Tag Archives: quantum computing

A jellybean solution to a problem with quantum computing chips

A May 11, 2023 news item on phys.org heralds this new development, Note: A link has been removed,

The silicon microchips of future quantum computers will be packed with millions, if not billions of qubits—the basic units of quantum information—to solve the greatest problems facing humanity. And with millions of qubits needing millions of wires in the microchip circuitry, it was always going to get cramped in there.

But now engineers at UNSW [University of New South Wales] Sydney have made an important step toward solving a long-standing problem about giving their qubits more breathing space—and it all revolves around jellybeans.

Not the kind we rely on for a sugar hit to get us past the 3pm slump. But jellybean quantum dots –elongated areas between qubit pairs that create more space for wiring without interrupting the way the paired qubits interact with each other.

A May 10, 2023 University of New South Wales (UNSW) press release (also published on EurekAlert), which originated the news item, delves further into the ‘jellbean solution’, Note: A link has been removed,

As lead author Associate Professor Arne Laucht explains, the jellybean quantum dot is not a new concept in quantum computing, and has been discussed as a solution to some of the many pathways towards building the world’s first working quantum computer.

“It has been shown in different material systems such as gallium arsenide. But it has not been shown in silicon before,” he says.

Silicon is arguably one of the most important materials in quantum computing, A/Prof. Laucht says, as the infrastructure to produce future quantum computing chips is already available, given we use silicon chips in classical computers. Another benefit is that you can fit so many qubits (in the form of electrons) on the one chip.

“But because the qubits need to be so close together to share information with one another, placing wires between each pair was always going to be a challenge.”

In a study published today in Advanced Materials, the UNSW team of engineers describe how they showed in the lab that jellybean quantum dots were possible in silicon. This now opens the way for qubits to be spaced apart to ensure that the wires necessary to connect and control the qubits can be fit in between.

How it works

In a normal quantum dot using spin qubits, single electrons are pulled from a pool of electrons in silicon to sit under a ‘quantum gate’ – where the spin of each electron represents the computational state. For example, spin up may represent a 0 and spin down could represent a 1. Each qubit can then be controlled by an oscillating magnetic field of microwave frequency.

But to implement a quantum algorithm, we also need two-qubit gates, where the control of one qubit is conditional on the state of the other. For this to work, both quantum dots need to be placed very closely, just a few 10s of nanometres apart so their spins can interact with one another. (To put this in perspective, a single human hair is about 100,000 nanometres thick.)

But moving them further apart to create more real estate for wiring has always been the challenge facing scientists and engineers. The problem was as the paired qubits move apart, they would then stop interacting.

The jellybean solution represents a way of having both: nicely spaced qubits that continue to influence one another. To make the jellybean, the engineers found a way to create a chain of electrons by trapping more electrons in between the qubits. This acts as the quantum version of a string phone so that the two paired qubit electrons at each end of the jellybean can continue to talk to another. Only the electrons at each end are involved in any computations, while the electrons in the jellybean dot are there to keep them interacting while spread apart.

The lead author of the paper, former PhD student Zeheng Wang says the number of extra electrons pulled into the jellybean quantum dot is key to how they arrange themselves.

“We showed in the paper that if you only load a few electrons in that puddle of electrons that you have underneath, they break into smaller puddles. So it’s not one continuous jellybean quantum dot, it’s a smaller one here, and a bigger one in the middle and a smaller one there. We’re talking of a total of three to maybe ten electrons.

“It’s only when you go to larger numbers of electrons, say 15 or 20 electrons, that the jellybean becomes more continuous and homogeneous. And that’s where you have your well-defined spin and quantum states that you can use to couple qubits to another.”

Post-jellybean quantum world

A/Prof. Laucht stresses that there is still much work to be done. The team’s efforts for this paper focused on proving the jellybean quantum dot is possible. The next step is to insert working qubits at each end of the jellybean quantum dot and make them talk to another.

“It is great to see this work realised. It boosts our confidence that jellybean couplers can be utilised in silicon quantum computers, and we are excited to try implementing them with qubits next.”

Whoever wrote the press release seems to have had a lot of fun with the jellybeans. Thank you.

