Tag Archives: Canadian Institutes of Health Research (CIHR)

The 2023 Canadian federal budget: science & technology of health, the clean economy, reconciliation, and more (1 of 2)

The Canadian federal government released its 2023 budget on Tuesday, March 28, 2023. There were no flashy science research announcements in the budget. Trudeau and his team like to trumpet science initiatives and grand plans (even if they’re reannouncing something from a previous budget) but like last year—this year—not so much.

Consequently, this posting about the annual federal budget should have been shorter than usual. What happened?

Partly, it’s the military spending (chapter 5 of the budget in part 2 of this 2023 budget post). For those who are unfamiliar with the link between military scientific research and their impact on the general population, there are a number of inventions and innovations directly due to military research, e.g., plastic surgery, television, and the internet. (You can check a November 6, 2018 essay for The Conversation by Robert Kirby, Professor of Clinical Education and Surgery at Keele University, for more about the impact of World War 1 and medical research, “World War I: the birth of plastic surgery and modern anaesthesia.”)

So, there’s a lot to be found by inference. Consequently, I found Chapter 3 to also be unexpectedly rich in science and technology efforts.

Throughout both parts of this 2023 Canadian federal budget post, you will find excerpts from individual chapters of the federal budget followed my commentary directly after. My general commentary is reserved for the end.

Sometimes, I have included an item because it piqued my interest. E.g., Canadian agriculture is dependent on Russian fertilizer!!! News to me and I imagine many others. BTW, this budget aims to wean us from this dependency.

Chapter 2: Investing in Public Health Care and Affordable Dental Care

Here goes: from https://www.budget.canada.ca/2023/report-rapport/toc-tdm-en.html,

2.1 Investing in Public Health Care

Improving Canada’s Readiness for Health Emergencies

Vaccines and other cutting-edge life-science innovations have helped us to take control of the COVID-19 pandemic. To support these efforts, the federal government has committed significant funding towards the revitalization of Canada’s biomanufacturing sector through a Biomanufacturing and Life Sciences Strategy [emphasis mine]. To date, the government has invested more than $1.8 billion in 32 vaccine, therapeutic, and biomanufacturing projects across Canada, alongside $127 million for upgrades to specialized labs at universities across the country. Canada is building a life sciences ecosystem that is attracting major investments from leading global companies, including Moderna, AstraZeneca, and Sanofi.

To build upon the progress of the past three years, the government will explore new ways to be more efficient and effective in the development and production of the vaccines, therapies, and diagnostic tools that would be required for future health emergencies. As a first step, the government will further consult Canadian and international experts on how to best organize our readiness efforts for years to come. …

Gold rush in them thar life sciences

I have covered the rush to capitalize on Canadian life sciences research (with a special emphasis on British Columbia) in various posts including (amongst others): my December 30, 2020 posting “Avo Media, Science Telephone, and a Canadian COVID-19 billionaire scientist,” and my August 23, 2021 posting “Who’s running the life science companies’ public relations campaign in British Columbia (Vancouver, Canada)?” There’s also my August 20, 2021 posting “Getting erased from the mRNA/COVID-19 story,” highlighting how brutal the competition amongst these Canadian researchers can be.

Getting back to the 2023 budget, ‘The Biomanufacturing and Life Sciences Strategy’ mentioned in this latest budget was announced in a July 28, 2021 Innovation, Science and Economic Development Canada news release. You can find the strategy here and an overview of the strategy here. You may want to check out the overview as it features links to,

What We Heard Report: Results of the consultation on biomanufacturing and life sciences capacity in Canada

Ontario’s Strategy: Taking life sciences to the next level

Quebec’s Strategy: 2022–2025 Québec Life Sciences Strategy

Nova Scotia’s Strategy: BioFuture2030 Prince Edward Island’s Strategy:

The Prince Edward Island Bioscience Cluster [emphases mine]

2022 saw one government announcement concerning the strategy, from a March 3, 2022 Innovation, Science and Economic Development Canada news release, Note: Links have been removed,

Protecting the health and safety of Canadians and making sure we have the domestic capacity to respond to future health crises are top priorities of the Government of Canada. With the guidance of Canada’s Biomanufacturing and Life Sciences Strategy, the government is actively supporting the growth of a strong, competitive domestic life sciences sector, with cutting-edge biomanufacturing capabilities.

Today [March 3, 2022], the Honourable François-Philippe Champagne, Minister of Innovation, Science and Industry, announced a $92 million investment in adMare BioInnovations to drive company innovation, scale-up and training activities in Canada’s life sciences sector. This investment will help translate commercially promising health research into innovative new therapies and will see Canadian anchor companies provide the training required and drive the growth of Canada’s life science companies.

The real action took place earlier this month (March 2023) just prior to the budget. Oddly, I can’t find any mention of these initiatives in the budget document. (Confession: I have not given the 2023 budget a close reading although I have been through the whole budget once and viewed individual chapters more closely a few times.)

This March 2, 2023 (?) Tri-agency Institutional Programs Secretariat news release kicked things off, Note 1: I found the date at the bottom of their webpage; Note 2: Links have been removed,

The Government of Canada’s main priority continues to be protecting the health and safety of Canadians. Throughout the pandemic, the quick and decisive actions taken by the government meant that Canada was able to scale up domestic biomanufacturing capacity, which had been in decline for over 40 years. Since then, the government is rebuilding a strong and competitive biomanufacturing and life sciences sector brick by brick. This includes strengthening the foundations of the life sciences ecosystem through the research and talent of Canada’s world-class postsecondary institutions and research hospitals, as well as fostering increased collaboration with innovative companies.

Today [March 2, 2023?], the Honourable François-Philippe Champagne, Minister of Innovation, Science and Industry, and the Honourable Jean-Yves Duclos, Minister of Health, announced an investment of $10 million in support of the creation of five research hubs [emphasis mine]:

  • CBRF PRAIRIE Hub, led by the University of Alberta
  • Canada’s Immuno-Engineering and Biomanufacturing Hub, led by The University of British Columbia
  • Eastern Canada Pandemic Preparedness Hub, led by the Université de Montréal
  • Canadian Pandemic Preparedness Hub, led by the University of Ottawa and McMaster University
  • Canadian Hub for Health Intelligence & Innovation in Infectious Diseases, led by the University of Toronto

This investment, made through Stage 1 of the integrated Canada Biomedical Research Fund (CBRF) and Biosciences Research Infrastructure Fund (BRIF) competition, will bolster research and talent development efforts led by the institutions, working in collaboration with their partners. The hubs combine the strengths of academia, industry and the public and not-for-profit sectors to jointly improve pandemic readiness and the overall health and well-being of Canadians.

The multidisciplinary research hubs will accelerate the research and development of next-generation vaccines and therapeutics and diagnostics, while supporting training and development to expand the pipeline of skilled talent. The hubs will also accelerate the translation of promising research into commercially viable products and processes. This investment helps to strengthen the resilience of Canada’s life sciences sector by supporting leading Canadian research in innovative technologies that keep us safe and boost our economy.

Today’s [March 2, 2023?] announcement also launched Stage 2 of the CBRF-BRIF competition. This is a national competition that includes $570 million in available funding for proposals, aimed at cutting-edge research, talent development and research infrastructure projects associated with the selected research hubs. By strengthening research and talent capacity and leveraging collaborations across the entire biomanufacturing ecosystem, Canada will be better prepared to face future pandemics, in order to protect Canadian’s health and safety. 

Then, the Innovation, Science and Economic Development Canada’s March 9, 2023 news release made this announcement, Note: Links have been removed,

Since March 2020, major achievements have been made to rebuild a vibrant domestic life sciences ecosystem to protect Canadians against future health threats. The growth of the sector is a top priority for the Government of Canada, and with over $1.8 billion committed to 33 projects to boost our domestic biomanufacturing, vaccine and therapeutics capacity, we are strengthening our resiliency for current health emergencies and our readiness for future ones.

The COVID-19 Vaccine Task Force played a critical role in guiding and supporting the Government of Canada’s COVID-19 vaccine response. Today [March 9, 2023], recognizing the importance of science-based decisions, the Honourable François-Philippe Champagne, Minister of Innovation, Science and Industry, and the Honourable Jean-Yves Duclos, Minister of Health, are pleased to announce the creation of the Council of Expert Advisors (CEA). The 14 members of the CEA, who held their first official meeting earlier this week, will advise the Government of Canada on the long-term, sustainable growth of Canada’s biomanufacturing and life sciences sector, and on how to enhance our preparedness and capacity to protect the health and safety of Canadians.

The membership of the CEA comprises leaders with in-depth scientific, industrial, academic and public health expertise. The CEA co-chairs are Joanne Langley, Professor of Pediatrics and of Community Health and Epidemiology at the Dalhousie University Faculty of Medicine, and Division Head of Infectious Diseases at the IWK Health Centre; and Marco Marra, Professor in Medical Genetics at the University of British Columbia (UBC), UBC Canada Research Chair in Genome Science and distinguished scientist at the BC Cancer Foundation.

The CEA’s first meeting focused on the previous steps taken under Canada’s Biomanufacturing and Life Sciences Strategy and on its path forward. The creation of the CEA is an important milestone in the strategy, as it continues to evolve and adapt to new technologies and changing conditions in the marketplace and life sciences ecosystem. The CEA will also inform on investments that enhance capacity across Canada to support end-to-end production of critical vaccines, therapeutics and essential medical countermeasures, and to ensure that Canadians can reap the full economic benefits of the innovations developed, including well-paying jobs.

As I’m from British Columbia, I’m highlighting this University of British Columbia (UBC) March 17, 2023 news release about their involvement, Note: Links have been removed,

Canada’s biotech ecosystem is poised for a major boost with the federal government announcement today that B.C. will be home to Canada’s Immuno-Engineering and Biomanufacturing Hub (CIEBH).

The B.C.-based research and innovation hub, led by UBC, brings together a coalition of provincial, national and international partners to position Canada as a global epicentre for the development and manufacturing of next-generation immune-based therapeutics.

A primary goal of CIEBH is to establish a seamless drug development pipeline that will enable Canada to respond to future pandemics and other health challenges in fewer than 100 days.

This hub will build on the strengths of B.C.’s biotech and life sciences industry, and those of our national and global partners, to make Canada a world leader in the development of lifesaving medicines,” said Dr. Deborah Buszard, interim president and vice-chancellor of UBC. “It’s about creating a healthier future for all Canadians. Together with our outstanding alliance of partners, we will ensure Canada is prepared to respond rapidly to future health challenges with homegrown solutions.”

CIEBH is one of five new research hubs announced by the federal government that will work together to improve pandemic readiness and the overall health and well-being of Canadians. Federal funding of $570 million is available over the next four years to support project proposals associated with these hubs in order to advance Canada’s Biomanufacturing and Life Sciences Strategy.

More than 50 organizations representing the private, public, not-for-profit and academic sectors have come together to form the hub, creating a rich environment that will bolster biomedical innovation in Canada. Among these partners are leading B.C. biotech companies that played a key role in Canada’s COVID-19 pandemic response and are developing cutting-edge treatments for a range of human diseases.

CIEBH, led by UBC, will further align the critical mass of biomedical research strengths concentrated at B.C. academic institutions, including the B.C. Institute of Technology, Simon Fraser University and the University of Victoria, as well as the clinical expertise of B.C. research hospitals and health authorities. With linkages to key partners across Canada, including Dalhousie University, the University of Waterloo, and the Vaccine and Infectious Disease Organization, the hub will create a national network to address gaps in Canada’s drug development pipeline.

In recent decades, B.C. has emerged as a global leader in immuno-engineering, a field that is transforming how society treats disease by harnessing and modulating the immune system.

B.C. academic institutions and prominent Canadian companies like Precision NanoSystems, Acuitas Therapeutics and AbCellera have developed significant expertise in advanced immune-based therapeutics such as lipid nanoparticle- and mRNA-based vaccines, engineered antibodies, cell therapies and treatments for antimicrobial resistant infections. UBC professor Dr. Pieter Cullis, a member of CIEBH’s core scientific team, has been widely recognized for his pioneering work developing the lipid nanoparticle delivery technology that enables mRNA therapeutics such as the highly effective COVID-19 mRNA vaccines.

As noted previously, I’m a little puzzled that the federal government didn’t mention the investment in these hubs in their budget. They usually trumpet these kinds of initiatives.

On a related track, I’m even more puzzled that the province of British Columbia does not have its own life sciences research strategy in light of that sector’s success. Certainly it seems that Ontario, Quebec, Nova Scotia, and Prince Edward are all eager to get a piece of the action. Still, there is a Life Sciences in British Columbia: Sector Profile dated June 2020 and an undated (likely from some time between July 2017 to January 2020 when Bruce Ralston whose name is on the document was the relevant cabinet minister) British Columbia Technology and Innovation Policy Framework.

In case you missed the link earlier, see my August 23, 2021 posting “Who’s running the life science companies’ public relations campaign in British Columbia (Vancouver, Canada)?” which includes additional information about the BC life sciences sector, federal and provincial funding, the City of Vancouver’s involvement, and other related matters.

Chapter 3: A Made-In-Canada Plan: Affordable Energy, Good Jobs, and a Growing Clean Economy

The most science-focused information is in Chapter 3, from https://www.budget.canada.ca/2023/report-rapport/toc-tdm-en.html,

3.2 A Growing, Clean Economy

More than US$100 trillion in private capital is projected to be spent between now and 2050 to build the global clean economy.

Canada is currently competing with the United States, the European Union, and countries around the world for our share of this investment. To secure our share of this global investment, we must capitalize on Canada’s competitive advantages, including our skilled and diverse workforce, and our abundance of critical resources that the world needs.

The federal government has taken significant action over the past seven years to support Canada’s net-zero economic future. To build on this progress and support the growth of Canada’s clean economy, Budget 2023 proposes a range of measures that will encourage businesses to invest in Canada and create good-paying jobs for Canadian workers.

This made-in-Canada plan follows the federal tiered structure to incent the development of Canada’s clean economy and provide additional support for projects that need it. This plan includes:

  • Clear and predictable investment tax credits to provide foundational support for clean technology manufacturing, clean hydrogen, zero-emission technologies, and carbon capture and storage;
  • The deployment of financial instruments through the Canada Growth Fund, such as contracts for difference, to absorb certain risks and encourage private sector investment in low-carbon projects, technologies, businesses, and supply chains; and,
  • Targeted clean technology and sector supports delivered by Innovation, Science and Economic Development Canada to support battery manufacturing and further advance the development, application, and manufacturing of clean technologies.

Canada’s Potential in Critical Minerals

As a global leader in mining, Canada is in a prime position to provide a stable resource base for critical minerals [emphasis mine] that are central to major global industries such as clean technology, auto manufacturing, health care, aerospace, and the digital economy. For nickel and copper alone, the known reserves in Canada are more than 10 million tonnes, with many other potential sources at the exploration stage.

The Buy North American provisions for critical minerals and electric vehicles in the U.S. Inflation Reduction Act will create opportunities for Canada. In particular, U.S. acceleration of clean technology manufacturing will require robust supply chains of critical minerals that Canada has in abundance. However, to fully unleash Canada’s potential in critical minerals, we need to ensure a framework is in place to accelerate private investment.

Budget 2022 committed $3.8 billion for Canada’s Critical Minerals Strategy to provide foundational support to Canada’s mining sector to take advantage of these new opportunities. The Strategy was published in December 2022.

On March 24, 2023, the government launched the Critical Minerals Infrastructure Fund [emphasis mine; I cannot find a government announcement/news release for this fund]—a new fund announced in Budget 2022 that will allocate $1.5 billion towards energy and transportation projects needed to unlock priority mineral deposits. The new fund will complement other clean energy and transportation supports, such as the Canada Infrastructure Bank and the National Trade Corridors Fund, as well as other federal programs that invest in critical minerals projects, such as the Strategic Innovation Fund.

The new Investment Tax Credit for Clean Technology Manufacturing proposed in Budget 2023 will also provide a significant incentive to boost private investment in Canadian critical minerals projects and create new opportunities and middle class jobs in communities across the country.

An Investment Tax Credit for Clean Technology Manufacturing

Supporting Canadian companies in the manufacturing and processing of clean technologies, and in the extraction and processing of critical minerals, will create good middle class jobs for Canadians, ensure our businesses remain competitive in major global industries, and support the supply chains of our allies around the world.

While the Clean Technology Investment Tax Credit, first announced in Budget 2022, will provide support to Canadian companies adopting clean technologies, the Clean Technology Manufacturing Investment Tax Credit will provide support to Canadian companies that are manufacturing or processing clean technologies and their precursors.

  • Budget 2023 proposes a refundable tax credit equal to 30 per cent of the cost of investments in new machinery and equipment used to manufacture or process key clean technologies, and extract, process, or recycle key critical minerals, including:
    • Extraction, processing, or recycling of critical minerals essential for clean technology supply chains, specifically: lithium, cobalt, nickel, graphite, copper, and rare earth elements;
    • Manufacturing of renewable or nuclear energy equipment;
    • Processing or recycling of nuclear fuels and heavy water; [emphases mine]
    • Manufacturing of grid-scale electrical energy storage equipment;
    • Manufacturing of zero-emission vehicles; and,
    • Manufacturing or processing of certain upstream components and materials for the above activities, such as cathode materials and batteries used in electric vehicles.

The investment tax credit is expected to cost $4.5 billion over five years, starting in 2023-24, and an additional $6.6 billion from 2028-29 to 2034-35. The credit would apply to property that is acquired and becomes available for use on or after January 1, 2024, and would no longer be in effect after 2034, subject to a phase-out starting in 2032.

3.4 Reliable Transportation and Resilient Infrastructure

Supporting Resilient Infrastructure Through Innovation

The Smart Cities Challenge [emphasis mine] was launched in 2017 to encourage cities to adopt new and innovative approaches to improve the quality of life for their residents. The first round of the Challenge resulted in $75 million in prizes across four winning applicants: Montreal, Quebec; Guelph, Ontario; communities of Nunavut; and Bridgewater, Nova Scotia.

New and innovative solutions are required to help communities reduce the risks and impacts posed by weather-related events and disasters triggered by climate change. To help address this issue, the government will be launching a new round of the Smart Cities Challenge later this year, which will focus on using connected technologies, data, and innovative approaches to improve climate resiliency.

3.5 Investing in Tomorrow’s Technology

With the best-educated workforce on earth, world-class academic and research institutions, and robust start-up ecosystems across the country, Canada’s economy is fast becoming a global technology leader – building on its strengths in areas like artificial intelligence. Canada is already home to some of the top markets for high-tech careers in North America, including the three fastest growing markets between 2016 and 2021: Vancouver, Toronto, and Quebec City.

However, more can be done to help the Canadian economy reach its full potential. Reversing a longstanding trend of underinvestment in research and development by Canadian business [emphasis mine] is essential our long-term economic growth.

