Tag Archives: Vector Institute

Age of AI and Big Data – Impact on Justice, Human Rights and Privacy Zoom event on September 28, 2022 at 12 – 1:30 pm EDT

The Canadian Science Policy Centre (CSPC) in a September 15, 2022 announcement (received via email) announced an event (Age of AI and Big Data – Impact on Justice, Human Rights and Privacy) centered on some of the latest government doings on artificial intelligence and privacy (Bill C-27),

In an increasingly connected world, we share a large amount of our data in our daily lives without our knowledge while browsing online, traveling, shopping, etc. More and more companies are collecting our data and using it to create algorithms or AI. The use of our data against us is becoming more and more common. The algorithms used may often be discriminatory against racial minorities and marginalized people.

As technology moves at a high pace, we have started to incorporate many of these technologies into our daily lives without understanding its consequences. These technologies have enormous impacts on our very own identity and collectively on civil society and democracy. 

Recently, the Canadian Government introduced the Artificial Intelligence and Data Act (AIDA) and Bill C-27 [which includes three acts in total] in parliament regulating the use of AI in our society. In this panel, we will discuss how our AI and Big data is affecting us and its impact on society, and how the new regulations affect us. 

Date: Sep 28 Time: 12:00 pm – 1:30 pm EDT Event Category: Virtual Session

Register Here

For some reason, there was no information about the moderator and panelists, other than their names, titles, and affiliations. Here’s a bit more:

Moderator: Yuan Stevens (from her eponymous website’s About page), Note: Links have been removed,

Yuan (“You-anne”) Stevens (she/they) is a legal and policy expert focused on sociotechnical security and human rights.

She works towards a world where powerful actors—and the systems they build—are held accountable to the public, especially when it comes to marginalized communities. 

She brings years of international experience to her role at the Leadership Lab at Toronto Metropolitan University [formerly Ryerson University], having examined the impacts of technology on vulnerable populations in Canada, the US and Germany. 

Committed to publicly accessible legal and technical knowledge, Yuan has written for popular media outlets such as the Toronto Star and Ottawa Citizen and has been quoted in news stories by the New York Times, the CBC and the Globe & Mail.

Yuan is a research fellow at the Centre for Law, Technology and Society at the University of Ottawa and a research affiliate at Data & Society Research Institute. She previously worked at Harvard University’s Berkman Klein Center for Internet & Society during her studies in law at McGill University.

She has been conducting research on artificial intelligence since 2017 and is currently exploring sociotechnical security as an LL.M candidate at University of Ottawa’s Faculty of Law working under Florian Martin-Bariteau.

Panelist: Brenda McPhail (from her Centre for International Governance Innovation profile page),

Brenda McPhail is the director of the Canadian Civil Liberties Association’s Privacy, Surveillance and Technology Project. Her recent work includes guiding the Canadian Civil Liberties Association’s interventions in key court cases that raise privacy issues, most recently at the Supreme Court of Canada in R v. Marakah and R v. Jones, which focused on privacy rights in sent text messages; research into surveillance of dissent, government information sharing, digital surveillance capabilities and privacy in relation to emergent technologies; and developing resources and presentations to drive public awareness about the importance of privacy as a social good.

Panelist: Nidhi Hegde (from her University of Alberta profile page),

My research has spanned many areas such as resource allocation in networking, smart grids, social information networks, machine learning. Broadly, my interest lies in gaining a fundamental understanding of a given system and the design of robust algorithms.

More recently my research focus has been in privacy in machine learning. I’m interested in understanding how robust machine learning methods are to perturbation, and privacy and fairness constraints, with the goal of designing practical algorithms that achieve privacy and fairness.

Bio

Before joining the University of Alberta, I spent many years in industry research labs. Most recently, I was a Research team lead at Borealis AI (a research institute at Royal Bank of Canada), where my team worked on privacy-preserving methods for machine learning models and other applied problems for RBC. Prior to that, I spent many years in research labs in Europe working on a variety of interesting and impactful problems. I was a researcher at Bell Labs, Nokia, in France from January 2015 to March 2018, where I led a new team focussed on Maths and Algorithms for Machine Learning in Networks and Systems, in the Maths and Algorithms group of Bell Labs. I also spent a few years at the Technicolor Paris Research Lab working on social network analysis, smart grids, and privacy in recommendations.

Panelist: Benjamin Faveri (from his LinkedIn page),

About

Benjamin Faveri is a Research and Policy Analyst at the Responsible AI Institute (RAII) [headquarted in Austin, Texas]. Currently, he is developing their Responsible AI Certification Program and leading it through Canada’s national accreditation process. Over the last several years, he has worked on numerous certification program-related research projects such as fishery economics and certification programs, police body-worn camera policy certification, and emerging AI certifications and assurance systems. Before his work at RAII, Benjamin completed a Master of Public Policy and Administration at Carleton University, where he was a Canada Graduate Scholar, Ontario Graduate Scholar, Social Innovation Fellow, and Visiting Scholar at UC Davis School of Law. He holds undergraduate degrees in criminology and psychology, finishing both with first class standing. Outside of work, Benjamin reads about how and why certification and private governance have been applied across various industries.

Panelist: Ori Freiman (from his eponymous website’s About page)

I research at the forefront of technological innovation. This website documents some of my academic activities.

My formal background is in Analytic Philosophy, Library and Information Science, and Science & Technology Studies. Until September 22′ [September 2022], I was a Post-Doctoral Fellow at the Ethics of AI Lab, at the University of Toronto’s Centre for Ethics. Before joining the Centre, I submitted my dissertation, about trust in technology, to The Graduate Program in Science, Technology and Society at Bar-Ilan University.

I have also found a number of overviews and bits of commentary about the Canadian federal government’s proposed Bill C-27, which I think of as an omnibus bill as it includes three proposed Acts.

The lawyers are excited but I’m starting with the Responsible AI Institute’s (RAII) response first as one of the panelists (Benjamin Faveri) works for them and it’s a view from a closely neighbouring country, from a June 22, 2022 RAII news release, Note: Links have been removed,

Business Implications of Canada’s Draft AI and Data Act

On June 16 [2022], the Government of Canada introduced the Artificial Intelligence and Data Act (AIDA), as part of the broader Digital Charter Implementation Act 2022 (Bill C-27). Shortly thereafter, it also launched the second phase of the Pan-Canadian Artificial Intelligence Strategy.

Both RAII’s Certification Program, which is currently under review by the Standards Council of Canada, and the proposed AIDA legislation adopt the same approach of gauging an AI system’s risk level in context; identifying, assessing, and mitigating risks both pre-deployment and on an ongoing basis; and pursuing objectives such as safety, fairness, consumer protection, and plain-language notification and explanation.

Businesses should monitor the progress of Bill C-27 and align their AI governance processes, policies, and controls to its requirements. Businesses participating in RAII’s Certification Program will already be aware of requirements, such as internal Algorithmic Impact Assessments to gauge risk level and Responsible AI Management Plans for each AI system, which include system documentation, mitigation measures, monitoring requirements, and internal approvals.

The AIDA draft is focused on the impact of any “high-impact system”. Companies would need to assess whether their AI systems are high-impact; identify, assess, and mitigate potential harms and biases flowing from high-impact systems; and “publish on a publicly available website a plain-language description of the system” if making a high-impact system available for use. The government elaborated in a press briefing that it will describe in future regulations the classes of AI systems that may have high impact.

The AIDA draft also outlines clear criminal penalties for entities which, in their AI efforts, possess or use unlawfully obtained personal information or knowingly make available for use an AI system that causes serious harm or defrauds the public and causes substantial economic loss to an individual.

If enacted, AIDA would establish the Office of the AI and Data Commissioner, to support Canada’s Minister of Innovation, Science and Economic Development, with powers to monitor company compliance with the AIDA, to order independent audits of companies’ AI activities, and to register compliance orders with courts. The Commissioner would also help the Minister ensure that standards for AI systems are aligned with international standards.

Apart from being aligned with the approach and requirements of Canada’s proposed AIDA legislation, RAII is also playing a key role in the Standards Council of Canada’s AI  accreditation pilot. The second phase of the Pan-Canadian includes funding for the Standards Council of Canada to “advance the development and adoption of standards and a conformity assessment program related to AI/”

The AIDA’s introduction shows that while Canada is serious about governing AI systems, its approach to AI governance is flexible and designed to evolve as the landscape changes.

Charles Mandel’s June 16, 2022 article for Betakit (Canadian Startup News and Tech Innovation) provides an overview of the government’s overall approach to data privacy, AI, and more,

The federal Liberal government has taken another crack at legislating privacy with the introduction of Bill C-27 in the House of Commons.

Among the bill’s highlights are new protections for minors as well as Canada’s first law regulating the development and deployment of high-impact AI systems.

“It [Bill C-27] will address broader concerns that have been expressed since the tabling of a previous proposal, which did not become law,” a government official told a media technical briefing on the proposed legislation.

François-Philippe Champagne, the Minister of Innovation, Science and Industry, together with David Lametti, the Minister of Justice and Attorney General of Canada, introduced the Digital Charter Implementation Act, 2022. The ministers said Bill C-27 will significantly strengthen Canada’s private sector privacy law, create new rules for the responsible development and use of artificial intelligence (AI), and continue to put in place Canada’s Digital Charter.

The Digital Charter Implementation Act includes three proposed acts: the Consumer Privacy Protection Act, the Personal Information and Data Protection Tribunal Act, and the Artificial Intelligence and Data Act (AIDA)- all of which have implications for Canadian businesses.

Bill C-27 follows an attempt by the Liberals to introduce Bill C-11 in 2020. The latter was the federal government’s attempt to reform privacy laws in Canada, but it failed to gain passage in Parliament after the then-federal privacy commissioner criticized the bill.

The proposed Artificial Intelligence and Data Act is meant to protect Canadians by ensuring high-impact AI systems are developed and deployed in a way that identifies, assesses and mitigates the risks of harm and bias.

For businesses developing or implementing AI this means that the act will outline criminal prohibitions and penalties regarding the use of data obtained unlawfully for AI development or where the reckless deployment of AI poses serious harm and where there is fraudulent intent to cause substantial economic loss through its deployment.

..

An AI and data commissioner will support the minister of innovation, science, and industry in ensuring companies comply with the act. The commissioner will be responsible for monitoring company compliance, ordering third-party audits, and sharing information with other regulators and enforcers as appropriate.

The commissioner would also be expected to outline clear criminal prohibitions and penalties regarding the use of data obtained unlawfully for AI development or where the reckless deployment of AI poses serious harm and where there is fraudulent intent to cause substantial economic loss through its deployment.

Canada already collaborates on AI standards to some extent with a number of countries. Canada, France, and 13 other countries launched an international AI partnership to guide policy development and “responsible adoption” in 2020.

The federal government also has the Pan-Canadian Artificial Intelligence Strategy for which it committed an additional $443.8 million over 10 years in Budget 2021. Ahead of the 2022 budget, Trudeau [Canadian Prime Minister Justin Trudeau] had laid out an extensive list of priorities for the innovation sector, including tasking Champagne with launching or expanding national strategy on AI, among other things.

Within the AI community, companies and groups have been looking at AI ethics for some time. Scotiabank donated $750,000 in funding to the University of Ottawa in 2020 to launch a new initiative to identify solutions to issues related to ethical AI and technology development. And Richard Zemel, co-founder of the Vector Institute [formed as part of the Pan-Canadian Artificial Intelligence Strategy], joined Integrate.AI as an advisor in 2018 to help the startup explore privacy and fairness in AI.

When it comes to the Consumer Privacy Protection Act, the Liberals said the proposed act responds to feedback received on the proposed legislation, and is meant to ensure that the privacy of Canadians will be protected, and that businesses can benefit from clear rules as technology continues to evolve.

“A reformed privacy law will establish special status for the information of minors so that they receive heightened protection under the new law,” a federal government spokesperson told the technical briefing.

..

The act is meant to provide greater controls over Canadians’ personal information, including how it is handled by organizations as well as giving Canadians the freedom to move their information from one organization to another in a secure manner.

The act puts the onus on organizations to develop and maintain a privacy management program that includes the policies, practices and procedures put in place to fulfill obligations under the act. That includes the protection of personal information, how requests for information and complaints are received and dealt with, and the development of materials to explain an organization’s policies and procedures.

The bill also ensures that Canadians can request that their information be deleted from organizations.

The bill provides the privacy commissioner of Canada with broad powers, including the ability to order a company to stop collecting data or using personal information. The commissioner will be able to levy significant fines for non-compliant organizations—with fines of up to five percent of global revenue or $25 million, whichever is greater, for the most serious offences.

The proposed Personal Information and Data Protection Tribunal Act will create a new tribunal to enforce the Consumer Privacy Protection Act.

Although the Liberal government said it engaged with stakeholders for Bill C-27, the Council of Canadian Innovators (CCI) expressed reservations about the process. Nick Schiavo, CCI’s director of federal affairs, said it had concerns over the last version of privacy legislation, and had hoped to present those concerns when the bill was studied at committee, but the previous bill died before that could happen.

Now the lawyers. Simon Hodgett, Kuljit Bhogal, and Sam Ip have written a June 27, 2022 overview, which highlights the key features from the perspective of Osler, a leading business law firm practising internationally from offices across Canada and in New York.

Maya Medeiros and Jesse Beatson authored a June 23, 2022 article for Norton Rose Fulbright, a global law firm, which notes a few ‘weak’ spots in the proposed legislation,

… While the AIDA is directed to “high-impact” systems and prohibits “material harm,” these and other key terms are not yet defined. Further, the quantum of administrative penalties will be fixed only upon the issuance of regulations. 

Moreover, the AIDA sets out publication requirements but it is unclear if there will be a public register of high-impact AI systems and what level of technical detail about the AI systems will be available to the public. More clarity should come through Bill C-27’s second and third readings in the House of Commons, and subsequent regulations if the bill passes.

The AIDA may have extraterritorial application if components of global AI systems are used, developed, designed or managed in Canada. The European Union recently introduced its Artificial Intelligence Act, which also has some extraterritorial application. Other countries will likely follow. Multi-national companies should develop a coordinated global compliance program.

I have two podcasts from Michael Geist, a lawyer and Canada Research Chair in Internet and E-Commerce Law at the University of Ottawa.

  • June 26, 2022: The Law Bytes Podcast, Episode 132: Ryan Black on the Government’s Latest Attempt at Privacy Law Reform “The privacy reform bill that is really three bills in one: a reform of PIPEDA, a bill to create a new privacy tribunal, and an artificial intelligence regulation bill. What’s in the bill from a privacy perspective and what’s changed? Is this bill any likelier to become law than an earlier bill that failed to even advance to committee hearings? To help sort through the privacy aspects of Bill C-27, Ryan Black, a Vancouver-based partner with the law firm DLA Piper (Canada) …” (about 45 mins.)
  • August 15, 2022: The Law Bytes Podcast, Episode 139: Florian Martin-Bariteau on the Artificial Intelligence and Data Act “Critics argue that regulations are long overdue, but have expressed concern about how much of the substance is left for regulations that are still to be developed. Florian Martin-Bariteau is a friend and colleague at the University of Ottawa, where he holds the University Research Chair in Technology and Society and serves as director of the Centre for Law, Technology and Society. He is currently a fellow at the Harvard’s Berkman Klein Center for Internet and Society …” (about 38 mins.)

Council of Canadian Academies and its expert panel for the AI for Science and Engineering project

There seems to be an explosion (metaphorically and only by Canadian standards) of interest in public perceptions/engagement/awareness of artificial intelligence (see my March 29, 2021 posting “Canada launches its AI dialogues” and these dialogues run until April 30, 2021 plus there’s this April 6, 2021 posting “UNESCO’s Call for Proposals to highlight blind spots in AI Development open ’til May 2, 2021” which was launched in cooperation with Mila-Québec Artificial Intelligence Institute).

Now there’s this, in a March 31, 2020 Council of Canadian Academies (CCA) news release, four new projects were announced. (Admittedly these are not ‘public engagement’ exercises as such but the reports are publicly available and utilized by policymakers.) These are the two projects of most interest to me,

Public Safety in the Digital Age

Information and communications technologies have profoundly changed almost every aspect of life and business in the last two decades. While the digital revolution has brought about many positive changes, it has also created opportunities for criminal organizations and malicious actors to target individuals, businesses, and systems.

This assessment will examine promising practices that could help to address threats to public safety related to the use of digital technologies while respecting human rights and privacy.

Sponsor: Public Safety Canada

AI for Science and Engineering

The use of artificial intelligence (AI) and machine learning in science and engineering has the potential to radically transform the nature of scientific inquiry and discovery and produce a wide range of social and economic benefits for Canadians. But, the adoption of these technologies also presents a number of potential challenges and risks.

This assessment will examine the legal/regulatory, ethical, policy and social challenges related to the use of AI technologies in scientific research and discovery.

Sponsor: National Research Council Canada [NRC] (co-sponsors: CIFAR [Canadian Institute for Advanced Research], CIHR [Canadian Institutes of Health Research], NSERC [Natural Sciences and Engineering Research Council], and SSHRC [Social Sciences and Humanities Research Council])

For today’s posting the focus will be on the AI project, specifically, the April 19, 2021 CCA news release announcing the project’s expert panel,

The Council of Canadian Academies (CCA) has formed an Expert Panel to examine a broad range of factors related to the use of artificial intelligence (AI) technologies in scientific research and discovery in Canada. Teresa Scassa, SJD, Canada Research Chair in Information Law and Policy at the University of Ottawa, will serve as Chair of the Panel.  