Here’s a link to and a citation for the paper,

Jellybean Quantum Dots in Silicon for Qubit Coupling and On-Chip Quantum Chemistry by Zeheng Wang, MengKe Feng, Santiago Serrano, William Gilbert, Ross C. C. Leon, Tuomo Tanttu, Philip Mai, Dylan Liang, Jonathan Y. Huang, Yue Su, Wee Han Lim, Fay E. Hudson,  Christopher C. Escott, Andrea Morello, Chih Hwan Yang, Andrew S. Dzurak, Andre Saraiva, Arne Laucht. Advanced Materials Volume 35, Issue 19 May 11, 2023 2208557 DOI: https://doi.org/10.1002/adma.202208557 First published online: 20 February 2023

This paper is open access.

Scientists have demonstrated a breakthrough in developing practical quantum computers

As noted in a February 8, 2023 news item on ScienceDaily, there is an international race to make quantum computers ubiquitous,

Researchers from the University of Sussex and Universal Quantum have demonstrated for the first time that quantum bits (qubits) can directly transfer between quantum computer microchips and demonstrated this with record-breaking speed and accuracy. This breakthrough resolves a major challenge in building quantum computers large and powerful enough to tackle complex problems that are of critical importance to society.

Today, quantum computers operate on the 100-qubit scale. Experts anticipate millions of qubits are required to solve important problems that are out of reach of today’s most powerful supercomputers [1, 2]. There is a global quantum race to develop quantum computers that can help in many important societal challenges from drug discovery to making fertilizer production more energy efficient and solving important problems in nearly every industry, ranging from aeronautics to the financial sector.

In the research paper, published today [February 8, 2023] in Nature Communications, the scientists demonstrate how they have used a new and powerful technique, which they dub ‘UQ Connect’, to use electric field links to enable qubits to move from one quantum computing microchip module to another with unprecedented speed and precision. This allows chips to slot together like a jigsaw puzzle to make a more powerful quantum computer.

A February 8, 2023 University of Sussex press release (also on EurekAlert) by Alice Ingall, which originated the news item, offers a little more detail about the work and also some context,

The University of Sussex and Universal Quantum team were successful in transporting the qubits with a 99.999993% success rate and a connection rate of 2424/s, both numbers are world records and orders of magnitude better than previous solutions.

Professor Winfried Hensinger, Professor of Quantum Technologies at the University of Sussex and Chief Scientist and Co-founder at Universal Quantum said: “As quantum computers grow, we will eventually be constrained by the size of the microchip, which limits the number of quantum bits such a chip can accommodate. As such, we knew a modular approach was key to make quantum computers powerful enough to solve step-changing industry problems. In demonstrating that we can connect two quantum computing chips – a bit like a jigsaw puzzle – and, crucially, that it works so well, we unlock the potential to scale-up by connecting hundreds or even thousands of quantum computing microchips.”

While linking the modules at world-record speed, the scientists also verified that the ‘strange’ quantum nature of the qubit remains untouched during transport, for example, that the qubit can be both 0 and 1 at the same time.

Dr Sebastian Weidt, CEO and Co-founder of Universal Quantum, and Senior Lecturer in Quantum Technologies at the University of Sussex said: “Our relentless focus is on providing people with a tool that will enable them to revolutionise their field of work. The Universal Quantum and University of Sussex teams have done something truly incredible here that will help make our vision a reality. These exciting results show the remarkable potential of Universal Quantum’s quantum computers to become powerful enough to unlock the many lifechanging applications of quantum computing.”

Universal Quantum has just been awarded €67 million from the German Aerospace Center (DLR) to build two quantum computers where they will deploy this technology as part of the contract. The University of Sussex spin-out was also recently named as one of the 2022 Institute of Physics award winners in the Business Start-up category.

Weidt added: “The DLR contract was likely one of the largest government quantum computing contracts ever handed out to a single company. This is a huge validation of our technology. Universal Quantum is now working hard to deploy this technology in our upcoming commercial machines.”

Dr Mariam Akhtar led the research during her time as Research Fellow at the University of Sussex and Quantum Advisor at Universal Quantum. She said: “The team has demonstrated fast and coherent ion transfer using quantum matter links. This experiment validates the unique architecture that Universal Quantum has been developing – providing an exciting route towards truly large-scale quantum computing.”

Professor Sasha Roseneil, Vice-Chancellor of the University of Sussex, said: “It’s fantastic to see that the inspired work of the University of Sussex and Universal Quantum physicists has resulted in this phenomenal breakthrough, taking us a significant step closer to a quantum computer that will be of real societal use. These computers are set to have boundless applications – from improving the development of medicines, creating new materials, to maybe even unlocking solutions to the climate crisis. The University of Sussex is investing significantly in quantum computing to support our bold ambition to host the world’s most powerful quantum computers and create change that has the potential to positively impact so many people across the world. And with teams spanning the spectrum of quantum computing and technology research, the University of Sussex has both a breadth and a depth of expertise in this. We are still growing our research and teaching in this area, with plans for new teaching programmes, and new appointments.”