Budget 2023 proposes new measures to encourage business innovation in Canada, as well as new investments in college research and the forestry industry that will help to build a stronger and more innovative Canadian economy.

Attracting High-Tech Investment to Canada

In recent months, Canada has attracted several new digital and high-tech projects that will support our innovative economy, including:

  • Nokia: a $340 million project that will strengthen Canada’s position as a leader in 5G and digital innovation;
  • Xanadu Quantum Technologies: a $178 million project that will support Canada’s leadership in quantum computing;
  • Sanctuary Cognitive Systems Corporation: a $121 million project that will boost Canada’s leadership in the global Artificial Intelligence market; and,
  • EXFO: a $77 million project to create a 5G Centre of Excellence that aims to develop one of the world’s first Artificial Intelligence-based automated network solutions.

Review of the Scientific Research and Experimental Development Tax Incentive Program

The Scientific Research and Experimental Development (SR&ED) tax incentive program continues to be a cornerstone of Canada’s innovation strategy by supporting research and development with the goal of encouraging Canadian businesses of all sizes to invest in innovation that drives economic growth.

In Budget 2022, the federal government announced its intention to review the SR&ED program to ensure it is providing adequate support and improving the development, retention, and commercialization of intellectual property, including the consideration of adopting a patent box regime. [emphasis mine] The Department of Finance will continue to engage with stakeholders on the next steps in the coming months.

Modernizing Canada’s Research Ecosystem

Canada’s research community and world-class researchers solve some of the world’s toughest problems, and Canada’s spending on higher education research and development, as a share of GDP, has exceeded all other G7 countries. 

Since 2016, the federal government has committed more than $16 billion of additional funding to support research and science across Canada. This includes:

  • Nearly $4 billion in Budget 2018 for Canada’s research system, including $2.4 billion for the Canada Foundation for Innovation and the granting councils—the Natural Sciences and Engineering Research Council of Canada, the Social Sciences and Humanities Research Council of Canada and the Canadian Institutes of Health Research; [emphases mine]
  • More than $500 million in Budget 2019 in total additional support to third-party research and science organizations, in addition to the creation of the Strategic Science Fund, which will announce successful recipients later this year;
  • $1.2 billion in Budget 2021 for Pan-Canadian Genomics and Artificial Intelligence Strategies, and a National Quantum Strategy;
  • $1 billion in Budget 2021 to the granting councils and the Canada Foundation for Innovation for life sciences researchers and infrastructure; and,
  • The January 2023 announcement of Canada’s intention to become a full member in the Square Kilometre Array Observatory, which will provide Canadian astronomers with access to its ground-breaking data. The government is providing up to $269.3 million to support this collaboration.

In order to maintain Canada’s research strength—and the knowledge, innovations, and talent it fosters—our systems to support science and research must evolve. The government has been consulting with stakeholders, including through the independent Advisory Panel on the Federal Research Support System, to seek advice from research leaders on how to further strengthen Canada’s research support system.

The government is carefully considering the Advisory Panel’s advice, with more detail to follow in the coming months on further efforts to modernize the system.

Using College Research to Help Businesses Grow

Canada’s colleges, CEGEPs, and polytechnic institutes use their facilities, equipment, and expertise to solve applied research problems every day. Students at these institutions are developing the skills they need to start good careers when they leave school, and by partnering with these institutions, businesses can access the talent and the tools they need to innovate and grow.

  • To help more Canadian businesses access the expertise and research and development facilities they need, Budget 2023 proposes to provide $108.6 million over three years, starting in 2023-24, to expand the College and Community Innovation Program, administered by the Natural Sciences and Engineering Research Council.

Supporting Canadian Leadership in Space

For decades, Canada’s participation in the International Space Station has helped to fuel important scientific advances, and showcased Canada’s ability to create leading-edge space technologies, such as Canadarm2. Canadian space technologies have inspired advances in other fields, such as the NeuroArm, the world’s first robot capable of operating inside an MRI, making previously impossible surgeries possible.

  • Budget 2023 proposes to provide $1.1 billion [emphasis mine] over 14 years, starting in 2023-24, on a cash basis, to the Canadian Space Agency [emphasis mine] to continue Canada’s participation in the International Space Station until 2030.

Looking forward, humanity is returning to the moon [emphasis mine]. Canada intends to join these efforts by contributing a robotic lunar utility vehicle to perform key activities in support of human lunar exploration. Canadian participation in the NASA-led Lunar Gateway station—a space station that will orbit the moon—also presents new opportunities for innovative advances in science and technology. Canada is providing Canadarm3 to the Lunar Gateway, and a Canadian astronaut will join Artemis II, the first crewed mission to the moon since 1972. In Budget 2023, the government is providing further support to assist these missions.

  • Budget 2023 proposes to provide $1.2 billion [emphasis mine] over 13 years, starting in 2024-25, to the Canadian Space Agency to develop and contribute a lunar utility vehicle to assist astronauts on the moon.
  • Budget 2023 proposes to provide $150 million [emphasis mine[ over five years, starting in 2023-24, to the Canadian Space Agency for the next phase of the Lunar Exploration Accelerator Program to support the Canada’s world-class space industry and help accelerate the development of new technologies.
  • Budget 2023 also proposes to provide $76.5 million [emphasis mine] over eight years, starting in 2023-24, on a cash basis, to the Canadian Space Agency in support of Canadian science on the Lunar Gateway station.

Investing in Canada’s Forest Economy

The forestry sector plays an important role in Canada’s natural resource economy [emphasis mine], and is a source of good careers in many rural communities across Canada, including Indigenous communities. As global demand for sustainable forest products grows, continued support for Canada’s forestry sector will help it innovate, grow, and support good middle class jobs for Canadians.

  • Budget 2023 proposes to provide $368.4 million over three years, starting in 2023-24, with $3.1 million in remaining amortization, to Natural Resources Canada to renew and update forest sector support, including for research and development, Indigenous and international leadership, and data. Of this amount, $30.1 million would be sourced from existing departmental resources.

Establishing the Dairy Innovation and Investment Fund

The dairy sector is facing a growing surplus of solids non-fat (SNF) [emphasis mine], a by-product of dairy processing. Limited processing capacity for SNF results in lost opportunities for dairy processors and farmers.

  • Budget 2023 proposes to provide $333 million over ten years, starting in 2023-24, for Agriculture and Agri-Food Canada to support investments in research and development of new products based on SNF, market development for these products, and processing capacity for SNF-based products more broadly.

Supporting Farmers for Diversifying Away from Russian Fertilizers

Russia’s illegal invasion of Ukraine has resulted in higher prices for nitrogen fertilizers, which has had a notable impact on Eastern Canadian farmers who rely heavily on imported fertilizer.

  • Budget 2023 proposes to provide $34.1 million over three years, starting in 2023-24, to Agriculture and Agri-Food Canada’s On-Farm Climate Action Fund to support adoption of nitrogen management practices by Eastern Canadian farmers, that will help optimize the use and reduce the need for fertilizer.

Providing Interest Relief for Agricultural Producers

Farm production costs have increased in Canada and around the world, including as a result Russia’s illegal invasion of Ukraine and global supply chain disruptions. It is important that Canada’s agricultural producers have access to the cash flow they need to cover these costs until they sell their products.

  • Budget 2023 proposes to provide $13 million in 2023-24 to Agriculture and Agri-Food Canada to increase the interest-free limit for loans under the Advance Payments Program from $250,000 to $350,000 for the 2023 program year.

Additionally, the government will consult with provincial and territorial counterparts to explore ways to extend help to small agricultural producers who demonstrate urgent financial need.

Maintaining Livestock Sector Exports with a Foot-and-Mouth Disease Vaccine Bank

Foot-and-Mouth Disease (FMD) is a highly transmissible illness that can affect cattle, pigs, and other cloven-hoofed animals. Recent outbreaks in Asia and Africa have increased the risk of global spread, and a FMD outbreak in Canada would cut off exports for all livestock sectors, with major economic implications. However, the impact of a potential outbreak would be significantly reduced with the early vaccination of livestock. 

  • Budget 2023 proposes to provide $57.5 million over five years, starting in 2023-24, with $5.6 million ongoing, to the Canadian Food Inspection Agency to establish a FMD vaccine bank for Canada, and to develop FMD response plans. The government will seek a cost-sharing arrangement with provinces and territories.

Canadian economic theory (the staples theory), mining, nuclear energy, quantum science, and more

Critical minerals are getting a lot of attention these days. (They were featured in the 2022 budget, see my April 19, 2022 posting, scroll down to the Mining subhead.) This year, US President Joe Biden, in his first visit to Canada as President, singled out critical minerals at the end of his 28 hour state visit (from a March 24, 2023 CBC news online article by Alexander Panetta; Note: Links have been removed),

There was a pot of gold at the end of President Joe Biden’s jaunt to Canada. It’s going to Canada’s mining sector.

The U.S. military will deliver funds this spring to critical minerals projects in both the U.S. and Canada. The goal is to accelerate the development of a critical minerals industry on this continent.

The context is the United States’ intensifying rivalry with China.

The U.S. is desperate to reduce its reliance on its adversary for materials needed to power electric vehicles, electronics and many other products, and has set aside hundreds of millions of dollars under a program called the Defence Production Act.

The Pentagon already has told Canadian companies they would be eligible to apply. It has said the cash would arrive as grants, not loans.

On Friday [March 24, 2023], before Biden left Ottawa, he promised they’ll get some.

The White House and the Prime Minister’s Office announced that companies from both countries will be eligible this spring for money from a $250 million US fund.

Which Canadian companies? The leaders didn’t say. Canadian officials have provided the U.S. with a list of at least 70 projects that could warrant U.S. funding.

“Our nations are blessed with incredible natural resources,” Biden told Canadian parliamentarians during his speech in the House of Commons.

Canada in particular has large quantities of critical minerals [emphasis mine] that are essential for our clean energy future, for the world’s clean energy future.

I don’t believe that Joe Biden has ever heard of the Canadian academic Harold Innis (neither have most Canadians) but Biden is echoing a rather well known theory, in some circles, about Canada’s economy (from the Harold Innis Wikipedia entry),

Harold Adams Innis FRSC (November 5, 1894 – November 9, 1952) was a Canadian professor of political economy at the University of Toronto and the author of seminal works on media, communication theory, and Canadian economic history. He helped develop the staples thesis, which holds that Canada’s culture, political history, and economy have been decisively influenced by the exploitation and export of a series of “staples” such as fur, fish, lumber, wheat, mined metals, and coal. The staple thesis dominated economic history in Canada from the 1930s to 1960s, and continues to be a fundamental part of the Canadian political economic tradition.[8] [all emphases mine]

The staples theory is referred to informally as “hewers of wood and drawers of water.”

Critical Minerals Infrastructure Fund

I cannot find an announcement for this fund (perhaps it’s a US government fund?) but there is a March 7, 2023 Natural Resources Canada news release, Note: A link has been removed,

Simply put, our future depends on critical minerals. The Government of Canada is committed to investing in this future, which is why the Canadian Critical Minerals Strategy — launched by the Honourable Jonathan Wilkinson, Minister of Natural Resources, in December 2022 — is backed by up to $3.8 billion in federal funding. [emphases mine] Today [March 7, 2023], Minister Wilkinson announced more details on the implementation of this Strategy. Over $344 million in funding is supporting the following five new programs and initiatives:

  • Critical Minerals Technology and Innovation Program – $144.4 million for the research, development, demonstration, commercialization and adoption of new technologies and processes that support sustainable growth in Canadian critical minerals value chains and associated innovation ecosystems. 
  • Critical Minerals Geoscience and Data Initiative – $79.2 million to enhance the quality and availability of data and digital technologies to support geoscience and mapping that will accelerate the efficient and effective development of Canadian critical minerals value chains, including by identifying critical minerals reserves and developing pathways for sustainable mineral development. 
  • Global Partnerships Program – $70 million to strengthen Canada’s global leadership role in enhancing critical minerals supply chain resiliency through international collaborations related to critical minerals. 
  • Northern Regulatory Initiative – $40 million to advance Canada’s northern and territorial critical minerals agenda by supporting regulatory dialogue, regional studies, land-use planning, impact assessments and Indigenous consultation.
  • Renewal of the Critical Minerals Centre of Excellence (CMCE) – $10.6 million so the CMCE can continue the ongoing development and implementation of the Canadian Critical Minerals Strategy.

Commentary from the mining community

Mariaan Webb wrote a March 29,2023 article about the budget and the response from the mining community for miningweekly.com, Note: Links have been removed,

The 2023 Budget, delivered by Finance Minister Chrystia Freeland on Tuesday, bolsters the ability of the Canadian mining sector to deliver for the country, recognising the industry’s central role in enabling the transition to a net-zero economy, says Mining Association of Canada (MAC) president and CEO Pierre Gratton.

“Without mining, there are no electric vehicles, no clean power from wind farms, solar panels or nuclear energy, [emphasis mine] and no transmission lines,” said Gratton.

What kind of nuclear energy?

There are two kinds of nuclear energy: fission and fusion. (Fission is the one where the atom is split and requires minerals. Fusion energy is how stars are formed. Much less polluting than fission energy, at this time it is not a commercially viable option nor is it close to being so.)

As far as I’m aware, fusion energy does not require any mined materials. So, Gratton appears to be referring to fission nuclear energy when he’s talking about the mining sector and critical minerals.

I have an October 28, 2022 posting, which provides an overview of fusion energy and the various projects designed to capitalize on it.

Smart Cities in Canada

I was happy to be updated on the Smart Cities Challenge. When I last wrote about it (a March 20, 2018 posting; scroll down to the “Smart Cities, the rest of the country, and Vancouver” subhead). I notice that the successful applicants are from Montreal, Quebec; Guelph, Ontario; communities of Nunavut; and Bridgewater, Nova Scotia. It’s about time northern communities got some attention. It’s hard not to notice that central Canada (i.e., Ontario and Quebec) again dominates.

I look forward to hearing more about the new, upcoming challenge.

The quantum crew

I first made note of what appears to be a fracture in the Canadian quantum community in a May 4, 2021 posting (scroll down to the National Quantum Strategy subhead) about the 2021 budget. I made note of it again in a July 26, 2022 posting (scroll down to the Canadian quantum scene subhead).

In my excerpts from the 3.5 Investing in Tomorrow’s Technology section of the 2023 budget, Xanadu Quantum Technologies, headquartered in Toronto, Ontario is singled out with three other companies (none of which are in the quantum computing field). Oddly, D-Wave Systems (located in British Columbia), which as far as I’m aware is the star of Canada’s quantum computing sector, has yet to be singled out in any budget I’ve seen yet. (I’m estimating I’ve reviewed about 10 budgets.)

Canadians in space

Shortly after the 2023 budget was presented, Canadian astronaut Jeremy Hansen was revealed as one of four astronauts to go on a mission to orbit the moon. From a Canadian Broadcasting (CBC) April 3, 2023 news online article by Nicole Mortillaro (Note: A link has been removed),

Jeremy Hansen is heading to the moon.

The 47-year old Canadian astronaut was announced today as one of four astronauts — along with Christina Koch, Victor Glover and Reid Wiseman — who will be part of NASA’s [US National Aeronautics and Space Administration] Artemis II mission.

Hansen was one of four active Canadian astronauts that included Jennifer Sidey-Gibbons, Joshua Kutryk and David Saint-Jacques vying for a seat on the Orion spacecraft set to orbit the moon.

Artemis II is the second step in NASA’s mission to return astronauts to the surface of the moon. 

The astronauts won’t be landing, but rather they will orbit for 10 days in the Orion spacecraft, testing key components to prepare for Artemis III that will place humans back on the moon some time in 2025 for the first time since 1972.

Canada gets a seat on Artemis II due to its contributions to Lunar Gateway, a space station that will orbit the moon. But Canada is also building a lunar rover provided by Canadensys Aerospace.

On Monday [April 3, 2023], Hansen noted there are two reasons a Canadian is going to the moon, adding that it “makes me smile when I say that.”

The first, he said, is American leadership, and the decision to curate an international team.

“The second reason is Canada’s can-do attitude,” he said proudly.

In addition to our ‘can-do attitude,” we’re also spending some big money, i.e., the Canadian government has proposed in its 2023 budget some $2.5B to various space and lunar efforts over the next several years.

Chapter 3 odds and sods

First seen in the 2022 budget, the patent box regime makes a second appearance in the 2023 budget where apparently ‘stakeholders will be engaged’ later this year. At least, they’re not rushing into this. (For the original announcement and an explanation of a patent box regime, see my April 19, 2022 budget review; scroll down to the Review of Tax Support to R&D and Intellectual Property subhead.)

I’m happy to see the Dairy Innovation and Investment Fund. I’m particularly happy to see a focus on finding uses for solids non-fat (SNF) by providing “$333 million over ten years, starting in 2023-24, … research and development of new products based on SNF [emphasis mine], market development for these products, and processing capacity for SNF-based products more broadly.”

This investment contrasts with the approach to cellulose nanocrystals (CNC) derived from wood (i.e., the forest economy), where the Canadian government invested heavily in research and even opened a production facility under the auspices of a company, CelluForce. It was a little problematic.

By 2013, the facility had a stockpile of CNC and nowhere to sell it. That’s right, no market for CNC as there had been no product development. (See my May 8, 2012 posting where that lack is mentioned, specifically there’s a quote from Tim Harper in an excerpted Globe and Mail article. My August 17, 2016 posting notes that the stockpile was diminishing. The CelluForce website makes no mention of it now in 2023.)

It’s good to see the government emphasis on research into developing products for SNFs especially after the CelluForce stockpile and in light of US President Joe Biden’s recent enthusiasm over our critical minerals.

Chapter 4: Advancing Reconciliation and Building a Canada That Works for Everyone

Chapter 4: Advancing Reconciliation and Building a Canada That Works for Everyone offers this, from https://www.budget.canada.ca/2023/report-rapport/toc-tdm-en.html,

4.3 Clean Air and Clean Water

Progress on Biodiversity

Montreal recently hosted the Fifteenth Conference of the Parties (COP15) to the United Nations Convention on Biological Diversity, which led to a new Post-2020 Global Biodiversity Framework. During COP15, Canada announced new funding for biodiversity and conservation measures at home and abroad that will support the implementation of the Global Biodiversity Framework, including $800 million to support Indigenous-led conservation within Canada through the innovative Project Finance for Permanence model.

Protecting Our Freshwater

Canada is home to 20 per cent of the world’s freshwater supply. Healthy lakes and rivers are essential to Canadians, communities, and businesses across the country. Recognizing the threat to freshwater caused by climate change and pollution, the federal government is moving forward to establish a new Canada Water Agency and make major investments in a strengthened Freshwater Action Plan.

