1,  2014 posting).

The researchers in Saskatchewan seem quite confident in silicene’s existence according to a Sept. 9, 2014 news item on phys.org,

“Once a device becomes too small it falls prey to the strange laws of the quantum world,” says University of Saskatchewan researcher Neil Johnson, who is using the Canadian Light Source synchrotron to help develop the next generation of computer materials. Johnson is a member of Canada Research Chair Alexander Moewes’ group of graduate students studying the nature of materials using synchrotron radiation.

His work focuses on silicene, a recent and exciting addition to the class of two-dimensional materials. Silicene is made up of an almost flat hexagonal pattern of silicon atoms. Every second atom in each hexagonal ring is slightly lifted, resulting in a buckled sheet that looks the same from the top or the bottom.

A Sept. 9, 2014 Canadian Light Source news release, which originated the news item, provides background as to how Johnson started studying silicene and some details about the work,

In 2012, mere months before Johnson began to study silicene, it was discovered and first created by the research group of Prof. Guy Le Lay of Aix-Marseille University, using silver as a base for the thin film. The Le Lay group is the world-leader in silicene growth, and taught Johnson and his colleagues how to make it at the CLS themselves.

“I read the paper when the Le Lay announced they had made silicene, and within three or four months, Alex had arranged for us to travel down to the Advanced Light Source with these people who had made it for the first time,” says Johnson. It was an exciting collaboration for the young physicist.

“This paper had already been cited over a hundred times in a matter of months. It was a major paper, and we were going to measure this new material that no one had really started doing experiments on yet.”

The most pressing question facing silicene research was its potential as a semiconductor. Today, most electronics use silicon as a switch, and researchers looking for new materials to manage quantum effects in computing could easily use the 2-D version if it was also semiconducting.

Calculations had shown that because of the special buckling of silicene, it would have what’s called a Dirac cone – a special electronic structure that could allow researchers to tune the band gap, or the energy space between electron levels. The band gap is what makes a semiconductor: if the space is too small, the material is simply a conductor. Too large, and there is no conduction at all.

Since silicene has only ever been made on a silver base, the materials community also wondered if silicene would maintain its semiconducting properties in this condition. Though its atomic structure is slightly different than freestanding silicene, it was still predicted to have a band gap. However, silver is a metal, which may make the silicene act as a metal as well.

No one really knew how silicene would behave on its silver base.

To adapt the Le Lay group’s silicene-growing process to the equipment at the CLS took several days of work. Though their team had succeeded in silicene synthesis at the Advanced Light Source at Berkeley lab, they had no way to keep those samples under vacuum to prevent them from oxygen damage. Thanks to the work of fellow beamteam members Drs. David Muir and Israel Perez, samples grown at the CLS could be produced, transported and measured in a matter of hours without ever leaving a vacuum chamber.

Johnson grew the silicene sheets at the Resonant Elastic and Inelastic X-ray Scattering (REIXS), beamline, then transferred them in a vacuum to the XAS/XES endstation for analysis. Finally, Johnson could find the answer to the silicene question.

“I didn’t really know what to expect until I saw the XAS and XES on the same energy scale, and I thought to myself, that looks like a metal,” says Johnson.

And while that result is unfortunate for those searching for a new computing wonder material, it does provide some vital information to that search.

“Our result does help to guide the hunt for 2-D silicon in the future, suggesting that metallic substrates should be avoided at all costs,” Johnson explains. “We’re hopeful that we can grow a similar structure on other substrates, ideally ones that leave the semiconducting nature of silicene intact.”

That work is already in process, with Johnson and his colleagues planning to explore three other growing bases this summer, along with multilayers and nanoribbons of silicene.

Like the Dutch researchers in the Jan. 12, 2014 posting, Johnson finds that silicene is not serious competition for graphene (as regards to its electrical properties), but he does not challenge its existence. He does note problems with the silver substrate although he comes to a different conclusion than did the Argonne National Laboratory researchers (Aug. 1,  2014 posting).