Professor Keith Jones, Interim Provost and Pro-Vice Chancellor for Research and Enterprise at the University of Sussex, said of the development: “This is a very exciting finding from our University of Sussex physicists and Universal Quantum. It proves the value and dynamism of this University of Sussex spin-out company, whose work is grounded in rigorous and world-leading academic research. Quantum computers will be pivotal in helping to solve some of the most pressing global issues. We’re delighted that Sussex academics are delivering research that offers hope in realising the positive potential of next-generation quantum technology in crucial areas such as sustainability, drug development, and cybersecurity.”  

For anyone curious about Universal Quantum, this information was provided later in the press release,

ABOUT UNIVERSAL QUANTUM

Universal Quantum builds quantum computers that will one day help humanity solve some of its most pressing problems in areas such as drug discovery and climate change as well as shed light on its biggest scientific mysteries. To achieve this, quantum computers with millions of qubits are required, which is often described as one of the biggest technology challenges of our time.

Universal Quantum has developed a unique modular architecture to solve exactly that challenge. Its trapped ion-based electronic quantum computing modules are manufactured using available silicon technology. Individual modules are connected using its record-breaking UQ Connect technology to form an architecture that can scale to millions of qubits.

With 15+ years of quantum computing experience, Universal Quantum is a spin-out from the University of Sussex [emphasis mine], founded by Dr Sebastian Weidt and Professor Winfried Hensinger in 2018 and supported by leading investors. Visit www.universalquantum.com

Here’s a link to and a citation for the paper,

A high-fidelity quantum matter-link between ion-trap microchip modules by M. Akhtar, F. Bonus, F. R. Lebrun-Gallagher, N. I. Johnson, M. Siegele-Brown, S. Hong, S. J. Hile, S. A. Kulmiya, S. Weidt & W. K. Hensinger. Nature Communications volume 14, Article number: 531 (2023) DOI: https://doi.org/10.1038/s41467-022-35285-3 Published: 08 February 2023

This paper is open access.

The 2023 Canadian federal budget: science & technology of health, the clean economy, reconciliation, and more (1 of 2)

The Canadian federal government released its 2023 budget on Tuesday, March 28, 2023. There were no flashy science research announcements in the budget. Trudeau and his team like to trumpet science initiatives and grand plans (even if they’re reannouncing something from a previous budget) but like last year—this year—not so much.

Consequently, this posting about the annual federal budget should have been shorter than usual. What happened?

Partly, it’s the military spending (chapter 5 of the budget in part 2 of this 2023 budget post). For those who are unfamiliar with the link between military scientific research and their impact on the general population, there are a number of inventions and innovations directly due to military research, e.g., plastic surgery, television, and the internet. (You can check a November 6, 2018 essay for The Conversation by Robert Kirby, Professor of Clinical Education and Surgery at Keele University, for more about the impact of World War 1 and medical research, “World War I: the birth of plastic surgery and modern anaesthesia.”)

So, there’s a lot to be found by inference. Consequently, I found Chapter 3 to also be unexpectedly rich in science and technology efforts.

Throughout both parts of this 2023 Canadian federal budget post, you will find excerpts from individual chapters of the federal budget followed my commentary directly after. My general commentary is reserved for the end.

Sometimes, I have included an item because it piqued my interest. E.g., Canadian agriculture is dependent on Russian fertilizer!!! News to me and I imagine many others. BTW, this budget aims to wean us from this dependency.

Chapter 2: Investing in Public Health Care and Affordable Dental Care

Here goes: from https://www.budget.canada.ca/2023/report-rapport/toc-tdm-en.html,

2.1 Investing in Public Health Care

Improving Canada’s Readiness for Health Emergencies

Vaccines and other cutting-edge life-science innovations have helped us to take control of the COVID-19 pandemic. To support these efforts, the federal government has committed significant funding towards the revitalization of Canada’s biomanufacturing sector through a Biomanufacturing and Life Sciences Strategy [emphasis mine]. To date, the government has invested more than $1.8 billion in 32 vaccine, therapeutic, and biomanufacturing projects across Canada, alongside $127 million for upgrades to specialized labs at universities across the country. Canada is building a life sciences ecosystem that is attracting major investments from leading global companies, including Moderna, AstraZeneca, and Sanofi.