  • Budget 2023 proposes to provide $650 million over ten years, starting in 2023-24, to support monitoring, assessment, and restoration work in the Great Lakes, Lake Winnipeg, Lake of the Woods, St. Lawrence River, Fraser River, Saint John River, Mackenzie River, and Lake Simcoe. Budget 2023 also proposes to provide $22.6 million over three years, starting in 2023-24, to support better coordination of efforts to protect freshwater across Canada.
  • Budget 2023 also proposes to provide $85.1 million over five years, starting in 2023-24, with $0.4 million in remaining amortization and $21 million ongoing thereafter to support the creation of the Canada Water Agency [emphasis mine], which will be headquartered in Winnipeg. By the end of 2023, the government will introduce legislation that will fully establish the Canada Water Agency as a standalone entity.

Cleaner and Healthier Ports

Canada’s ports are at the heart of our supply chains, delivering goods to Canadians and allowing our businesses to reach global markets. As rising shipping levels enable and create economic growth and good jobs, the federal government is taking action to protect Canada’s coastal ecosystems and communities.

  • Budget 2023 proposes to provide $165.4 million over seven years, starting in 2023-24, to Transport Canada to establish a Green Shipping Corridor Program to reduce the impact of marine shipping on surrounding communities and ecosystems. The program will help spur the launch of the next generation of clean ships, invest in shore power technology, and prioritize low-emission and low-noise vessels at ports.

Water, water everywhere

I wasn’t expecting to find mention of establishing a Canada Water Agency and details are sketchy other than, It will be in Winnipeg, Manitoba and there will be government funding. Fingers crossed that this agency will do some good work (whatever that might be). Personally, I’d like to see some action with regard to droughts.

In British Columbia (BC) where I live and which most of us think of as ‘water rich’, is suffering under conditions such that our rivers and lakes are at very low levels according to an April 6, 2023 article by Glenda Luymes for the Vancouver Sun (print version, p. A4),

On the North American WaterWatch map, which codes river flows using a series of coloured dots, high flows are represented in various shades of blue while low flows are represented in red hues. On Wednesday [April 5, 2023], most of BC was speckled red, brown and orange, with the majority of the province’s rivers flowing “much below normal.”

“It does not bode well for the fish populations,” said Marvin Rosenau, a fisheries and ecosystems instructor at BCIT [British Columbia Institute of Technology]. …

Rosenau said low water last fall [2022], when much of BC was in the grip of drought, decreased salmon habitat during spawning season. …

BC has already seen small early season wildfires, including one near Merritt last weekend [April 1/2, 2023]. …

Getting back to the Canada Water Agency, there’s this March 29, 2023 CBC news online article by Bartley Kives,

The 2023 federal budget calls for a new national water agency to be based in Winnipeg, provided Justin Trudeau’s Liberal government remains in power long enough to see it established [emphasis mine] in the Manitoba capital.

The budget announced on Tuesday [March 28, 2023] calls for the creation of the Canada Water Agency, a new federal entity with a headquarters in Winnipeg.

While the federal government is still determining precisely what the new agency will do, one Winnipeg-based environmental organization expects it to become a one-stop shop for water science, water quality assessment and water management [emphasis mine].

“This is something that we don’t actually have in this country at the moment,” said Matt McCandless, a vice-president for the non-profit International Institute for Sustainable Development.

Right now, municipalities, provinces and Indigenous authorities take different approaches to managing water quality, water science, flooding and droughts, said McCandless, adding a national water agency could provide more co-ordination.

For now, it’s unknown how many employees will be based at the Canada Water Agency’s Winnipeg headquarters. According to the budget, legislation to create the agency won’t be introduced until later this year [emphasis mine].

That means the Winnipeg headquarters likely won’t materialize before 2024, one year before the Trudeau minority government faces re-election, assuming it doesn’t lose the confidence of the House of Commons beforehand [emphasis mine].

Nonetheless, several Canadian cities and provinces were vying for the Canada Water Agency’s headquarters, including Manitoba.

The budget also calls for $65 million worth of annual spending on lake science and restoration, with an unstated fraction of that cash devoted to Lake Winnipeg.

McCandless calls the spending on water science an improvement over previous budgets.

Kives seems a tad jaundiced but you get that way (confession: I have too) when covering government spending promises.

Part 2 (military spending and general comments) will be posted sometime during the week of April 24-28, 2023.

Are we spending money on the right research? Government of Canada launches Advisory Panel

it’s a little surprising that this is not being managed by the Council of Canadian Academies (CCA) but perhaps their process is not quite nimble enough (from an October 6, 2022 Innovation, Science and Economic Development Canada news release),

Government of Canada launches Advisory Panel on the Federal Research Support System

Members to recommend enhancements to system to position Canadian researchers for success

October 6, 2022 – Ottawa, Ontario

Canada’s success is in large part due to our world-class researchers and their teams who are globally recognized for unleashing bold new ideas, driving technological breakthroughs and addressing complex societal challenges. The Government of Canada recognizes that for Canada to achieve its full potential, support for science and research must evolve as Canadians push beyond what is currently imaginable and continue to find Canadian-made solutions to the world’s toughest problems.

Today [October 6, 2022], the Honourable François-Philippe Champagne, Minister of Innovation, Science and Industry, and the Honourable Jean-Yves Duclos, Minister of Health, launched the Advisory Panel on the Federal Research Support System. Benefiting from the insights of leaders in the science, research and innovation ecosystem, the panel will provide independent, expert policy advice on the structure, governance and management of the federal system supporting research and talent. This will ensure that Canadian researchers are positioned for even more success now and in the future.

The panel will focus on the relationships among the federal research granting agencies—the Natural Sciences and Engineering Research Council of Canada, the Social Sciences and Humanities Research Council of Canada and the Canadian Institutes of Health Research—and the relationship between these agencies and the Canada Foundation for Innovation.

As the COVID-19 pandemic and climate crisis have shown, addressing the world’s most pressing challenges requires greater collaboration within the Canadian research community, government and industry, as well as with the international community. A cohesive and agile research support system will ensure Canadian researchers can quickly and effectively respond to the questions of today and tomorrow. Optimizing Canada’s research support system will equip researchers to transcend disciplines and borders, seize new opportunities and be responsive to emerging needs and interests to improve Canadians’ health, well-being and prosperity.

Quotes

“Canada is known for world-class research thanks to the enormous capabilities of our researchers. Canadian researchers transform curiosity into bold new ideas that can significantly enhance Canadians’ lives and well-being. With this advisory panel, our government will ensure our support for their research is just as cutting-edge as Canada’s science and research community.”
– The Honourable François-Philippe Champagne, Minister of Innovation, Science and Industry

“Our priority is to support Canada’s world-class scientific community so it can respond effectively to the challenges of today and the future. That’s why we are leveraging the expertise and perspectives of a newly formed advisory panel to maximize the impact of research and downstream innovation, which contributes significantly to Canadians’ well-being and prosperity.”
– The Honourable Jean-Yves Duclos, Minister of Health

Quick facts

The Advisory Panel on the Federal Research Support System has seven members, including the Chair. The members were selected by the Minister of Innovation, Science and Industry and the Minister of Health. The panel will consult with experts and stakeholders to draw on their diverse experiences, expertise and opinions. 

Since 2016, the Government of Canada has committed more than $14 billion to support research and science across Canada. 

Here’s a list of advisory panel members I’ve assembled from the Advisory Panel on the Federal Research Support System: Member biographies webpage,

  • Frédéric Bouchard (Chair) is Dean of the Faculty of Arts and Sciences at the Université de Montréal, where he has been a professor of philosophy of science since 2005.
  • Janet Rossant is a Senior Scientist Emeritus in the Developmental and Stem Cell Biology Program, the Hospital for Sick Children and a Professor Emeritus at the University of Toronto’s Department of Molecular Genetics.
  • [Gilles Patry] is Professor Emeritus and President Emeritus at the University of Ottawa. Following a distinguished career as a consulting engineer, researcher and university administrator, Gilles Patry is now a consultant and board director [Royal Canadian Mint].
  • Yolande E. Chan joined McGill University’s Desautels Faculty of Management as Dean and James McGill Professor in 2021. Her research focuses on innovation, knowledge strategy, digital strategy, digital entrepreneurship, and business-IT alignment.
  • Laurel Schafer is a Professor at the Department of Chemistry at the University of British Columbia. Her research focuses on developing novel organometallic catalysts to carry out difficult transformations in small molecule organic chemistry.
  • Vianne Timmons is the President and Vice-Chancellor of Memorial University of Newfoundland since 2020. She is a nationally and internationally recognized researcher and advocate in the field of inclusive education.
  • Dr. Baljit Singh is a highly accomplished researcher, … . He began his role as Vice-President Research at the University of Saskatchewan in 2021, after serving as Dean of the University of Calgary Faculty of Veterinary Medicine (2016 – 2020), and as Associate Dean of Research at the Western College of Veterinary Medicine at the University of Saskatchewan (2010 – 2016).

Nobody from the North. Nobody who’s worked there or lived there or researched there. It’s not the first time I’ve noticed a lack of representation for the North.

Canada’s golden triangle (Montréal, Toronto, Ottawa) is well represented and, as is often the case, there’s representation for other regions: one member from the Prairies, one member from the Maritimes or Atlantic provinces, and one member from the West.

The mandate indicates they could have five to eight members. With seven spots filled, they could include one more member, one from the North.

Even if they don’t add an eighth member, I’m not ready to abandon all hope for involvement from the North when there’s this, from the mandate,

Communications and deliverables

In pursuing its mandate, and to strengthen its advice, the panel may engage with experts and stakeholders to expand access [emphasis mine] to diverse experience, expertise and opinion, and enhance members’ understanding of the topics at hand.

To allow for frank and open discussion, internal panel deliberations among members will be closed.

The panel will deliver a final confidential report by December 2022 [emphasis mine] to the Ministers including recommendations and considerations regarding the modernization of the research support system. A summary of the panel’s observations on the state of the federal research support system may be made public once its deliberations have concluded. The Ministers may also choose to seek confidential advice and/or feedback from the panel on other issues related to the research system.

The panel may also be asked to deliver an interim confidential report to the Ministers by November 2022 [emphases mine], which will provide the panel’s preliminary observations up to that point.

it seems odd there’s no mention of the Pan-Canadian Artificial Intelligence Strategy. It’s my understanding that the funding goes directly from the federal government to the Canadian Institute for Advanced Research (CIFAR), which then distributes the funds. There are other unmentioned science funding agencies, e.g., the National Research Council of Canada and Genome Canada, which (as far as I know) also receive direct funding. It seems that the panel will not be involved in a comprehensive review of Canada’s research support ecosystem.

Plus, I wonder why everything is being kept ‘confidential’. According the government news release, the panel is tasked with finding ways of “optimizing Canada’s research support system.” Do they have security concerns or is this a temporary state of affairs while the government analysts examine the panel’s report?

Canadian Black Scientists Network (CBSN)

If I understand the message from the Canadian Black Scientists Network’s (CBSN) president, Professor Maydianne CB Andrade correctly, the first meeting was in July 2020 and during that meeting the Canadian Black Scientists Network (CBSN)* was born and the website was established (in August 2021?).

The Canadian Black Scientists Network (CBSN) is a national coalition of Black people possessing or pursuing higher degrees in Science, Technology, Engineering, Mathematics and Medicine/Health (STEMM), together with Allies who are senior leaders with a demonstrated commitment to action for Black inclusion. Our network is young and growing. We were founded by a small group of faculty and held our first meeting in July 2020. Since then, we have expanded to include hundreds of members from across the country, including academics, graduate students and postdocs, research administrators, and STEMM practitioners. We have established a very active steering committee of volunteers, an online presence, and are increasingly recognized as the face of a multidisciplinary, national vanguard of Black excellence in STEMM.

….

We focus on those who identify as Black, which we define as those of Black African descent, which includes those who identify as Black Africans, and those found worldwide who identify as descendants of Black African peoples. We acknowledge and will be open to working in partnership with other organizations that focus on dismantling the challenges, discrimination, and barriers to inclusion in STEMM that are experienced by others.  We simultaneously emphasize the need to maintain our network’s focus on Black Canadians. Deliberate, tailored interventions for Black communities are required to remove the long-standing discrimination, exclusion, and oppression that was initially created to justify slavery, and the ways in which those structures and stereotypes still manifest in systematic anti-Black racism in the lives of Canadians (see: the United Nations Report of the Working Group of Experts on People of African Descent on its mission to Canada). We will not shirk from pointing to these realities, but will maintain a strong commitment to joining with all Canadians to build a more equitable society. 

Prof Maydianne CB Andrade
Inaugural President & Co-Founder
August 10, 2021

They’ve already been in involved in a number of media programmes and events. That’s a lot to get done (i.e., establishing a network, participating on [10 – 13] panels, podcasts, etc., and organizing a conference [BE-STEMM conference for January 30 – February 2, 2022], developing sponsorships, putting together a website, and more) in a little over 18 months.

Funding, conference, award-winning CBC programme

They must have gotten money from somewhere and while they don’t spell it out, you can find out more about the CBSN’s sponsors (i.e., funders and other supporters) here. As one would expect, you’ll find the Natural Sciences and Engineering Research Council of Canada (NSERC), the Natural Research Council of Canada (NRC), and the Canadian Institutes of Health Research (CIHR).

Information about the BE-STEMM Conference (January 30 – February 2, 2022) can be found here,

We are pleased to announce our first annual conference for Black Excellence in Science, Technology, Engineering, Mathematics and Medicine/Health (BE-STEMM 2022).

This virtual, interdisciplinary conference will highlight established and rising star Black Canadians in STEMM fields through plenary talks and concurrent talks sessions. Three days of academic programming will be anchored by a fourth day dedicated to leadership summits aimed at sharing best practices for actions supporting justice for Black Canadians in STEMM across sectors, educational levels, professional roles, and intersectional identities. Other highlights include a career fair, public panels and talks, and sessions featuring research of high school and undergraduate students.

Funded by grants from CIHR, NRC, NSERC, FRQNT [Fonds de recherche du Québec], and supported by MITACS [Canadian, national, not-for-profit organization designing and delivering research and training programs] and several academic partners, this bilingual, accessible conference invites all to attend. Black Canadians, Indigenous Canadians, and Allies of all identities from across the STEMM landscape are welcome. Visit this site often for more details on how to participate or become a sponsor.

The timing for the establishment of a Canadian Black Scientists Network couldn’t be much better. Just months after the July 2020 meeting, the Canadian Broadcasting Corporation’s (CBC) radio broadcasts a February 16, 2021 interview featuring Maydianne Andrade and Kevin Hewitt, co-founders of the Canadian Black Scientists Network, on the Mainstreet NS [news stories?] with Jeff Douglas.

On February 27, 2021, CBC’s Quirks and Quarks radio programme broadcasts an award-winning, three-part special “Black in science: The legacy of racism in science and how Black scientists are moving the dial,” which featured an interview with Angela Saini (author of 2019’s SUPERIOR; The Return of Race Science), as well as, Prof Maydianne CB Andrade (CBSN Inaugural President & Co-Founder), and many others.

The 2021 AAAS (American Association for the Advancement of Science) Kavli Science Journalism Award for “Black in science …,” was announced November 10, 2021,

Audio

Gold Award:

Amanda Buckiewicz and Nicole Mortillaro

CBC/Radio-Canada

“Quirks & Quarks: Black in science special”

Feb. 27, 2021

Buckiewicz and Mortillaro, producers for a special edition of the Canadian Broadcasting Corporation’s long-running “Quirks & Quarks” program, looked at the past and future of Black people in science. The episode examined the history of biased and false “race science” that led to misunderstanding and mistreatment of Black people by the scientific and medical community, creating obstacles for them to participate in the scientific process. Buckiewicz and Mortillaro spoke to Black researchers about their work and how they are trying to increase recognition for the contributions of Black scientists and build more opportunities and representation across all disciplines of science. Judge Alexandra Witze, a freelance science journalist, called the program “unflinching in describing science’s racist history, such as how Carl Linnaeus classified people by skin color and how Black scientists have been intentionally marginalized and pushed out of research.” Through a variety of interviews with expert sources, she said, the episode illuminates the work required to make science more equitable. Rich Monastersky, chief features editor for Nature in Washington, D.C., said: “The show explored the difficult and important topic of racism in science—from its historical roots to the impact that it still has and to the ways that researchers are combating the problem. It should be required listening for all students studying science—as well as practicing scientists.” Commenting on the award, Buckiewicz and Mortillaro said: “We often think of the practice of science as being this unflappable, objective quest for knowledge, but it’s about time that we face some hard truths about the way science has been misused to justify the mistreatment of generations of people. With this radio special we really wanted to shed light on the long legacy of racism in science and unpack some of the ways we can do science better.”

Congratulations to Amanda Buckiewicz and Nicole Mortillaro; good luck to the CBSN; and thank you to Alon Eisenstein (https://twitter.com/AlonEisenstein) for the November 20, 2021 tweet that led me to the CBSN.

*Canadian Black Science Network (CBXN) corrected to Canadian Black Scientists Network (CBSN) on February 1, 2022.

Council of Canadian Academies and its expert panel for the AI for Science and Engineering project

There seems to be an explosion (metaphorically and only by Canadian standards) of interest in public perceptions/engagement/awareness of artificial intelligence (see my March 29, 2021 posting “Canada launches its AI dialogues” and these dialogues run until April 30, 2021 plus there’s this April 6, 2021 posting “UNESCO’s Call for Proposals to highlight blind spots in AI Development open ’til May 2, 2021” which was launched in cooperation with Mila-Québec Artificial Intelligence Institute).

Now there’s this, in a March 31, 2020 Council of Canadian Academies (CCA) news release, four new projects were announced. (Admittedly these are not ‘public engagement’ exercises as such but the reports are publicly available and utilized by policymakers.) These are the two projects of most interest to me,

Public Safety in the Digital Age

Information and communications technologies have profoundly changed almost every aspect of life and business in the last two decades. While the digital revolution has brought about many positive changes, it has also created opportunities for criminal organizations and malicious actors to target individuals, businesses, and systems.

This assessment will examine promising practices that could help to address threats to public safety related to the use of digital technologies while respecting human rights and privacy.

Sponsor: Public Safety Canada

AI for Science and Engineering

The use of artificial intelligence (AI) and machine learning in science and engineering has the potential to radically transform the nature of scientific inquiry and discovery and produce a wide range of social and economic benefits for Canadians. But, the adoption of these technologies also presents a number of potential challenges and risks.

This assessment will examine the legal/regulatory, ethical, policy and social challenges related to the use of AI technologies in scientific research and discovery.

Sponsor: National Research Council Canada [NRC] (co-sponsors: CIFAR [Canadian Institute for Advanced Research], CIHR [Canadian Institutes of Health Research], NSERC [Natural Sciences and Engineering Research Council], and SSHRC [Social Sciences and Humanities Research Council])

For today’s posting the focus will be on the AI project, specifically, the April 19, 2021 CCA news release announcing the project’s expert panel,

The Council of Canadian Academies (CCA) has formed an Expert Panel to examine a broad range of factors related to the use of artificial intelligence (AI) technologies in scientific research and discovery in Canada. Teresa Scassa, SJD, Canada Research Chair in Information Law and Policy at the University of Ottawa, will serve as Chair of the Panel.  