“AI and machine learning may drastically change the fields of science and engineering by accelerating research and discovery,” said Dr. Scassa. “But these technologies also present challenges and risks. A better understanding of the implications of the use of AI in scientific research will help to inform decision-making in this area and I look forward to undertaking this assessment with my colleagues.”

As Chair, Dr. Scassa will lead a multidisciplinary group with extensive expertise in law, policy, ethics, philosophy, sociology, and AI technology. The Panel will answer the following question:

What are the legal/regulatory, ethical, policy and social challenges associated with deploying AI technologies to enable scientific/engineering research design and discovery in Canada?

“We’re delighted that Dr. Scassa, with her extensive experience in AI, the law and data governance, has taken on the role of Chair,” said Eric M. Meslin, PhD, FRSC, FCAHS, President and CEO of the CCA. “I anticipate the work of this outstanding panel will inform policy decisions about the development, regulation and adoption of AI technologies in scientific research, to the benefit of Canada.”

The CCA was asked by the National Research Council of Canada (NRC), along with co-sponsors CIFAR, CIHR, NSERC, and SSHRC, to address the question. More information can be found here.

The Expert Panel on AI for Science and Engineering:

Teresa Scassa (Chair), SJD, Canada Research Chair in Information Law and Policy, University of Ottawa, Faculty of Law (Ottawa, ON)

Julien Billot, CEO, Scale AI (Montreal, QC)

Wendy Hui Kyong Chun, Canada 150 Research Chair in New Media and Professor of Communication, Simon Fraser University (Burnaby, BC)

Marc Antoine Dilhac, Professor (Philosophy), University of Montreal; Director of Ethics and Politics, Centre for Ethics (Montréal, QC)

B. Courtney Doagoo, AI and Society Fellow, Centre for Law, Technology and Society, University of Ottawa; Senior Manager, Risk Consulting Practice, KPMG Canada (Ottawa, ON)

Abhishek Gupta, Founder and Principal Researcher, Montreal AI Ethics Institute (Montréal, QC)

Richard Isnor, Associate Vice President, Research and Graduate Studies, St. Francis Xavier University (Antigonish, NS)

Ross D. King, Professor, Chalmers University of Technology (Göteborg, Sweden)

Sabina Leonelli, Professor of Philosophy and History of Science, University of Exeter (Exeter, United Kingdom)

Raymond J. Spiteri, Professor, Department of Computer Science, University of Saskatchewan (Saskatoon, SK)

Who is the expert panel?

Putting together a Canadian panel is an interesting problem especially so when you’re trying to find people of expertise who can also represent various viewpoints both professionally and regionally. Then, there are gender, racial, linguistic, urban/rural, and ethnic considerations.

Statistics

Eight of the panelists could be said to be representing various regions of Canada. Five of those eight panelists are based in central Canada, specifically, Ontario (Ottawa) or Québec (Montréal). The sixth panelist is based in Atlantic Canada (Nova Scotia), the seventh panelist is based in the Prairies (Saskatchewan), and the eighth panelist is based in western Canada, (Vancouver, British Columbia).

The two panelists bringing an international perspective to this project are both based in Europe, specifically, Sweden and the UK.

(sigh) It would be good to have representation from another part of the world. Asia springs to mind as researchers in that region are very advanced in their AI research and applications meaning that their experts and ethicists are likely to have valuable insights.

Four of the ten panelists are women, which is closer to equal representation than some of the other CCA panels I’ve looked at.

As for Indigenous and BIPOC representation, unless one or more of the panelists chooses to self-identify in that fashion, I cannot make any comments. It should be noted that more than one expert panelist focuses on social justice and/or bias in algorithms.

Network of relationships

As you can see, the CCA descriptions for the individual members of the expert panel are a little brief. So, I did a little digging and In my searches, I noticed what seems to be a pattern of relationships among some of these experts. In particular, take note of the Canadian Institute for Advanced Research (CIFAR) and the AI Advisory Council of the Government of Canada.

Individual panelists

Teresa Scassa (Ontario) whose SJD designation signifies a research doctorate in law chairs this panel. Offhand, I can recall only one or two other panels being chaired by women of the 10 or so I’ve reviewed. In addition to her profile page at the University of Ottawa, she hosts her own blog featuring posts such as “How Might Bill C-11 Affect the Outcome of a Clearview AI-type Complaint?” She writes clearly (I didn’t seen any jargon) for an audience that is somewhat informed on the topic.

Along with Dilhac, Teresa Scassa is a member of the AI Advisory Council of the Government of Canada. More about that group when you read Dilhac’s description.

Julien Billot (Québec) has provided a profile on LinkedIn and you can augment your view of M. Billot with this profile from the CreativeDestructionLab (CDL),

Mr. Billot is a member of the faculty at HEC Montréal [graduate business school of the Université de Montréal] as an adjunct professor of management and the lead for the CreativeDestructionLab (CDL) and NextAi program in Montreal.

Julien Billot has been President and Chief Executive Officer of Yellow Pages Group Corporation (Y.TO) in Montreal, Quebec. Previously, he was Executive Vice President, Head of Media and Member of the Executive Committee of Solocal Group (formerly PagesJaunes Groupe), the publicly traded and incumbent local search business in France. Earlier experience includes serving as CEO of the digital and new business group of Lagardère Active, a multimedia branch of Lagardère Group and 13 years in senior management positions at France Telecom, notably as Chief Marketing Officer for Orange, the company’s mobile subsidiary.

Mr. Billot is a graduate of École Polytechnique (Paris) and from Telecom Paris Tech. He holds a postgraduate diploma (DEA) in Industrial Economics from the University of Paris-Dauphine.

Wendy Hui Kyong Chun (British Columbia) has a profile on the Simon Fraser University (SFU) website, which provided one of the more interesting (to me personally) biographies,

Wendy Hui Kyong Chun is the Canada 150 Research Chair in New Media at Simon Fraser University, and leads the Digital Democracies Institute which was launched in 2019. The Institute aims to integrate research in the humanities and data sciences to address questions of equality and social justice in order to combat the proliferation of online “echo chambers,” abusive language, discriminatory algorithms and mis/disinformation by fostering critical and creative user practices and alternative paradigms for connection. It has four distinct research streams all led by Dr. Chun: Beyond Verification which looks at authenticity and the spread of disinformation; From Hate to Agonism, focusing on fostering democratic exchange online; Desegregating Network Neighbourhoods, combatting homophily across platforms; and Discriminating Data: Neighbourhoods, Individuals and Proxies, investigating the centrality of race, gender, class and sexuality [emphasis mine] to big data and network analytics.

I’m glad to see someone who has focused on ” … the centrality of race, gender, class and sexuality to big data and network analytics.” Even more interesting to me was this from her CV (curriculum vitae),

Professor, Department of Modern Culture and Media, Brown University, July 2010-June 2018

.•Affiliated Faculty, Multimedia & Electronic Music Experiments (MEME), Department of Music,2017.

•Affiliated Faculty, History of Art and Architecture, March 2012-

.•Graduate Field Faculty, Theatre Arts and Performance Studies, Sept 2008-.[sic]

….

[all emphases mine]

And these are some of her credentials,

Ph.D., English, Princeton University, 1999.
•Certificate, School of Criticism and Theory, Dartmouth College, Summer 1995.

M.A., English, Princeton University, 1994.

B.A.Sc., Systems Design Engineering and English, University of Waterloo, Canada, 1992.
•first class honours and a Senate Commendation for Excellence for being the first student to graduate from the School of Engineering with a double major

It’s about time the CCA started integrating some of kind of arts perspective into their projects. (Although, I can’t help wondering if this was by accident rather than by design.)

Marc Antoine Dilhac, an associate professor at l’Université de Montréal, he, like Billot, graduated from a French university, in his case, the Sorbonne. Here’s more from Dilhac’s profile on the Mila website,

Marc-Antoine Dilhac (Ph.D., Paris 1 Panthéon-Sorbonne) is a professor of ethics and political philosophy at the Université de Montréal and an associate member of Mila – Quebec Artificial Intelligence Institute. He currently holds a CIFAR [Canadian Institute for Advanced Research] Chair in AI ethics (2019-2024), and was previously Canada Research Chair in Public Ethics and Political Theory 2014-2019. He specialized in theories of democracy and social justice, as well as in questions of applied ethics. He published two books on the politics of toleration and inclusion (2013, 2014). His current research focuses on the ethical and social impacts of AI and issues of governance and institutional design, with a particular emphasis on how new technologies are changing public relations and political structures.

In 2017, he instigated the project of the Montreal Declaration for a Responsible Development of AI and chaired its scientific committee. In 2020, as director of Algora Lab, he led an international deliberation process as part of UNESCO’s consultation on its recommendation on the ethics of AI.

In 2019, he founded Algora Lab, an interdisciplinary laboratory advancing research on the ethics of AI and developing a deliberative approach to the governance of AI and digital technologies. He is co-director of Deliberation at the Observatory on the social impacts of AI and digital technologies (OBVIA), and contributes to the OECD Policy Observatory (OECD.AI) as a member of its expert network ONE.AI.

He sits on the AI Advisory Council of the Government of Canada and co-chair its Working Group on Public Awareness.

Formerly known as Mila only, Mila – Quebec Artificial Intelligence Institute is a beneficiary of the 2017 Canadian federal budget’s inception of the Pan-Canadian Artificial Intelligence Strategy, which named CIFAR as an agency that would benefit as the hub and would also distribute funds for artificial intelligence research to (mainly) three agencies: Mila in Montréal, the Vector Institute in Toronto, and the Alberta Machine Intelligence Institute (AMII; Edmonton).

Consequently, Dilhac’s involvement with CIFAR is not unexpected but when added to his presence on the AI Advisory Council of the Government of Canada and his role as co-chair of its Working Group on Public Awareness, one of the co-sponsors for this future CCA report, you get a sense of just how small the Canadian AI ethics and public awareness community is.

Add in CIFAR’s Open Dialogue: AI in Canada series (ongoing until April 30, 2021) which is being held in partnership with the AI Advisory Council of the Government of Canada (see my March 29, 2021 posting for more details about the dialogues) amongst other familiar parties and you see a web of relations so tightly interwoven that if you could produce masks from it you’d have superior COVID-19 protection to N95 masks.

These kinds of connections are understandable and I have more to say about them in my final comments.

B. Courtney Doagoo has a profile page at the University of Ottawa, which fills in a few information gaps,

As a Fellow, Dr. Doagoo develops her research on the social, economic and cultural implications of AI with a particular focus on the role of laws, norms and policies [emphasis mine]. She also notably advises Dr. Florian Martin-Bariteau, CLTS Director, in the development of a new research initiative on those topical issues, and Dr. Jason Millar in the development of the Canadian Robotics and Artificial Intelligence Ethical Design Lab (CRAiEDL).

Dr. Doagoo completed her Ph.D. in Law at the University of Ottawa in 2017. In her interdisciplinary research, she used empirical methods to learn about and describe the use of intellectual property law and norms in creative communities. Following her doctoral research, she joined the World Intellectual Property Organization’s Coordination Office in New York as a legal intern and contributed to developing the joint initiative on gender and innovation in collaboration with UNESCO and UN Women. She later joined the International Law Research Program at the Centre for International Governance Innovation as a Post-Doctoral Fellow, where she conducted research in technology and law focusing on intellectual property law, artificial intelligence and data governance.

Dr. Doagoo completed her LL.L. at the University of Ottawa, and LL.M. in Intellectual Property Law at the Benjamin N. Cardozo School of Law [a law school at Yeshiva University in New York City].  In between her academic pursuits, Dr. Doagoo has been involved with different technology start-ups, including the one she is currently leading aimed at facilitating access to legal services. She’s also an avid lover of the arts and designed a course on Arts and Cultural Heritage Law taught during her doctoral studies at the University of Ottawa, Faculty of Law.

It’s probably because I don’t know enough but this “the role of laws, norms and policies” seems bland to the point of meaningless. The rest is more informative and brings it back to the arts with Wendy Hui Kyong Chun at SFU.

Doagoo’s LinkedIn profile offers an unexpected link to this expert panel’s chairperson, Teresa Scassa (in addition to both being lawyers whose specialties are in related fields and on faculty or fellow at the University of Ottawa),

Soft-funded Research Bursary

Dr. Teresa Scassa

2014

I’m not suggesting any conspiracies; it’s simply that this is a very small community with much of it located in central and eastern Canada and possible links into the US. For example, Wendy Hui Kyong Chun, prior to her SFU appointment in December 2018, worked and studied in the eastern US for over 25 years after starting her academic career at the University of Waterloo (Ontario).

Abhishek Gupta provided me with a challenging search. His LinkedIn profile yielded some details (I’m not convinced the man sleeps), Note: I have made some formatting changes and removed the location, ‘Montréal area’ from some descriptions

Experience

Microsoft Graphic
Software Engineer II – Machine Learning
Microsoft

Jul 2018 – Present – 2 years 10 months

Machine Learning – Commercial Software Engineering team

Serves on the CSE Responsible AI Board

Founder and Principal Researcher
Montreal AI Ethics Institute

May 2018 – Present – 3 years

Institute creating tangible and practical research in the ethical, safe and inclusive development of AI. For more information, please visit https://montrealethics.ai

Visiting AI Ethics Researcher, Future of Work, International Visitor Leadership Program
U.S. Department of State

Aug 2019 – Present – 1 year 9 months

Selected to represent Canada on the future of work

Responsible AI Lead, Data Advisory Council
Northwest Commission on Colleges and Universities

Jun 2020 – Present – 11 months

Faculty Associate, Frankfurt Big Data Lab
Goethe University

Mar 2020 – Present – 1 year 2 months

Advisor for the Z-inspection project

Associate Member
LF AI Foundation

May 2020 – Present – 1 year

Author
MIT Technology Review

Sep 2020 – Present – 8 months

Founding Editorial Board Member, AI and Ethics Journal
Springer Nature

Jul 2020 – Present – 10 months

Education

McGill University Bachelor of Science (BS)Computer Science

2012 – 2015

Exhausting, eh? He also has an eponymous website and the Montreal AI Ethics Institute can found here where Gupta and his colleagues are “Democratizing AI ethics literacy.” My hat’s off to Gupta getting on an expert panel for CCA is quite an achievement for someone without the usual academic and/or industry trappings.

Richard Isnor, based in Nova Scotia and associate vice president of research & graduate studies at St. Francis Xavier University (StFX), seems to have some connection to northern Canada (see the reference to Nunavut Research Institute below); he’s certainly well connected to various federal government agencies according to his profile page,

Prior to joining StFX, he was Manager of the Atlantic Regional Office for the Natural Sciences and Engineering Research Council of Canada (NSERC), based in Moncton, NB.  Previously, he was Director of Innovation Policy and Science at the International Development Research Centre in Ottawa and also worked for three years with the National Research Council of Canada [NRC] managing Biotechnology Research Initiatives and the NRC Genomics and Health Initiative.

Richard holds a D. Phil. in Science and Technology Policy Studies from the University of Sussex, UK; a Master’s in Environmental Studies from Dalhousie University [Nova Scotia]; and a B. Sc. (Hons) in Biochemistry from Mount Allison University [New Burnswick].  His primary interest is in science policy and the public administration of research; he has worked in science and technology policy or research administrative positions for Environment Canada, Natural Resources Canada, the Privy Council Office, as well as the Nunavut Research Institute. [emphasis mine]

I don’t know what Dr. Isnor’s work is like but I’m hopeful he (along with Spiteri) will be able to provide a less ‘big city’ perspective to the proceedings.

(For those unfamiliar with Canadian cities, Montreal [three expert panelists] is the second largest city in the country, Ottawa [two expert panelists] as the capital has an outsize view of itself, Vancouver [one expert panelist] is the third or fourth largest city in the country for a total of six big city representatives out of eight Canadian expert panelists.)

Ross D. King, professor of machine intelligence at Sweden’s Chalmers University of Technology, might be best known for Adam, also known as, Robot Scientist. Here’s more about King, from his Wikipedia entry (Note: Links have been removed),

King completed a Bachelor of Science degree in Microbiology at the University of Aberdeen in 1983 and went on to study for a Master of Science degree in Computer Science at the University of Newcastle in 1985. Following this, he completed a PhD at The Turing Institute [emphasis mine] at the University of Strathclyde in 1989[3] for work on developing machine learning methods for protein structure prediction.[7]

King’s research interests are in the automation of science, drug design, AI, machine learning and synthetic biology.[8][9] He is probably best known for the Robot Scientist[4][10][11][12][13][14][15][16][17] project which has created a robot that can:

hypothesize to explain observations

devise experiments to test these hypotheses

physically run the experiments using laboratory robotics

interpret the results from the experiments

repeat the cycle as required

The Robot Scientist Wikipedia entry has this to add,

… a laboratory robot created and developed by a group of scientists including Ross King, Kenneth Whelan, Ffion Jones, Philip Reiser, Christopher Bryant, Stephen Muggleton, Douglas Kell and Steve Oliver.[2][6][7][8][9][10]

… Adam became the first machine in history to have discovered new scientific knowledge independently of its human creators.[5][17][18]

Sabina Leonelli, professor of philosophy and history of science at the University of Exeter, is the only person for whom I found a Twitter feed (@SabinaLeonelli). Here’s a bit more from her Wikipedia entry Note: Links have been removed),

Originally from Italy, Leonelli moved to the UK for a BSc degree in History, Philosophy and Social Studies of Science at University College London and a MSc degree in History and Philosophy of Science at the London School of Economics. Her doctoral research was carried out in the Netherlands at the Vrije Universiteit Amsterdam with Henk W. de Regt and Hans Radder. Before joining the Exeter faculty, she was a research officer under Mary S. Morgan at the Department of Economic History of the London School of Economics.