To build upon the progress of the past three years, the government will explore new ways to be more efficient and effective in the development and production of the vaccines, therapies, and diagnostic tools that would be required for future health emergencies. As a first step, the government will further consult Canadian and international experts on how to best organize our readiness efforts for years to come. …

Gold rush in them thar life sciences

I have covered the rush to capitalize on Canadian life sciences research (with a special emphasis on British Columbia) in various posts including (amongst others): my December 30, 2020 posting “Avo Media, Science Telephone, and a Canadian COVID-19 billionaire scientist,” and my August 23, 2021 posting “Who’s running the life science companies’ public relations campaign in British Columbia (Vancouver, Canada)?” There’s also my August 20, 2021 posting “Getting erased from the mRNA/COVID-19 story,” highlighting how brutal the competition amongst these Canadian researchers can be.

Getting back to the 2023 budget, ‘The Biomanufacturing and Life Sciences Strategy’ mentioned in this latest budget was announced in a July 28, 2021 Innovation, Science and Economic Development Canada news release. You can find the strategy here and an overview of the strategy here. You may want to check out the overview as it features links to,

What We Heard Report: Results of the consultation on biomanufacturing and life sciences capacity in Canada

Ontario’s Strategy: Taking life sciences to the next level

Quebec’s Strategy: 2022–2025 Québec Life Sciences Strategy

Nova Scotia’s Strategy: BioFuture2030 Prince Edward Island’s Strategy:

The Prince Edward Island Bioscience Cluster [emphases mine]

2022 saw one government announcement concerning the strategy, from a March 3, 2022 Innovation, Science and Economic Development Canada news release, Note: Links have been removed,

Protecting the health and safety of Canadians and making sure we have the domestic capacity to respond to future health crises are top priorities of the Government of Canada. With the guidance of Canada’s Biomanufacturing and Life Sciences Strategy, the government is actively supporting the growth of a strong, competitive domestic life sciences sector, with cutting-edge biomanufacturing capabilities.

Today [March 3, 2022], the Honourable François-Philippe Champagne, Minister of Innovation, Science and Industry, announced a $92 million investment in adMare BioInnovations to drive company innovation, scale-up and training activities in Canada’s life sciences sector. This investment will help translate commercially promising health research into innovative new therapies and will see Canadian anchor companies provide the training required and drive the growth of Canada’s life science companies.

The real action took place earlier this month (March 2023) just prior to the budget. Oddly, I can’t find any mention of these initiatives in the budget document. (Confession: I have not given the 2023 budget a close reading although I have been through the whole budget once and viewed individual chapters more closely a few times.)

This March 2, 2023 (?) Tri-agency Institutional Programs Secretariat news release kicked things off, Note 1: I found the date at the bottom of their webpage; Note 2: Links have been removed,

The Government of Canada’s main priority continues to be protecting the health and safety of Canadians. Throughout the pandemic, the quick and decisive actions taken by the government meant that Canada was able to scale up domestic biomanufacturing capacity, which had been in decline for over 40 years. Since then, the government is rebuilding a strong and competitive biomanufacturing and life sciences sector brick by brick. This includes strengthening the foundations of the life sciences ecosystem through the research and talent of Canada’s world-class postsecondary institutions and research hospitals, as well as fostering increased collaboration with innovative companies.

Today [March 2, 2023?], the Honourable François-Philippe Champagne, Minister of Innovation, Science and Industry, and the Honourable Jean-Yves Duclos, Minister of Health, announced an investment of $10 million in support of the creation of five research hubs [emphasis mine]:

  • CBRF PRAIRIE Hub, led by the University of Alberta
  • Canada’s Immuno-Engineering and Biomanufacturing Hub, led by The University of British Columbia
  • Eastern Canada Pandemic Preparedness Hub, led by the Université de Montréal
  • Canadian Pandemic Preparedness Hub, led by the University of Ottawa and McMaster University
  • Canadian Hub for Health Intelligence & Innovation in Infectious Diseases, led by the University of Toronto

This investment, made through Stage 1 of the integrated Canada Biomedical Research Fund (CBRF) and Biosciences Research Infrastructure Fund (BRIF) competition, will bolster research and talent development efforts led by the institutions, working in collaboration with their partners. The hubs combine the strengths of academia, industry and the public and not-for-profit sectors to jointly improve pandemic readiness and the overall health and well-being of Canadians.