“AI and machine learning may drastically change the fields of science and engineering by accelerating research and discovery,” said Dr. Scassa. “But these technologies also present challenges and risks. A better understanding of the implications of the use of AI in scientific research will help to inform decision-making in this area and I look forward to undertaking this assessment with my colleagues.”

As Chair, Dr. Scassa will lead a multidisciplinary group with extensive expertise in law, policy, ethics, philosophy, sociology, and AI technology. The Panel will answer the following question:

What are the legal/regulatory, ethical, policy and social challenges associated with deploying AI technologies to enable scientific/engineering research design and discovery in Canada?

“We’re delighted that Dr. Scassa, with her extensive experience in AI, the law and data governance, has taken on the role of Chair,” said Eric M. Meslin, PhD, FRSC, FCAHS, President and CEO of the CCA. “I anticipate the work of this outstanding panel will inform policy decisions about the development, regulation and adoption of AI technologies in scientific research, to the benefit of Canada.”

The CCA was asked by the National Research Council of Canada (NRC), along with co-sponsors CIFAR, CIHR, NSERC, and SSHRC, to address the question. More information can be found here.

The Expert Panel on AI for Science and Engineering:

Teresa Scassa (Chair), SJD, Canada Research Chair in Information Law and Policy, University of Ottawa, Faculty of Law (Ottawa, ON)

Julien Billot, CEO, Scale AI (Montreal, QC)

Wendy Hui Kyong Chun, Canada 150 Research Chair in New Media and Professor of Communication, Simon Fraser University (Burnaby, BC)

Marc Antoine Dilhac, Professor (Philosophy), University of Montreal; Director of Ethics and Politics, Centre for Ethics (Montréal, QC)

B. Courtney Doagoo, AI and Society Fellow, Centre for Law, Technology and Society, University of Ottawa; Senior Manager, Risk Consulting Practice, KPMG Canada (Ottawa, ON)

Abhishek Gupta, Founder and Principal Researcher, Montreal AI Ethics Institute (Montréal, QC)

Richard Isnor, Associate Vice President, Research and Graduate Studies, St. Francis Xavier University (Antigonish, NS)

Ross D. King, Professor, Chalmers University of Technology (Göteborg, Sweden)

Sabina Leonelli, Professor of Philosophy and History of Science, University of Exeter (Exeter, United Kingdom)

Raymond J. Spiteri, Professor, Department of Computer Science, University of Saskatchewan (Saskatoon, SK)

Who is the expert panel?

Putting together a Canadian panel is an interesting problem especially so when you’re trying to find people of expertise who can also represent various viewpoints both professionally and regionally. Then, there are gender, racial, linguistic, urban/rural, and ethnic considerations.

Statistics

Eight of the panelists could be said to be representing various regions of Canada. Five of those eight panelists are based in central Canada, specifically, Ontario (Ottawa) or Québec (Montréal). The sixth panelist is based in Atlantic Canada (Nova Scotia), the seventh panelist is based in the Prairies (Saskatchewan), and the eighth panelist is based in western Canada, (Vancouver, British Columbia).

The two panelists bringing an international perspective to this project are both based in Europe, specifically, Sweden and the UK.

(sigh) It would be good to have representation from another part of the world. Asia springs to mind as researchers in that region are very advanced in their AI research and applications meaning that their experts and ethicists are likely to have valuable insights.

Four of the ten panelists are women, which is closer to equal representation than some of the other CCA panels I’ve looked at.

As for Indigenous and BIPOC representation, unless one or more of the panelists chooses to self-identify in that fashion, I cannot make any comments. It should be noted that more than one expert panelist focuses on social justice and/or bias in algorithms.

Network of relationships

As you can see, the CCA descriptions for the individual members of the expert panel are a little brief. So, I did a little digging and In my searches, I noticed what seems to be a pattern of relationships among some of these experts. In particular, take note of the Canadian Institute for Advanced Research (CIFAR) and the AI Advisory Council of the Government of Canada.

Individual panelists

Teresa Scassa (Ontario) whose SJD designation signifies a research doctorate in law chairs this panel. Offhand, I can recall only one or two other panels being chaired by women of the 10 or so I’ve reviewed. In addition to her profile page at the University of Ottawa, she hosts her own blog featuring posts such as “How Might Bill C-11 Affect the Outcome of a Clearview AI-type Complaint?” She writes clearly (I didn’t seen any jargon) for an audience that is somewhat informed on the topic.

Along with Dilhac, Teresa Scassa is a member of the AI Advisory Council of the Government of Canada. More about that group when you read Dilhac’s description.

Julien Billot (Québec) has provided a profile on LinkedIn and you can augment your view of M. Billot with this profile from the CreativeDestructionLab (CDL),

Mr. Billot is a member of the faculty at HEC Montréal [graduate business school of the Université de Montréal] as an adjunct professor of management and the lead for the CreativeDestructionLab (CDL) and NextAi program in Montreal.

Julien Billot has been President and Chief Executive Officer of Yellow Pages Group Corporation (Y.TO) in Montreal, Quebec. Previously, he was Executive Vice President, Head of Media and Member of the Executive Committee of Solocal Group (formerly PagesJaunes Groupe), the publicly traded and incumbent local search business in France. Earlier experience includes serving as CEO of the digital and new business group of Lagardère Active, a multimedia branch of Lagardère Group and 13 years in senior management positions at France Telecom, notably as Chief Marketing Officer for Orange, the company’s mobile subsidiary.

Mr. Billot is a graduate of École Polytechnique (Paris) and from Telecom Paris Tech. He holds a postgraduate diploma (DEA) in Industrial Economics from the University of Paris-Dauphine.

Wendy Hui Kyong Chun (British Columbia) has a profile on the Simon Fraser University (SFU) website, which provided one of the more interesting (to me personally) biographies,

Wendy Hui Kyong Chun is the Canada 150 Research Chair in New Media at Simon Fraser University, and leads the Digital Democracies Institute which was launched in 2019. The Institute aims to integrate research in the humanities and data sciences to address questions of equality and social justice in order to combat the proliferation of online “echo chambers,” abusive language, discriminatory algorithms and mis/disinformation by fostering critical and creative user practices and alternative paradigms for connection. It has four distinct research streams all led by Dr. Chun: Beyond Verification which looks at authenticity and the spread of disinformation; From Hate to Agonism, focusing on fostering democratic exchange online; Desegregating Network Neighbourhoods, combatting homophily across platforms; and Discriminating Data: Neighbourhoods, Individuals and Proxies, investigating the centrality of race, gender, class and sexuality [emphasis mine] to big data and network analytics.

I’m glad to see someone who has focused on ” … the centrality of race, gender, class and sexuality to big data and network analytics.” Even more interesting to me was this from her CV (curriculum vitae),

Professor, Department of Modern Culture and Media, Brown University, July 2010-June 2018

.•Affiliated Faculty, Multimedia & Electronic Music Experiments (MEME), Department of Music,2017.

•Affiliated Faculty, History of Art and Architecture, March 2012-

.•Graduate Field Faculty, Theatre Arts and Performance Studies, Sept 2008-.[sic]

….

[all emphases mine]

And these are some of her credentials,

Ph.D., English, Princeton University, 1999.
•Certificate, School of Criticism and Theory, Dartmouth College, Summer 1995.

M.A., English, Princeton University, 1994.

B.A.Sc., Systems Design Engineering and English, University of Waterloo, Canada, 1992.
•first class honours and a Senate Commendation for Excellence for being the first student to graduate from the School of Engineering with a double major

It’s about time the CCA started integrating some of kind of arts perspective into their projects. (Although, I can’t help wondering if this was by accident rather than by design.)

Marc Antoine Dilhac, an associate professor at l’Université de Montréal, he, like Billot, graduated from a French university, in his case, the Sorbonne. Here’s more from Dilhac’s profile on the Mila website,

Marc-Antoine Dilhac (Ph.D., Paris 1 Panthéon-Sorbonne) is a professor of ethics and political philosophy at the Université de Montréal and an associate member of Mila – Quebec Artificial Intelligence Institute. He currently holds a CIFAR [Canadian Institute for Advanced Research] Chair in AI ethics (2019-2024), and was previously Canada Research Chair in Public Ethics and Political Theory 2014-2019. He specialized in theories of democracy and social justice, as well as in questions of applied ethics. He published two books on the politics of toleration and inclusion (2013, 2014). His current research focuses on the ethical and social impacts of AI and issues of governance and institutional design, with a particular emphasis on how new technologies are changing public relations and political structures.

In 2017, he instigated the project of the Montreal Declaration for a Responsible Development of AI and chaired its scientific committee. In 2020, as director of Algora Lab, he led an international deliberation process as part of UNESCO’s consultation on its recommendation on the ethics of AI.

In 2019, he founded Algora Lab, an interdisciplinary laboratory advancing research on the ethics of AI and developing a deliberative approach to the governance of AI and digital technologies. He is co-director of Deliberation at the Observatory on the social impacts of AI and digital technologies (OBVIA), and contributes to the OECD Policy Observatory (OECD.AI) as a member of its expert network ONE.AI.

He sits on the AI Advisory Council of the Government of Canada and co-chair its Working Group on Public Awareness.

Formerly known as Mila only, Mila – Quebec Artificial Intelligence Institute is a beneficiary of the 2017 Canadian federal budget’s inception of the Pan-Canadian Artificial Intelligence Strategy, which named CIFAR as an agency that would benefit as the hub and would also distribute funds for artificial intelligence research to (mainly) three agencies: Mila in Montréal, the Vector Institute in Toronto, and the Alberta Machine Intelligence Institute (AMII; Edmonton).

Consequently, Dilhac’s involvement with CIFAR is not unexpected but when added to his presence on the AI Advisory Council of the Government of Canada and his role as co-chair of its Working Group on Public Awareness, one of the co-sponsors for this future CCA report, you get a sense of just how small the Canadian AI ethics and public awareness community is.

Add in CIFAR’s Open Dialogue: AI in Canada series (ongoing until April 30, 2021) which is being held in partnership with the AI Advisory Council of the Government of Canada (see my March 29, 2021 posting for more details about the dialogues) amongst other familiar parties and you see a web of relations so tightly interwoven that if you could produce masks from it you’d have superior COVID-19 protection to N95 masks.

These kinds of connections are understandable and I have more to say about them in my final comments.

B. Courtney Doagoo has a profile page at the University of Ottawa, which fills in a few information gaps,

As a Fellow, Dr. Doagoo develops her research on the social, economic and cultural implications of AI with a particular focus on the role of laws, norms and policies [emphasis mine]. She also notably advises Dr. Florian Martin-Bariteau, CLTS Director, in the development of a new research initiative on those topical issues, and Dr. Jason Millar in the development of the Canadian Robotics and Artificial Intelligence Ethical Design Lab (CRAiEDL).

Dr. Doagoo completed her Ph.D. in Law at the University of Ottawa in 2017. In her interdisciplinary research, she used empirical methods to learn about and describe the use of intellectual property law and norms in creative communities. Following her doctoral research, she joined the World Intellectual Property Organization’s Coordination Office in New York as a legal intern and contributed to developing the joint initiative on gender and innovation in collaboration with UNESCO and UN Women. She later joined the International Law Research Program at the Centre for International Governance Innovation as a Post-Doctoral Fellow, where she conducted research in technology and law focusing on intellectual property law, artificial intelligence and data governance.

Dr. Doagoo completed her LL.L. at the University of Ottawa, and LL.M. in Intellectual Property Law at the Benjamin N. Cardozo School of Law [a law school at Yeshiva University in New York City].  In between her academic pursuits, Dr. Doagoo has been involved with different technology start-ups, including the one she is currently leading aimed at facilitating access to legal services. She’s also an avid lover of the arts and designed a course on Arts and Cultural Heritage Law taught during her doctoral studies at the University of Ottawa, Faculty of Law.

It’s probably because I don’t know enough but this “the role of laws, norms and policies” seems bland to the point of meaningless. The rest is more informative and brings it back to the arts with Wendy Hui Kyong Chun at SFU.

Doagoo’s LinkedIn profile offers an unexpected link to this expert panel’s chairperson, Teresa Scassa (in addition to both being lawyers whose specialties are in related fields and on faculty or fellow at the University of Ottawa),

Soft-funded Research Bursary

Dr. Teresa Scassa

2014

I’m not suggesting any conspiracies; it’s simply that this is a very small community with much of it located in central and eastern Canada and possible links into the US. For example, Wendy Hui Kyong Chun, prior to her SFU appointment in December 2018, worked and studied in the eastern US for over 25 years after starting her academic career at the University of Waterloo (Ontario).

Abhishek Gupta provided me with a challenging search. His LinkedIn profile yielded some details (I’m not convinced the man sleeps), Note: I have made some formatting changes and removed the location, ‘Montréal area’ from some descriptions

Experience

Microsoft Graphic
Software Engineer II – Machine Learning
Microsoft

Jul 2018 – Present – 2 years 10 months

Machine Learning – Commercial Software Engineering team

Serves on the CSE Responsible AI Board

Founder and Principal Researcher
Montreal AI Ethics Institute

May 2018 – Present – 3 years

Institute creating tangible and practical research in the ethical, safe and inclusive development of AI. For more information, please visit https://montrealethics.ai

Visiting AI Ethics Researcher, Future of Work, International Visitor Leadership Program
U.S. Department of State

Aug 2019 – Present – 1 year 9 months

Selected to represent Canada on the future of work

Responsible AI Lead, Data Advisory Council
Northwest Commission on Colleges and Universities

Jun 2020 – Present – 11 months

Faculty Associate, Frankfurt Big Data Lab
Goethe University

Mar 2020 – Present – 1 year 2 months

Advisor for the Z-inspection project

Associate Member
LF AI Foundation

May 2020 – Present – 1 year

Author
MIT Technology Review

Sep 2020 – Present – 8 months

Founding Editorial Board Member, AI and Ethics Journal
Springer Nature

Jul 2020 – Present – 10 months

Education

McGill University Bachelor of Science (BS)Computer Science

2012 – 2015

Exhausting, eh? He also has an eponymous website and the Montreal AI Ethics Institute can found here where Gupta and his colleagues are “Democratizing AI ethics literacy.” My hat’s off to Gupta getting on an expert panel for CCA is quite an achievement for someone without the usual academic and/or industry trappings.

Richard Isnor, based in Nova Scotia and associate vice president of research & graduate studies at St. Francis Xavier University (StFX), seems to have some connection to northern Canada (see the reference to Nunavut Research Institute below); he’s certainly well connected to various federal government agencies according to his profile page,

Prior to joining StFX, he was Manager of the Atlantic Regional Office for the Natural Sciences and Engineering Research Council of Canada (NSERC), based in Moncton, NB.  Previously, he was Director of Innovation Policy and Science at the International Development Research Centre in Ottawa and also worked for three years with the National Research Council of Canada [NRC] managing Biotechnology Research Initiatives and the NRC Genomics and Health Initiative.

Richard holds a D. Phil. in Science and Technology Policy Studies from the University of Sussex, UK; a Master’s in Environmental Studies from Dalhousie University [Nova Scotia]; and a B. Sc. (Hons) in Biochemistry from Mount Allison University [New Burnswick].  His primary interest is in science policy and the public administration of research; he has worked in science and technology policy or research administrative positions for Environment Canada, Natural Resources Canada, the Privy Council Office, as well as the Nunavut Research Institute. [emphasis mine]

I don’t know what Dr. Isnor’s work is like but I’m hopeful he (along with Spiteri) will be able to provide a less ‘big city’ perspective to the proceedings.

(For those unfamiliar with Canadian cities, Montreal [three expert panelists] is the second largest city in the country, Ottawa [two expert panelists] as the capital has an outsize view of itself, Vancouver [one expert panelist] is the third or fourth largest city in the country for a total of six big city representatives out of eight Canadian expert panelists.)

Ross D. King, professor of machine intelligence at Sweden’s Chalmers University of Technology, might be best known for Adam, also known as, Robot Scientist. Here’s more about King, from his Wikipedia entry (Note: Links have been removed),

King completed a Bachelor of Science degree in Microbiology at the University of Aberdeen in 1983 and went on to study for a Master of Science degree in Computer Science at the University of Newcastle in 1985. Following this, he completed a PhD at The Turing Institute [emphasis mine] at the University of Strathclyde in 1989[3] for work on developing machine learning methods for protein structure prediction.[7]

King’s research interests are in the automation of science, drug design, AI, machine learning and synthetic biology.[8][9] He is probably best known for the Robot Scientist[4][10][11][12][13][14][15][16][17] project which has created a robot that can:

hypothesize to explain observations

devise experiments to test these hypotheses

physically run the experiments using laboratory robotics

interpret the results from the experiments

repeat the cycle as required

The Robot Scientist Wikipedia entry has this to add,

… a laboratory robot created and developed by a group of scientists including Ross King, Kenneth Whelan, Ffion Jones, Philip Reiser, Christopher Bryant, Stephen Muggleton, Douglas Kell and Steve Oliver.[2][6][7][8][9][10]

… Adam became the first machine in history to have discovered new scientific knowledge independently of its human creators.[5][17][18]

Sabina Leonelli, professor of philosophy and history of science at the University of Exeter, is the only person for whom I found a Twitter feed (@SabinaLeonelli). Here’s a bit more from her Wikipedia entry Note: Links have been removed),

Originally from Italy, Leonelli moved to the UK for a BSc degree in History, Philosophy and Social Studies of Science at University College London and a MSc degree in History and Philosophy of Science at the London School of Economics. Her doctoral research was carried out in the Netherlands at the Vrije Universiteit Amsterdam with Henk W. de Regt and Hans Radder. Before joining the Exeter faculty, she was a research officer under Mary S. Morgan at the Department of Economic History of the London School of Economics.

Leonelli is the Co-Director of the Exeter Centre for the Study of the Life Sciences (Egenis)[3] and a Turing Fellow at the Alan Turing Institute [emphases mine] in London.[4] She is also Editor-in-Chief of the international journal History and Philosophy of the Life Sciences[5] and Associate Editor for the Harvard Data Science Review.[6] She serves as External Faculty for the Konrad Lorenz Institute for Evolution and Cognition Research.[7]

Notice that Ross King and Sabina Leonelli both have links to The Alan Turing Institute (“We believe data science and artificial intelligence will change the world”), although the institute’s link to the University of Strathclyde (Scotland) where King studied seems a bit tenuous.

Do check out Leonelli’s profile at the University of Exeter as it’s comprehensive.

Raymond J. Spiteri, professor and director of the Centre for High Performance Computing, Department of Computer Science at the University of Saskatchewan, has a profile page at the university the likes of which I haven’t seen in several years perhaps due to its 2013 origins. His other university profile page can best be described as minimalist.