Leonelli is the Co-Director of the Exeter Centre for the Study of the Life Sciences (Egenis)[3] and a Turing Fellow at the Alan Turing Institute [emphases mine] in London.[4] She is also Editor-in-Chief of the international journal History and Philosophy of the Life Sciences[5] and Associate Editor for the Harvard Data Science Review.[6] She serves as External Faculty for the Konrad Lorenz Institute for Evolution and Cognition Research.[7]

Notice that Ross King and Sabina Leonelli both have links to The Alan Turing Institute (“We believe data science and artificial intelligence will change the world”), although the institute’s link to the University of Strathclyde (Scotland) where King studied seems a bit tenuous.

Do check out Leonelli’s profile at the University of Exeter as it’s comprehensive.

Raymond J. Spiteri, professor and director of the Centre for High Performance Computing, Department of Computer Science at the University of Saskatchewan, has a profile page at the university the likes of which I haven’t seen in several years perhaps due to its 2013 origins. His other university profile page can best be described as minimalist.

His Canadian Applied and Industrial Mathematics Society (CAIMS) biography page could be described as less charming (to me) than the 2013 profile but it is easier to read,

Raymond Spiteri is a Professor in the Department of Computer Science at the University of Saskatchewan. He performed his graduate work as a member of the Institute for Applied Mathematics at the University of British Columbia. He was a post-doctoral fellow at McGill University and held faculty positions at Acadia University and Dalhousie University before joining USask in 2004. He serves on the Executive Committee of the WestGrid High-Performance Computing Consortium with Compute/Calcul Canada. He was a MITACS Project Leader from 2004-2012 and served in the role of Mitacs Regional Scientific Director for the Prairie Provinces between 2008 and 2011.

Spiteri’s areas of research are numerical analysis, scientific computing, and high-performance computing. His area of specialization is the analysis and implementation of efficient time-stepping methods for differential equations. He actively collaborates with scientists, engineers, and medical experts of all flavours. He also has a long record of industry collaboration with companies such as IBM and Boeing.

Spiteri has been lifetime member of CAIMS/SCMAI since 2000. He helped co-organize the 2004 Annual Meeting at Dalhousie and served on the Cecil Graham Doctoral Dissertation Award Committee from 2005 to 2009, acting as chair from 2007. He has been an active participant in CAIMS, serving several times on the Scientific Committee for the Annual Meeting, as well as frequently attending and organizing mini-symposia. Spiteri believes it is important for applied mathematics to play a major role in the efforts to meet Canada’s most pressing societal challenges, including the sustainability of our healthcare system, our natural resources, and the environment.

A last look at Spiteri’s 2013 profile gave me this (Note: Links have been removed),

Another biographical note: I obtained my B.Sc. degree in Applied Mathematics from the University of Western Ontario [also known as, Western University] in 1990. My advisor was Dr. M.A.H. (Paddy) Nerenberg, after whom the Nerenberg Lecture Series is named. Here is an excerpt from the description, put here is his honour, as a model for the rest of us:

The Nerenberg Lecture Series is first and foremost about people and ideas. Knowledge is the true treasure of humanity, accrued and passed down through the generations. Some of it, particularly science and its language, mathematics, is closed in practice to many because of technical barriers that can only be overcome at a high price. These technical barriers form part of the remarkable fractures that have formed in our legacy of knowledge. We are so used to those fractures that they have become almost invisible to us, but they are a source of profound confusion about what is known.

The Nerenberg Lecture is named after the late Morton (Paddy) Nerenberg, a much-loved professor and researcher born on 17 March– hence his nickname. He was a Professor at Western for more than a quarter century, and a founding member of the Department of Applied Mathematics there. A successful researcher and accomplished teacher, he believed in the unity of knowledge, that scientific and mathematical ideas belong to everyone, and that they are of human importance. He regretted that they had become inaccessible to so many, and anticipated serious consequences from it. [emphases mine] The series honors his appreciation for the democracy of ideas. He died in 1993 at the age of 57.

So, we have the expert panel.

Thoughts about the panel and the report

As I’ve noted previously here and elsewhere, assembling any panels whether they’re for a single event or for a longer term project such as producing a report is no easy task. Looking at the panel, there’s some arts representation, smaller urban centres are also represented, and some of the members have experience in more than one region in Canada. I was also much encouraged by Spiteri’s acknowledgement of his advisor’s, Morton (Paddy) Nerenberg, passionate commitment to the idea that “scientific and mathematical ideas belong to everyone.”

Kudos to the Council of Canadian Academies (CCA) organizers.

That said, this looks like an exceptionally Eurocentric panel. Unusually, there’s no representation from the US unless you count Chun who has spent the majority of her career in the US with only a little over two years at Simon Fraser University on Canada’s West Coast.

There’s weakness to a strategy (none of the ten or so CCA reports I’ve reviewed here deviates from this pattern) that seems to favour international participants from Europe and/or the US (also, sometimes, Australia/New Zealand). This leaves out giant chunks of the international community and brings us dangerously close to an echo chamber.

The same problem exists regionally and with various Canadian communities, which are acknowledged more in spirit than in actuality, e.g., the North, rural, indigenous, arts, etc.

Getting back to the ‘big city’ emphsais noted earlier, two people from Ottawa and three from Montreal; half of the expert panel lives within a two hour train ride of each other. (For those who don’t know, that’s close by Canadian standards. For comparison, a train ride from Vancouver to Seattle [US] is about four hours, a short trip when compared to a 24 hour train trip to the closest large Canadian cities.)

I appreciate that it’s not a simple problem but my concern is that it’s never acknowledged by the CCA. Perhaps they could include a section in the report acknowledging the issues and how the expert panel attempted to address them , in other words, transparency. Coincidentally, transparency, which has been related to trust, have both been identified as big issues with artificial intelligence.

As for solutions, these reports get sent to external reviewers and, prior to the report, outside experts are sometimes brought in as the panel readies itself. That would be two opportunities afforded by their current processes.

Anyway, good luck with the report and I look forward to seeing it.

Governments need to tell us when and how they’re using AI (artificial intelligence) algorithms to make decisions

I have two items and an exploration of the Canadian scene all three of which feature governments, artificial intelligence, and responsibility.

Special issue of Information Polity edited by Dutch academics,

A December 14, 2020 IOS Press press release (also on EurekAlert) announces a special issue of Information Polity focused on algorithmic transparency in government,

Amsterdam, NL – The use of algorithms in government is transforming the way bureaucrats work and make decisions in different areas, such as healthcare or criminal justice. Experts address the transparency challenges of using algorithms in decision-making procedures at the macro-, meso-, and micro-levels in this special issue of Information Polity.

Machine-learning algorithms hold huge potential to make government services fairer and more effective and have the potential of “freeing” decision-making from human subjectivity, according to recent research. Algorithms are used in many public service contexts. For example, within the legal system it has been demonstrated that algorithms can predict recidivism better than criminal court judges. At the same time, critics highlight several dangers of algorithmic decision-making, such as racial bias and lack of transparency.

Some scholars have argued that the introduction of algorithms in decision-making procedures may cause profound shifts in the way bureaucrats make decisions and that algorithms may affect broader organizational routines and structures. This special issue on algorithm transparency presents six contributions to sharpen our conceptual and empirical understanding of the use of algorithms in government.

“There has been a surge in criticism towards the ‘black box’ of algorithmic decision-making in government,” explain Guest Editors Sarah Giest (Leiden University) and Stephan Grimmelikhuijsen (Utrecht University). “In this special issue collection, we show that it is not enough to unpack the technical details of algorithms, but also look at institutional, organizational, and individual context within which these algorithms operate to truly understand how we can achieve transparent and responsible algorithms in government. For example, regulations may enable transparency mechanisms, yet organizations create new policies on how algorithms should be used, and individual public servants create new professional repertoires. All these levels interact and affect algorithmic transparency in public organizations.”

The transparency challenges for the use of algorithms transcend different levels of government – from European level to individual public bureaucrats. These challenges can also take different forms; transparency can be enabled or limited by technical tools as well as regulatory guidelines or organizational policies. Articles in this issue address transparency challenges of algorithm use at the macro-, meso-, and micro-level. The macro level describes phenomena from an institutional perspective – which national systems, regulations and cultures play a role in algorithmic decision-making. The meso-level primarily pays attention to the organizational and team level, while the micro-level focuses on individual attributes, such as beliefs, motivation, interactions, and behaviors.

“Calls to ‘keep humans in the loop’ may be moot points if we fail to understand how algorithms impact human decision-making and how algorithmic design impacts the practical possibilities for transparency and human discretion,” notes Rik Peeters, research professor of Public Administration at the Centre for Research and Teaching in Economics (CIDE) in Mexico City. In a review of recent academic literature on the micro-level dynamics of algorithmic systems, he discusses three design variables that determine the preconditions for human transparency and discretion and identifies four main sources of variation in “human-algorithm interaction.”

The article draws two major conclusions: First, human agents are rarely fully “out of the loop,” and levels of oversight and override designed into algorithms should be understood as a continuum. The second pertains to bounded rationality, satisficing behavior, automation bias, and frontline coping mechanisms that play a crucial role in the way humans use algorithms in decision-making processes.

For future research Dr. Peeters suggests taking a closer look at the behavioral mechanisms in combination with identifying relevant skills of bureaucrats in dealing with algorithms. “Without a basic understanding of the algorithms that screen- and street-level bureaucrats have to work with, it is difficult to imagine how they can properly use their discretion and critically assess algorithmic procedures and outcomes. Professionals should have sufficient training to supervise the algorithms with which they are working.”

At the macro-level, algorithms can be an important tool for enabling institutional transparency, writes Alex Ingrams, PhD, Governance and Global Affairs, Institute of Public Administration, Leiden University, Leiden, The Netherlands. This study evaluates a machine-learning approach to open public comments for policymaking to increase institutional transparency of public commenting in a law-making process in the United States. The article applies an unsupervised machine learning analysis of thousands of public comments submitted to the United States Transport Security Administration on a 2013 proposed regulation for the use of new full body imaging scanners in airports. The algorithm highlights salient topic clusters in the public comments that could help policymakers understand open public comments processes. “Algorithms should not only be subject to transparency but can also be used as tool for transparency in government decision-making,” comments Dr. Ingrams.

“Regulatory certainty in combination with organizational and managerial capacity will drive the way the technology is developed and used and what transparency mechanisms are in place for each step,” note the Guest Editors. “On its own these are larger issues to tackle in terms of developing and passing laws or providing training and guidance for public managers and bureaucrats. The fact that they are linked further complicates this process. Highlighting these linkages is a first step towards seeing the bigger picture of why transparency mechanisms are put in place in some scenarios and not in others and opens the door to comparative analyses for future research and new insights for policymakers. To advocate the responsible and transparent use of algorithms, future research should look into the interplay between micro-, meso-, and macro-level dynamics.”

“We are proud to present this special issue, the 100th issue of Information Polity. Its focus on the governance of AI demonstrates our continued desire to tackle contemporary issues in eGovernment and the importance of showcasing excellent research and the insights offered by information polity perspectives,” add Professor Albert Meijer (Utrecht University) and Professor William Webster (University of Stirling), Editors-in-Chief.

This image illustrates the interplay between the various level dynamics,

Caption: Studying algorithms and algorithmic transparency from multiple levels of analyses. Credit: Information Polity.

Here’s a link, to and a citation for the special issue,

Algorithmic Transparency in Government: Towards a Multi-Level Perspective
Guest Editors: Sarah Giest, PhD, and Stephan Grimmelikhuijsen, PhD
Information Polity, Volume 25, Issue 4 (December 2020), published by IOS Press

The issue is open access for three months, Dec. 14, 2020 – March 14, 2021.

Two articles from the special were featured in the press release,

“The agency of algorithms: Understanding human-algorithm interaction in administrative decision-making,” by Rik Peeters, PhD (https://doi.org/10.3233/IP-200253)

“A machine learning approach to open public comments for policymaking,” by Alex Ingrams, PhD (https://doi.org/10.3233/IP-200256)

An AI governance publication from the US’s Wilson Center

Within one week of the release of a special issue of Information Polity on AI and governments, a Wilson Center (Woodrow Wilson International Center for Scholars) December 21, 2020 news release (received via email) announces a new publication,

Governing AI: Understanding the Limits, Possibilities, and Risks of AI in an Era of Intelligent Tools and Systems by John Zysman & Mark Nitzberg

Abstract

In debates about artificial intelligence (AI), imaginations often run wild. Policy-makers, opinion leaders, and the public tend to believe that AI is already an immensely powerful universal technology, limitless in its possibilities. However, while machine learning (ML), the principal computer science tool underlying today’s AI breakthroughs, is indeed powerful, ML is fundamentally a form of context-dependent statistical inference and as such has its limits. Specifically, because ML relies on correlations between inputs and outputs or emergent clustering in training data, today’s AI systems can only be applied in well- specified problem domains, still lacking the context sensitivity of a typical toddler or house-pet. Consequently, instead of constructing policies to govern artificial general intelligence (AGI), decision- makers should focus on the distinctive and powerful problems posed by narrow AI, including misconceived benefits and the distribution of benefits, autonomous weapons, and bias in algorithms. AI governance, at least for now, is about managing those who create and deploy AI systems, and supporting the safe and beneficial application of AI to narrow, well-defined problem domains. Specific implications of our discussion are as follows:

  • AI applications are part of a suite of intelligent tools and systems and must ultimately be regulated as a set. Digital platforms, for example, generate the pools of big data on which AI tools operate and hence, the regulation of digital platforms and big data is part of the challenge of governing AI. Many of the platform offerings are, in fact, deployments of AI tools. Hence, focusing on AI alone distorts the governance problem.
  • Simply declaring objectives—be they assuring digital privacy and transparency, or avoiding bias—is not sufficient. We must decide what the goals actually will be in operational terms.
  • The issues and choices will differ by sector. For example, the consequences of bias and error will differ from a medical domain or a criminal justice domain to one of retail sales.
  • The application of AI tools in public policy decision making, in transportation design or waste disposal or policing among a whole variety of domains, requires great care. There is a substantial risk of focusing on efficiency when the public debate about what the goals should be in the first place is in fact required. Indeed, public values evolve as part of social and political conflict.
  • The economic implications of AI applications are easily exaggerated. Should public investment concentrate on advancing basic research or on diffusing the tools, user interfaces, and training needed to implement them?
  • As difficult as it will be to decide on goals and a strategy to implement the goals of one community, let alone regional or international communities, any agreement that goes beyond simple objective statements is very unlikely.

Unfortunately, I haven’t been able to successfully download the working paper/report from the Wilson Center’s Governing AI: Understanding the Limits, Possibilities, and Risks of AI in an Era of Intelligent Tools and Systems webpage.

However, I have found a draft version of the report (Working Paper) published August 26, 2020 on the Social Science Research Network. This paper originated at the University of California at Berkeley as part of a series from the Berkeley Roundtable on the International Economy (BRIE). ‘Governing AI: Understanding the Limits, Possibility, and Risks of AI in an Era of Intelligent Tools and Systems’ is also known as the BRIE Working Paper 2020-5.

Canadian government and AI

The special issue on AI and governance and the the paper published by the Wilson Center stimulated my interest in the Canadian government’s approach to governance, responsibility, transparency, and AI.

There is information out there but it’s scattered across various government initiatives and ministries. Above all, it is not easy to find, open communication. Whether that’s by design or the blindness and/or ineptitude to be found in all organizations I leave that to wiser judges. (I’ve worked in small companies and they too have the problem. In colloquial terms, ‘the right hand doesn’t know what the left hand is doing’.)

Responsible use? Maybe not after 2019

First there’s a government of Canada webpage, Responsible use of artificial intelligence (AI). Other than a note at the bottom of the page “Date modified: 2020-07-28,” all of the information dates from 2016 up to March 2019 (which you’ll find on ‘Our Timeline’). Is nothing new happening?

For anyone interested in responsible use, there are two sections “Our guiding principles” and “Directive on Automated Decision-Making” that answer some questions. I found the ‘Directive’ to be more informative with its definitions, objectives, and, even, consequences. Sadly, you need to keep clicking to find consequences and you’ll end up on The Framework for the Management of Compliance. Interestingly, deputy heads are assumed in charge of managing non-compliance. I wonder how employees deal with a non-compliant deputy head?

What about the government’s digital service?

You might think Canadian Digital Service (CDS) might also have some information about responsible use. CDS was launched in 2017, according to Luke Simon’s July 19, 2017 article on Medium,

In case you missed it, there was some exciting digital government news in Canada Tuesday. The Canadian Digital Service (CDS) launched, meaning Canada has joined other nations, including the US and the UK, that have a federal department dedicated to digital.

At the time, Simon was Director of Outreach at Code for Canada.

Presumably, CDS, from an organizational perspective, is somehow attached to the Minister of Digital Government (it’s a position with virtually no governmental infrastructure as opposed to the Minister of Innovation, Science and Economic Development who is responsible for many departments and agencies). The current minister is Joyce Murray whose government profile offers almost no information about her work on digital services. Perhaps there’s a more informative profile of the Minister of Digital Government somewhere on a government website.

Meanwhile, they are friendly folks at CDS but they don’t offer much substantive information. From the CDS homepage,

Our aim is to make services easier for government to deliver. We collaborate with people who work in government to address service delivery problems. We test with people who need government services to find design solutions that are easy to use.