The multidisciplinary research hubs will accelerate the research and development of next-generation vaccines and therapeutics and diagnostics, while supporting training and development to expand the pipeline of skilled talent. The hubs will also accelerate the translation of promising research into commercially viable products and processes. This investment helps to strengthen the resilience of Canada’s life sciences sector by supporting leading Canadian research in innovative technologies that keep us safe and boost our economy.

Today’s [March 2, 2023?] announcement also launched Stage 2 of the CBRF-BRIF competition. This is a national competition that includes $570 million in available funding for proposals, aimed at cutting-edge research, talent development and research infrastructure projects associated with the selected research hubs. By strengthening research and talent capacity and leveraging collaborations across the entire biomanufacturing ecosystem, Canada will be better prepared to face future pandemics, in order to protect Canadian’s health and safety. 

Then, the Innovation, Science and Economic Development Canada’s March 9, 2023 news release made this announcement, Note: Links have been removed,

Since March 2020, major achievements have been made to rebuild a vibrant domestic life sciences ecosystem to protect Canadians against future health threats. The growth of the sector is a top priority for the Government of Canada, and with over $1.8 billion committed to 33 projects to boost our domestic biomanufacturing, vaccine and therapeutics capacity, we are strengthening our resiliency for current health emergencies and our readiness for future ones.

The COVID-19 Vaccine Task Force played a critical role in guiding and supporting the Government of Canada’s COVID-19 vaccine response. Today [March 9, 2023], recognizing the importance of science-based decisions, the Honourable François-Philippe Champagne, Minister of Innovation, Science and Industry, and the Honourable Jean-Yves Duclos, Minister of Health, are pleased to announce the creation of the Council of Expert Advisors (CEA). The 14 members of the CEA, who held their first official meeting earlier this week, will advise the Government of Canada on the long-term, sustainable growth of Canada’s biomanufacturing and life sciences sector, and on how to enhance our preparedness and capacity to protect the health and safety of Canadians.

The membership of the CEA comprises leaders with in-depth scientific, industrial, academic and public health expertise. The CEA co-chairs are Joanne Langley, Professor of Pediatrics and of Community Health and Epidemiology at the Dalhousie University Faculty of Medicine, and Division Head of Infectious Diseases at the IWK Health Centre; and Marco Marra, Professor in Medical Genetics at the University of British Columbia (UBC), UBC Canada Research Chair in Genome Science and distinguished scientist at the BC Cancer Foundation.

The CEA’s first meeting focused on the previous steps taken under Canada’s Biomanufacturing and Life Sciences Strategy and on its path forward. The creation of the CEA is an important milestone in the strategy, as it continues to evolve and adapt to new technologies and changing conditions in the marketplace and life sciences ecosystem. The CEA will also inform on investments that enhance capacity across Canada to support end-to-end production of critical vaccines, therapeutics and essential medical countermeasures, and to ensure that Canadians can reap the full economic benefits of the innovations developed, including well-paying jobs.

As I’m from British Columbia, I’m highlighting this University of British Columbia (UBC) March 17, 2023 news release about their involvement, Note: Links have been removed,

Canada’s biotech ecosystem is poised for a major boost with the federal government announcement today that B.C. will be home to Canada’s Immuno-Engineering and Biomanufacturing Hub (CIEBH).

The B.C.-based research and innovation hub, led by UBC, brings together a coalition of provincial, national and international partners to position Canada as a global epicentre for the development and manufacturing of next-generation immune-based therapeutics.

A primary goal of CIEBH is to establish a seamless drug development pipeline that will enable Canada to respond to future pandemics and other health challenges in fewer than 100 days.

This hub will build on the strengths of B.C.’s biotech and life sciences industry, and those of our national and global partners, to make Canada a world leader in the development of lifesaving medicines,” said Dr. Deborah Buszard, interim president and vice-chancellor of UBC. “It’s about creating a healthier future for all Canadians. Together with our outstanding alliance of partners, we will ensure Canada is prepared to respond rapidly to future health challenges with homegrown solutions.”

CIEBH is one of five new research hubs announced by the federal government that will work together to improve pandemic readiness and the overall health and well-being of Canadians. Federal funding of $570 million is available over the next four years to support project proposals associated with these hubs in order to advance Canada’s Biomanufacturing and Life Sciences Strategy.