Here’s a link to and a citation for Johnson’s paper,

The Metallic Nature of Epitaxial Silicene Monolayers on Ag(111) by Neil W. Johnson, Patrick Vogt, Andrea Resta, Paola De Padova, Israel Perez, David Muir, Ernst Z. Kurmaev, Guy Le Lay, and Alexander Moewes. Advanced Functional Materials Volume 24, Issue 33, pages 5253–5259, September 3, 2014 DOI: 10.1002/adfm.201400769 Article first published online: 10 JUN 2014

This paper is behind a paywall.

Canadian government funding announced for nanotechnology research in Saskatchewan and Alberta

Canada’s Western Economic Diversification and Canada Research Chairs (CRC) programmes both made nanotechnology funding announcements late last week on March 28, 2014.

From a March 28, 2014 news item on CJME radio online,

Funding for nanotechnology was announced at the University of Saskatchewan (U of S) on Friday [March 28, 2014].

Researchers will work on developing nanostructured coatings for parts of artificial joints and even mining equipment.

The $183,946 investment from the Western Economic Diversification Canada will go towards purchasing tailor-made equipment that will help apply the coating.

A March 29, 2014 article by Scott Larson for the Leader-Post provides more details,

In the near future when someone has a hip replacement, the new joint might actually last a lifetime thanks to cutting edge nanotechnology research being done by Qiaoqin Yang and her team. Yang, Canada Research Chair in nanoengineering coating technologies and professor of mechanical engineering at the University of Saskatchewan, has received $183,946 from Western Economic Diversification (WD) to purchase specially made equipment for nanotechnology research.

The equipment will help in developing and testing nanostructured coatings to increase the durability of hard-to-reach industrial and medical components.

“The diamond-based coating is biocompatible and has high wear resistance,” Yang said of the coating material.

There will be four industry-specific coating prototypes tested for projects such as solar energy systems, artificial joints, and mining and oilsands equipment.

Yang said artificial joints usually only last 10-20 years.

I have written about hip and knee replacements and issues with the materials most recently in a Feb. 5, 2013 posting.

As for the CRC announcement about the University of Alberta, here’s more from the March 28, 2014 article by Catherine Griwkowsky for the Edmonton Sun,

The Canadian Research Chairs funding announcement means 11 chair appointments, renewals and tier advancements, part of the 100 faculty who are chair holders at the university.

Carlo Montemagno, Canada Research Chair in Intelligent Nanosystems, said the funding will usher in the next generation in nanotechnology.

“It’s not just the money, it’s the recognition and the visibility that comes with the title,” Montemagno said. “That provides an opportunity for me to be more effective recruiting talent into my laboratory.”

He said the chair position at the University of Alberta allows him to go after riskier projects with a higher impact.

“It provides a nucleating force that allows us to gravitationally pull in talent and resources to position ourselves as global leaders,” Montemagno said.

Previously, he had worked at Cornell University, department head at University of California Los Angeles and dean of engineering at the University of Cincinnati.

Minister of State for Science and Technology Ed Holder said the $88 million will help with Canada’s economic prosperity and will attract more researchers to the country from around the world. …

“I think it’s a huge compliment to what the government of Canada is doing in terms of research and I think it’s a great, great credit to those Canadians who say I can do the best and the greatest research right here in Canada.

He said the success is attracting Canadians back.

Holder, who took over as science boss just over a week ago, said the government has received acknowledgment from granting councils. …

Holder said the proposed budget has an additional $1.5 billion in new money in the budget for research.

Upcoming research projects from the National Institute for Nanotechnology at the University of Alberta:

Artificially engineered system that incorporates the process of photosynthesis in a non-living thing with living elements to convert CO2 emissions to a sellable commodity like rare earth and precious metals.
Extracting minerals and chemicals in waste treatment such as tailings ponds, to clean up polluted water and take out valuable resources.
Cleaning and purifying water with an engineered variant of a molecule 100 times more efficient than current technology, opening land for agricultural development, or industrial plants.