Learn more

After clicking on Learn more, I found this,

At the Canadian Digital Service (CDS), we partner up with federal departments to design, test and build simple, easy to use services. Our goal is to improve the experience – for people who deliver government services and people who use those services.

How it works

We work with our partners in the open, regularly sharing progress via public platforms. This creates a culture of learning and fosters best practices. It means non-partner departments can apply our work and use our resources to develop their own services.

Together, we form a team that follows the ‘Agile software development methodology’. This means we begin with an intensive ‘Discovery’ research phase to explore user needs and possible solutions to meeting those needs. After that, we move into a prototyping ‘Alpha’ phase to find and test ways to meet user needs. Next comes the ‘Beta’ phase, where we release the solution to the public and intensively test it. Lastly, there is a ‘Live’ phase, where the service is fully released and continues to be monitored and improved upon.

Between the Beta and Live phases, our team members step back from the service, and the partner team in the department continues the maintenance and development. We can help partners recruit their service team from both internal and external sources.

Before each phase begins, CDS and the partner sign a partnership agreement which outlines the goal and outcomes for the coming phase, how we’ll get there, and a commitment to get them done.

As you can see, there’s not a lot of detail and they don’t seem to have included anything about artificial intelligence as part of their operation. (I’ll come back to the government’s implementation of artificial intelligence and information technology later.)

Does the Treasury Board of Canada have charge of responsible AI use?

I think so but there are government departments/ministries that also have some responsibilities for AI and I haven’t seen any links back to the Treasury Board documentation.

For anyone not familiar with the Treasury Board or even if you are, December 14, 2009 article (Treasury Board of Canada: History, Organization and Issues) on Maple Leaf Web is quite informative,

The Treasury Board of Canada represent a key entity within the federal government. As an important cabinet committee and central agency, they play an important role in financial and personnel administration. Even though the Treasury Board plays a significant role in government decision making, the general public tends to know little about its operation and activities. [emphasis mine] The following article provides an introduction to the Treasury Board, with a focus on its history, responsibilities, organization, and key issues.

It seems the Minister of Digital Government, Joyce Murray is part of the Treasury Board and the Treasury Board is the source for the Digital Operations Strategic Plan: 2018-2022,

I haven’t read the entire document but the table of contents doesn’t include a heading for artificial intelligence and there wasn’t any mention of it in the opening comments.

But isn’t there a Chief Information Officer for Canada?

Herein lies a tale (I doubt I’ll ever get the real story) but the answer is a qualified ‘no’. The Chief Information Officer for Canada, Alex Benay (there is an AI aspect) stepped down in September 2019 to join a startup company according to an August 6, 2019 article by Mia Hunt for Global Government Forum,

Alex Benay has announced he will step down as Canada’s chief information officer next month to “take on new challenge” at tech start-up MindBridge.

“It is with mixed emotions that I am announcing my departure from the Government of Canada,” he said on Wednesday in a statement posted on social media, describing his time as CIO as “one heck of a ride”.

He said he is proud of the work the public service has accomplished in moving the national digital agenda forward. Among these achievements, he listed the adoption of public Cloud across government; delivering the “world’s first” ethical AI management framework; [emphasis mine] renewing decades-old policies to bring them into the digital age; and “solidifying Canada’s position as a global leader in open government”.

He also led the introduction of new digital standards in the workplace, and provided “a clear path for moving off” Canada’s failed Phoenix pay system. [emphasis mine]

I cannot find a current Chief Information of Canada despite searches but I did find this List of chief information officers (CIO) by institution. Where there was one, there are now many.

Since September 2019, Mr. Benay has moved again according to a November 7, 2019 article by Meagan Simpson on the BetaKit,website (Note: Links have been removed),

Alex Benay, the former CIO [Chief Information Officer] of Canada, has left his role at Ottawa-based Mindbridge after a short few months stint.

The news came Thursday, when KPMG announced that Benay was joining the accounting and professional services organization as partner of digital and government solutions. Benay originally announced that he was joining Mindbridge in August, after spending almost two and a half years as the CIO for the Government of Canada.

Benay joined the AI startup as its chief client officer and, at the time, was set to officially take on the role on September 3rd. According to Benay’s LinkedIn, he joined Mindbridge in August, but if the September 3rd start date is correct, Benay would have only been at Mindbridge for around three months. The former CIO of Canada was meant to be responsible for Mindbridge’s global growth as the company looked to prepare for an IPO in 2021.

Benay told The Globe and Mail that his decision to leave Mindbridge was not a question of fit, or that he considered the move a mistake. He attributed his decision to leave to conversations with Mindbridge customer KPMG, over a period of three weeks. Benay told The Globe that he was drawn to the KPMG opportunity to lead its digital and government solutions practice, something that was more familiar to him given his previous role.

Mindbridge has not completely lost what was touted as a start hire, though, as Benay will be staying on as an advisor to the startup. “This isn’t a cutting the cord and moving on to something else completely,” Benay told The Globe. “It’s a win-win for everybody.”

Via Mr. Benay, I’ve re-introduced artificial intelligence and introduced the Phoenix Pay system and now I’m linking them to government implementation of information technology in a specific case and speculating about implementation of artificial intelligence algorithms in government.

Phoenix Pay System Debacle (things are looking up), a harbinger for responsible use of artificial intelligence?

I’m happy to hear that the situation where government employees had no certainty about their paycheques is becoming better. After the ‘new’ Phoenix Pay System was implemented in early 2016, government employees found they might get the correct amount on their paycheque or might find significantly less than they were entitled to or might find huge increases.

The instability alone would be distressing but adding to it with the inability to get the problem fixed must have been devastating. Almost five years later, the problems are being resolved and people are getting paid appropriately, more often.

The estimated cost for fixing the problems was, as I recall, over $1B; I think that was a little optimistic. James Bagnall’s July 28, 2020 article for the Ottawa Citizen provides more detail, although not about the current cost, and is the source of my measured optimism,

Something odd has happened to the Phoenix Pay file of late. After four years of spitting out errors at a furious rate, the federal government’s new pay system has gone quiet.

And no, it’s not because of the even larger drama written by the coronavirus. In fact, there’s been very real progress at Public Services and Procurement Canada [PSPC; emphasis mine], the department in charge of pay operations.

Since January 2018, the peak of the madness, the backlog of all pay transactions requiring action has dropped by about half to 230,000 as of late June. Many of these involve basic queries for information about promotions, overtime and rules. The part of the backlog involving money — too little or too much pay, incorrect deductions, pay not received — has shrunk by two-thirds to 125,000.

These are still very large numbers but the underlying story here is one of long-delayed hope. The government is processing the pay of more than 330,000 employees every two weeks while simultaneously fixing large batches of past mistakes.

While officials with two of the largest government unions — Public Service Alliance of Canada [PSAC] and the Professional Institute of the Public Service of Canada [PPSC] — disagree the pay system has worked out its kinks, they acknowledge it’s considerably better than it was. New pay transactions are being processed “with increased timeliness and accuracy,” the PSAC official noted.

Neither union is happy with the progress being made on historical mistakes. PIPSC president Debi Daviau told this newspaper that many of her nearly 60,000 members have been waiting for years to receive salary adjustments stemming from earlier promotions or transfers, to name two of the more prominent sources of pay errors.

Even so, the sharp improvement in Phoenix Pay’s performance will soon force the government to confront an interesting choice: Should it continue with plans to replace the system?

Treasury Board, the government’s employer, two years ago launched the process to do just that. Last March, SAP Canada — whose technology underpins the pay system still in use at Canada Revenue Agency — won a competition to run a pilot project. Government insiders believe SAP Canada is on track to build the full system starting sometime in 2023.

When Public Services set out the business case in 2009 for building Phoenix Pay, it noted the pay system would have to accommodate 150 collective agreements that contained thousands of business rules and applied to dozens of federal departments and agencies. The technical challenge has since intensified.

Under the original plan, Phoenix Pay was to save $70 million annually by eliminating 1,200 compensation advisors across government and centralizing a key part of the operation at the pay centre in Miramichi, N.B., where 550 would manage a more automated system.

Instead, the Phoenix Pay system currently employs about 2,300.  This includes 1,600 at Miramichi and five regional pay offices, along with 350 each at a client contact centre (which deals with relatively minor pay issues) and client service bureau (which handles the more complex, longstanding pay errors). This has naturally driven up the average cost of managing each pay account — 55 per cent higher than the government’s former pay system according to last fall’s estimate by the Parliamentary Budget Officer.

… As the backlog shrinks, the need for regional pay offices and emergency staffing will diminish. Public Services is also working with a number of high-tech firms to develop ways of accurately automating employee pay using artificial intelligence [emphasis mine].

Given the Phoenix Pay System debacle, it might be nice to see a little information about how the government is planning to integrate more sophisticated algorithms (artificial intelligence) in their operations.

I found this on a Treasury Board webpage, all 1 minute and 29 seconds of it,

The blonde model or actress mentions that companies applying to Public Services and Procurement Canada for placement on the list must use AI responsibly. Her script does not include a definition or guidelines, which, as previously noted, as on the Treasury Board website.

As for Public Services and Procurement Canada, they have an Artificial intelligence source list,

Public Services and Procurement Canada (PSPC) is putting into operation the Artificial intelligence source list to facilitate the procurement of Canada’s requirements for Artificial intelligence (AI).

After research and consultation with industry, academia, and civil society, Canada identified 3 AI categories and business outcomes to inform this method of supply:

Insights and predictive modelling

Machine interactions

Cognitive automation

PSPC is focused only on procuring AI. If there are guidelines on their website for its use, I did not find them.

I found one more government agency that might have some information about artificial intelligence and guidelines for its use, Shared Services Canada,

Shared Services Canada (SSC) delivers digital services to Government of Canada organizations. We provide modern, secure and reliable IT services so federal organizations can deliver digital programs and services that meet Canadians needs.

Since the Minister of Digital Government, Joyce Murray, is listed on the homepage, I was hopeful that I could find out more about AI and governance and whether or not the Canadian Digital Service was associated with this government ministry/agency. I was frustrated on both counts.

To sum up, there is no information that I could find after March 2019 about Canada, it’s government and plans for AI, especially responsible management/governance and AI on a Canadian government website although I have found guidelines, expectations, and consequences for non-compliance. (Should anyone know which government agency has up-to-date information on its responsible use of AI, please let me know in the Comments.

Canadian Institute for Advanced Research (CIFAR)

The first mention of the Pan-Canadian Artificial Intelligence Strategy is in my analysis of the Canadian federal budget in a March 24, 2017 posting. Briefly, CIFAR received a big chunk of that money. Here’s more about the strategy from the CIFAR Pan-Canadian AI Strategy homepage,

In 2017, the Government of Canada appointed CIFAR to develop and lead a $125 million Pan-Canadian Artificial Intelligence Strategy, the world’s first national AI strategy.

CIFAR works in close collaboration with Canada’s three national AI Institutes — Amii in Edmonton, Mila in Montreal, and the Vector Institute in Toronto, as well as universities, hospitals and organizations across the country.

The objectives of the strategy are to:

Attract and retain world-class AI researchers by increasing the number of outstanding AI researchers and skilled graduates in Canada.

Foster a collaborative AI ecosystem by establishing interconnected nodes of scientific excellence in Canada’s three major centres for AI: Edmonton, Montreal, and Toronto.

Advance national AI initiatives by supporting a national research community on AI through training programs, workshops, and other collaborative opportunities.

Understand the societal implications of AI by developing global thought leadership on the economic, ethical, policy, and legal implications [emphasis mine] of advances in AI.

Responsible AI at CIFAR

You can find Responsible AI in a webspace devoted to what they have called, AI & Society. Here’s more from the homepage,

CIFAR is leading global conversations about AI’s impact on society.

The AI & Society program, one of the objectives of the CIFAR Pan-Canadian AI Strategy, develops global thought leadership on the economic, ethical, political, and legal implications of advances in AI. These dialogues deliver new ways of thinking about issues, and drive positive change in the development and deployment of responsible AI.

Solution Networks

AI Futures Policy Labs

AI & Society Workshops

Building an AI World

Under the category of building an AI World I found this (from CIFAR’s AI & Society homepage),

BUILDING AN AI WORLD

Explore the landscape of global AI strategies.

Canada was the first country in the world to announce a federally-funded national AI strategy, prompting many other nations to follow suit. CIFAR published two reports detailing the global landscape of AI strategies.

I skimmed through the second report and it seems more like a comparative study of various country’s AI strategies than a overview of responsible use of AI.

Final comments about Responsible AI in Canada and the new reports

I’m glad to see there’s interest in Responsible AI but based on my adventures searching the Canadian government websites and the Pan-Canadian AI Strategy webspace, I’m left feeling hungry for more.

I didn’t find any details about how AI is being integrated into government departments and for what uses. I’d like to know and I’d like to have some say about how it’s used and how the inevitable mistakes will be dealh with.

The great unwashed

What I’ve found is high minded, but, as far as I can tell, there’s absolutely no interest in talking to the ‘great unwashed’. Those of us who are not experts are being left out of these earlier stage conversations.

I’m sure we’ll be consulted at some point but it will be long past the time when are our opinions and insights could have impact and help us avoid the problems that experts tend not to see. What we’ll be left with is protest and anger on our part and, finally, grudging admissions and corrections of errors on the government’s part.

Let’s take this for an example. The Phoenix Pay System was implemented in its first phase on Feb. 24, 2016. As I recall, problems develop almost immediately. The second phase of implementation starts April 21, 2016. In May 2016 the government hires consultants to fix the problems. November 29, 2016 the government minister, Judy Foote, admits a mistake has been made. February 2017 the government hires consultants to establish what lessons they might learn. February 15, 2018 the pay problems backlog amounts to 633,000. Source: James Bagnall, Feb. 23, 2018 ‘timeline‘ for Ottawa Citizen

Do take a look at the timeline, there’s more to it than what I’ve written here and I’m sure there’s more to the Phoenix Pay System debacle than a failure to listen to warnings from those who would be directly affected. It’s fascinating though how often a failure to listen presages far deeper problems with a project.

The Canadian government, both a conservative and a liberal government, contributed to the Phoenix Debacle but it seems the gravest concern is with senior government bureaucrats. You might think things have changed since this recounting of the affair in a June 14, 2018 article by Michelle Zilio for the Globe and Mail,

The three public servants blamed by the Auditor-General for the Phoenix pay system problems were not fired for mismanagement of the massive technology project that botched the pay of tens of thousands of public servants for more than two years.

Marie Lemay, deputy minister for Public Services and Procurement Canada (PSPC), said two of the three Phoenix executives were shuffled out of their senior posts in pay administration and did not receive performance bonuses for their handling of the system. Those two employees still work for the department, she said. Ms. Lemay, who refused to identify the individuals, said the third Phoenix executive retired.

In a scathing report last month, Auditor-General Michael Ferguson blamed three “executives” – senior public servants at PSPC, which is responsible for Phoenix − for the pay system’s “incomprehensible failure.” [emphasis mine] He said the executives did not tell the then-deputy minister about the known problems with Phoenix, leading the department to launch the pay system despite clear warnings it was not ready.

Speaking to a parliamentary committee on Thursday, Ms. Lemay said the individuals did not act with “ill intent,” noting that the development and implementation of the Phoenix project were flawed. She encouraged critics to look at the “bigger picture” to learn from all of Phoenix’s failures.

Mr. Ferguson, whose office spoke with the three Phoenix executives as a part of its reporting, said the officials prioritized some aspects of the pay-system rollout, such as schedule and budget, over functionality. He said they also cancelled a pilot implementation project with one department that would have helped it detect problems indicating the system was not ready.

Mr. Ferguson’s report warned the Phoenix problems are indicative of “pervasive cultural problems” [emphasis mine] in the civil service, which he said is fearful of making mistakes, taking risks and conveying “hard truths.”

Speaking to the same parliamentary committee on Tuesday, Privy Council Clerk [emphasis mine] Michael Wernick challenged Mr. Ferguson’s assertions, saying his chapter on the federal government’s cultural issues is an “opinion piece” containing “sweeping generalizations.”

The Privy Council Clerk is the top level bureaucrat (and there is only one such clerk) in the civil/public service and I think his quotes are quite telling of “pervasive cultural problems.” There’s a new Privy Council Clerk but from what I can tell he was well trained by his predecessor.

Do* we really need senior government bureaucrats?

I now have an example of bureaucratic interference, specifically with the Global Public Health Information Network (GPHIN) where it would seem that not much has changed, from a December 26, 2020 article by Grant Robertson for the Globe & Mail,

When Canada unplugged support for its pandemic alert system [GPHIN] last year, it was a symptom of bigger problems inside the Public Health Agency. Experienced scientists were pushed aside, expertise was eroded, and internal warnings went unheeded, which hindered the department’s response to COVID-19

As a global pandemic began to take root in February, China held a series of backchannel conversations with Canada, lobbying the federal government to keep its borders open.

With the virus already taking a deadly toll in Asia, Heng Xiaojun, the Minister Counsellor for the Chinese embassy, requested a call with senior Transport Canada officials. Over the course of the conversation, the Chinese representatives communicated Beijing’s desire that flights between the two countries not be stopped because it was unnecessary.

“The Chinese position on the continuation of flights was reiterated,” say official notes taken from the call. “Mr. Heng conveyed that China is taking comprehensive measures to combat the coronavirus.”

Canadian officials seemed to agree, since no steps were taken to restrict or prohibit travel. To the federal government, China appeared to have the situation under control and the risk to Canada was low. Before ending the call, Mr. Heng thanked Ottawa for its “science and fact-based approach.”