More than 50 organizations representing the private, public, not-for-profit and academic sectors have come together to form the hub, creating a rich environment that will bolster biomedical innovation in Canada. Among these partners are leading B.C. biotech companies that played a key role in Canada’s COVID-19 pandemic response and are developing cutting-edge treatments for a range of human diseases.

CIEBH, led by UBC, will further align the critical mass of biomedical research strengths concentrated at B.C. academic institutions, including the B.C. Institute of Technology, Simon Fraser University and the University of Victoria, as well as the clinical expertise of B.C. research hospitals and health authorities. With linkages to key partners across Canada, including Dalhousie University, the University of Waterloo, and the Vaccine and Infectious Disease Organization, the hub will create a national network to address gaps in Canada’s drug development pipeline.

In recent decades, B.C. has emerged as a global leader in immuno-engineering, a field that is transforming how society treats disease by harnessing and modulating the immune system.

B.C. academic institutions and prominent Canadian companies like Precision NanoSystems, Acuitas Therapeutics and AbCellera have developed significant expertise in advanced immune-based therapeutics such as lipid nanoparticle- and mRNA-based vaccines, engineered antibodies, cell therapies and treatments for antimicrobial resistant infections. UBC professor Dr. Pieter Cullis, a member of CIEBH’s core scientific team, has been widely recognized for his pioneering work developing the lipid nanoparticle delivery technology that enables mRNA therapeutics such as the highly effective COVID-19 mRNA vaccines.

As noted previously, I’m a little puzzled that the federal government didn’t mention the investment in these hubs in their budget. They usually trumpet these kinds of initiatives.

On a related track, I’m even more puzzled that the province of British Columbia does not have its own life sciences research strategy in light of that sector’s success. Certainly it seems that Ontario, Quebec, Nova Scotia, and Prince Edward are all eager to get a piece of the action. Still, there is a Life Sciences in British Columbia: Sector Profile dated June 2020 and an undated (likely from some time between July 2017 to January 2020 when Bruce Ralston whose name is on the document was the relevant cabinet minister) British Columbia Technology and Innovation Policy Framework.

In case you missed the link earlier, see my August 23, 2021 posting “Who’s running the life science companies’ public relations campaign in British Columbia (Vancouver, Canada)?” which includes additional information about the BC life sciences sector, federal and provincial funding, the City of Vancouver’s involvement, and other related matters.

Chapter 3: A Made-In-Canada Plan: Affordable Energy, Good Jobs, and a Growing Clean Economy

The most science-focused information is in Chapter 3, from https://www.budget.canada.ca/2023/report-rapport/toc-tdm-en.html,

3.2 A Growing, Clean Economy

More than US$100 trillion in private capital is projected to be spent between now and 2050 to build the global clean economy.

Canada is currently competing with the United States, the European Union, and countries around the world for our share of this investment. To secure our share of this global investment, we must capitalize on Canada’s competitive advantages, including our skilled and diverse workforce, and our abundance of critical resources that the world needs.

The federal government has taken significant action over the past seven years to support Canada’s net-zero economic future. To build on this progress and support the growth of Canada’s clean economy, Budget 2023 proposes a range of measures that will encourage businesses to invest in Canada and create good-paying jobs for Canadian workers.

This made-in-Canada plan follows the federal tiered structure to incent the development of Canada’s clean economy and provide additional support for projects that need it. This plan includes:

  • Clear and predictable investment tax credits to provide foundational support for clean technology manufacturing, clean hydrogen, zero-emission technologies, and carbon capture and storage;
  • The deployment of financial instruments through the Canada Growth Fund, such as contracts for difference, to absorb certain risks and encourage private sector investment in low-carbon projects, technologies, businesses, and supply chains; and,
  • Targeted clean technology and sector supports delivered by Innovation, Science and Economic Development Canada to support battery manufacturing and further advance the development, application, and manufacturing of clean technologies.

Canada’s Potential in Critical Minerals

As a global leader in mining, Canada is in a prime position to provide a stable resource base for critical minerals [emphasis mine] that are central to major global industries such as clean technology, auto manufacturing, health care, aerospace, and the digital economy. For nickel and copper alone, the known reserves in Canada are more than 10 million tonnes, with many other potential sources at the exploration stage.

The Buy North American provisions for critical minerals and electric vehicles in the U.S. Inflation Reduction Act will create opportunities for Canada. In particular, U.S. acceleration of clean technology manufacturing will require robust supply chains of critical minerals that Canada has in abundance. However, to fully unleash Canada’s potential in critical minerals, we need to ensure a framework is in place to accelerate private investment.