His Canadian Applied and Industrial Mathematics Society (CAIMS) biography page could be described as less charming (to me) than the 2013 profile but it is easier to read,

Raymond Spiteri is a Professor in the Department of Computer Science at the University of Saskatchewan. He performed his graduate work as a member of the Institute for Applied Mathematics at the University of British Columbia. He was a post-doctoral fellow at McGill University and held faculty positions at Acadia University and Dalhousie University before joining USask in 2004. He serves on the Executive Committee of the WestGrid High-Performance Computing Consortium with Compute/Calcul Canada. He was a MITACS Project Leader from 2004-2012 and served in the role of Mitacs Regional Scientific Director for the Prairie Provinces between 2008 and 2011.

Spiteri’s areas of research are numerical analysis, scientific computing, and high-performance computing. His area of specialization is the analysis and implementation of efficient time-stepping methods for differential equations. He actively collaborates with scientists, engineers, and medical experts of all flavours. He also has a long record of industry collaboration with companies such as IBM and Boeing.

Spiteri has been lifetime member of CAIMS/SCMAI since 2000. He helped co-organize the 2004 Annual Meeting at Dalhousie and served on the Cecil Graham Doctoral Dissertation Award Committee from 2005 to 2009, acting as chair from 2007. He has been an active participant in CAIMS, serving several times on the Scientific Committee for the Annual Meeting, as well as frequently attending and organizing mini-symposia. Spiteri believes it is important for applied mathematics to play a major role in the efforts to meet Canada’s most pressing societal challenges, including the sustainability of our healthcare system, our natural resources, and the environment.

A last look at Spiteri’s 2013 profile gave me this (Note: Links have been removed),

Another biographical note: I obtained my B.Sc. degree in Applied Mathematics from the University of Western Ontario [also known as, Western University] in 1990. My advisor was Dr. M.A.H. (Paddy) Nerenberg, after whom the Nerenberg Lecture Series is named. Here is an excerpt from the description, put here is his honour, as a model for the rest of us:

The Nerenberg Lecture Series is first and foremost about people and ideas. Knowledge is the true treasure of humanity, accrued and passed down through the generations. Some of it, particularly science and its language, mathematics, is closed in practice to many because of technical barriers that can only be overcome at a high price. These technical barriers form part of the remarkable fractures that have formed in our legacy of knowledge. We are so used to those fractures that they have become almost invisible to us, but they are a source of profound confusion about what is known.

The Nerenberg Lecture is named after the late Morton (Paddy) Nerenberg, a much-loved professor and researcher born on 17 March– hence his nickname. He was a Professor at Western for more than a quarter century, and a founding member of the Department of Applied Mathematics there. A successful researcher and accomplished teacher, he believed in the unity of knowledge, that scientific and mathematical ideas belong to everyone, and that they are of human importance. He regretted that they had become inaccessible to so many, and anticipated serious consequences from it. [emphases mine] The series honors his appreciation for the democracy of ideas. He died in 1993 at the age of 57.

So, we have the expert panel.

Thoughts about the panel and the report

As I’ve noted previously here and elsewhere, assembling any panels whether they’re for a single event or for a longer term project such as producing a report is no easy task. Looking at the panel, there’s some arts representation, smaller urban centres are also represented, and some of the members have experience in more than one region in Canada. I was also much encouraged by Spiteri’s acknowledgement of his advisor’s, Morton (Paddy) Nerenberg, passionate commitment to the idea that “scientific and mathematical ideas belong to everyone.”

Kudos to the Council of Canadian Academies (CCA) organizers.

That said, this looks like an exceptionally Eurocentric panel. Unusually, there’s no representation from the US unless you count Chun who has spent the majority of her career in the US with only a little over two years at Simon Fraser University on Canada’s West Coast.

There’s weakness to a strategy (none of the ten or so CCA reports I’ve reviewed here deviates from this pattern) that seems to favour international participants from Europe and/or the US (also, sometimes, Australia/New Zealand). This leaves out giant chunks of the international community and brings us dangerously close to an echo chamber.

The same problem exists regionally and with various Canadian communities, which are acknowledged more in spirit than in actuality, e.g., the North, rural, indigenous, arts, etc.

Getting back to the ‘big city’ emphsais noted earlier, two people from Ottawa and three from Montreal; half of the expert panel lives within a two hour train ride of each other. (For those who don’t know, that’s close by Canadian standards. For comparison, a train ride from Vancouver to Seattle [US] is about four hours, a short trip when compared to a 24 hour train trip to the closest large Canadian cities.)

I appreciate that it’s not a simple problem but my concern is that it’s never acknowledged by the CCA. Perhaps they could include a section in the report acknowledging the issues and how the expert panel attempted to address them , in other words, transparency. Coincidentally, transparency, which has been related to trust, have both been identified as big issues with artificial intelligence.

As for solutions, these reports get sent to external reviewers and, prior to the report, outside experts are sometimes brought in as the panel readies itself. That would be two opportunities afforded by their current processes.

Anyway, good luck with the report and I look forward to seeing it.

7th annual Vancouver Nanomedicine Day, Sept. 17, 2020

Like so many events these days (COVID-19 days), this event put on by Canada’s NanoMedicines Innovation Network (NMIN) will be held virtually. Here’s more from the ‘Virtual’ Vancouver Nanomedicine Day 2020 event page on the NMIN website,

This world-class symposium, the sixth event of its kind, will bring together a record number (1000+) of renowned Canadian and international experts from across the nanomedicines field to:

  • highlight the discoveries and innovations in nanomedicines that are contributing to global progress in acute, chronic and orphan disease treatment and management;
  • present up-to-date diagnostic and therapeutic  nanomedicine approaches to addressing the challenges of COVID-19; and
  • facilitate discussion among nanomedicine researchers and innovators and UBC and NMIN clinician-scientists, basic researchers, trainees, and research partners.

Since 2014, Vancouver Nanomedicine Day has advanced nanomedicine research, knowledge mobilization and commercialization in Canada by sharing high-impact findings and facilitating interaction—among researchers, postdoctoral fellows, graduate students, and life science and startup biotechnology companies—to catalyze research collaboration.

Here are a few highlights from the ‘Virtual’ Vancouver Nanomedicine Day 2020 event page,

  • An introduction to nanomedicines by Dr. Emmanuel Ho (University of Waterloo)
  • A keynote address by an iconic nanomedicine innovator: Dr. Robert Langer (MIT, Department of Chemical Engineering)
  • Invited talks by internationally renowned experts, including Dr. Vito Foderà (The University of Copenhagen, Denmark); Dr. Lucia Gemma Delogu (University of Padova, Italy); and Dr. Christine Allen (University of Toronto)
  • A virtual poster competition, with cash prizes for the top posters
  • A debate on whether “nanomedicines are still the next big thing” between Marcel Bally (proponent) and Kishor Wasan (opponent)

You can get the Program in PDF.

Registration is free. But you must Register.

Here’s the event poster,

[downloaded from https://www.nanomedicines.ca/nmd-2020/]

I have a few observations, First, Robert Langer is a big deal. Here are a few highlights from his Wikipedia entry (Note: Links have been removed),

Robert Samuel Langer, Jr. FREng[2] (born August 29, 1948) is an American chemical engineer, scientist, entrepreneur, inventor and one of the twelve Institute Professors at the Massachusetts Institute of Technology.[3]

Langer holds over 1,350 granted or pending patents.[3][29] He is one of the world’s most highly cited researchers, having authored nearly 1,500 scientific papers, and has participated in the founding of multiple technology companies.[30][31]

Langer is the youngest person in history (at 43) to be elected to all three American science academies: the National Academy of Sciences, the National Academy of Engineering and the Institute of Medicine. He was also elected as a charter member of National Academy of Inventors.[32] He was elected as an International Fellow[2] of the Royal Academy of Engineering[2] in 2010.

It’s all about commercializing the research—or is it?

(This second observation is a little more complicated and requires a little context.) The NMIN is one of Canada’s Networks of Centres of Excellence (who thought that name up? …sigh), from the NMIN About page,

NMIN is funded by the Government of Canada through the Networks of Centres of Excellence (NCE) Program.

The NCEs seem to be firmly fixed on finding pathways to commercialization (from the NCE About page) Note: All is not as it seems,

Canada’s global economic competitiveness [emphasis mine] depends on making new discoveries and transforming them into products, services [emphasis mine] and processes that improve the lives of Canadians. To meet this challenge, the Networks of Centres of Excellence (NCE) offers a suite of programs that mobilize Canada’s best research, development and entrepreneurial [emphasis mine] expertise and focus it on specific issues and strategic areas.

NCE programs meet Canada’s needs to focus a critical mass of research resources on social and economic challenges, commercialize [emphasis mine] and apply more of its homegrown research breakthroughs, increase private-sector R&D, [emphasis mine] and train highly qualified people. As economic [emphasis mine] and social needs change, programs have evolved to address new challenges.

Interestingly, the NCE is being phased out,

As per the December 2018 NCE Program news, funding for the Networks of Centres of Excellence (NCE) Program will be gradually transferred to the New Frontiers in Research Fund (NFRF).

The new agency, NFRF, appears to have a completely different mandate, from the NFRF page on the Canada Research Coordinating Committee webspace,

The Canada Research Coordinating Committee designed the New Frontiers in Research Fund (NFRF) following a comprehensive national consultation, which involved Canadian researchers, research administrators, stakeholders and the public. NFRF is administered by the Tri-agency Institutional Programs Secretariat, which is housed within the Social Sciences and Humanities Research Council (SSHRC), on behalf of Canada’s three research granting agencies: the Canadian Institutes of Health Research, the Natural Sciences and Engineering Research Council and SSHRC.

The fund will invest $275 million over the next 5 years beginning in fiscal 2018-19, and $65 million ongoing, to fund international, interdisciplinary, fast-breaking and high-risk research.

NFRF is composed of three streams to support groundbreaking research.

  • Exploration generates opportunities for Canada to build strength in high-risk, high-reward and interdisciplinary research;
  • Transformation provides large-scale support for Canada to build strength and leadership in interdisciplinary and transformative research; and
  • International enhances opportunities for Canadian researchers to participate in research with international partners.

As you can see there’s no reference to commercialization or economic challenges.

Personally

Here at last is the second observation, I find it hard to believe that the government of Canada has given up on the idea of commercializing research and increasing the country’s economic competitiveness through research. Certainly, Langer’s virtual appearance at Vancouver Nanomedicine Day 2020, suggests that at least some corners of the Canadian research establishment are remaining staunchly entrepreneurial.

After all, the only Canadian government ministry with science in its name is this one: Innovation, Science and Economic Development Canada (ISED), as of Sept. 11, 2020.. (The other ‘science’ ministries are Natural Resources Canada, Environment and Climate Change Canada, Fisheries and Oceans Canada, Health Canada, and Agriculture and Agri-Food Canada.) ISED is not exactly subtle. Intriguingly the latest review on the state of science and technology in Canada was released on April 10, 2018 (from the April 10, 2018 Council of Canadian Academies CCA] news release),

Canada remains strong in research output and impact, capacity for R&D and innovation at risk: New expert panel report

While Canada is a highly innovative country, with a robust research base and thriving communities of technology start-ups, significant barriers—such as a lack of managerial skills, the experience needed to scale-up companies, and foreign acquisition of high-tech firms—often prevent the translation of innovation into wealth creation.[emphasis mine] The result is a deficit of technology companies growing to scale in Canada, and a loss of associated economic and social benefits.This risks establishing a vicious cycle, where successful companies seek growth opportunities elsewhere due to a lack of critical skills and experience in Canada guiding companies through periods of rapid expansion.

According to the CCA’s [2018 report] Summary webpage, it was Innovation, Science and Economic Development Canada which requested the report. (I wrote up a two-part commentary under one of my favourite titles: “The Hedy Lamarr of international research: Canada’s Third assessment of The State of Science and Technology and Industrial Research and Development in Canada.” Part 1 and Part 2)

I will be fascinated to watch the NFRF and science commercialization situations as they develop.

In the meantime, you can sign up for free to attend the ‘Virtual’ Vancouver Nanomedicine Day 2020.

Science funding, 2018 Canadian federal budget, and a conversation between Prime Minister Justin Trudeau and US science popularizer, Bill Nye (the Science Guy)

It may be too soon to describe it as a fallback position but Canadian Prime Minister, Justin Trudeau, seems to return to science when he wants to generate or bask in positive news coverage.  Coming off a not entirely successful state visit to India (February 17 – 23, 2018), he received some of the worst notices of his international diplomatic efforts to date. (This February 23, 2018 article, ‘India to Justin Trudeau: Stop trying so hard‘, by Vidhi Doshi for The Washington Post was one of the kinder pieces while this February 25, 2018 article, ‘Why Justin Trudeau’s India tour turned out to be a diplomatic disaster‘, by Candice Malcolm and published on economictimes.indiatimes.com was one of the more scathing.

Budget 2018: We’re in the money

The announcement of the federal budget (February 27, 2018) might be viewed as offering welcome relief from torrents of criticism.  From a March 7, 2018 Canadian Science Policy Centre announcement (CSPC; received via email) about the publication of a series of opinion pieces (editorials) concerning the 2018 federal budget,

CSPC’s Official Statement on the Federal Budget 2018
Déclaration officielle du CPSC concernant le budget fédéral 2018

Canadian Science Policy Centre commends the Government of Canada for the strong investment in Science projected in the Budget 2018 for the next five years. The Centre congratulates all Canadians, in particular members of the Fundamental Science Review Panel and the entire community who strongly supported the panel recommendations and the investment in Science.

Le Centre sur les politiques scientifiques canadiennes félicite le Gouvernement du Canada pour son investissement substantiel en sciences prévu dans le budget 2018 pour les cinq prochaines années. Le Centre félicite tous les Canadiens, plus particulièrement les membres du Comité de l’examen du soutien aux sciences ainsi que la communauté dans son ensemble, qui a vivement appuyé les recommandations du Comité et l’investissement en sciences.

You can find the editorials here (17 in total including an interview with Science Minister Kirsty Duncan … surprisingly[!!!!], she’s very proud of the government’s budget for science) along with editorials on other issues. Russ Roberts’ piece (Federal Budget 2018 – Missed Another Opportunity to Maximize ROI on Canadians’ Investments in Innovation) stands out as it is rather ‘grumpy’ but only in comparison to pretty much everyone else who is pleased to one degree or another.

The editorials put me in mind of an old song celebrating money in a Busby Berkeley production. Prepare yourself, over the top was where he liked to live,

Budget 2018: a little more nuance

Brooke Struck over on sciencemetrics.org offers some incisive analysis in two separate blog postings. First, he tackles the money in a February 28, 2018 posting (Note: Links have been removed),

The Naylor report [links to my 3-part series on the report also known as, INVESTING IN CANADA’S FUTURE; Strengthening the Foundations of Canadian Research {Review of fundamental research final report} follow at the end of this posting] contained many recommendations, but the one that got the most press—and surely is the focus of attention right now, given the release of the budget yesterday—is the recommendation that funding for the three granting councils be increased. The amounts were quite high, too, calling for an increase from $3.5 billion to $4.8 billion to remediate slides over the decade of the previous government’s term.

The timing of the report’s release was wise, as a release before that year’s budget might have created the expectation that the money would flow immediately, which simply doesn’t fit with the timelines of federal budget development processes. From April 2017 to now, the research community in Canada has rallied around the report and its recommendations, sustaining a campaign to keep research (and its funding) in the national discussion.

One note that the panel emphasized was that the Social Sciences and Humanities Research Council (SSHRC) had been hit particularly hard. The rule of thumb is apparently that SSHRC is supposed to get 20% of the total granting council budget, while 40% goes to the natural sciences & engineering [Natural Sciences and Engineering Council] (NSERC) and 40% goes to health research [Canadian Institutes of Health Research] (CIHR). SSHRC’s portion had consistently clocked in at around 15%.

Furthermore, the report emphasized that the underlying reasoning behind the 40-40-20 split might not hold water anymore, as the social sciences and humanities really don’t have any other major sources of funding beyond government support, whereas other types of research can draw on support from other players as well. The 40-40-20 split from government is not a 40-40-20 split in practice once additional sources are considered in the equation.

Delivery: as promised?

And that brings us to yesterday’s budget. While the report had called for an injection of $1.3 billion, the finance minister apparently couldn’t scrape together more than a measly $925 million—which, of course, is a huge amount of money. Some will lament the gap and rend their shirts in twain about promises broken, while others will cheer the victory of science retaking its rightful place through another #PromiseKept. That increase translated into a 25% bump in fundamental research spending, so I guess how you feel about it depends on your views about how much a 25% increase really means. For those keeping score at home, that apparently closes the gap to about 90% of real spending power levels before the slides under Harper.

But was it a 25% increase for everyone? No, the $925 million was not split evenly between the councils. Identical portions of $354.7 million will go to NSERC and CIHR (roughly 38% each from the new money) while $215.5 million will go to SSHRC (just over 23% of the new money). Comparing their funding levels this morning to those of yesterday morning, NSERC and CIHR saw increases of about 20%–25%, while SSHRC saw an increase of over 40%.

But did the government really heed the advice of their panel about getting back to the 40-40-20 allocation across the councils (while acknowledging that even that split is perhaps not sufficient anymore)? With its increase, SSHRC will be up from 15% of the tri-council total to about 16.5% of the total. That sounds like progress.

On the flip side, though, the government has just announced a massive injection to research spending, with an ongoing annual increase after that (following the same split as the one-time boost). No further increases are likely to happen again in the near future, and it would take three more increases just like this one for SSHRC to reach its 20%. The social sciences and humanities have made some headway, but they aren’t likely to get any closer than this to their 20%. The big investment has been made, and this will be the status quo for a while—consider that the Naylor panel was the first of its kind in 40 years.

I don’t think this excerpt does justice to Struck’s posting and recommend you read it in its entirety if you have the time and there’s this March 8, 2018 posting where he examines ‘evidence’ in relation to the budget (Note: Links have been removed),

The new budget provides a lot of money for science. It also emphasizes the importance of evidence-based decision-making to government, employing the term “evidence-based” about 20 times in the document. A lot of the new science money is earmarked to increase science for policy as well, separate from the fundamental science funding we discussed last week.

For example, Statistics Canada will get millions of extra dollars, in one-time injections as well as increases to ongoing, regular operating budgets. Why? “Better data will… support [the Government’s] commitment to evidence-based policy-making.” (p. 187). There are also hundreds of millions of dollars for science conducted within the federal government: labs and facilities (p.83) as well as highlighted projects (e.g., ocean and freshwater surveillance, p. 98). Again, all this is on top of the $925 million for fundamental research outside of government, administered by the funding councils. All told, that’s a big boost for research.