It was a critical moment in the looming pandemic, but the Canadian government lacked the full picture, instead relying heavily on what Beijing was choosing to disclose to the World Health Organization (WHO). Ottawa’s ability to independently know what was going on in China – on the ground and inside hospitals – had been greatly diminished in recent years.

Canada once operated a robust pandemic early warning system and employed a public-health doctor based in China who could report back on emerging problems. But it had largely abandoned those international strategies over the past five years, and was no longer as plugged-in.

By late February [2020], Ottawa seemed to be taking the official reports from China at their word, stating often in its own internal risk assessments that the threat to Canada remained low. But inside the Public Health Agency of Canada (PHAC), rank-and-file doctors and epidemiologists were growing increasingly alarmed at how the department and the government were responding.

“The team was outraged,” one public-health scientist told a colleague in early April, in an internal e-mail obtained by The Globe and Mail, criticizing the lack of urgency shown by Canada’s response during January, February and early March. “We knew this was going to be around for a long time, and it’s serious.”

China had locked down cities and restricted travel within its borders. Staff inside the Public Health Agency believed Beijing wasn’t disclosing the whole truth about the danger of the virus and how easily it was transmitted. “The agency was just too slow to respond,” the scientist said. “A sane person would know China was lying.”

It would later be revealed that China’s infection and mortality rates were played down in official records, along with key details about how the virus was spreading.

But the Public Health Agency, which was created after the 2003 SARS crisis to bolster the country against emerging disease threats, had been stripped of much of its capacity to gather outbreak intelligence and provide advance warning by the time the pandemic hit.

The Global Public Health Intelligence Network, an early warning system known as GPHIN that was once considered a cornerstone of Canada’s preparedness strategy, had been scaled back over the past several years, with resources shifted into projects that didn’t involve outbreak surveillance.

However, a series of documents obtained by The Globe during the past four months, from inside the department and through numerous Access to Information requests, show the problems that weakened Canada’s pandemic readiness run deeper than originally thought. Pleas from the international health community for Canada to take outbreak detection and surveillance much more seriously were ignored by mid-level managers [emphasis mine] inside the department. A new federal pandemic preparedness plan – key to gauging the country’s readiness for an emergency – was never fully tested. And on the global stage, the agency stopped sending experts [emphasis mine] to international meetings on pandemic preparedness, instead choosing senior civil servants with little or no public-health background [emphasis mine] to represent Canada at high-level talks, The Globe found.

The curtailing of GPHIN and allegations that scientists had become marginalized within the Public Health Agency, detailed in a Globe investigation this past July [2020], are now the subject of two federal probes – an examination by the Auditor-General of Canada and an independent federal review, ordered by the Minister of Health.

Those processes will undoubtedly reshape GPHIN and may well lead to an overhaul of how the agency functions in some areas. The first steps will be identifying and fixing what went wrong. With the country now topping 535,000 cases of COVID-19 and more than 14,700 dead, there will be lessons learned from the pandemic.

Prime Minister Justin Trudeau has said he is unsure what role added intelligence [emphasis mine] could have played in the government’s pandemic response, though he regrets not bolstering Canada’s critical supplies of personal protective equipment sooner. But providing the intelligence to make those decisions early is exactly what GPHIN was created to do – and did in previous outbreaks.

Epidemiologists have described in detail to The Globe how vital it is to move quickly and decisively in a pandemic. Acting sooner, even by a few days or weeks in the early going, and throughout, can have an exponential impact on an outbreak, including deaths. Countries such as South Korea, Australia and New Zealand, which have fared much better than Canada, appear to have acted faster in key tactical areas, some using early warning information they gathered. As Canada prepares itself in the wake of COVID-19 for the next major health threat, building back a better system becomes paramount.

If you have time, do take a look at Robertson’s December 26, 2020 article and the July 2020 Globe investigation. As both articles make clear, senior bureaucrats whose chief attribute seems to have been longevity took over, reallocated resources, drove out experts, and crippled the few remaining experts in the system with a series of bureaucratic demands while taking trips to attend meetings (in desirable locations) for which they had no significant or useful input.

The Phoenix and GPHIN debacles bear a resemblance in that senior bureaucrats took over and in a state of blissful ignorance made a series of disastrous decisions bolstered by politicians who seem to neither understand nor care much about the outcomes.

If you think I’m being harsh watch Canadian Broadcasting Corporation (CBC) reporter Rosemary Barton interview Prime Minister Trudeau for a 2020 year-end interview, Note: There are some commercials. Then, pay special attention to the Trudeau’s answer to the first question,

Responsible AI, eh?

Based on the massive mishandling of the Phoenix Pay System implementation where top bureaucrats did not follow basic and well established information services procedures and the Global Public Health Information Network mismanagement by top level bureaucrats, I’m not sure I have a lot of confidence in any Canadian government claims about a responsible approach to using artificial intelligence.

Unfortunately, it doesn’t matter as implementation is most likely already taking place here in Canada.

Enough with the pessimism. I feel it’s necessary to end this on a mildly positive note. Hurray to the government employees who worked through the Phoenix Pay System debacle, the current and former GPHIN experts who continued to sound warnings, and all those people striving to make true the principles of ‘Peace, Order, and Good Government’, the bedrock principles of the Canadian Parliament.

A lot of mistakes have been made but we also do make a lot of good decisions.

*’Doe’ changed to ‘Do’ on May 14, 2021.

The decade that was (2010-19) and the decade to come (2020-29): Science culture in Canada (5 of 5)

At long last, the end is in sight! This last part is mostly a collection of items that don’t fit elsewhere or could have fit elsewhere but that particular part was already overstuffed.

Podcasting science for the people

March 2009 was the birth date for a podcast, then called Skeptically Speaking and now known as Science for the People (Wikipedia entry). Here’s more from the Science for the People About webpage,

Science for the People is a long-format interview podcast that explores the connections between science, popular culture, history, and public policy, to help listeners understand the evidence and arguments behind what’s in the news and on the shelves.

Every week, our hosts sit down with science researchers, writers, authors, journalists, and experts to discuss science from the past, the science that affects our lives today, and how science might change our future.

THE TEAM

Rachelle Saunders: Producer & Host

I love to learn new things, and say the word “fascinating” way too much. I like to talk about intersections and how science and critical thinking intersect with everyday life, politics, history, and culture. By day I’m a web developer, and I definitely listen to way too many podcasts.

….

H/t to GeekWrapped’s 20 Best Science Podcasts.

Science: human contexts and cosmopolitanism

situating science: Science in Human Contexts was a seven-year project ending in 2014 and funded by the Social Sciences and Humanities Research Council of Canada (SSHRC). Here’s more from their Project Summary webpage,

Created in 2007 with the generous funding of the Social Sciences and Humanities Research Council of Canada Strategic Knowledge Cluster grant, Situating Science is a seven-year project promoting communication and collaboration among humanists and social scientists that are engaged in the study of science and technology.

You can find out more about Situating Science’s final days in my August 16, 2013 posting where I included a lot of information about one of their last events titled, “Science and Society 2013 Symposium; Emerging Agendas for Citizens and the Sciences.”

The “think-tank” will dovetail nicely with a special symposium in Ottawa on Science and Society Oct. 21-23. For this symposium, the Cluster is partnering with the Institute for Science, Society and Policy to bring together scholars from various disciplines, public servants and policy workers to discuss key issues at the intersection of science and society. [emphasis mine]  The discussions will be compiled in a document to be shared with stakeholders and the wider public.

The team will continue to seek support and partnerships for projects within the scope of its objectives. Among our top priorities are a partnership to explore sciences, technologies and their publics as well as new partnerships to build upon exchanges between scholars and institutions in India, Singapore and Canada.

The Situating Science folks did attempt to carry on the organization’s work by rebranding the organization to call it the Canadian Consortium for Situating Science and Technology (CCSST). It seems to have been a short-lived volunteer effort.

Meanwhile, the special symposium held in October 2013 appears to have been the springboard for another SSHRC funded multi-year initiative, this time focused on science collaborations between Canada, India, and Singapore, Cosmopolitanism and the Local in Science and Nature from 2014 – 2017. Despite their sunset year having been in 2017, their homepage boasts news about a 2020 Congress and their Twitter feed is still active. Harking back, here’s what the project was designed to do, from the About Us page,

Welcome to our three year project that will establish a research network on “Cosmopolitanism” in science. It closely examines the actual types of negotiations that go into the making of science and its culture within an increasingly globalized landscape. This partnership is both about “cosmopolitanism and the local” and is, at the same time, cosmopolitan and local.

Anyone who reads this blog with any frequency will know that I often comment on the fact that when organizations such as the Council of Canadian Academies bring in experts from other parts of the world, they are almost always from the US or Europe. So, I was delighted to discover the Cosmopolitanism project and featured it in a February 19, 2015 posting.

Here’s more from Cosmopolitanism’s About Us page

Specifically, the project will:

  1. Expose a hitherto largely Eurocentric scholarly community in Canada to widening international perspectives and methods,
  2. Build on past successes at border-crossings and exchanges between the participants,
  3. Facilitate a much needed nation-wide organization and exchange amongst Indian and South East Asian scholars, in concert with their Canadian counterparts, by integrating into an international network,
  4. Open up new perspectives on the genesis and place of globalized science, and thereby
  5. Offer alternative ways to conceptualize and engage globalization itself, and especially the globalization of knowledge and science.
  6. Bring the managerial team together for joint discussion, research exchange, leveraging and planning – all in the aid of laying the grounds of a sustainable partnership

Eco Art (also known as ecological art or environmental art)

I’m of two minds as to whether I should have tried to stuff this into the art/sci subsection in part 2. On balance, I decided that this merited its own section and that part 2 was already overstuffed.

Let’s start in Newfoundland and Labrador with Marlene Creates (pronounced Kreets), here’s more about her from her website’s bio webpage,

Marlene Creates (pronounced “Kreets”) is an environmental artist and poet who works with photography, video, scientific and vernacular knowledge, walking and collaborative site-specific performance in the six-acre patch of boreal forest in Portugal Cove, Newfoundland and Labrador, Canada, where she lives.

For almost 40 years her work has been an exploration of the relationship between human experience, memory, language and the land, and the impact they have on each other. …

Currently her work is focused on the six acres of boreal forest where she lives in a ‘relational aesthetic’ to the land. This oeuvre includes Water Flowing to the Sea Captured at the Speed of Light, Blast Hole Pond River, Newfoundland 2002–2003, and several ongoing projects:

Marlene Creates received a Governor General’s Award in Visual and Media Arts for “Lifetime Artistic Achievement” in 2019. …

As mentioned in her bio, Creates has a ‘forest’ project. The Boreal Poetry Garden,
Portugal Cove, Newfoundland 2005– (ongoing)
. If you are interested in exploring it, she has created a virtual walk here. Just click on one of the index items on the right side of the screen to activate a video.

An October 1, 2018 article by Yasmin Nurming-Por for Canadian Art magazine features 10 artists who focus on environmental and/or land art themes,

As part of her 2016 master’s thesis exhibition, Fredericton [New Brunswick] artist Gillian Dykeman presented the video Dispatches from the Feminist Utopian Future within a larger installation that imagined various canonical earthworks from the perspective of the future. It’s a project that addresses the inherent sense of timelessness in these massive interventions on the natural landscape from the perspective of contemporary land politics. … she proposes a kind of interaction with the invasive and often colonial gestures of modernist Land art, one that imagines a different future for these earthworks, where they are treated as alien in a landscape and as beacons from a feminist future.

A video trailer featuring “DISPATCHES FROM THE FEMINIST UTOPIAN FUTURE” (from Dykeman’s website archive page featuring the show,

If you have the time, I recommend reading the article in its entirety.

Oddly, I did not expect Vancouver to have such an active eco arts focus. The City of Vancouver Parks Board maintains an Environmental Art webpage on its site listing a number of current and past projects.

I cannot find the date for when this Parks Board initiative started but I did find a document produced prior to a Spring 2006 Arts & Ecology think tank held in Vancouver under the auspices of the Canada Council for the Arts, the Canadian Commission for UNESCO, the Vancouver Foundation, and the Royal Society for the Encouragement of the Arts, Manufactures and Commerce (London UK).

In all likelihood, Vancouver Park Board’s Environmental Art webpage was produced after 2006.

I imagine the document and the think tank session helped to anchor any then current eco art projects and encouraged more projects.

The document (MAPPING THE TERRAIN OF CONTEMPORARY ECOART PRACTICE AND COLLABORATION) while almost 14 years old offers a fascinating overview of what was happening internationally and in Canada.

While its early days were in 2008, EartHand Gleaners (Vancouver-based) wasn’t formally founded as an arts non-for-profit organization until 2013. You can find out more about them and their projects here.

Eco Art has been around for decades according to the eco art think tank document but it does seemed to have gained momentum here in Canada over the last decade.

Photography and the Natural Sciences and Engineering Research Council of Canada (NSERC)

Exploring the jack pine tight knit family tree. Credit: Dana Harris Brock University (2018)

Pictured are developing phloem, cambial, and xylem cells (blue), and mature xylem cells (red), in the outermost portion of a jack pine tree. This research aims to identify the influences of climate on the cellular development of the species at its northern limit in Yellowknife, NT. The differences in these cell formations is what creates the annual tree ring boundary.

Science Exposed is a photography contest for scientists which has been run since 2016 (assuming the Past Winners archive is a good indicator for the programme’s starting year).

The 2020 competition recently closed but public voting should start soon. It’s nice to see that NSERC is now making efforts to engage members of the general public rather than focusing its efforts solely on children. The UK’s ASPIRES project seems to support the idea that adults need to be more fully engaged with STEM (science, technology, engineering, and mathematics) efforts as it found that children’s attitudes toward science are strongly influenced by their parents’ and relatives’ attitudes.(See my January 31, 2012 posting.)

Ingenious, the book and Ingenium, the science museums

To celebrate Canada’s 150th anniversary in 2017, then Governor General David Johnston and Tom Jenkins (Chair of the board for Open Text and former Chair of the federal committee overseeing the ‘Review of Federal Support to R&’D [see my October 21, 2011 posting about the resulting report]) wrote a boo about Canada’s inventors and inventions.

Johnston and Jenkins jaunted around the country launching their book (I have more about their June 1, 2017 Vancouver visit in a May 30, 2017 posting; scroll down about 60% of the way]).

The book’s full title, “Ingenious: How Canadian Innovators Made the World Smarter, Smaller, Kinder, Safer, Healthier, Wealthier and Happier ” outlines their thesis neatly.

Not all that long after the book was launched, there was a name change (thankfully) for the Canada Science and Technology Museums Corporation (CSTMC). It is now known as Ingenium (covered in my August 10, 2017 posting).

The reason that name change was such a relief (for those who don’t know) is that the corporation included three national science museums: Canada Aviation and Space Museum, Canada Agriculture and Food Museum, and (wait for it) Canada Science and Technology Museum. On the list of confusing names, this ranks very high for me. Again, I give thanks for the change from CSTMC to Ingenium, leaving the name for the museum alone.

2017 was also the year that the newly refurbished Canada Science and Technology Museum was reopened after more than three years (see my June 23, 2017 posting about the November 2017 reopening and my June 12, 2015 posting for more information about the situation that led to the closure).

A Saskatchewan lab, Convergence, Order of Canada, Year of Science, Animated Mathematics, a graphic novel, and new media

Since this section is jampacked, I’m using subheads.

Saskatchewan

Dr. Brian Eames hosts an artist-in-residence, Jean-Sebastien (JS) Gauthier at the University of Saskatchewan’s College of Medicine Eames Lab. A February 16, 2018 posting here featured their first collaboration together. It covered evolutionary biology, the synchrotron (Canadian Light Source [CLS]) in Saskatoon, and the ‘ins and outs’ of a collaboration between a scientist an artist. Presumably the art-in-residence position indicates that first collaboration went very well.

In January 2020, Brian kindly gave me an update on their current projects. Jean-Sebastin successfully coded an interactive piece for an exhibit at the 2019 Nuit Blanche Saskatoon event using Connect (Xbox). More recently, he got a VR [virtual reality] helmet for an upcoming project or two.

After much clicking on the Nuit Blanche Saskatoon 2019 interactive map, I found this,

Our Glass is a work of interactive SciArt co-created by artist JS Gauthier and biologist Dr Brian F. Eames. It uses cutting-edge 3D microscopic images produced for artistic purposes at the Canadian Light Source, Canada’s only synchrotron facility. Our Glass engages viewers of all ages to peer within an hourglass showing how embryonic development compares among animals with whom we share a close genetic heritage.

Eames also mentioned they were hoping to hold an international SciArt Symposium at the University of Saskatchewan in 2021.

Convergence

Dr. Cristian Zaelzer-Perez, an instructor at Concordia University (Montreal; read this November 20, 2019 Concordia news release by Kelsey Rolfe for more about his work and awards), in 2016 founded the Convergence Initiative, a not-for-profit organization that encourages interdisciplinary neuroscience and art collaborations.

Cat Lau’s December 23, 2019 posting for the Science Borealis blog provides insight into Zaelzer-Perez’s relationship to science and art,

Cristian: I have had a relationship with art and science ever since I have had memory. As a child, I loved to do classifications, from grouping different flowers to collecting leaves by their shapes. At the same time, I really loved to draw them and for me, both things never looked different; they (art and science) have always worked together.

I started as a graphic designer, but the pursuit to learn about nature was never dead. At some point, I knew I wanted to go back to school to do research, to explore and learn new things. I started studying medical technologies, then molecular biology and then jumped into a PhD. At that point, my life as a graphic designer slipped down, because of the focus you have to give to the discipline. It seemed like every time I tried to dedicate myself to one thing, I would find myself doing the other thing a couple years later.