Montemagno has an intriguing turn of phrase “a nucleating force that allows us to gravitationally pull in talent and resources” which I think could be summed up as “money lets us buy what we want with regard to researchers and equipment.” (I first mentioned Montegmagno in a Nov. 19, 2013 post about Alberta’s nanotechnology-focused Ingenuity Lab which he heads.) Holder’s comments are ‘on message’ as they say these days or, as old-timers would say, his comments follow the government’s script.

The listing of the National Institute of Nanotechnology (NINT) projects in Griwkowsky’s article seems a bit enigmatic since there’s no explanation offered as to why these are being included in the newspaper article. The confusion can be cleared up by reading the March 28, 2014 University of Alberta news release,

“Our work is about harnessing the power of ‘n’—nature, nanotechnology and networks,” said Montemagno, one of 11 U of A faculty members who received CRC appointments, renewals or tier advancements. “We use living systems in nature as the inspiration; we use nanotechnology, the ability to manipulate matter at its smallest scale; and we build systems in the understanding that we have to make these small elements work together in complex networks.”

The physical home of this work is Ingenuity Lab, a collaboration between the U of A, the National Institute for Nanotechnology and Alberta Innovates – Technology Futures. Montemagno is the director, and he has assembled a team of top scientists with backgrounds in biochemistry, organic chemistry, neurobiology, molecular biology, physics, computer science, engineering and material science.

Turning CO2 in something valuable

Reducing greenhouse gases is one of the challenges his team is working to address, by capturing carbon dioxide emissions and converting them into high-value chemicals.

Montemagno said the process involves mimicking photosynthesis, using engineered molecules to create a structure that metabolizes CO2. Unlike fermentation and other processes used to convert chemicals, this method is far more energy-efficient, he said.

“You make something that has the same sort of features that are associated with a living process that you want to emulate.”

In another project, Montemagno’s team has turned to cells, viruses and bacteria and how they identify chemicals to react to their environment, with the aim of developing “an exquisite molecular recognition technology” that can find rare precious metals in dilute quantities for extraction. This type of bio-mining is being explored to transform waste from a copper mine into a valuable product, and ultimately could benefit oilsands operations as well.

“The idea is converting waste into a resource and doing it in a way in which you provide more economic opportunity while you’re being a stronger steward of our natural resources.”

Congratulations to the University of Saskatchewan and the University of Alberta!

(A University of British Columbia CRC founding announcement was mentioned in my March 31, 2014 posting about Ed Holder, the new Minister of State (Science and Technology).

Cindy Patton talks about evidence and the invention of a Crystal Meth-HIV connection via press release

Canada’s Situating Science research cluster is launching a national lecture series (from a Jan. 30, 2014 announcement)

The Lives of Evidence
A multi-part national lecture series examining the cultural, ethical, political, and scientific role of evidence in our world.

They are kicking the series off with what appears to be a two city tour of Vancouver and Saskatoon (from the announcement),

The Press and the Press Release: Inventing the Crystal Meth-HIV Connection
Cindy Patton, Canada Research Chair in Community, Culture, and Health
Sociology and Anthropology, Simon Fraser University

What does the rise and fall of a scientific fact look like? In her analysis of the Crystal Meth-AIDS superbug connection in US media coverage, Dr. Patton explores scientific evidence as it circulates through the lab, the media, and society. Scientific studies, expertise, and anecdotal human-interest stories are used to “prove” a causal relationship between the (probably temporary) rise in crystal use and a (less than clear) rise in HIV rates. But far from helping to avoid hasty and ill-conceived policy in a moment of panic, the media coverage justifies something more problematic: discrimination and medical policing that appear to rest on scientific proof.

Monday February 3, 2014, 4 PM
Buchanan A-201, University of British Columbia, 1866 Main Mall, Vancouver, BC

Wednesday, February 5, 2014, 4 PM CST / 5 PM ET
Room 18, Edwards School of Business, University of Saskatchewan, 25 Campus Drive, Sakatoon, Saksatchewan
Watch the U. Sask reprise live online here:
www.livestream.com/situsci

Maybe I’ll see you at the Vancouver event.