Budget 2022 committed $3.8 billion for Canada’s Critical Minerals Strategy to provide foundational support to Canada’s mining sector to take advantage of these new opportunities. The Strategy was published in December 2022.

On March 24, 2023, the government launched the Critical Minerals Infrastructure Fund [emphasis mine; I cannot find a government announcement/news release for this fund]—a new fund announced in Budget 2022 that will allocate $1.5 billion towards energy and transportation projects needed to unlock priority mineral deposits. The new fund will complement other clean energy and transportation supports, such as the Canada Infrastructure Bank and the National Trade Corridors Fund, as well as other federal programs that invest in critical minerals projects, such as the Strategic Innovation Fund.

The new Investment Tax Credit for Clean Technology Manufacturing proposed in Budget 2023 will also provide a significant incentive to boost private investment in Canadian critical minerals projects and create new opportunities and middle class jobs in communities across the country.

An Investment Tax Credit for Clean Technology Manufacturing

Supporting Canadian companies in the manufacturing and processing of clean technologies, and in the extraction and processing of critical minerals, will create good middle class jobs for Canadians, ensure our businesses remain competitive in major global industries, and support the supply chains of our allies around the world.

While the Clean Technology Investment Tax Credit, first announced in Budget 2022, will provide support to Canadian companies adopting clean technologies, the Clean Technology Manufacturing Investment Tax Credit will provide support to Canadian companies that are manufacturing or processing clean technologies and their precursors.

  • Budget 2023 proposes a refundable tax credit equal to 30 per cent of the cost of investments in new machinery and equipment used to manufacture or process key clean technologies, and extract, process, or recycle key critical minerals, including:
    • Extraction, processing, or recycling of critical minerals essential for clean technology supply chains, specifically: lithium, cobalt, nickel, graphite, copper, and rare earth elements;
    • Manufacturing of renewable or nuclear energy equipment;
    • Processing or recycling of nuclear fuels and heavy water; [emphases mine]
    • Manufacturing of grid-scale electrical energy storage equipment;
    • Manufacturing of zero-emission vehicles; and,
    • Manufacturing or processing of certain upstream components and materials for the above activities, such as cathode materials and batteries used in electric vehicles.

The investment tax credit is expected to cost $4.5 billion over five years, starting in 2023-24, and an additional $6.6 billion from 2028-29 to 2034-35. The credit would apply to property that is acquired and becomes available for use on or after January 1, 2024, and would no longer be in effect after 2034, subject to a phase-out starting in 2032.

3.4 Reliable Transportation and Resilient Infrastructure

Supporting Resilient Infrastructure Through Innovation

The Smart Cities Challenge [emphasis mine] was launched in 2017 to encourage cities to adopt new and innovative approaches to improve the quality of life for their residents. The first round of the Challenge resulted in $75 million in prizes across four winning applicants: Montreal, Quebec; Guelph, Ontario; communities of Nunavut; and Bridgewater, Nova Scotia.

New and innovative solutions are required to help communities reduce the risks and impacts posed by weather-related events and disasters triggered by climate change. To help address this issue, the government will be launching a new round of the Smart Cities Challenge later this year, which will focus on using connected technologies, data, and innovative approaches to improve climate resiliency.

3.5 Investing in Tomorrow’s Technology

With the best-educated workforce on earth, world-class academic and research institutions, and robust start-up ecosystems across the country, Canada’s economy is fast becoming a global technology leader – building on its strengths in areas like artificial intelligence. Canada is already home to some of the top markets for high-tech careers in North America, including the three fastest growing markets between 2016 and 2021: Vancouver, Toronto, and Quebec City.

However, more can be done to help the Canadian economy reach its full potential. Reversing a longstanding trend of underinvestment in research and development by Canadian business [emphasis mine] is essential our long-term economic growth.

Budget 2023 proposes new measures to encourage business innovation in Canada, as well as new investments in college research and the forestry industry that will help to build a stronger and more innovative Canadian economy.

Attracting High-Tech Investment to Canada

In recent months, Canada has attracted several new digital and high-tech projects that will support our innovative economy, including:

  • Nokia: a $340 million project that will strengthen Canada’s position as a leader in 5G and digital innovation;
  • Xanadu Quantum Technologies: a $178 million project that will support Canada’s leadership in quantum computing;
  • Sanctuary Cognitive Systems Corporation: a $121 million project that will boost Canada’s leadership in the global Artificial Intelligence market; and,
  • EXFO: a $77 million project to create a 5G Centre of Excellence that aims to develop one of the world’s first Artificial Intelligence-based automated network solutions.