I came to Montreal to do my post-doc, but I had trouble publishing, which became problematic in getting a career. I was still loving what I was doing, but not seeing a future in that. Once again, art came back into my life and at the same time I saw that science was becoming really hard to understand and scientists were not doing much to bridge the gap.

The Convergence Initiative has an impressive array of programmes. Do check it out.

Order of Canada and ‘The Science Lady’

For a writer of children’s science books, an appointment to the Order of Canada is a singular honour. I cannot recall a children’s science book writer previous to Shar Levine being appointed as a Member of the Order of Canada. Known as ‘The Science Lady‘, Levine was appointed in 2016. Here’s more from her Wikipedia entry, Note: Links have been removed,

Shar Levine (born 1953) is an award-winning, best selling Canadian children’s author, and designer.

Shar has written over 70 books and book/kits, primarily on hands-on science for children. For her work in Science literacy and Science promotion, Shar has been appointed to the 2016 Order of Canada. In 2015, she was recognized by the University of Alberta and received their Alumni Honour Award. Levine, and her co-author, Leslie Johnstone, were co-recipients of the Eve Savory Award for Science Communication from the BC Innovation Council (2006) and their book, Backyard Science, was a finalist for the Subaru Award, (hands on activity) from the American Association for the Advancement of Science, Science Books and Films (2005). The Ultimate Guide to Your Microscope was a finalist-2008 American Association for the Advancement of Science/Subaru Science Books and Films Prize Hands -On Science/Activity Books.

To get a sense of what an appointment to the Order of Canada means, here’s a description from the government of Canada website,

The Order of Canada is how our country honours people who make extraordinary contributions to the nation.

Since its creation in 1967—Canada’s centennial year—more than 7 000 people from all sectors of society have been invested into the Order. The contributions of these trailblazers are varied, yet they have all enriched the lives of others and made a difference to this country. Their grit and passion inspire us, teach us and show us the way forward. They exemplify the Order’s motto: DESIDERANTES MELIOREM PATRIAM (“They desire a better country”).

Year of Science in British Columbia

In the Fall of 2010, the British Columbia provincial government announced a Year of Science (coinciding with the school year) . Originally, it was supposed to be a provincial government-wide initiative but the idea percolated through any number of processes and emerged as a year dedicated to science education for youth (according to the idea’s originator, Moira Stilwell who was then a Member of the Legislative Assembly [MLA]’ I spoke with her sometime in 2010 or 2011).

As the ‘year’ drew to a close, there was a finale ($1.1M in funding), which was featured here in a July 6, 2011 posting.

The larger portion of the money ($1M) was awarded to Science World while $100,000 ($0.1 M) was given to the Pacific Institute of Mathematical Sciences To my knowledge there have been no followup announcements about how the money was used.

Animation and mathematics

In Toronto, mathematician Dr. Karan Singh enjoyed a flurry of interest due to his association with animator Chris Landreth and their Academy Award (Oscar) Winning 2004 animated film, Ryan. They have continued to work together as members of the Dynamic Graphics Project (DGP) Lab at the University of Toronto. Theirs is not the only Oscar winning work to emerge from one or more of the members of the lab. Jos Stam, DGP graduate and adjunct professor won his third in 2019.

A graphic novel and medical promise

An academic at Simon Fraser University since 2015, Coleman Nye worked with three other women to produce a graphic novel about medical dilemmas in a genre described as’ ethno-fiction’.

Lissa: A Story about Medical Promise, Friendship, and Revolution (2017) by Sherine Hamdy and Coleman Nye, two anthropologists and Art by Sarula Bao and Caroline Brewer, two artists.

Here’s a description of the book from the University of Toronto Press website,

As young girls in Cairo, Anna and Layla strike up an unlikely friendship that crosses class, cultural, and religious divides. Years later, Anna learns that she may carry the hereditary cancer gene responsible for her mother’s death. Meanwhile, Layla’s family is faced with a difficult decision about kidney transplantation. Their friendship is put to the test when these medical crises reveal stark differences in their perspectives…until revolutionary unrest in Egypt changes their lives forever.

The first book in a new series [ethnoGRAPIC; a series of graphic novels from the University of Toronto Press], Lissa brings anthropological research to life in comic form, combining scholarly insights and accessible, visually-rich storytelling to foster greater understanding of global politics, inequalities, and solidarity.

I hope to write more about this graphic novel in a future posting.

New Media

I don’t know if this could be described as a movement yet but it’s certainly an interesting minor development. Two new media centres have hosted, in the last four years, art/sci projects and/or workshops. It’s unexpected given this definition from the Wikipedia entry for New Media (Note: Links have been removed),

New media are forms of media that are computational and rely on computers for redistribution. Some examples of new media are computer animations, computer games, human-computer interfaces, interactive computer installations, websites, and virtual worlds.[1][2]

In Manitoba, the Video Pool Media Arts Centre hosted a February 2016 workshop Biology as a New Art Medium: Workshop with Marta De Menezes. De Menezes, an artist from Portugal, gave workshops and talks in both Winnipeg (Manitoba) and Toronto (Ontario). Here’s a description for the one in Winnipeg,

This workshop aims to explore the multiple possibilities of artistic approaches that can be developed in relation to Art and Microbiology in a DIY situation. A special emphasis will be placed on the development of collaborative art and microbiology projects where the artist has to learn some biological research skills in order to create the artwork. The course will consist of a series of intense experimental sessions that will give raise to discussions on the artistic, aesthetic and ethical issues raised by the art and the science involved. Handling these materials and organisms will provoke a reflection on the theoretical issues involved and the course will provide background information on the current diversity of artistic discourses centred on biological sciences, as well a forum for debate.

VIVO Media Arts Centre in Vancouver hosted the Invasive Systems in 2019. From the exhibition page,

Picture this – a world where AI invades human creativity, bacteria invade our brains, and invisible technological signals penetrate all natural environments. Where invasive species from plants to humans transform spaces where they don’t belong, technology infiltrates every aspect of our daily lives, and the waste of human inventions ravages our natural environments.

This weekend festival includes an art-science exhibition [emphasis mine], a hands-on workshop (Sat, separate registration required), and guided discussions and tours by the curator (Sat/Sun). It will showcase collaborative works by three artist/scientist pairs, and independent works by six artists. Opening reception will be on Friday, November 8 starting at 7pm; curator’s remarks and performance by Edzi’u at 7:30pm and 9pm. 

New Westminster’s (British Columbia) New Media Gallery recently hosted an exhibition, ‘winds‘ from June 20 – September 29, 2019 that could be described as an art/sci exhibition,

Landscape and weather have long shared an intimate connection with the arts.  Each of the works here is a landscape: captured, interpreted and presented through a range of technologies. The four artists in this exhibition have taken, as their material process, the movement of wind through physical space & time. They explore how our perception and understanding of landscape can be interpreted through technology. 

These works have been created by what might be understood as a sort of scientific method or process that involves collecting data, acute observation, controlled experiments and the incorporation of measurements and technologies that control or collect motion, pressure, sound, pattern and the like. …

Council of Canadian Academies, Publishing, and Open Access

Established in 2005, the Council of Canadian Academies (CCA) (Wikipedia entry) is tasked by various departments and agencies to answer their queries about science issues that could affect the populace and/or the government. In 2014, the CCA published a report titled, Science Culture: Where Canada Stands. It was in response to the Canada Science and Technology Museums Corporation (now called Ingenium), Industry Canada, and Natural Resources Canada and their joint request that the CCA conduct an in-depth, independent assessment to investigate the state of Canada’s science culture.

I gave a pretty extensive analysis of the report, which I delivered in four parts: Part 1, Part 2 (a), Part 2 (b), and Part 3. In brief, the term ‘science culture’ seems to be specifically, i.e., it’s not used elsewhere in the world (that we know of), Canadian. We have lots to be proud of. I was a little disappointed by the lack of culture (arts) producers on the expert panel and, as usual, I bemoaned the fact that the international community included as reviewers, members of the panel, and as points for comparison were drawn from the usual suspects (US, UK, or somewhere in northern Europe).

Science publishing in Canada took a bit of a turn in 2010, when the country’s largest science publisher, NRC (National Research Council) Research Publisher was cut loose from the government and spun out into the private, *not-for-profit publisher*, Canadian Science Publishing (CSP). From the CSP Wikipedia entry,

Since 2010, Canadian Science Publishing has acquired five new journals:

Since 2010, Canadian Science Publishing has also launched four new journals

Canadian Science Publishing offers researchers options to make their published papers freely available (open access) in their standard journals and in their open access journal, (from the CSP Wikipedia entry)

Arctic Science aims to provide a collaborative approach to Arctic research for a diverse group of users including government, policy makers, the general public, and researchers across all scientific fields

FACETS is Canada’s first open access multidisciplinary science journal, aiming to advance science by publishing research that the multi-faceted global community of research. FACETS is the official journal of the Royal Society of Canada’s Academy of Science.

Anthropocene Coasts aims to understand and predict the effects of human activity, including climate change, on coastal regions.

In addition, Canadian Science Publishing strives to make their content accessible through the CSP blog that includes plain language summaries of featured research. The open-access journal FACETS similarly publishes plain language summaries.

*comment removed*

CSP announced (on Twitter) a new annual contest in 2016,

Canadian Science Publishing@cdnsciencepub

New CONTEST! Announcing Visualizing Science! Share your science images & win great prizes! Full details on the blog http://cdnsciencepub.com/blog/2016-csp-image-contest-visualizing-science.aspx1:45 PM · Sep 19, 2016·TweetDeck

The 2016 blog posting is no longer accessible. Oddly for a contest of this type, I can’t find an image archive for previous contests. Regardless, a 2020 competition has been announced for Summer 2020. There are some details on the VISUALIZING SCIENCE 2020 webpage but some are missing, e.g., no opening date, no deadline. They are encouraging you to sign up for notices.

Back to open access, in a January 22, 2016 posting I featured news about Montreal Neuro (Montreal Neurological Institute [MNI] in Québec, Canada) and its then new policy giving researchers world wide access to its research and made a pledge that it would not seek patents for its work.

Fish, Newfoundland & Labrador, and Prince Edward Island

AquAdvantage’s genetically modified salmon was approved for consumption in Canada according to my May 20, 2016 posting. The salmon are produced/farmed by a US company (AquaBounty) but the the work of genetically modifying Atlantic salmon with genetic material from the Chinook (a Pacific ocean salmon) was mostly undertaken at Memorial University in Newfoundland & Labrador.

The process by which work done in Newfoundland & Labrador becomes the property of a US company is one that’s well known here in Canada. The preliminary work and technology is developed here and then purchased by a US company, which files patents, markets, and profits from it. Interestingly, the fish farms for the AquAdvantage salmon are mostly (two out of three) located on Prince Edward Island.

Intriguingly, 4.5 tonnes of the modified fish were sold for consumption in Canada without consumers being informed (see my Sept. 13, 2017 posting, scroll down about 45% of the way).

It’s not all sunshine and roses where science culture in Canada is concerned. Incidents where Canadians are not informed let alone consulted about major changes in the food supply and other areas are not unusual. Too many times, scientists, politicians, and government policy experts want to spread news about science without any response from the recipients who are in effect viewed as a ‘tabula rasa’ or a blank page.

Tying it all up

This series has been my best attempt to document in some fashion or another the extraordinary range of science culture in Canada from roughly 2010-19. Thank you! This series represents a huge amount of work and effort to develop science culture in Canada and I am deeply thankful that people give so much to this effort.

I have inevitably missed people and organizations and events. For that I am very sorry. (There is an addendum to the series as it’s been hard to stop but I don’t expect to add anything or anyone more.)

I want to mention but can’t expand upon,the Pan-Canadian Artificial Intelligence Strategy, which was established in the 2017 federal budget (see a March 31, 2017 posting about the Vector Institute and Canada’s artificial intelligence sector).

Science Borealis, the Canadian science blog aggregator, owes its existence to Canadian Science Publishing for the support (programming and financial) needed to establish itself and, I believe, that support is still ongoing. I think thanks are also due to Jenny Ryan who was working for CSP and championed the initiative. Jenny now works for Canadian Blood Services. Interestingly, that agency added a new programme, a ‘Lay Science Writing Competition’ in 2018. It’s offered n partnership with two other groups, the Centre for Blood Research at the University of British Columbia and Science Borealis

While the Royal Astronomical Society of Canada does not fit into my time frame as it lists as its founding date December 1, 1868 (18 months after confederation), the organization did celebrate its 150th anniversary in 2018.

Vancouver’s Electric Company often produces theatrical experiences that cover science topics such as the one featured in my June 7, 2013 posting, You are very star—an immersive transmedia experience.

Let’s Talk Science (Wikipedia entry) has been heavily involved with offering STEM (science, technology, engineering, and mathematics) programming both as part of curricular and extra-curricular across Canada since 1993.

This organization predates confederation having been founded in 1849 by Sir Sandford Fleming and Kivas Tully in Toronto. for surveyors, civil engineers, and architects. It is the Royal Canadian Institute of Science (Wikipedia entry)_. With almost no interruption, they have been delivering a regular series of lectures on the University of Toronto campus since 1913.

The Perimeter Institute for Theoretical Physics is a more recent beast. In 1999 Mike Lazirides, founder of Research In Motion (now known as Blackberry Limited), acted as both founder and major benefactor for this institute in Waterloo, Ontario. They offer a substantive and imaginative outreach programmes such as Arts and Culture: “Event Horizons is a series of unique and extraordinary events that aim to stimulate and enthral. It is a showcase of innovative work of the highest international standard, an emotional, intellectual, and creative experience. And perhaps most importantly, it is a social space, where ideas collide and curious minds meet.”

While gene-editing hasn’t seemed to be top-of-mind for anyone other than those in the art/sci community that may change. My April 26, 2019 posting focused on what appears to be a campaign to reverse Canada’s criminal ban on human gene-editing of inheritable cells (germline). With less potential for controversy, there is a discussion about somatic gene therapies and engineered cell therapies. A report from the Council of Canadian is due in the Fall of 2020. (The therapies being discussed do not involve germline editing.)

French language science media and podcasting

Agence Science-Presse is unique as it is the only press agency in Canada devoted to science news. Founded in 1978, it has been active in print, radio, television, online blogs, and podcasts (Baladodiffusion). You can find their Twitter feed here.

I recently stumbled across ‘un balados’ (podcast), titled, 20%. Started in January 2019 by the magazine, Québec Science, the podcast is devoted to women in science and technology. 20%, the podcast’s name, is the statistic representing the number of women in those fields. “Dans les domaines de la science et de la technologie, les femmes ne forment que 20% de la main-d’oeuvre.” (from the podcast webpage) The podcast is a co-production between “Québec Science [founded in 1962] et l’Acfas [formerly, l’Association Canadienne-Française pour l’Avancement des Sciences, now, Association francophone pour le savoir], en collaboration avec la Commission canadienne pour l’UNESCO, L’Oréal Canada et la radio Choq.ca.” (also from the podcast webpage)

Does it mean anything?

There have been many developments since I started writing this series in late December 2019. In January 2020, Iran shot down one of its own planes. That error killed some 176 people , many of them (136 Canadians and students) bound for Canada. The number of people who were involved in the sciences, technology, and medicine was striking.

It was a shocking loss and will reverberate for quite some time. There is a memorial posting here (January 13, 2020), which includes links to another memorial posting and an essay.

As I write this we are dealing with a pandemic, COVID-19, which has us all practicing physical and social distancing. Congregations of large numbers are expressly forbidden. All of this is being done in a bid to lessen the passage of the virus, SARS-CoV-2 which causes COVID-19.

In the short term at least, it seems that much of what I’ve described in these five parts (and the addendum) will undergo significant changes or simply fade away.

As for the long term, with this last 10 years having hosted the most lively science culture scene I can ever recall, I’m hopeful that science culture in Canada will do more than survive but thrive.

For anyone who missed them:

Part 1 covers science communication, science media (mainstream and others such as blogging) and arts as exemplified by music and dance: The decade that was (2010-19) and the decade to come (2020-29): Science culture in Canada (1 of 5).

Part 2 covers art/science (or art/sci or sciart) efforts, science festivals both national and local, international art and technology conferences held in Canada, and various bar/pub/café events: The decade that was (2010-19) and the decade to come (2020-29): Science culture in Canada (2 of 5).

Part 3 covers comedy, do-it-yourself (DIY) biology, chief science advisor, science policy, mathematicians, and more: The decade that was (2010-19) and the decade to come (2020-29): Science culture in Canada (3 of 5)

Part 4 covers citizen science, birds, climate change, indigenous knowledge (science), and the IISD Experimental Lakes Area: The decade that was (2010-19) and the decade to come (2020-29): Science culture in Canada (4 of 5)

*”for-profit publisher, Canadian Science Publishing (CSP)” corrected to “not-for-profit publisher, Canadian Science Publishing (CSP)” and this comment “Not bad for a for-profit business, eh?” removed on April 29, 2020 as per Twitter comments,

Canadian Science Publishing @cdnsciencepub

Hi Maryse, thank you for alerting us to your blog. To clarify, Canadian Science Publishing is a not-for-profit publisher. Thank you as well for sharing our image contest. We’ve updated the contest page to indicate that the contest opens July 2020!