What about the uptake of that research in decision-making? There’s a whole section in Chapter 2 entitled “Placing Evidence at the Centre of Program Evaluation and Design.” The result? Statistics Canada gets $1 million annually to “improve performance evaluations for innovation-related programs,” and the Treasury Board gets $2 million annually to build an internal team for innovation performance evaluation, drawing on (among other things) the StatsCan innovation data.

Beyond that, the previous budget outlined $2 million annually for the federal Chief Science Advisor and her secretariat. That outlay doesn’t mention improving evidence-based decision-making, though it’s a key part of the CSA’s mandate. Together, what we see here is that there’s a huge disparity between the new money being spent on research and data, and the new money being spent to develop “a strong culture of evidence-based decision-making” (Budget 2018, p. 276).

Reading between the line items

The funding disparity suggests that the government feels that evidence-based policymaking is hampered primarily by supply-side problems. If we just pushed more science in the front end, we’d get a better flow of evidence through the policymaking pipeline. There’s almost no money to patch up whatever holes there may be in that pipeline between the research money inputs and the better policy outputs.

This quality of analysis is what one would hope for from the Canadian Science Policy Centre (CSPC). Perhaps once their initial euphoria and back-patting has passed, the CSPC commentators will offer more nuanced takes on the budget.

Budget 2018: The good includes a new intellectual property strategy

First, there’s a lot to like in the 2018 budget as the CSPC folks noticed. Advancing gender equality, supporting innovation and business, supporting fundamental research through the tri-council agencies, and more are all to the good.

Surprisingly, no one else seems to have mentioned a new (?) intellectual property strategy introduced in the document (from Chapter 2: Progress; scroll down about 80% of the way, Note: The formatting has been changed),

Budget 2018 proposes measures in support of a new Intellectual Property Strategy to help Canadian entrepreneurs better understand and protect intellectual property, and get better access to shared intellectual property.

What Is a Patent Collective?
A Patent Collective is a way for firms to share, generate, and license or purchase intellectual property. The collective approach is intended to help Canadian firms ensure a global “freedom to operate”, mitigate the risk of infringing a patent, and aid in the defence of a patent infringement suit.

Budget 2018 proposes to invest $85.3 million over five years, starting in 2018–19, with $10 million per year ongoing, in support of the strategy. The Minister of Innovation, Science and Economic Development will bring forward the full details of the strategy in the coming months, including the following initiatives to increase the intellectual property literacy of Canadian entrepreneurs, and to reduce costs and create incentives for Canadian businesses to leverage their intellectual property:

  • To better enable firms to access and share intellectual property, the Government proposes to provide $30 million in 2019–20 to pilot a Patent Collective. This collective will work with Canada’s entrepreneurs to pool patents, so that small and medium-sized firms have better access to the critical intellectual property they need to grow their businesses.
  • To support the development of intellectual property expertise and legal advice for Canada’s innovation community, the Government proposes to provide $21.5 million over five years, starting in 2018–19, to Innovation, Science and Economic Development Canada. This funding will improve access for Canadian entrepreneurs to intellectual property legal clinics at universities. It will also enable the creation of a team in the federal government to work with Canadian entrepreneurs to help them develop tailored strategies for using their intellectual property and expanding into international markets.
  • To support strategic intellectual property tools that enable economic growth, Budget 2018 also proposes to provide $33.8 million over five years, starting in 2018–19, to Innovation, Science and Economic Development Canada, including $4.5 million for the creation of an intellectual property marketplace. This marketplace will be a one-stop, online listing of public sector-owned intellectual property available for licensing or sale to reduce transaction costs for businesses and researchers, and to improve Canadian entrepreneurs’ access to public sector-owned intellectual property.

The Government will also consider further measures, including through legislation, in support of the new intellectual property strategy.

Helping All Canadians Harness Intellectual Property
Intellectual property is one of our most valuable resources, and every Canadian business owner should understand how to protect and use it.

To better understand what groups of Canadians are benefiting the most from intellectual property, Budget 2018 proposes to provide Statistics Canada with $2 million over three years to conduct an intellectual property awareness and use survey. This survey will help identify how Canadians understand and use intellectual property, including groups that have traditionally been less likely to use intellectual property, such as women and Indigenous entrepreneurs. The results of the survey should help the Government better meet the needs of these groups through education and awareness initiatives.

The Canadian Intellectual Property Office will also increase the number of education and awareness initiatives that are delivered in partnership with business, intermediaries and academia to ensure Canadians better understand, integrate and take advantage of intellectual property when building their business strategies. This will include targeted initiatives to support underrepresented groups.

Finally, Budget 2018 also proposes to invest $1 million over five years to enable representatives of Canada’s Indigenous Peoples to participate in discussions at the World Intellectual Property Organization related to traditional knowledge and traditional cultural expressions, an important form of intellectual property.

It’s not wholly clear what they mean by ‘intellectual property’. The focus seems to be on  patents as they are the only intellectual property (as opposed to copyright and trademarks) singled out in the budget. As for how the ‘patent collective’ is going to meet all its objectives, this budget supplies no clarity on the matter. On the plus side, I’m glad to see that indigenous peoples’ knowledge is being acknowledged as “an important form of intellectual property” and I hope the discussions at the World Intellectual Property Organization are fruitful.

That said, it’s good to see the government adopting a fresh approach to the matter.

Budget 2018: Who’s watching over us?

Russ Roberts (CSPC editorial) makes an excellent point in his piece about getting some sort of return on investment (ROI) made by the Canadian government on behalf of its taxpayers. One note, the issue is not new and unique to this Liberal government. As far as I’m aware, there never has been any mechanism for determining whether taxpayers’ money has been well spent and other than knowing that insulin was a huge boon to the world and could be described as a great ROI. So, I’m not suggesting that everything has to be measured in dollars and cents but just that we occasionally give it some thought.

Another aspect I’d like to see considered is oversight. In my March 5, 2018 posting I posed a question, What is happening with Alberta’s (Canada) Ingenuity Lab? In sum, Dr. Carlo Montemagno came to Alberta to head up the lab which is funded to the tune of $100M over 10 years. He was making over $500,000/year when he left some five years into the project to become Chancellor at Southern Illinois University (SIU). I had some questions about Montemagno’s tenure in Alberta. For example, was hiring his daughter and son-in-law (as he did again at SIU where he has received severe criticism) to work at the Ingenuity Lab a good idea? It may have been but it seems as if the question was never asked. Other questions also present themselves such as, what is happening to an industrial pilot project on carbon transformation that Montemagno touted?

Increasingly, I’m wondering what sort of oversight these heavily funded science projects are receiving, especially in light of the government’s massive foul up over the Phoenix pay system for federal government employees. (I’m aware that I’m conflating science and technology.) We’re entering the third year of a botched (a very polite term) and increasingly expensive payroll technology implementation. Take for example this recommendation from the Canada Treasury Board’s Lessons Learned from the Transformation of Pay Administration Initiative webpage which has me shaking my head,

Fully test the IT Solution before launch
Lesson 14: Launch any required new IT solution only after it has been fully tested with end-to-end real-life simulations using a broad spectrum of real users and when all doubts regarding success have been addressed and verified independently.

The federal government has over 300,000 employees whose payroll was migrated to this system and they didn’t test it (!) or so I infer from this recommendation. (According to a CBC [Canadian Broadcasting Corporation] news online August 24, 2017 news item, a little over 1/2 of Canada’s federal public servants have been affected,

Nearly one in every two federal public servants paid through the problem-plagued Phoenix system has opened a file seeking redress for a pay issue, CBC News has learned.

As of Aug. 8 [2017], there were 156,035 employees who had been waiting at least 30 days to have their pay complaint dealt with, according to data released to Radio-Canada by a government source.

That number represents nearly one-half of the 313,734 public servants paid through Phoenix. It’s also the first instance in which the scope of the Phoenix payroll issues has been laid clear in terms of people affected, rather than in terms of “transactions” or “cases.”

The documents show the government has been tracking the numbers of individuals affected by Phoenix since at least June 26 [2017].

“It’s shocking that we’ve just learned that they were hiding those numbers, because they didn’t want to show how big that catastrophe is for our public servants,” said Alexandre Boulerice, the NDP’s [New Democratic Party] finance critic.

Interestingly,  the government is hoping to introduce more technology into their governance. Michael Karlin’s (@supergovernance) Twitter feed and his latest essay provide some insight into the government’s preparations for the introduction of artificial intelligence (AI), Note: Links have been removed,

Towards Rules for Automation in Government

Caveat: This is a personal view of work underway that I’m leading. What I describe is subject to incredible change as this policy work winds its way through government and consultations. Our approach may change for reasons that I’m simply not privy to, and that’s fine. This is meant to solicit ideas, but also show the complexity about what it takes to make policy. I hope that people find it useful, particularly students of public admin. It also represents my view of the world only, and neither my organization’s or the Government of Canada writ large.

AI is a rapidly evolving space, and trying to create rules in a time of disruption is risky. Too severe and innovation can be hindered; this is unacceptable during a time when the Government of Canada is embracing digital culture. On the other hand, if the rules don’t have meaning and teeth, and Canadians will not be sufficiently protected from the negative outcomes of this technology, like this or this. Trying to strike the right balance between facilitating innovation while being protective of right is a challenge, and one that benefits from ongoing discussions with different sectors across the country. It also means that I might work hard to build a consensus around a set of rules that we try out and have to scrap and redesign after a year in deployment because they don’t work.

Let’s not forget the 2017 Canadian federal budget introduced funding ($125M) for a Pan-Canadian Artificial Intelligence Strategy to be administered by the Canadian Institute for Advanced Research (CIFAR). So, federal funding for science is often intimately linked to technology., hence the conflation.

Sunny ways: a discussion between Justin Trudeau and Bill Nye

Billed as a discussion about the Canadian federal 2018 budget and science, Justin Trudeau sat down with Bill Nye, a US science popularizer and television personality on March 6, 2018 for about an hour. Kate Young, parliamentary secretary to the minister of science (Kirsty Duncan) was moderator.

As to be expected Bill Nye did not know much about the budget and the funding it provided for science, technology, research, and innovation but he was favourably impressed overall. In short, if you were looking for an incisive policy discussion, this was not the venue for it.

The conversation was quite genial throughout. Paul Wells in his March 6, 2018 article for Maclean’s offers a good summary of the main points and answers a few questions I had (for example, why a US television science personality?),

News of this bit of show-business [televised discussion] drew a fair bit of advance comment, most of it on Twitter on Monday night, some of it critical or worried. Some who don’t like Nye’s climate-change activism said he’s not a scientist. This is, by many definitions, true: He’s a mechanical engineer. I’m here to tell you that it’s hard to get a degree in mechanical engineering without learning some science, but for those inclined to draw distinctions, fill your boots. Others wished a Canadian scientist had been Trudeau’s chosen interlocutor, instead of some TV Yankee.

Part of the answer to that came from the U of O students, who were pleased to see the Prime Minister but plainly way more pleased to see Bill Nye the Science Guy. There simply isn’t a Canadian scientist (or science-friendly mechanical engineer) who would have provoked as much excitement. [emphasis mine; sadly true]

My own concern was that Nye, who has been critical of the Trump administration, might attempt to draw distinctions between the blackened anti-science hell-pit of his own country and the bright shiny city on a hill called Canada. Such distinctions would have been misinformed, for reasons I’ll explain in a bit, but in fact Nye mostly managed to avoid making them.

Mostly he and Trudeau just shot the breeze, in ways that were low on detail but not unpleasant.

One comment that Trudeau made raised a lot of interest on Paul Wells’ fTwitfer feed (#inklessPW), ‘all babies are scientists’. Wells’ notes where this idea likely originated (Note: A link has been removed),

The babies-are-scientists bit, I heard from a former New Brunswick education minister named Kelly Lamrock, could come from a book that was in vogue at about the time Trudeau was working as a schoolteacher, The Scientist in the Crib. To anyone who’s watched a toddler who was fascinated about dinosaurs grow into a teenager who couldn’t care less, Trudeau’s reverie makes sense as folk wisdom if not as a precise description of the scientific method.

There are also people who claim all babies are artists or musicians or mathematicians or … . Take your pick.

Wells goes on to highlight two female researchers (Trudeau being famously feminist and whose government just presented a budget boosting women) invited onstage to participate in the conversation (Note: Links have been removed),

… two young women researchers were invited onstage. Plainly their role was to be admired as pathbreaking young women researchers, pulverizing glass ceilings, embodying budget initiatives. To my relief, neither seemed interested in acting the part, or at least not in behaving as if sent straight from Central Casting.

Caitlin Miron from Queen’s University has already received some coverage for discovering a… thing… that could “switch off” cancer cells. This is how Miron was introduced. She could switch off cancer cells. It’s how Nye addressed her. You could switch off cancer cells! Miron answered, reasonably enough, that that’s how it might turn out someday, but that on the other hand it might not, and in the meantime she’s learning interesting new things about cancer cells. She was plainly flattered by the attention, but not interested in boiling her work down to slogans just yet.

Then the PM and the science guy turned to Ayda Elhage, who’s a PhD student in Chemistry at the University of Ottawa. Elhage, who was born in Lebanon, launched into a description of her work, which concentrates on (among other things) the tunable photocatalytic activity of palladium-decorated titanium dioxide [likely titanium dioxide nanoparticles]. I’m sure I don’t have to tell you how important this work is! At least I hope I don’t, because I understood almost none of it! I think it’s about complex new materials whose properties can be triggered by light. Or not. Anyway, the way she resisted any attempt to reduce her work to a gimmick or gadget was heartening to hear.

Wells winds up with this,

…  the truth is that even now, today, in the second of the dark Trump years, the United States is far more of a performer in science research than Canada is. The U.S. National Institutes of Health have about 6 or 7 times the per-capita budget of the Canadian Institutes of Health Research; NASA and the National Science Foundation together spend about twice as much per capita as Canada’s Natural Science and Engineering Research Council.

The new investments in last week’s budget, while welcome, won’t change the orders of magnitude here. The U.S. commitment to science research is cultural and durable. The Trump White House’s call for cuts to granting agencies was met with budget increases to those agencies from Congress. Trudeau’s conversion to the cause comes after almost a year’s steady pressure from the Canadian research community. But I bet those researchers were heartened to hear Trudeau talking like one of them so soon after the budget came down.

Wells also covers their comments on support for fundamental research and a foray into the Kinder Morgan pipeline controversy.

From Wells’ Twitter feed (on the day of),

2 hours ago

Nye asks Trudeau about “this pipeline, Morgan Kinder.” Uh oh.

2 hours ago

Trudeau talks about “tremendous potential” for renewables. “However, we’re not going to get there tomorrow.” The has to be a “transition phase.”

2 hours ago

This answer is longer than the Oscars.

Nye did not correctly identify the pipeline but he did comment on his visit to Fort McMurray. In any event, the Kinder Morgan portion of the discussion seemed scripted (to me), i.e, Trudeau knew the question was coming and was prepared for it. I’m guessing he also knew Nye was going to give him and his government a pass after hearing the reasons for their decision.

One question that I found interesting but not mentioned in Wells’ article was about language and the arts. It was neither Trudeau’s not Nye’s finest moment. They were clearly unable to shift gears, part of their problem being that much of what they discussed in terms of ‘baby scientists’ could also be said about the arts. Yes, all babies make art!

Final thoughts

As noted earlier, here’s a lot to applaud in the new budget, more support for fundamental research, catch up funding for the Social Sciences and Humanities Research Council, and greater support for women in the sciences and technology.

At the same time, I wish this government put more thought into how it’s spending taxpayers’ money.

Extras

For anyone who’s curious, you can find the full 2018 federal budget here and you’ll find the science funding in Chapter 2: Progress.

For the curious, you can watch the entire (!) Trudeau/Nye conversation, 1 hour, 9 minutes and 30 seconds here.

For anyone interested in the Naylor report (or my comments on it), there’s this three-part series:

  • INVESTING IN CANADA’S FUTURE; Strengthening the Foundations of Canadian Research (Review of fundamental research final report): 1 of 3
  • INVESTING IN CANADA’S FUTURE; Strengthening the Foundations of Canadian Research (Review of fundamental research final report): 2 of 3
  • INVESTING IN CANADA’S FUTURE; Strengthening the Foundations of Canadian Research (Review of fundamental research final report): 3 of 3

For anyone who hasn’t been following the Canadian political scene, “sunny ways” is a term that Justin Trudeau uses to describe, in part, his political philosophy. Here’s an explanation of the term from the Liberal Party of Canada’s website,

Canadians have often heard Prime Minister Justin Trudeau speak of Sir Wilfrid Laurier’s [Canadian Prime Minister from 1896-1911] sunny ways – a guiding philosophy that both men share. Like Laurier, the Prime Minister knows that politics can be a positive and powerful force for change. …

Wilfrid Laurier’s appeal for the “sunny way” in political discourse has its roots in the Manitoba Schools Question. When Manitoba became a province in 1870, a dual school system was established to reflect the province’s Protestant and largely English-speaking population, and its Catholic and predominantly French-speaking, residents.

“The sun’s warm rays prove more effective than the wind’s bluster.”

By 1890, the Anglophone population widely outnumbered the Francophones. Seeking to appeal to this growing population, the provincial government of Thomas Greenway attempted to abolish the dual school system. With the support of the federal Conservative government, Manitoba’s Catholic community launched a court challenge of the school law. The Judicial Committee of the Privy Council ruled that while the law was valid, the federal government could restore public funding to denominational schools. In 1895, despite it being deeply divisive, Prime Minister Mackenzie Bowell introduced legislation to force Manitoba to restore Catholic schools – a measure that was then postponed due to severe opposition within his own cabinet, ultimately leading to his resignation.

In contrast to Bowell’s heavy-handed approach, Liberal Leader Wilfrid Laurier proposed that a diplomatic “sunny way” would work better, using as an illustration Aesop’s fable in which the sun and the wind hold a contest to see who can remove a traveler’s coat. The sun’s warm rays prove more effective than the wind’s bluster.

While more than 120 years have passed, Prime Minister Trudeau shares Laurier’s belief that the “sunny way” remains essential to solving the complex problems facing our country.

Trudeau seems to have had remarkable luck with his ‘sunny ways’ which sometimes seem more like a form of teflon coating than an approach to diplomacy as per Sir Wilfred Laurier. At other times, Trudeau appears to have a magic touch where diplomacy is concerned. He is famously able to deal with the volatile US President, Donald Trump.

INVESTING IN CANADA’S FUTURE; Strengthening the Foundations of Canadian Research (Review of fundamental research final report): 3 of 3

This is the final commentary on the report titled,(INVESTING IN CANADA’S FUTURE; Strengthening the Foundations of Canadian Research). Part 1 of my commentary having provided some introductory material and first thoughts about the report, Part 2 offering more detailed thoughts; this part singles out ‘special cases’, sums up* my thoughts (circling back to ideas introduced in the first part), and offers link to other commentaries.