Situating Science and the future

The end is in sight (2014) for Canada’s Situating Science; Science in Human Contexts network or rather,  the organization’s funding from the Social Sciences and Humanities Research Council (SSHRC) will be exhausted sometime soon. According to their Fall 2013 newsletter, they are making plans for the future,

I. SUSTAINING THE NETWORK AND ACTIVITIES BEYOND 2014
While this year is the last for the Situating Science SSHRC Strategic Knowledge Cluster, it is an opportunity to celebrate and build upon our successes. As part of our plans, we will follow up on last year’s “think-tank” and management meetings to set out concrete plans for sustaining the network and activities of Cluster scholars beyond its 7 years. A number of Cluster partners and stakeholders will meet during a second “think-tank” to discuss best strategies for moving forward.

The “think-tank” will dovetail nicely with a special symposium in Ottawa on Science and Society Oct. 21-23. For this symposium, the Cluster is partnering with the Institute for Science, Society and Policy to bring together scholars from various disciplines, public servants and policy workers to discuss key issues at the intersection of science and society. [emphasis mine]  The discussions will be compiled in a document to be shared with stakeholders and the wider public.

The team will continue to seek support and partnerships for projects within the scope of its objectives. Among our top priorities are a partnership to explore sciences, technologies and their publics as well as new partnerships to build upon exchanges between scholars and institutions in India, Singapore and Canada.

There’s not much information about the Science & Society symposium (mentioned in the excerpt from the newsletter)  being held Oct. 21-23, 2013 in Ottawa other than this, from the About page (the text seems as if it was lifted out of a grant proposal),

Science and Society 2013 Symposium
Emerging Agendas for Citizens and the Sciences
From the evening of Mon. Oct. 21 through Wed. Oct. 23, 2013
University of Ottawa
scienceandsociety2013@gmail.com

What?

The Mission of the symposium is to create an open forum, in the Nation’s capital, to understand and address the key issues at the interface of science, technology, society and policy. The event will display the importance of connecting disparate themes and will bring together groups not usually in contact to discuss subjects of common interest and brainstorm solutions to common challenges. It will demonstrate that collaboration among academics, students, policy makers, stakeholders and the public at large can lead to new insights, new perspectives, and a deeper understanding of the social implications of science and technology.  It will also make the discussion of science more prominent in the national dialogue.

The symposium will be a major event in Ottawa during National Science and Technology Week. It is a collaboration between the Situating Science Strategic Knowledge Cluster and Institute for Science, Society and Policy (ISSP).

Fostering dialogue between scholars, students, public servants and the general public will not only shed new light on the common challenges and opportunities facing these groups but will also point the way towards novel solutions and courses of action.

The uniqueness of the symposium consists in its aim to provide recommendations on how to envision and improve the science-society interface.  As part of their involvement in the event, all speakers and participants will be asked to address the following question:

How can we understand and improve the interplay between science and society, and improve science policies for the future?

On the basis of the debate and answers, a results document will be created in which the potentially diverging views of different groups will be analyzed and distributed among media and key decision makers.

Science and Society 2013 aims to connect different communities and uncover common goals, competing concerns and the possibility of joint strategies. It will involve and reach out to practitioners from various sectors, academics of diverse disciplines and an increasingly interested public.  At its broadest level it will explore the relationships between public policy, scientific research and the study of science itself – including but limited to how these inform one another.

The symposium will have an academic component during much of the day; and a public component designed for a truly broad audience and potentially involving additional collaborators.

How?

The proposed Session Themes include:
Science and Democracy; Value-Laden Science; International Lessons in Science Policy; Citizen Science; Technology and Media; Responsible Innovation and the Future of Technology; Art, Science and Technology; Open Science; Government Science; Education and the Culture of Science; and Innovation and Society.