10:01am · 29 Apr 2020 · Twitter Web App

Summer (2019) Institute on AI (artificial intelligence) Societal Impacts, Governance, and Ethics. Summer Institute In Alberta, Canada

The deadline for applications is April 7, 2019. As for whether or not you might like to attend, here’s more from a joint March 11, 2019 Alberta Machine Intelligence Institute (Amii)/
Canadian Institute for Advanced Research (CIFAR)/University of California at Los Angeles (UCLA) Law School news release
(also on globalnewswire.com),

What will Artificial Intelligence (AI) mean for society? That’s the question scholars from a variety of disciplines will explore during the inaugural Summer Institute on AI Societal Impacts, Governance, and Ethics. Summer Institute, co-hosted by the Alberta Machine Intelligence Institute (Amii) and CIFAR, with support from UCLA School of Law, takes place July 22-24, 2019 in Edmonton, Canada.

“Recent advances in AI have brought a surge of attention to the field – both excitement and concern,” says co-organizer and UCLA professor, Edward Parson. “From algorithmic bias to autonomous vehicles, personal privacy to automation replacing jobs. Summer Institute will bring together exceptional people to talk about how humanity can receive the benefits and not get the worst harms from these rapid changes.”

Summer Institute brings together experts, grad students and researchers from multiple backgrounds to explore the societal, governmental, and ethical implications of AI. A combination of lectures, panels, and participatory problem-solving, this comprehensive interdisciplinary event aims to build understanding and action around these high-stakes issues.

“Machine intelligence is opening transformative opportunities across the world,” says John Shillington, CEO of Amii, “and Amii is excited to bring together our own world-leading researchers with experts from areas such as law, philosophy and ethics for this important discussion. Interdisciplinary perspectives will be essential to the ongoing development of machine intelligence and for ensuring these opportunities have the broadest reach possible.”

Over the three-day program, 30 graduate-level students and early-career researchers will engage with leading experts and researchers including event co-organizers: Western University’s Daniel Lizotte, Amii’s Alona Fyshe and UCLA’s Edward Parson. Participants will also have a chance to shape the curriculum throughout this uniquely interactive event.

Summer Institute takes place prior to Deep Learning and Reinforcement Learning Summer School, and includes a combined event on July 24th [2019] for both Summer Institute and Summer School participants.

Visit dlrlsummerschool.ca/the-summer-institute to apply; applications close April 7, 2019.

View our Summer Institute Biographies & Boilerplates for more information on confirmed faculty members and co-hosting organizations. Follow the conversation through social media channels using the hashtag #SI2019.

Media Contact: Spencer Murray, Director of Communications & Public Relations, Amii
t: 587.415.6100 | c: 780.991.7136 | e: spencer.murray@amii.ca

There’s a bit more information on The Summer Institute on AI and Society webpage (on the Deep Learning and Reinforcement Learning Summer School 2019 website) such as this more complete list of speakers,

Confirmed speakers at Summer Institute include:

Alona Fyshe, University of Alberta/Amii (SI co-organizer)
Edward Parson, UCLA (SI co-organizer)
Daniel Lizotte, Western University (SI co-organizer)
Geoffrey Rockwell, University of Alberta
Graham Taylor, University of Guelph/Vector Institute
Rob Lempert, Rand Corporation
Gary Marchant, Arizona State University
Richard Re, UCLA
Evan Selinger, Rochester Institute of Technology
Elana Zeide, UCLA

Two questions, why are all the summer school faculty either Canada- or US-based? What about South American, Asian, Middle Eastern, etc. thinkers?

One last thought, I wonder if this ‘AI & ethics summer institute’ has anything to do with the Pan-Canadian Artificial Intelligence Strategy, which CIFAR administers and where both the University of Alberta and Vector Institute are members.

A potpourri of robot/AI stories: killers , kindergarten teachers, a Balenciaga-inspired AI fashion designer, a conversational android, and more

Following on my August 29, 2018 post (Sexbots, sexbot ethics, families, and marriage), I’m following up with a more general piece.

Robots, AI (artificial intelligence), and androids (humanoid robots), the terms can be confusing since there’s a tendency to use them interchangeably. Confession: I do it too, but, not this time. That said, I have multiple news bits.

Killer ‘bots and ethics

The U.S. military is already testing a Modular Advanced Armed Robotic System. Credit: Lance Cpl. Julien Rodarte, U.S. Marine Corps

That is a robot.

For the purposes of this posting, a robot is a piece of hardware which may or may not include an AI system and does not mimic a human or other biological organism such that you might, under circumstances, mistake the robot for a biological organism.

As for what precipitated this feature (in part), it seems there’s been a United Nations meeting in Geneva, Switzerland held from August 27 – 31, 2018 about war and the use of autonomous robots, i.e., robots equipped with AI systems and designed for independent action. BTW, it’s the not first meeting the UN has held on this topic.

Bonnie Docherty, lecturer on law and associate director of armed conflict and civilian protection, international human rights clinic, Harvard Law School, has written an August 21, 2018 essay on The Conversation (also on phys.org) describing the history and the current rules around the conduct of war, as well as, outlining the issues with the military use of autonomous robots (Note: Links have been removed),

When drafting a treaty on the laws of war at the end of the 19th century, diplomats could not foresee the future of weapons development. But they did adopt a legal and moral standard for judging new technology not covered by existing treaty language.

This standard, known as the Martens Clause, has survived generations of international humanitarian law and gained renewed relevance in a world where autonomous weapons are on the brink of making their own determinations about whom to shoot and when. The Martens Clause calls on countries not to use weapons that depart “from the principles of humanity and from the dictates of public conscience.”

I was the lead author of a new report by Human Rights Watch and the Harvard Law School International Human Rights Clinic that explains why fully autonomous weapons would run counter to the principles of humanity and the dictates of public conscience. We found that to comply with the Martens Clause, countries should adopt a treaty banning the development, production and use of these weapons.

Representatives of more than 70 nations will gather from August 27 to 31 [2018] at the United Nations in Geneva to debate how to address the problems with what they call lethal autonomous weapon systems. These countries, which are parties to the Convention on Conventional Weapons, have discussed the issue for five years. My co-authors and I believe it is time they took action and agreed to start negotiating a ban next year.

Docherty elaborates on her points (Note: A link has been removed),

The Martens Clause provides a baseline of protection for civilians and soldiers in the absence of specific treaty law. The clause also sets out a standard for evaluating new situations and technologies that were not previously envisioned.

Fully autonomous weapons, sometimes called “killer robots,” would select and engage targets without meaningful human control. They would be a dangerous step beyond current armed drones because there would be no human in the loop to determine when to fire and at what target. Although fully autonomous weapons do not yet exist, China, Israel, Russia, South Korea, the United Kingdom and the United States are all working to develop them. They argue that the technology would process information faster and keep soldiers off the battlefield.

The possibility that fully autonomous weapons could soon become a reality makes it imperative for those and other countries to apply the Martens Clause and assess whether the technology would offend basic humanity and the public conscience. Our analysis finds that fully autonomous weapons would fail the test on both counts.

I encourage you to read the essay in its entirety and for anyone who thinks the discussion about ethics and killer ‘bots is new or limited to military use, there’s my July 25, 2016 posting about police use of a robot in Dallas, Texas. (I imagine the discussion predates 2016 but that’s the earliest instance I have here.)

Teacher bots

Robots come in many forms and this one is on the humanoid end of the spectum,

Children watch a Keeko robot at the Yiswind Institute of Multicultural Education in Beijing, where the intelligent machines are telling stories and challenging kids with logic problems  [donwloaded from https://phys.org/news/2018-08-robot-teachers-invade-chinese-kindergartens.html]

Don’t those ‘eyes’ look almost heart-shaped? No wonder the kids love these robots, if an August  29, 2018 news item on phys.org can be believed,

The Chinese kindergarten children giggled as they worked to solve puzzles assigned by their new teaching assistant: a roundish, short educator with a screen for a face.

Just under 60 centimetres (two feet) high, the autonomous robot named Keeko has been a hit in several kindergartens, telling stories and challenging children with logic problems.

Round and white with a tubby body, the armless robot zips around on tiny wheels, its inbuilt cameras doubling up both as navigational sensors and a front-facing camera allowing users to record video journals.

In China, robots are being developed to deliver groceries, provide companionship to the elderly, dispense legal advice and now, as Keeko’s creators hope, join the ranks of educators.

At the Yiswind Institute of Multicultural Education on the outskirts of Beijing, the children have been tasked to help a prince find his way through a desert—by putting together square mats that represent a path taken by the robot—part storytelling and part problem-solving.

Each time they get an answer right, the device reacts with delight, its face flashing heart-shaped eyes.

“Education today is no longer a one-way street, where the teacher teaches and students just learn,” said Candy Xiong, a teacher trained in early childhood education who now works with Keeko Robot Xiamen Technology as a trainer.

“When children see Keeko with its round head and body, it looks adorable and children love it. So when they see Keeko, they almost instantly take to it,” she added.

Keeko robots have entered more than 600 kindergartens across the country with its makers hoping to expand into Greater China and Southeast Asia.

Beijing has invested money and manpower in developing artificial intelligence as part of its “Made in China 2025” plan, with a Chinese firm last year unveiling the country’s first human-like robot that can hold simple conversations and make facial expressions.

According to the International Federation of Robots, China has the world’s top industrial robot stock, with some 340,000 units in factories across the country engaged in manufacturing and the automotive industry.

Moving on from hardware/software to a software only story.

AI fashion designer better than Balenciaga?

Despite the title for Katharine Schwab’s August 22, 2018 article for Fast Company, I don’t think this AI designer is better than Balenciaga but from the pictures I’ve seen the designs are as good and it does present some intriguing possibilities courtesy of its neural network (Note: Links have been removed),

The AI, created by researcher Robbie Barat, has created an entire collection based on Balenciaga’s previous styles. There’s a fabulous pink and red gradient jumpsuit that wraps all the way around the model’s feet–like a onesie for fashionistas–paired with a dark slouchy coat. There’s a textural color-blocked dress, paired with aqua-green tights. And for menswear, there’s a multi-colored, shimmery button-up with skinny jeans and mismatched shoes. None of these looks would be out of place on the runway.

To create the styles, Barat collected images of Balenciaga’s designs via the designer’s lookbooks, ad campaigns, runway shows, and online catalog over the last two months, and then used them to train the pix2pix neural net. While some of the images closely resemble humans wearing fashionable clothes, many others are a bit off–some models are missing distinct limbs, and don’t get me started on how creepy [emphasis mine] their faces are. Even if the outfits aren’t quite ready to be fabricated, Barat thinks that designers could potentially use a tool like this to find inspiration. Because it’s not constrained by human taste, style, and history, the AI comes up with designs that may never occur to a person. “I love how the network doesn’t really understand or care about symmetry,” Barat writes on Twitter.

You can see the ‘creepy’ faces and some of the designs here,

Image: Robbie Barat

In contrast to the previous two stories, this all about algorithms, no machinery with independent movement (robot hardware) needed.

Conversational android: Erica

Hiroshi Ishiguro and his lifelike (definitely humanoid) robots have featured here many, many times before. The most recent posting is a March 27, 2017 posting about his and his android’s participation at the 2017 SXSW festival.

His latest work is featured in an August 21, 2018 news news item on ScienceDaily,

We’ve all tried talking with devices, and in some cases they talk back. But, it’s a far cry from having a conversation with a real person.

Now a research team from Kyoto University, Osaka University, and the Advanced Telecommunications Research Institute, or ATR, have significantly upgraded the interaction system for conversational android ERICA, giving her even greater dialog skills.

ERICA is an android created by Hiroshi Ishiguro of Osaka University and ATR, specifically designed for natural conversation through incorporation of human-like facial expressions and gestures. The research team demonstrated the updates during a symposium at the National Museum of Emerging Science in Tokyo.

Here’s the latest conversational android, Erica

Caption: The experimental set up when the subject (left) talks with ERICA (right) Credit: Kyoto University / Kawahara lab

An August 20, 2018 Kyoto University press release on EurekAlert, which originated the news item, offers more details,

When we talk to one another, it’s never a simple back and forward progression of information,” states Tatsuya Kawahara of Kyoto University’s Graduate School of Informatics, and an expert in speech and audio processing.

“Listening is active. We express agreement by nodding or saying ‘uh-huh’ to maintain the momentum of conversation. This is called ‘backchanneling’, and is something we wanted to implement with ERICA.”

The team also focused on developing a system for ‘attentive listening’. This is when a listener asks elaborating questions, or repeats the last word of the speaker’s sentence, allowing for more engaging dialogue.

Deploying a series of distance sensors, facial recognition cameras, and microphone arrays, the team began collecting data on parameters necessary for a fluid dialog between ERICA and a human subject.

“We looked at three qualities when studying backchanneling,” continues Kawahara. “These were: timing — when a response happens; lexical form — what is being said; and prosody, or how the response happens.”

Responses were generated through machine learning using a counseling dialogue corpus, resulting in dramatically improved dialog engagement. Testing in five-minute sessions with a human subject, ERICA demonstrated significantly more dynamic speaking skill, including the use of backchanneling, partial repeats, and statement assessments.

“Making a human-like conversational robot is a major challenge,” states Kawahara. “This project reveals how much complexity there is in listening, which we might consider mundane. We are getting closer to a day where a robot can pass a Total Turing Test.”

Erica seems to have been first introduced publicly in Spring 2017, from an April 2017 Erica: Man Made webpage on The Guardian website,

Erica is 23. She has a beautiful, neutral face and speaks with a synthesised voice. She has a degree of autonomy – but can’t move her hands yet. Hiroshi Ishiguro is her ‘father’ and the bad boy of Japanese robotics. Together they will redefine what it means to be human and reveal that the future is closer than we might think.

Hiroshi Ishiguro and his colleague Dylan Glas are interested in what makes a human. Erica is their latest creation – a semi-autonomous android, the product of the most funded scientific project in Japan. But these men regard themselves as artists more than scientists, and the Erica project – the result of a collaboration between Osaka and Kyoto universities and the Advanced Telecommunications Research Institute International – is a philosophical one as much as technological one.

Erica is interviewed about her hope and dreams – to be able to leave her room and to be able to move her arms and legs. She likes to chat with visitors and has one of the most advanced speech synthesis systems yet developed. Can she be regarded as being alive or as a comparable being to ourselves? Will she help us to understand ourselves and our interactions as humans better?

Erica and her creators are interviewed in the science fiction atmosphere of Ishiguro’s laboratory, and this film asks how we might form close relationships with robots in the future. Ishiguro thinks that for Japanese people especially, everything has a soul, whether human or not. If we don’t understand how human hearts, minds and personalities work, can we truly claim that humans have authenticity that machines don’t?

Ishiguro and Glas want to release Erica and her fellow robots into human society. Soon, Erica may be an essential part of our everyday life, as one of the new children of humanity.

Key credits

  • Director/Editor: Ilinca Calugareanu
  • Producer: Mara Adina
  • Executive producers for the Guardian: Charlie Phillips and Laurence Topham
  • This video is produced in collaboration with the Sundance Institute Short Documentary Fund supported by the John D and Catherine T MacArthur Foundation

You can also view the 14 min. film here.

Artworks generated by an AI system are to be sold at Christie’s auction house

KC Ifeanyi’s August 22, 2018 article for Fast Company may send a chill down some artists’ spines,

For the first time in its 252-year history, Christie’s will auction artwork generated by artificial intelligence.

Created by the French art collective Obvious, “Portrait of Edmond de Belamy” is part of a series of paintings of the fictional Belamy family that was created using a two-part algorithm. …

The portrait is estimated to sell anywhere between $7,000-$10,000, and Obvious says the proceeds will go toward furthering its algorithm.

… Famed collector Nicolas Laugero-Lasserre bought one of Obvious’s Belamy works in February, which could’ve been written off as a novel purchase where the story behind it is worth more than the piece itself. However, with validation from a storied auction house like Christie’s, AI art could shake the contemporary art scene.

“Edmond de Belamy” goes up for auction from October 23-25 [2018].

Jobs safe from automation? Are there any?

Michael Grothaus expresses more optimism about future job markets than I’m feeling in an August 30, 2018 article for Fast Company,

A 2017 McKinsey Global Institute study of 800 occupations across 46 countries found that by 2030, 800 million people will lose their jobs to automation. That’s one-fifth of the global workforce. A further one-third of the global workforce will need to retrain if they want to keep their current jobs as well. And looking at the effects of automation on American jobs alone, researchers from Oxford University found that “47 percent of U.S. workers have a high probability of seeing their jobs automated over the next 20 years.”

The good news is that while the above stats are rightly cause for concern, they also reveal that 53% of American jobs and four-fifths of global jobs are unlikely to be affected by advances in artificial intelligence and robotics. But just what are those fields? I spoke to three experts in artificial intelligence, robotics, and human productivity to get their automation-proof career advice.

Creatives

“Although I believe every single job can, and will, benefit from a level of AI or robotic influence, there are some roles that, in my view, will never be replaced by technology,” says Tom Pickersgill, …

Maintenance foreman

When running a production line, problems and bottlenecks are inevitable–and usually that’s a bad thing. But in this case, those unavoidable issues will save human jobs because their solutions will require human ingenuity, says Mark Williams, head of product at People First, …

Hairdressers

Mat Hunter, director of the Central Research Laboratory, a tech-focused co-working space and accelerator for tech startups, have seen startups trying to create all kinds of new technologies, which has given him insight into just what machines can and can’t pull off. It’s lead him to believe that jobs like the humble hairdresser are safer from automation than those of, says, accountancy.

Therapists and social workers

Another automation-proof career is likely to be one involved in helping people heal the mind, says Pickersgill. “People visit therapists because there is a need for emotional support and guidance. This can only be provided through real human interaction–by someone who can empathize and understand, and who can offer advice based on shared experiences, rather than just data-driven logic.”