Special cases

Not all of the science funding in Canada is funneled through the four agencies designed for that purpose, (The Natural Sciences and Engineering Research Council (NSERC), Social Sciences and Humanities Research Council (SSHRC), Canadian Institutes of Health Research (CIHR) are known collectively as the tri-council funding agencies and are focused on disbursement of research funds received from the federal government. The fourth ‘pillar’ agency, the Canada Foundation for Innovation (CFI) is focused on funding for infrastructure and, technically speaking, is a 3rd party organization along with MITACS, CANARIE, the Perimeter Institute, and others.

In any event, there are also major research facilities and science initiatives which may receive direct funding from the federal government bypassing the funding agencies and, it would seem, peer review. For example, I featured this in my April 28, 2015 posting about the 2015 federal budget,

The $45 million announced for TRIUMF will support the laboratory’s role in accelerating science in Canada, an important investment in discovery research.

While the news about the CFI seems to have delighted a number of observers, it should be noted (as per Woodgett’s piece) that the $1.3B is to be paid out over six years ($220M per year, more or less) and the money won’t be disbursed until the 2017/18 fiscal year. As for the $45M designated for TRIUMF (Canada’s National Laboratory for Particle and Nuclear Physics), this is exciting news for the lab which seems to have bypassed the usual channels, as it has before, to receive its funding directly from the federal government. [emphases mine]

The Naylor report made this recommendation for Canada’s major research facilities, (MRF)

We heard from many who recommended that the federal government should manage its investments in “Big Science” in a more coordinated manner, with a cradle-to-grave perspective. The Panel agrees. Consistent with NACRI’s overall mandate, it should work closely with the CSA [Chief Science Advisor] in establishing a Standing Committee on Major Research Facilities (MRFs).

CFI defines a national research facility in the following way:

We define a national research facility as one that addresses the needs of a community of Canadian researchers representing a critical mass of users distributed across the country. This is done by providing shared access to substantial and advanced specialized equipment, services, resources, and scientific and technical personnel. The facility supports leading-edge research and technology development, and promotes the mobilization of knowledge and transfer of technology to society. A national research facility requires resource commitments well beyond the capacity of any one institution. A national research facility, whether single-sited, distributed or virtual, is specifically identified or recognized as serving pan-Canadian needs and its governance and management structures reflect this mandate.8

We accept this definition as appropriate for national research facilities to be considered by the Standing Committee on MRFs, but add that the committee should:

• define a capital investment or operating cost level above which such facilities are considered “major” and thus require oversight by this committee (e.g., defined so as to include the national MRFs proposed in Section 6.3: Compute Canada, Canadian Light Source, Canada’s National Design Network, Canadian Research Icebreaker Amundsen, International Vaccine Centre, Ocean Networks Canada, Ocean Tracking Network, and SNOLAB plus the TRIUMF facility); and

• consider international MRFs in which Canada has a significant role, such as astronomical telescopes of global significance.

The structure and function of this Special Standing Committee would closely track the proposal made in 2006 by former NSA [National Science Advisor] Dr Arthur Carty. We return to this topic in Chapter 6. For now, we observe that this approach would involve:

• a peer-reviewed decision on beginning an investment;

• a funded plan for the construction and operation of the facility, with continuing oversight by a peer specialist/agency review group for the specific facility;

• a plan for decommissioning; and

• a regular review scheduled to consider whether the facility still serves current needs.

We suggest that the committee have 10 members, with an eminent scientist as Chair. The members should include the CSA, two representatives from NACRI for liaison, and seven others. The other members should include Canadian and international scientists from a broad range of disciplines and experts on the construction, operation, and administration of MRFs. Consideration should be given to inviting the presidents of NRC [National Research Council of Canada] and CFI to serve as ex-officio members. The committee should be convened by the CSA, have access to the Secretariat associated with the CSA and NACRI, and report regularly to NACRI. (pp. 66-7 print; pp. 100-1 PDF)

I have the impression there’s been some ill feeling over the years regarding some of the major chunks of money given for ‘big science’. At a guess, direct appeals to a federal government that has no official mechanism for assessing the proposed ‘big science’ whether that means a major research facility (e.g., TRIUMF) or major science initiative (e.g., Pan Canadian Artificial Intelligence Strategy [keep reading to find out how I got the concept of a major science initiative wrong]) or 3rd party (MITACS) has seemed unfair to those who have to submit funding applications and go through vetting processes. This recommendation would seem to be an attempt to redress some of the issues.

Moving onto the third-party delivery and matching programs,

Three bodies in particular are the largest of these third-party organizations and illustrate the challenges of evaluating contribution agreements: Genome Canada, Mitacs, and Brain Canada. Genome Canada was created in 2000 at a time when many national genomics initiatives were being developed in the wake of the Human Genome Project. It emerged from a “bottom-up” design process driven by genomic scientists to complement existing programs by focusing on large-scale projects and technology platforms. Its funding model emphasized partnerships and matching funds to leverage federal commitments with the objective of rapidly ramping up genomics research in Canada.

This approach has been successful: Genome Canada has received $1.1 billion from the Government of Canada since its creation in 2000, and has raised over $1.6 billion through co-funding commitments, for a total investment in excess of $2.7 billion.34 The scale of Genome Canada’s funding programs allows it to support large-scale genomics research that the granting councils might otherwise not be able to fund. Genome Canada also supports a network of genomics technology and innovation centres with an emphasis on knowledge translation and has built domestic and international strategic partnerships. While its primary focus has been human health, it has also invested extensively in agriculture, forestry, fisheries, environment, and, more recently, oil and gas and mining— all with a view to the application and commercialization of genomic biotechnology.

Mitacs attracts, trains, and retains HQP [highly qualified personnel] in the Canadian research enterprise. Founded in 1999 as an NCE [Network Centre for Excellence], it was developed at a time when enrolments in graduate programs had flat-lined, and links between mathematics and industry were rare. Independent since 2011, Mitacs has focused on providing industrial research internships and postdoctoral fellowships, branching out beyond mathematics to all disciplines. It has leveraged funding effectively from the federal and provincial governments, industry, and not-for-profit organizations. It has also expanded internationally, providing two-way research mobility. Budget 2015 made Mitacs the single mechanism of federal support for postsecondary research internships with a total federal investment of $135.4 million over the next five years. This led to the wind-down of NSERC’s Industrial Postgraduate Scholarships Program. With matching from multiple other sources, Mitacs’ average annual budget is now $75 to $80 million. The organization aims to more than double the number of internships it funds to 10,000 per year by 2020.35

Finally, Brain Canada was created in 1998 (originally called NeuroScience Canada) to increase the scale of brain research funding in Canada and widen its scope with a view to encouraging interdisciplinary collaboration. In 2011 the federal government established the Canada Brain Research Fund to expand Brain Canada’s work, committing $100 million in new public investment for brain research to be matched 1:1 through contributions raised by Brain Canada. According to the STIC ‘State of the Nation’ 2014 report, Canada’s investment in neuroscience research is only about 40 per cent of that in the U.S. after adjusting for the size of the U.S. economy.36 Brain Canada may be filling a void left by declining success rates and flat funding at CIHR.

Recommendation and Elaboration

The Panel noted that, in general, third-party organizations for delivering research funding are particularly effective in leveraging funding from external partners. They fill important gaps in research funding and complement the work of the granting councils and CFI. At the same time, we questioned the overall efficiency of directing federal research funding through third-party organizations, noting that our consultations solicited mixed reactions. Some respondents favoured more overall funding concentrated in the agencies rather than diverting the funding to third-party entities. Others strongly supported the business models of these organizations.

We have indicated elsewhere that a system-wide review panel such as ours is not well-suited to examine these and other organizations subject to third-party agreements. We recommended instead in Chapter 4 that a new oversight body, NACRI, be created to provide expert advice and guidance on when a new entity might reasonably be supported by such an agreement. Here we make the case for enlisting NACRI in determining not just the desirability of initiating a new entity, but also whether contribution agreements should continue and, if so, on what terms.

The preceding sketches of three diverse organizations subject to contribution agreements help illustrate the rationale for this proposal. To underscore the challenges of adjudication, we elaborate briefly. Submissions highlighted that funding from Genome Canada has enabled fundamental discoveries to be made and important knowledge to be disseminated to the Canadian and international research communities. However, other experts suggested a bifurcation with CIHR or NSERC funding research-intensive development of novel technologies, while Genome Canada would focus on application (e.g., large-scale whole genome studies) and commercialization of existing technologies. From the Panel’s standpoint, these observations underscore the subtleties of determining where and how Genome Canada’s mandate overlaps and departs from that of CIHR and NSERC as well as CFI. Added to the complexity of any assessment is Genome Canada’s meaningful role in providing large-scale infrastructure grants and its commercialization program. Mitacs, even more than Genome Canada, bridges beyond academe to the private and non-profit sectors, again highlighting the advantage of having any review overseen by a body with representatives from both spheres. Finally, as did the other two entities, Brain Canada won plaudits, but some interchanges saw discussants ask when and whether it might be more efficient to flow this type of funding on a programmatic basis through CIHR.

We emphasize that the Panel’s intent here is neither to signal agreement nor disagreement with any of these submissions or discussions. We simply wish to highlight that decisions about ongoing funding will involve expert judgments informed by deep expertise in the relevant research areas and, in two of these examples, an ability to bridge from research to innovation and from extramural independent research to the private and non-profit sectors. Under current arrangements, management consulting firms and public servants drive the review and decision-making processes. Our position is that oversight by NACRI and stronger reliance on advice from content experts would be prudent given the sums involved and the nature of the issues. (pp. 102-4 print; pp. 136-8 PDF)

I wasn’t able to find anything other than this about major science initiatives (MSIs),

Big Science facilities, such as MSIs, have had particular challenges in securing ongoing stable operating support. Such facilities often have national or international missions. We termed them “major research facilities” (MRFs) xi in Chapter 4, and proposed an improved oversight mechanism that would provide lifecycle stewardship of these national science resources, starting with the decision to build them in the first instance. (p. 132 print; p. 166 PDF)

So, an MSI is an MRF? (head shaking) Why two terms for the same thing? And, how does the newly announced Pan Canadian Artificial Intelligence Strategy fit into the grand scheme of things?

The last ‘special case’ I’m featuring is the ‘Programme for Research Chairs for Excellent Scholars and Scientists’. Here’s what the report had to say about the state of affairs,

The major sources of federal funding for researcher salary support are the CRC [Canada Research Chair]and CERC [Canada Excellence Reseach Chair] programs. While some salary support is provided through council-specific programs, these investments have been declining over time. The Panel supports program simplification but, as noted in Chapter 5, we are concerned about the gaps created by the elimination of these personnel awards. While we focus here on the CRC and CERC programs because of their size, profile, and impact, our recommendations will reflect these concerns.

The CRC program was launched in 2000 and remains the Government of Canada’s flagship initiative to keep Canada among the world’s leading countries in higher education R&D. The program has created 2,000 research professorships across Canada with the stated aim “to attract and retain some of the world’s most accomplished and promising minds”5 as part of an effort to curtail the potential academic brain drain to the U.S. and elsewhere. The program is a tri-council initiative with most Chairs allocated to eligible institutions based on the national proportion of total research grant funding they receive from the three granting councils. The vast majority of Chairs are distributed based on area of research, of which 45 per cent align with NSERC, 35 per cent with CIHR, and 20 per cent with SSHRC; an additional special allocation of 120 Chairs can be used in the area of research chosen by the universities receiving the Chairs. There are two types of Chairs: Tier 1 Chairs are intended for outstanding researchers who are recognized as world leaders in their fields and are renewable; Tier 2 Chairs are targeted at exceptional emerging researchers with the potential to become leaders in their field and can be renewed once. Awards are paid directly to the universities and are valued at $200,000 annually for seven years (Tier 1) or $100,000 annually for five years (Tier 2). The program notes that Tier 2 Chairs are not meant to be a feeder group for Tier 1 Chairs; rather, universities are expected to develop a succession plan for their Tier 2 Chairs.

The CERC program was established in 2008 with the expressed aim of “support[ing] Canadian universities in their efforts to build on Canada’s growing reputation as a global leader in research and innovation.”6 The program aims to award world-renowned researchers and their teams with up to $10 million over seven years to establish ambitious research programs at Canadian universities, making these awards among the most prestigious and generous available internationally. There are currently 27 CERCs with funding available to support up to 30 Chairs, which are awarded in the priority areas established by the federal government. The awards, which are not renewable, require 1:1 matching funds from the host institution, and all degree-granting institutions that receive tri-council funding are eligible to compete. Both the CERC and CRC programs are open to Canadians and foreign citizens. However, until the most recent round, the CERCs have been constrained to the government’s STEM-related priorities; this has limited their availability to scholars and scientists from SSHRC-related disciplines. As well, even though Canadian-based researchers are eligible for CERC awards, the practice has clearly been to use them for international recruitment with every award to date going to researchers from abroad.

Similar to research training support, the funding for salary support to researchers and scholars is a significant proportion of total federal research investments, but relatively small with respect to the research ecosystem as a whole. There are more than 45,000 professors and teaching staff at Canada’s universities7 and a very small fraction hold these awards. Nevertheless, the programs can support research excellence by repatriating top Canadian talent from abroad and by recruiting and retaining top international talent in Canada.

The programs can also lead by example in promoting equity and diversity in the research enterprise. Unfortunately, both the CRC and CERC programs suffer from serious challenges regarding equity and diversity, as described in Chapter 5. Both programs have been criticized in particular for under-recruitment of women.

While the CERC program has recruited exclusively from outside Canada, the CRC program has shown declining performance in that regard. A 2016 evaluation of the CRC program8  observed that a rising number of chairholders were held by nominees who originated from within the host institution (57.5 per cent), and another 14.4 per cent had been recruited from other Canadian institutions. The Panel acknowledges that some of these awards may be important to retaining Canadian talent. However, we were also advised in our consultations that CRCs are being used with some frequency to offset salaries as part of regular faculty complement planning.

The evaluation further found that 28.1 per cent of current chairholders had been recruited from abroad, a decline from 32 per cent in the 2010 evaluation. That decline appears set to continue. The evaluation reported that “foreign nominees accounted, on average, for 13 per cent and 15 per cent respectively of new Tier 1 and Tier 2 nominees over the five-year period 2010 to 2014”, terming it a “large decrease” from 2005 to 2009 when the averages respectively were 32 per cent and 31 per cent. As well, between 2010-11 and 2014-15, the attrition rate for chairholders recruited from abroad was 75 per cent higher than for Canadian chairholders, indicating that the program is also falling short in its ability to retain international talent.9

One important factor here appears to be the value of the CRC awards. While they were generous in 2000, their value has remained unchanged for some 17 years, making it increasingly difficult to offer the level of support that world-leading research professors require. The diminishing real value of the awards also means that Chair positions are becoming less distinguishable from regular faculty positions, threatening the program’s relevance and effectiveness. To rejuvenate this program and make it relevant for recruitment and retention of top talent, it seems logical to take two steps:

• ask the granting councils and the Chairs Secretariat to work with universities in developing a plan to restore the effectiveness of these awards; and

• once that plan is approved, increase the award values by 35 per cent, thereby restoring the awards to their original value and making them internationally competitive once again.

In addition, the Panel observes that the original goal was for the program to fund 2,000 Chairs. Due to turnover and delays in filling Chair positions, approximately 10 to 15 per cent of them are unoccupied at any one time.i As a result, the program budget was reduced by $35 million in 2012. However, the occupancy rate has continued to decline since then, with an all-time low of only 1,612 Chair positions (80.6 per cent) filled as of December 2016. The Panel is dismayed by this inefficiency, especially at a time when Tier 2 Chairs remain one of the only external sources of salary support for ECRs [early career researchers]—a group that represents the future of Canadian research and scholarship. (pp. 142-4 print; pp. 176-8 PDF)

I think what you can see as a partial subtext in this report and which I’m attempting to highlight here in ‘special cases’ is a balancing act between supporting a broad range of research inquiries and focusing or pouring huge sums of money into ‘important’ research inquiries for high impact outcomes.

Final comments

There are many things to commend this report including the writing style. The notion that more coordination is needed amongst the various granting agencies, that greater recognition (i.e,, encouragement and funding opportunities) should be given to boundary-crossing research, and that we need to do more interprovincial collaboration is welcome. And yes, they want more money too. (That request is perfectly predictable. When was the last time a report suggested less funding?) Perhaps more tellingly, the request for money is buttressed with a plea to make it partisan-proof. In short, that funding doesn’t keep changing with the political tides.

One area that was not specifically mentioned, except when discussing prizes, was mathematics. I found that a bit surprising given how important the field of mathematics is to  to virtually all the ‘sciences’. A 2013 report, Spotlight on Science, suggests there’s a problem(as noted my Oct. 9, 2013 posting about that report,  (I also mention Canada’s PISA scores [Programme for International Student Assessment] by the OECD [Organization for Economic Cooperation and Development], which consistently show Canadian students at the age of 15 [grade 10] do well) ,

… it appears that we have high drop out rates in the sciences and maths, from an Oct. 8, 2013 news item on the CBC (Canadian Broadcasting Corporation) website,

… Canadians are paying a heavy price for the fact that less than 50 per cent of Canadian high school students graduate with senior courses in science, technology, engineering and math (STEM) at a time when 70 per cent of Canada’s top jobs require an education in those fields, said report released by the science education advocacy group Let’s Talk Science and the pharmaceutical company Amgen Canada.

Spotlight on Science Learning 2013 compiles publicly available information about individual and societal costs of students dropping out STEM courses early.

Even though most provinces only require math and science courses until Grade 10, the report [Spotlight on Science published by Let’s Talk Science and pharmaceutical company Amgen Canada) found students without Grade 12 math could expect to be excluded from 40 to 75 per cent of programs at Canadian universities, and students without Grade 11 could expect to be excluded from half of community college programs. [emphasis mine]

While I realize that education wasn’t the panel’s mandate they do reference the topic  elsewhere and while secondary education is a provincial responsibility there is a direct relationship between it and postsecondary education.

On the lack of imagination front, there was some mention of our aging population but not much planning or discussion about integrating older researchers into the grand scheme of things. It’s all very well to talk about the aging population but shouldn’t we start introducing these ideas into more of our discussions on such topics as research rather than only those discussions focused on aging?

Continuing on with the lack of  imagination and lack of forethought, I was not able to find any mention of independent scholars. The assumption, as always, is that one is affiliated with an institution. Given the ways in which our work world is changing with fewer jobs at the institutional level, it seems the panel was not focused on important and fra reaching trends. Also, there was no mention of technologies, such as artificial intelligence, that could affect basic research. One other thing from my wish list, which didn’t get mentioned, art/science or SciArt. Although that really would have been reaching.

Weirdly, one of the topics the panel did note, the pitiifull lack of interprovincial scientific collaboration, was completely ignored when it came time for recommendations.

Should you spot any errors in this commentary, please do drop me a comment.