The event will produce the following outcomes:

  • New media and political interest, in particular with respect to key issues (e.g. muzzling scientists, evidence-based decision making, the importance of public science);
  • A results document, published by the ISSP, summarizing key insights regarding science and society for distribution among media and key decision makers;
  • New thinking and debate among scholars, policymakers, scientists, students and the public;
  • New networks;
  • Dissemination of conference content in print and/or www formats and/or video/podcast/live streaming;
  • Student training and engagement.

Why?

Science and technology shape our world. They present great promise but they are also the source of much controversy and social anxiety. Like never before, there is a need for broad and informed discussion of science and technology and their place in our society.

Yet the communities that engage in, benefit from, and seek to understand science and technology are often disconnected.  Their shared interests are often misunderstood, and their common goals overlooked.  This disconnect not only impoverishes our grasp of science and technology and their social implications but can also have negative consequences for the public good, particularly at a time when Canadian science faces such profound challenges.

Who?

The partners and co-organizers of the event are the Situating Science SSHRC Strategic Knowledge Cluster and the University of Ottawa Institute for Science, Society and Policy.

The Organizing Committee consists of:

  • Marc Saner, Director, Institute for Science, Society and Policy, University of Ottawa
  • Jeremy Geelen, Project and Public Affairs Manager, Institute for Science, Society and Policy, University of Ottawa
  • Dara Marcus, Student Event Organizer, Institute for Science, Society and Policy, University of Ottawa
  • Gordon McOuat, Director, Situating Science Strategic Knowledge Cluster, University of King’s College
  • Emily Tector, Project Coordinator, Situating Science Strategic Knowledge Cluster, University of King’s College.

Each partner has a proven track record of organizing events on science and society.
Situating Science, through the various conferences, symposium and public events it has supported across Canada with its many partners from different disciplines and sectors, has explored the social and cultural significance of science and technology.  And the ISSP has held and supported several events in Ottawa dealing with cutting-edge technologies and their social and political implications.

Both partners have brought diverse groups together before.  Each has its own networks, resources and strengths that align with select themes and audiences of the symposium.  The successful combination of these capacities will make Science and Society 2013 a multi-sectorial, multi-disciplinary event that addresses issues of concern to all Canadians.

The following organizations are current supporters:

The organizers expect approximately 60 participants at the event during the day, with a much larger audience at the public sessions.

Getting back to the Situating Science Fall 2013 newsletter, there will be a number of workshops and events across the country this fall,

ATLANTIC:
Can We Sustain the Plant, and Democracy too?
Philip Kitcher, John Dewey Professor of Philosophy, Columbia University
Oct. 3, 2013 7pm
Ondaatje Hall, Marion McCain Building, Dalhousie University, Halifax, NS

Isaac Newton’s General Scholium to the Principia: Science, Religion and Metaphysics Tercentenary Workshop
October 24-26, 2013
University of King’s College, Halifax, NS

MONTREAL:

Canadian Science and Technology Historical Association Conference
UQAM, Montreal, Qc.
November 1-3, 2013

Fall Lecture Series at UQAM
All held at 12:30pm in Local N-8150, Pavillon Paul-Gérin-Lajoie, UQAM, Montreal, Qc.

Schedule:
Expérience et expérimentalisme chez John Dewey
Joëlle Zask, maître de conférences en philosophie, Université de Provence
September 11, 2013

Une fuite de phosgène à l’usine Tolochimie en 1973. Réflexions sur ce que contenir veut dire en matière de pollution atmosphérique ?
Florian Charvolin, Centre Max Weber et Université Jean Monnet
September 13, 2013

In the Kingdom of Solovia: The Rise of Growth Economics at MIT, 1956-1970
Mauro Boianovsky, Département d’économie, Universidade de Brasília
et Kevin Hoover (conférencier), Département d’économie et de philosophie, Duke University.
Coorganisée avec le Département  de sciences économiques de l’UQAM
December 6, 2013

Thomas Jefferson, Count Buffon, and a Giant Moose: When Natural History and History Collide?
Lee Dugatkin, Department of Biology, University of Louisville.
Coorganisée avec la Faculté de sciences de l’UQAM
December 13, 2013

Fall Lecture Series at McGill
Full details to be posted shortly.