Teachers

Teachers are so often the unsung heroes of our society. They are overworked and underpaid–yet charged with one of the most important tasks anyone can have: nurturing the growth of young people. The good news for teachers is that their jobs won’t be going anywhere.

Healthcare workers

Doctors and nurses will also likely never see their jobs taken by automation, says Williams. While automation will no doubt better enhance the treatments provided by doctors and nurses the fact of the matter is that robots aren’t going to outdo healthcare workers’ ability to connect with patients and make them feel understood the way a human can.

Caretakers

While humans might be fine with robots flipping their burgers and artificial intelligence managing their finances, being comfortable with a robot nannying your children or looking after your elderly mother is a much bigger ask. And that’s to say nothing of the fact that even today’s most advanced robots don’t have the physical dexterity to perform the movements and actions carers do every day.

Grothaus does offer a proviso in his conclusion: certain types of jobs are relatively safe until developers learn to replicate qualities such as empathy in robots/AI.

It’s very confusing

There’s so much news about robots, artificial intelligence, androids, and cyborgs that it’s hard to keep up with it let alone attempt to get a feeling for where all this might be headed. When you add the fact that the term robots/artificial inteligence are often used interchangeably and that the distinction between robots/androids/cyborgs is not always clear any attempts to peer into the future become even more challenging.

At this point I content myself with tracking the situation and finding definitions so I can better understand what I’m tracking. Carmen Wong’s August 23, 2018 posting on the Signals blog published by Canada’s Centre for Commercialization of Regenerative Medicine (CCRM) offers some useful definitions in the context of an article about the use of artificial intelligence in the life sciences, particularly in Canada (Note: Links have been removed),

Artificial intelligence (AI). Machine learning. To most people, these are just buzzwords and synonymous. Whether or not we fully understand what both are, they are slowly integrating into our everyday lives. Virtual assistants such as Siri? AI is at work. The personalized ads you see when you are browsing on the web or movie recommendations provided on Netflix? Thank AI for that too.

AI is defined as machines having intelligence that imitates human behaviour such as learning, planning and problem solving. A process used to achieve AI is called machine learning, where a computer uses lots of data to “train” or “teach” itself, without human intervention, to accomplish a pre-determined task. Essentially, the computer keeps on modifying its algorithm based on the information provided to get to the desired goal.

Another term you may have heard of is deep learning. Deep learning is a particular type of machine learning where algorithms are set up like the structure and function of human brains. It is similar to a network of brain cells interconnecting with each other.

Toronto has seen its fair share of media-worthy AI activity. The Government of Canada, Government of Ontario, industry and multiple universities came together in March 2018 to launch the Vector Institute, with the goal of using AI to promote economic growth and improve the lives of Canadians. In May, Samsung opened its AI Centre in the MaRS Discovery District, joining a network of Samsung centres located in California, United Kingdom and Russia.

There has been a boom in AI companies over the past few years, which span a variety of industries. This year’s ranking of the top 100 most promising private AI companies covers 25 fields with cybersecurity, enterprise and robotics being the hot focus areas.

Wong goes on to explore AI deployment in the life sciences and concludes that human scientists and doctors will still be needed although she does note this in closing (Note: A link has been removed),

More importantly, empathy and support from a fellow human being could never be fully replaced by a machine (could it?), but maybe this will change in the future. We will just have to wait and see.

Artificial empathy is the term used in Lisa Morgan’s April 25, 2018 article for Information Week which unfortunately does not include any links to actual projects or researchers working on artificial empathy. Instead, the article is focused on how business interests and marketers would like to see it employed. FWIW, I have found a few references: (1) Artificial empathy Wikipedia essay (look for the references at the end of the essay for more) and (2) this open access article: Towards Artificial Empathy; How Can Artificial Empathy Follow the Developmental Pathway of Natural Empathy? by Minoru Asada.

Please let me know in the comments if you should have an insights on the matter in the comments section of this blog.

Vector Institute and Canada’s artificial intelligence sector

On the heels of the March 22, 2017 federal budget announcement of $125M for a Pan-Canadian Artificial Intelligence Strategy, the University of Toronto (U of T) has announced the inception of the Vector Institute for Artificial Intelligence in a March 28, 2017 news release by Jennifer Robinson (Note: Links have been removed),

A team of globally renowned researchers at the University of Toronto is driving the planning of a new institute staking Toronto’s and Canada’s claim as the global leader in AI.

Geoffrey Hinton, a University Professor Emeritus in computer science at U of T and vice-president engineering fellow at Google, will serve as the chief scientific adviser of the newly created Vector Institute based in downtown Toronto.

“The University of Toronto has long been considered a global leader in artificial intelligence research,” said U of T President Meric Gertler. “It’s wonderful to see that expertise act as an anchor to bring together researchers, government and private sector actors through the Vector Institute, enabling them to aim even higher in leading advancements in this fast-growing, critical field.”

As part of the Government of Canada’s Pan-Canadian Artificial Intelligence Strategy, Vector will share $125 million in federal funding with fellow institutes in Montreal and Edmonton. All three will conduct research and secure talent to cement Canada’s position as a world leader in AI.

In addition, Vector is expected to receive funding from the Province of Ontario and more than 30 top Canadian and global companies eager to tap this pool of talent to grow their businesses. The institute will also work closely with other Ontario universities with AI talent.

(See my March 24, 2017 posting; scroll down about 25% for the science part, including the Pan-Canadian Artificial Intelligence Strategy of the budget.)

Not obvious in last week’s coverage of the Pan-Canadian Artificial Intelligence Strategy is that the much lauded Hinton has been living in the US and working for Google. These latest announcements (Pan-Canadian AI Strategy and Vector Institute) mean that he’s moving back.

A March 28, 2017 article by Kate Allen for TorontoStar.com provides more details about the Vector Institute, Hinton, and the Canadian ‘brain drain’ as it applies to artificial intelligence, (Note:  A link has been removed)

Toronto will host a new institute devoted to artificial intelligence, a major gambit to bolster a field of research pioneered in Canada but consistently drained of talent by major U.S. technology companies like Google, Facebook and Microsoft.

The Vector Institute, an independent non-profit affiliated with the University of Toronto, will hire about 25 new faculty and research scientists. It will be backed by more than $150 million in public and corporate funding in an unusual hybridization of pure research and business-minded commercial goals.

The province will spend $50 million over five years, while the federal government, which announced a $125-million Pan-Canadian Artificial Intelligence Strategy in last week’s budget, is providing at least $40 million, backers say. More than two dozen companies have committed millions more over 10 years, including $5 million each from sponsors including Google, Air Canada, Loblaws, and Canada’s five biggest banks [Bank of Montreal (BMO). Canadian Imperial Bank of Commerce ({CIBC} President’s Choice Financial},  Royal Bank of Canada (RBC), Scotiabank (Tangerine), Toronto-Dominion Bank (TD Canada Trust)].

The mode of artificial intelligence that the Vector Institute will focus on, deep learning, has seen remarkable results in recent years, particularly in image and speech recognition. Geoffrey Hinton, considered the “godfather” of deep learning for the breakthroughs he made while a professor at U of T, has worked for Google since 2013 in California and Toronto.

Hinton will move back to Canada to lead a research team based at the tech giant’s Toronto offices and act as chief scientific adviser of the new institute.

Researchers trained in Canadian artificial intelligence labs fill the ranks of major technology companies, working on tools like instant language translation, facial recognition, and recommendation services. Academic institutions and startups in Toronto, Waterloo, Montreal and Edmonton boast leaders in the field, but other researchers have left for U.S. universities and corporate labs.

The goals of the Vector Institute are to retain, repatriate and attract AI talent, to create more trained experts, and to feed that expertise into existing Canadian companies and startups.

Hospitals are expected to be a major partner, since health care is an intriguing application for AI. Last month, researchers from Stanford University announced they had trained a deep learning algorithm to identify potentially cancerous skin lesions with accuracy comparable to human dermatologists. The Toronto company Deep Genomics is using deep learning to read genomes and identify mutations that may lead to disease, among other things.

Intelligent algorithms can also be applied to tasks that might seem less virtuous, like reading private data to better target advertising. Zemel [Richard Zemel, the institute’s research director and a professor of computer science at U of T] says the centre is creating an ethics working group [emphasis mine] and maintaining ties with organizations that promote fairness and transparency in machine learning. As for privacy concerns, “that’s something we are well aware of. We don’t have a well-formed policy yet but we will fairly soon.”

The institute’s annual funding pales in comparison to the revenues of the American tech giants, which are measured in tens of billions. The risk the institute’s backers are taking is simply creating an even more robust machine learning PhD mill for the U.S.

“They obviously won’t all stay in Canada, but Toronto industry is very keen to get them,” Hinton said. “I think Trump might help there.” Two researchers on Hinton’s new Toronto-based team are Iranian, one of the countries targeted by U.S. President Donald Trump’s travel bans.

Ethics do seem to be a bit of an afterthought. Presumably the Vector Institute’s ‘ethics working group’ won’t include any regular folks. Is there any thought to what the rest of us think about these developments? As there will also be some collaboration with other proposed AI institutes including ones at the University of Montreal (Université de Montréal) and the University of Alberta (Kate McGillivray’s article coming up shortly mentions them), might the ethics group be centered in either Edmonton or Montreal? Interestingly, two Canadians (Timothy Caulfield at the University of Alberta and Eric Racine at Université de Montréa) testified at the US Commission for the Study of Bioethical Issues Feb. 10 – 11, 2014 meeting, the Brain research, ethics, and nanotechnology. Still speculating here but I imagine Caulfield and/or Racine could be persuaded to extend their expertise in ethics and the human brain to AI and its neural networks.

Getting back to the topic at hand the ‘AI sceneCanada’, Allen’s article is worth reading in its entirety if you have the time.

Kate McGillivray’s March 29, 2017 article for the Canadian Broadcasting Corporation’s (CBC) news online provides more details about the Canadian AI situation and the new strategies,

With artificial intelligence set to transform our world, a new institute is putting Toronto to the front of the line to lead the charge.

The Vector Institute for Artificial Intelligence, made possible by funding from the federal government revealed in the 2017 budget, will move into new digs in the MaRS Discovery District by the end of the year.

Vector’s funding comes partially from a $125 million investment announced in last Wednesday’s federal budget to launch a pan-Canadian artificial intelligence strategy, with similar institutes being established in Montreal and Edmonton.

“[A.I.] cuts across pretty well every sector of the economy,” said Dr. Alan Bernstein, CEO and president of the Canadian Institute for Advanced Research, the organization tasked with administering the federal program.

“Silicon Valley and England and other places really jumped on it, so we kind of lost the lead a little bit. I think the Canadian federal government has now realized that,” he said.

Stopping up the brain drain

Critical to the strategy’s success is building a homegrown base of A.I. experts and innovators — a problem in the last decade, despite pioneering work on so-called “Deep Learning” by Canadian scholars such as Yoshua Bengio and Geoffrey Hinton, a former University of Toronto professor who will now serve as Vector’s chief scientific advisor.

With few university faculty positions in Canada and with many innovative companies headquartered elsewhere, it has been tough to keep the few graduates specializing in A.I. in town.

“We were paying to educate people and shipping them south,” explained Ed Clark, chair of the Vector Institute and business advisor to Ontario Premier Kathleen Wynne.

The existence of that “fantastic science” will lean heavily on how much buy-in Vector and Canada’s other two A.I. centres get.

Toronto’s portion of the $125 million is a “great start,” said Bernstein, but taken alone, “it’s not enough money.”

“My estimate of the right amount of money to make a difference is a half a billion or so, and I think we will get there,” he said.

Jessica Murphy’s March 29, 2017 article for the British Broadcasting Corporation’s (BBC) news online offers some intriguing detail about the Canadian AI scene,

Canadian researchers have been behind some recent major breakthroughs in artificial intelligence. Now, the country is betting on becoming a big player in one of the hottest fields in technology, with help from the likes of Google and RBC [Royal Bank of Canada].

In an unassuming building on the University of Toronto’s downtown campus, Geoff Hinton laboured for years on the “lunatic fringe” of academia and artificial intelligence, pursuing research in an area of AI called neural networks.

Also known as “deep learning”, neural networks are computer programs that learn in similar way to human brains. The field showed early promise in the 1980s, but the tech sector turned its attention to other AI methods after that promise seemed slow to develop.

“The approaches that I thought were silly were in the ascendancy and the approach that I thought was the right approach was regarded as silly,” says the British-born [emphasis mine] professor, who splits his time between the university and Google, where he is a vice-president of engineering fellow.

Neural networks are used by the likes of Netflix to recommend what you should binge watch and smartphones with voice assistance tools. Google DeepMind’s AlphaGo AI used them to win against a human in the ancient game of Go in 2016.

Foteini Agrafioti, who heads up the new RBC Research in Machine Learning lab at the University of Toronto, said those recent innovations made AI attractive to researchers and the tech industry.

“Anything that’s powering Google’s engines right now is powered by deep learning,” she says.

Developments in the field helped jumpstart innovation and paved the way for the technology’s commercialisation. They also captured the attention of Google, IBM and Microsoft, and kicked off a hiring race in the field.

The renewed focus on neural networks has boosted the careers of early Canadian AI machine learning pioneers like Hinton, the University of Montreal’s Yoshua Bengio, and University of Alberta’s Richard Sutton.

Money from big tech is coming north, along with investments by domestic corporations like banking multinational RBC and auto parts giant Magna, and millions of dollars in government funding.

Former banking executive Ed Clark will head the institute, and says the goal is to make Toronto, which has the largest concentration of AI-related industries in Canada, one of the top five places in the world for AI innovation and business.

The founders also want it to serve as a magnet and retention tool for top talent aggressively head-hunted by US firms.

Clark says they want to “wake up” Canadian industry to the possibilities of AI, which is expected to have a massive impact on fields like healthcare, banking, manufacturing and transportation.

Google invested C$4.5m (US$3.4m/£2.7m) last November [2016] in the University of Montreal’s Montreal Institute for Learning Algorithms.

Microsoft is funding a Montreal startup, Element AI. The Seattle-based company also announced it would acquire Montreal-based Maluuba and help fund AI research at the University of Montreal and McGill University.

Thomson Reuters and General Motors both recently moved AI labs to Toronto.

RBC is also investing in the future of AI in Canada, including opening a machine learning lab headed by Agrafioti, co-funding a program to bring global AI talent and entrepreneurs to Toronto, and collaborating with Sutton and the University of Alberta’s Machine Intelligence Institute.

Canadian tech also sees the travel uncertainty created by the Trump administration in the US as making Canada more attractive to foreign talent. (One of Clark’s the selling points is that Toronto as an “open and diverse” city).

This may reverse the ‘brain drain’ but it appears Canada’s role as a ‘branch plant economy’ for foreign (usually US) companies could become an important discussion once more. From the ‘Foreign ownership of companies of Canada’ Wikipedia entry (Note: Links have been removed),

Historically, foreign ownership was a political issue in Canada in the late 1960s and early 1970s, when it was believed by some that U.S. investment had reached new heights (though its levels had actually remained stable for decades), and then in the 1980s, during debates over the Free Trade Agreement.

But the situation has changed, since in the interim period Canada itself became a major investor and owner of foreign corporations. Since the 1980s, Canada’s levels of investment and ownership in foreign companies have been larger than foreign investment and ownership in Canada. In some smaller countries, such as Montenegro, Canadian investment is sizable enough to make up a major portion of the economy. In Northern Ireland, for example, Canada is the largest foreign investor. By becoming foreign owners themselves, Canadians have become far less politically concerned about investment within Canada.

Of note is that Canada’s largest companies by value, and largest employers, tend to be foreign-owned in a way that is more typical of a developing nation than a G8 member. The best example is the automotive sector, one of Canada’s most important industries. It is dominated by American, German, and Japanese giants. Although this situation is not unique to Canada in the global context, it is unique among G-8 nations, and many other relatively small nations also have national automotive companies.

It’s interesting to note that sometimes Canadian companies are the big investors but that doesn’t change our basic position. And, as I’ve noted in other postings (including the March 24, 2017 posting), these government investments in science and technology won’t necessarily lead to a move away from our ‘branch plant economy’ towards an innovative Canada.

You can find out more about the Vector Institute for Artificial Intelligence here.

BTW, I noted that reference to Hinton as ‘British-born’ in the BBC article. He was educated in the UK and subsidized by UK taxpayers (from his Wikipedia entry; Note: Links have been removed),

Hinton was educated at King’s College, Cambridge graduating in 1970, with a Bachelor of Arts in experimental psychology.[1] He continued his study at the University of Edinburgh where he was awarded a PhD in artificial intelligence in 1977 for research supervised by H. Christopher Longuet-Higgins.[3][12]

It seems Canadians are not the only ones to experience  ‘brain drains’.

Finally, I wrote at length about a recent initiative taking place between the University of British Columbia (Vancouver, Canada) and the University of Washington (Seattle, Washington), the Cascadia Urban Analytics Cooperative in a Feb. 28, 2017 posting noting that the initiative is being funded by Microsoft to the tune $1M and is part of a larger cooperative effort between the province of British Columbia and the state of Washington. Artificial intelligence is not the only area where US technology companies are hedging their bets (against Trump’s administration which seems determined to terrify people from crossing US borders) by investing in Canada.

For anyone interested in a little more information about AI in the US and China, there’s today’s (March 31, 2017)earlier posting: China, US, and the race for artificial intelligence research domination.