Other responses to the report:

Nassif Ghoussoub (Piece of Mind blog; he’s a professor mathematics at the University of British Columbia; he attended one of the roundtable discussions held by the panel). As you might expect, he focuses on the money end of things in his May 1, 2017 posting.

You can find a series of essays about the report here under the title Response to Naylor Panel Report ** on the Canadian Science Policy Centre website.

There’s also this May 31, 2017 opinion piece by Jamie Cassels for The Vancouver Sun exhorting us to go forth collaborate internationally, presumably with added funding for the University of Victoria of which Cassels is the president and vice-chancellor. He seems not to have noticed that Canadian do much more poorly with interprovincial collaboration.

*ETA June 21, 2017: I’ve just stumbled across Ivan Semeniuk’s April 10, 2017 analysis (Globe and Mail newspaper) of the report. It’s substantive and well worth checking out.*

Again, here’s a link to the other parts:

INVESTING IN CANADA’S FUTURE; Strengthening the Foundations of Canadian Research (Review of fundamental research final report) Commentaries

Part 1

Part 2

*’up’ added on June 8, 2017 at 15:10 hours PDT.

**’Science Funding Review Panel Repor’t was changed to ‘Responses to Naylor Panel Report’ on June 22, 2017.

Canadian Science Policy Conference inaugurates Lecture Series: Science Advice in a Troubled World

The Canadian Science Policy Centre (CSPC) launched a lecture series on Monday, Jan. 16, 2017 with Sir Peter Gluckman as the first speaker in a talk titled, Science Advice in a Troubled World. From a Jan. 18, 2017 CSPC announcement (received via email),

The inaugural session of the Canadian Science Policy Lecture Series was hosted by ISSP [University of Ottawa’s Institute for Science Society and Policy (ISSP)] on Monday January 16th [2017] at the University of Ottawa. Sir Peter Gluckman, Chief Science Advisor to the Prime Minister of New Zealand gave a presentation titled “Science Advise [sic] in a troubled world”. For a summary of the event, video and pictures please visit the event page.  

The session started with speeches by Monica Gattiner, Director, Institute for Science, Society and Policy, Jacques Frémont, President of the University of Ottawa as well as Mehrdad Hariri, CEO and President of the Canadian Science Policy Centre (CSPC).

The talk itself is about 50 mins. but there are lengthy introductions, including a rather unexpected (by me) reference to the recent US election from the president of the University of Ottawa, Jacques Frémont (formerly the head of Québec’s Human Rights Commission, where the talk was held. There was also a number of questions after the talk. So, the running time for the video 1 hr. 12 mins.

Here’s a bit more information about Sir Peter, from the Science Advice in a Troubled World event page on the CSPC website,

Sir Peter Gluckman ONZ FRS is the first Chief Science Advisor to the Prime Minister of New Zealand, having been appointed in 2009. He is also science envoy and advisor to the Ministry of Foreign Affairs and Trade. He is chair of the International Network of Government Science Advice (INGSA), which operates under the aegis of the international Council of Science (ICSU). He chairs the APEC Chief Science Advisors and Equivalents group and is the coordinator of the secretariat of Small Advanced Economies Initiative.  In 2016 he received the AAAS award in Science Diplomacy. He trained as a pediatric and biomedical scientist and holds a Distinguished University Professorship at the Liggins Institute of the University of Auckland. He has published over 700 scientific papers and several technical and popular science books. He has received the highest scientific (Rutherford medal) and civilian (Order of New Zealand, limited to 20 living persons) honours in NZ and numerous international scientific awards. He is a Fellow of the Royal Society of London, a member of the National Academy of Medicine (USA) and a fellow of the Academy of Medical Sciences (UK).

I listened to the entire video and Gluckman presented a thoughtful, nuanced lecture in which he also mentioned Calestous Juma and his 2016 book, Innovation and Its Enemies (btw, I will be writing a commentary about Juma’s extraordinary effort). He also referenced the concepts of post-truth and post-trust, and made an argument for viewing evidence-based science as part of the larger policymaking process rather than the dominant or only factor. From the Science Advice in a Troubled World event page,

Lecture Introduction

The world is facing many challenges from environmental degradation and climate change to global health issues, and many more.  Societal relationships are changing; sources of information, reliable and otherwise, and their transmission are affecting the nature of public policy.

Within this context the question arises; how can scientific advice to governments help address these emerging issues in a more unstable and uncertain world?
The relationship between science and politics is complex and the challenges at their interface are growing. What does scientific advice mean within this context?
How can science better inform policy where decision making is increasingly made against a background of post-truth polemic?

I’m not in perfect agreement with Gluckman with regard to post-truth as I have been influenced by an essay of Steve Fuller’s suggesting that science too can be post-truth. (Fuller’s essay was highlighted in my Jan. 6, 2017 posting.)

Gluckman seems to be wielding a fair amount of influence on the Canadian scene. This is his second CSPC visit in the last few months. He was an invited speaker at the Eighth Annual CSPC conference in November 2016 and, while he’s here in Jan. 2017, he’s chairing the Canadian Institutes of Health Research (CIHR) International Panel on Peer Review. (The CIHR is one of Canada’s three major government funding agencies for the sciences.)

In other places too, he’s going to be a member of a panel at the University of Oxford Martin School in later January 2017. From the “Is a post-truth world a post-expert world?” event page on the Oxford Martin webspace,

Winston Churchill advised that “experts should be on tap but never on top”. In 2017, is a post-truth world a post-expert world? What does this mean for future debates on difficult policy issues? And what place can researchers usefully occupy in an academic landscape that emphasises policy impact but a political landscape that has become wary of experts? Join us for a lively discussion on academia and the provision of policy advice, examining the role of evidence and experts and exploring how gaps with the public and politicians might be bridged.

This event will be chaired by Achim Steiner, Director of the Oxford Martin School and former Executive Director of the United Nations Environment Programme, with panellists including Oxford Martin Visiting Fellow Professor Sir Peter Gluckman, Chief Science Advisor to the Prime Minister of New Zealand and Chair of the International Network for Government Science Advice; Dr Gemma Harper, Deputy Director for Marine Policy and Evidence and Chief Social Scientist in the Department for Environment, Food and Rural Affairs (Defra), and Professor Stefan Dercon, Chief Economist of the Department for International Development (DFID) and Professor of Economic Policy at the Blavatnik School of Government.

This discussion will be followed by a drinks reception, all welcome.

Here are the logistics should you be lucky enough to be able to attend (from the event page),

25 January 2017 17:00 – 18:15

Lecture Theatre, Oxford Martin School

34 Broad Street (corner of Holywell and Catte Streets)
Oxford
OX1 3BD

Registration ((right hand column) is free.

Finally, Gluckman has published a paper on the digital economy as of Nov. 2016, which can be found here (PDF).

Reactions to Canada’s 2015 election Liberal majority and speculations about science and the new cabinet

The euphoria is dying down and, on balance, there was surprisingly little, the tone being more one of optimism laced with caution on the occasion of the Conservative’s defeat at the hands of the Liberal party in the Oct. 19, 2015 Canadian federal election.

Of course the big question for me and other Canadian science bloggers is:

What about science in the wake of the 2015 Liberal majority government in Canada?

I’ve gathered bits and pieces from various published opinions on the topic. First, there’s Brian Owen, a freelance writer in St. Stephen, New Brunswick (there’s more about him in my Aug. 18, 2015 posting about the upcoming Canadian Science Policy Conference to be held Nov. 25 -27, 2015 in Ottawa [Canada’s capital]) in an Oct. 20, 2015 opinion piece for ScienceInsider,

Many Canadian scientists are celebrating the result of yesterday’s federal election, which saw Stephen Harper’s Conservative government defeated after nearly 10 years in power.

The center-left Liberal Party under Justin Trudeau won an unexpected majority government, taking 184 of the 338 seats in the House of Commons. The Conservatives will form the opposition with 99 seats, while the left-leaning New Democratic Party (NDP) fell to third place with just 44 seats.

“Many scientists will be pleased with the outcome,” says Jim Woodgett, director of research at the Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital in Toronto. “The Liberal party has a strong record in supporting science.” [emphasis mine]

I don’t think the Liberal record is that great. If I understand it rightly, the first muzzle placed on government scientists was applied by a then Liberal government to Health Canada. That’s right the Conservatives got the idea from the Liberals and it’s not the only one they got from that source. Omnibus bills were also pioneered by the Liberal government.

However, hope still springs in mine and others’ bosoms as can be seen in an Oct. 21, 2015 essay in the Guardian (UK newspaper) by Michael Halpern of the Center for Science and Democracy at the US-based Union of Concerned Scientists  (Note: Links have been removed),

There was a palpable outpouring of relief from Canadian scientists as the Liberal Party won a majority on Monday night [Oct. 19, 2015], bringing to an end nine years of escalating hostility by the Harper government towards its own research base. Drastic cuts to funding and constraints on scientific freedom have significantly damaged Canadian research and its capacity to develop science-based public health and environmental policies.

Eight hundred scientists from thirty-two countries wrote an open letter urging the prime minster to ease restrictions on scientists and data. In October 2014, a Ryerson University professor wrote in Science magazine that the election presented an “opportunity to reboot the federal government’s controversial approach to science policy and research.”

All of this advocacy worked. Science became a major campaign issue during the election. There were all-party debates on science policy and extensive media coverage. The Green, Liberal and NDP platforms included significant commitments to restore science to its rightful place in society and public policy.

“We’ll reverse the $40 million cut that Harper made to our federal ocean science and monitoring programs,” said Liberal leader Justin Trudeau at a September campaign stop. “The war on science ends with the liberal government.” In tweet after tweet after tweet, opposition candidates argued that they were best positioned to defend scientific integrity.

Now that it’s been elected with a healthy majority, the Liberal Party says it will make data openly available, unmuzzle scientists, bring back the long form census, appoint a chief science officer, and make the agency Statistics Canada fully independent.

In the United States, many celebrated the end of the Bush administration in 2008, thinking that its restrictions on science would evaporate the moment that the Obama administration took office. It wasn’t true. There has been significant progress in protecting scientists from political influence. But the public has still lacked access to scientific information on multiple environmental and public health issues.

So who will keep watch over the new government, as it’s forced to choose among its many priorities? Canadian unions, scientists, policy experts and activists need to continue to push for real change. It’s up to those who care most about science and democracy to keep Trudeau on his toes.

Returning to Owen’s article, there are more pledges from the new Liberal government,

… Trudeau has also said his party will embrace “evidence based policy” and “data-driven decision-making,”  do more to address climate change, protect endangered species, and review the environmental impact of major energy and development projects.

Woodgett welcomes those pledges, but warns that they would not address the larger issue of what he sees as the government’s neglect of basic research funding. “I hope we will see less short-term thinking and much greater support for discovery research going forward,” he says. “We are at serious risk of a lost generation of scientists and it’s critical that younger researchers are given a clear indication that Canada is open to their ideas and needs.”

Science advocates plan to watch the new government closely to ensure it lives up to its promises. “Great to see Harper gone, but another majority is an awfully big blank cheque,” wrote Michael Rennie, a freshwater ecologist at Lakehead University in Thunder Bay, on Twitter.

David Bruggeman in a cautionary Oct. 22, 2015 posting (on his Pasco Phronesis blog) sums things up in this title: Will New Canadian Government Be The Change Its Scientists Can Believe In? (Note: Links have been removed),

… Only one of the four party representatives at the recent science and technology debate managed to win a seat in the upcoming Parliament.  MP Marc Garneau will remain in Parliament, and his experience in the Canadian Space Agency means he may be able to better manage the changes sought in official government (as opposed to Parliamentary) policy.

The Conservatives will now shift to being the Official Opposition (the largest party not in power).  However, the current cabinet minister responsible for science and technology, and at least two of his predecessors, lost their seats.  The party that was the Official Opposition, the New Democratic Party (NDP), lost several seats, returning to the third largest party in Parliament.  (However, they appear to be a more natural ally for the Liberals than the Conservatives) MP Kennedy Stewart, who has championed the establishment of a Parliamentary Science Officer, barely retained his seat.  He will likely remain as the NDP science critic.

… While the policies on media access to government scientists are part of this trend, they may not be the first priority for Trudeau and his cabinet.  It may turn out to be something similar to the transition from the Bush to the Obama Administrations.  Changes to policies concerning so-called political interference with science were promised, but have not gotten the thorough commitment from the Obama Administration that some would have liked and/or expected.

As David notes. we lost significant critical voices when those Conservative MPs failed to get re-elected.

In a post-election Oct. 24, 2015 posting, Sarah Boon offers a call to action on her Watershed Moments blog (Note: Links have been removed),

I think it’s important to realize, however, that the work doesn’t end here.

Canadian scientists found their voice in the run up to the election, but they’d better not lose it now.

In a pre-election editorial on the Science Borealis Blog, Pascal Lapointe suggested that – after the election – the organizations that worked so hard to make science an election issue should join forces and keep pushing the government to keep science as a top priority. These groups include Evidence for Democracy, the Science Integrity Project, Get Science Right, Our Right to Know, the Professional Institute of the Public Service of Canada, and more.

Finally, there’s an Oct. 20, 2015 posting by Canadians Julia Whidden and Rachel Skubel on the Southern Fried Science blog explaining the Canadian election to American colleagues in what begins in a facey style which, thankfully and quickly, switches to informative and opinionated (Note: They have nothing good to say about the Conservatives and science),

Up until this past year, the thought of Canadian politics had probably never crossed your mind. For some of you, your introduction to the topic may have been via the astute criticisms of John Oliver published this past weekend. His YouTube video currently skyrocketing at just under 3 million views in less than 48 hours, may have even been the introduction to Canadian politics for some Canadians. Let’s face it: in comparison to the flashy and sometimes trashy race of our neighbors to the south (ahem, you Americans), Canadian politics are usually tame, boring, and dry. …

We present a few major issues related to marine science and conservation that Harper either dragged down or destroyed, and the complementary response by our new PM Trudeau from his platform. …

Based on the Liberals party’s platform, and their statements throughout the last year, here’s a taste of the contrasts between old and new:

Harper/Conservatives Trudeau/Liberals
Marine Protected AreasCommitted in 2011 to protect 10% of Canada’s coastal marine and coastal areas by 2020 under the International Convention on Biodiversity, but is lagging at a meager 1.3% – and only 0.11% is fully closed to “extractive activities.” 

 

MPApercent

 

Proposed MPAs have been stalled by inaction, failure to cooperate by the federal government or stakeholders, and overall a system which needs an infusion of resources – not cuts – to meet ambitious goals.

“We will increase the amount of Canada’s marine and coastal areas that are protected from 1.3 percent to 5 percent by 2017, and 10 percent by 2020.” Liberal Party’s Protecting our Oceans mandate

There is a bit of misinformation in the Southern Fried Science posting,

The National Research Council (NRC) is Canada’s equivalent of America’s National Science Foundation (NSF).

The closest analogue to the US National Science Foundation is Canada’s Tri-Council Agencies comprised of the Natural Sciences and Engineering Research Council (NSERC), the Social Sciences and Humanities Research Council (SSHRC), and the Canadian Institutes of Health Research (CIHR).

Next step: appointing a cabinet

Oddly, I haven’t found anyone speculating as to what will happen to science when Justin Trudeau announces his cabinet. He has already stated that his cabinet will be significantly smaller than Stephen Harper’s cabinet of 39 ministers. Numbers for the new cabinet range from 25 to 28 to 30. The largest proposed Trudeau cabinet (30) is almost 25% less than the previous one. Clearly, some ministries will have to go or be combined with other ones.

I’m guessing that Science, which is considered a junior ministry, will be rolled into another ministry, possibly Industry, to be renamed, Industry and Science. Or, by appointing a Chief Science Advisor, Trudeau trumpets the new importance of science with this special status and disburses the Science Ministry responsibilities amongst a variety of ministries.

In any event, I look forward to finding out later this week (Nov. 2 – 6, 2015) whether either or neither of my predictions comes true.

*Canadian cabinet update: To see how I got it both wrong and right see my Nov.4, 2015 posting.

ETA Nov. 5, 2015: I found one more piece for this roundup, an Oct. 22, 2015 article by Helen Carmichael for Chemistry World published by the UK’s Royal Society of Chemistry (Note: Links have been removed),

There will likely be a shift in the Canadian government’s target research areas towards areas such as green energy and away from fossil fuels, observers say. In addition, they expect that the Trudeau government will be more hands off when it comes to the science that it funds – giving money to the granting councils and trusting them to disburse those funds via peer review. …

The way that science is funded – the politicisation of science – will be less of an issue for the next while,’ says John Brennan, a chemistry and chemical biology professor at McMaster University in Ontario, Canada, who directs the school’s Biointerfaces Institute.

Trudeau and his Liberal party have promised to appoint a chief science officer similar to the national science adviser position that the Harper government eliminated in 2008. Canada’s new chief science officer would report to the prime minister and ensure that government science is available to the public, that all the country’s scientists are able to speak freely about their work and that scientific analyses are considered when the Canadian government develops policy. The Trudeau government has also said that it will create a central online portal for government-funded scientific research to enable greater public access.

The Liberals offer quite a different vision for the Canadian economy than the Conservatives, planning to run short-term budget deficits to increase government spending on public infrastructure, and to return the country to a balanced budget in 2019–20. The party has committed to C$25 million (£12 million) in funding for National Parks and reversing budget cuts to government ocean science and monitoring programmes.

In addition to proposing initiatives to increase business investment in research and development, the Liberals want a tax credit, and will invest C$200 million annually to support innovation in the forestry, fisheries, mining, energy and agriculture sectors. Public science is particularly important in Canada, where the private sector funds a much lower proportion of research than most industrialised nations.

Provincial governments own Canada’s natural resources, with fossil fuel production largely in Alberta and Saskatchewan. Energy production is a major part of the Canadian economy. Trudeau has committed to set up a C$2 billion fund to help the country transition to a low carbon economy, but meanwhile he is not expected to withdraw support for the proposed Alberta to Texas Keystone XL oil pipeline.

Incoming president and chief executive of the Chemistry Industry Association of Canada (CIAC), Bob Masterson, recently told Chemistry World that rapid policy decisions by Canadian governments and retailers, without sufficient consultation with industry, are not advantageous or based on sound science. He described missed opportunities for the Canadian chemical industry to engage with regulators, coupled with a lack of coordination between various tiers of Canada’s national and regional regulations. On key issues, such as Canada’s Chemical Management Plan, global trade and maintaining competitive corporate tax rates, Masterson says the CIAC believes the liberal positions represent continuity rather than change from the previous government.

Carmichael’s offers a good overview and is the only one of *three* (the others* being from David Bruggeman *and Michael Halpern*) analyses  I’ve found, that are being written by people who are not navel gazing.

*’two’ changed to ‘three’, ‘other’ changed to ‘others’, and ‘and Michael Halpern’ added 1250 PST on Nov. 5, 2015.