Highlights:
Hans-Jörg Rheinberger, Director, Max-Plank Institute for the History of Science.
In partnership with the department of Social Studies of Medicine.

Steven Shapin, Franklin L. Ford Professor of the History of Science, Harvard University.
In conjunction with McGill’s Mossman Lecture.

Liquid Intelligence and the Aesthetics of Fluidity Workshop
October 25-26, 2013
McCord Museum, McGill University, Montreal, Qc.

ONTARIO:

Reading Artifacts Summer Institute
August 19-23, 2013
Canadian Science and Technology Museum, Ottawa, Ont.

Science and Society Symposium
Oct. 21-23, 2013
University of Ottawa, Ottawa, Ont.

Technoscience Salon on Critical Itineraries
University of Toronto, Toronto, Ont.

Preliminary Schedule:
Celia Lowe, Anthropology, University of Washington
September 26, 2013

Kavita Philip, Women’s Studies, UC Irvine
November 8, 2013

Others confirmed:
Fa-Ti Fan, History, Binghamton University

Stacey Langwick, Anthropology, Cornell University

Alondra Nelson, Institute for Research on Women and Gender, Columbia University

SASKATCHEWAN:

Connections and Communities in Health and Medicine Conference
Manitoba-Northwest Ontario-Minnesota-Saskatchewan (MOMS) & Society for the Social History of Medicine Postgraduate (SSHM) / Early Career History of Medicine (ECHM) Conference
September 12-14, 2013
University of Saskatchewan, Saskatoon, Canada

ALBERTA:
More than Natural Selection: A Lecture Series on Alfred Russell Wallace
October 2-30, 2013 Wednesdays at 3:30pm
Tory Building 2-58, University of Alberta

Kathleen Lowrey, Department of Anthropology, University of Alberta
October 2, 2013

Robert Smith, Department of History and Classics, University of Alberta
October 9, 2013

Andrew Berry, Organismic and Evolutionary Biology, Harvard University
October 16, 2013

Martin Fichman, Department of Humanities, York University
October 23, 2013

Christine Ferguson, School of Critical Studies, University of Glasgow
October 30, 2013

UBC [University of British Columbia]:
Details will become available online shortly.

IN THE WORKS:
Keep abreast of all the latest developments of events and activities online via our website and social media.

Planning for a national lecture series for late winter/early spring is underway. The focus of this series will be on the timely issue of science and evidence. The Cluster is also in the process of planning a special Cluster Summer Institute for next summer.

I have some news about the University of British Columbia and a Science and Technology Studies event for Fall 2013. Bruno Latour will be in Vancouver giving both lectures and seminars. There’s a lecture for which there are absolutely no tickets (but there will be a standby line)  on Monday, Sept. 23, 2013, from the Peter Wall Downtown Lecture Series event page (Note: Since this is an ‘event’ page, once the Bruno Latour lecture has been delivered, they will likely list the next lecture in their series on the page),

War and Peace in an Age of Ecological Conflict

The Vogue Theatre — Monday, September 23, 2013, at 7:30 pm

Tickets are now sold out. A standby line will be available the night of the event.

Dr. Bruno Latour is professor at Sciences Po Paris. Trained in philosophy, he has been instrumental in the development of an anthropology of science and technology. This field has had a direct impact on the philosophy of ecology and on an alternative definition of modernity. He has taught for many years in North American universities. Most of his books have been published with Harvard University Press. The most recently published is An Inquiry into Modes of Existence ‐ An Anthropology of the Moderns. All references and most articles may be found on www.bruno‐latour.fr. Bruno Latour gave the six Gifford Lectures on Natural Religion for 2013, under the title Facing Gaia, Six Lectures on the Political Theology of Nature, and was awarded the prestigious Holberg Prize for 2013 http://www.holbergprisen.no/en.

While politics has always been linked to geography, the Earth itself has largely been seen as playing a backstage role, the mere window-dressing for human intention and interest. With the advent of the epoch known as the ‘Anthropocene’, the Earth is no longer in the background, but very much in the foreground, in constant rivalry with human intentionality. In the meantime, human action has taken on a dimension that matches that of nature itself, and consequently the definition of geo‐politics has been transformed. Appeals to nature, therefore, do not seem to have the same pacifying and unifying effect that they did in earlier ecological movements. By drawing on anthropological and philosophical literature, this lecture will discuss this new geopolitical framework and show how the extension of politics into nature must modify our views on war and peace in the future.

About the Venue

Designed as a dual-purpose theatre to showcase both live performances and movies, the Vogue has been a preferred venue for performers, filmmakers, and audiences alike since 1941 and is prominent landmark of Vancouver’s theatre district.

The Vogue Theatre is located at:
918 Granville Street
Vancouver, BC V6Z 1L2

Parking
The closest pay parking available is behind the theatre on the 900 block of Seymour St.

Accessibility
Wheelchair spaces are located to the right of the center aisle, on the orchestra level (row 19).

Other opportunities to see Bruno Latour in Vancouver include, from a July 10, 2013 posting on the UBC Geographer blog,

Sept 25 [2013]: STS seminar

BRUNO LATOUR, Institut d’Études Politiques de Paris
An Inquiry into Modes of Existence
Wednesday, September 25, 2013
Location: TBA 10am-12pm
DAY’S SCHEDULE IN DETAIL
10-12pm Discussion with Bruno about An Inquiry into Modes of Existence (Harvard UP, 2013)
5:30pm Debate with Philippe Descola at MOA [Museum of Anthropology]
“Approaches to the Anthropocene”
Contact neil.safier@ubc.ca  if you have any questions about Bruno Latour’s visit to UBC

I offer one hint about contacting Neil Safier, he was not responsive when I sent a query earlier this summer (2013) about another public workshop  (Simon Schaffer of Leviathan and the Air Pump fame) so, you may need to send more than one query to get a response.

Returning one more time to Situating Science, for those who want to see the whole Fall 2013 newsletter, here’s the PDF.

Blue Goose Biorefineries scales up production of cellulose nanocrystals (CNC) and more

I last mentioned Saskatchewan’s (Canada) Blue Goose Biorefineries in a Jan. 22, 2013 posting about its activities with regard to cellulose nanocrystals. I’m a little late to the party but there’s an Apr. 11, 2013 news release on the Advanced Foods and Materials website which notes that Blue Goose Biorefineries’ production of cellulose nanocrystals (CNC also sometimes known as nanocrystalline cellulose, NCC) has been scaled up,

Advanced Foods and Materials (AFM) Canada and Blue Goose Biorefineries Inc. (BGB), are pleased to announce the successful scale up of biorefining technology for the production of high value microcrystalline cellulose (MCC), cellulose nanocrystals (CNC), lignin, and green platform chemicals from flax and hemp straw.

In collaboration with the University of Saskatchewan’s College of Agriculture and Bioresources Bioprocessing Pilot Plant, and POS Bio-Sciences, BGB’s proprietary Renewable Residuals RefiningTM (R3TM) biorefining technology was successfully scaled up to process 100 kg of pulp in a reaction volume of 2500L to produce microcrystalline cellulose and cellulose nanocrystals of high purity, along with lignin and green platform chemicals as by-products. Throughout this process, the technology has shown promising advantages over existing biorefining methods including cost, yield, environmental impact, and flexibility. Necessary process steps demonstrated include biomass preparation, dewatering and washing, reaction mixing and crystalline cellulose washing. The project also successfully demonstrated the spray drying of the cellulose crystals at POS Bio-Sciences.

It’s exciting to hear that there might be more production of CNC in Canada, as well as, microcrystalline cellulose, lignin, and other by-products,. It seems where CNC is concerned that demand exceeds supply (I get the occasional query from someone trying to find a supplier).

I have more information about Advanced Foods and Materials Canada in my Jan. 22, 2013 posting. As well, here are links to the POS Bio-Sciences website and more information about the University of Saskatchewan’s Bioprocessing Pilot Plant.

ETA May 7, 2013 4:30 pm PDT: Dr. Bernard Laarveld of Blue Goose Biorefineries (BGB) very kindly noted this in an email to me today,

… we are now planning to develop a pilot plant for the production of NCC (aka CNC) and MCC and are raising the funding. This development through BGB is more driven from the private sector in partnership with Advanced Food Materials Canada.  We intend to process about 500 kg  of flax or hemp straw per day, and this would generate about 250 kg per day of crystalline cellulose. BGB has an advantage through low cost of production.

Very exciting news and I wish the Dr. Laarveld and the folks at BGB all the best.

Saskatchewan’s Blue Goose Biorefineries and cellulose at the nanoscale and microscale

Thank you to the reader who put me onto this Saskatchewan-based company that claims to produce nanoscale (sometimes called nanocrystalline cellulose [NCC] or nanocellulose crystals [CNC]) and microscale cellulose in an environmentally friendly fashion. From the Blue Goose Biorefineries’ home page,

BLUE GOOSE BIOREFINERIES INC. TM

Blue Goose Biorefineries Inc. introduces the R3TM (Renewable Residual Refining) technology and process to the Canadian marketplace.  R3TM is the world’s most advanced process and technology for the conversion of  carbon-based biomass into high-value, in-demand market commodities

 Economical, Sustainable, Efficient, Benign

 The Patent-Pending technology and process, together with closely held trade secrets, have created an entirely new, efficient and economically viable perspective on the treatment of biomass for the production of high value-added, sustainable and renewable commodities and energy sources.

 Microcrystalline Cellulose, Nanocrystalline Cellulose, Green Platform Chemicals

 Blue Goose Biorefineries Inc. is a Canadian innovation leader resolving environmental issues and generating economic opportunities through innovative, green, and renewable materials manufactured by our unique process and technology.

There doesn’t seem to be any information about the company’s management team, its products, or its technologies on its website. As well, the Blue Goose website does not host any press releases relating to company developments and/or business deals but there is a July 20, 2012 notice on the Advanced Foods and Materials (AFM) Canada website about a joint project,

Advanced Foods and Materials (AFM) Canada and Blue Goose Biorefineries Inc. (BGB) are pleased to announce they have been awarded a $500,000 grant from Agriculture and Agri-Food Canada’s Agricultural Innovation Program. The project will focus on the pre-commercialization and development of biorefining methods for flax and hemp straw in order to produce high value cellulose products, lignin, and green platform chemicals in Saskatchewan. BGB’s core technology is a “green chemistry” based, nano-catalytic biorefining process, Renewable Residuals RefiningTM (R3TM).  The R3TM process fractionates and breaks down the major components in lignocellulosic biomass: lignin, hemicellulose and cellulose. This green technology offers many process advantages over existing biorefining methods including cost, yield, environmental impact, and flexibility. Specifically, the technology offers a very strong industry transforming potential for the production of high value microcrystalline cellulose (MCC), nanocrystalline cellulose (NCC), lignin and green platform chemicals from flax and hemp straw.

The process has been proven at the lab bench scale for flax and hemp straw. Through this project, Advanced Foods and Materials Canada will manage institutional research activities and the pilot plant scale-up of the biorefining process. The production of larger quantities of bioproducts for testing, process development and lock-down including design parameters, engineering costs and tuning, will facilitate the development of a demonstration plant for Blue Goose Biorefineries. The impact of this project’s activities will add-value to Canadian hemp, flax and other cereal crops by creating a more efficient and economical source of high-quality MCC, NCC, lignin, and green platform chemicals for food, pharmaceutical, and industrial applications across North America.

Agriculture and Agri-Food Canada’s July 18, 2012 news release can be read here.

There is one other piece of information, Dr. Bernard Laarveld of the University of Saskatchewan lists Blue Goose Biorefineries as a current employer on his LinkedIn profile.

http://www.afmcanada.ca/event/BGBAIP