Review of the Scientific Research and Experimental Development Tax Incentive Program

The Scientific Research and Experimental Development (SR&ED) tax incentive program continues to be a cornerstone of Canada’s innovation strategy by supporting research and development with the goal of encouraging Canadian businesses of all sizes to invest in innovation that drives economic growth.

In Budget 2022, the federal government announced its intention to review the SR&ED program to ensure it is providing adequate support and improving the development, retention, and commercialization of intellectual property, including the consideration of adopting a patent box regime. [emphasis mine] The Department of Finance will continue to engage with stakeholders on the next steps in the coming months.

Modernizing Canada’s Research Ecosystem

Canada’s research community and world-class researchers solve some of the world’s toughest problems, and Canada’s spending on higher education research and development, as a share of GDP, has exceeded all other G7 countries. 

Since 2016, the federal government has committed more than $16 billion of additional funding to support research and science across Canada. This includes:

  • Nearly $4 billion in Budget 2018 for Canada’s research system, including $2.4 billion for the Canada Foundation for Innovation and the granting councils—the Natural Sciences and Engineering Research Council of Canada, the Social Sciences and Humanities Research Council of Canada and the Canadian Institutes of Health Research; [emphases mine]
  • More than $500 million in Budget 2019 in total additional support to third-party research and science organizations, in addition to the creation of the Strategic Science Fund, which will announce successful recipients later this year;
  • $1.2 billion in Budget 2021 for Pan-Canadian Genomics and Artificial Intelligence Strategies, and a National Quantum Strategy;
  • $1 billion in Budget 2021 to the granting councils and the Canada Foundation for Innovation for life sciences researchers and infrastructure; and,
  • The January 2023 announcement of Canada’s intention to become a full member in the Square Kilometre Array Observatory, which will provide Canadian astronomers with access to its ground-breaking data. The government is providing up to $269.3 million to support this collaboration.

In order to maintain Canada’s research strength—and the knowledge, innovations, and talent it fosters—our systems to support science and research must evolve. The government has been consulting with stakeholders, including through the independent Advisory Panel on the Federal Research Support System, to seek advice from research leaders on how to further strengthen Canada’s research support system.

The government is carefully considering the Advisory Panel’s advice, with more detail to follow in the coming months on further efforts to modernize the system.

Using College Research to Help Businesses Grow

Canada’s colleges, CEGEPs, and polytechnic institutes use their facilities, equipment, and expertise to solve applied research problems every day. Students at these institutions are developing the skills they need to start good careers when they leave school, and by partnering with these institutions, businesses can access the talent and the tools they need to innovate and grow.

  • To help more Canadian businesses access the expertise and research and development facilities they need, Budget 2023 proposes to provide $108.6 million over three years, starting in 2023-24, to expand the College and Community Innovation Program, administered by the Natural Sciences and Engineering Research Council.

Supporting Canadian Leadership in Space

For decades, Canada’s participation in the International Space Station has helped to fuel important scientific advances, and showcased Canada’s ability to create leading-edge space technologies, such as Canadarm2. Canadian space technologies have inspired advances in other fields, such as the NeuroArm, the world’s first robot capable of operating inside an MRI, making previously impossible surgeries possible.

  • Budget 2023 proposes to provide $1.1 billion [emphasis mine] over 14 years, starting in 2023-24, on a cash basis, to the Canadian Space Agency [emphasis mine] to continue Canada’s participation in the International Space Station until 2030.

Looking forward, humanity is returning to the moon [emphasis mine]. Canada intends to join these efforts by contributing a robotic lunar utility vehicle to perform key activities in support of human lunar exploration. Canadian participation in the NASA-led Lunar Gateway station—a space station that will orbit the moon—also presents new opportunities for innovative advances in science and technology. Canada is providing Canadarm3 to the Lunar Gateway, and a Canadian astronaut will join Artemis II, the first crewed mission to the moon since 1972. In Budget 2023, the government is providing further support to assist these missions.

  • Budget 2023 proposes to provide $1.2 billion [emphasis mine] over 13 years, starting in 2024-25, to the Canadian Space Agency to develop and contribute a lunar utility vehicle to assist astronauts on the moon.
  • Budget 2023 proposes to provide $150 million [emphasis mine[ over five years, starting in 2023-24, to the Canadian Space Agency for the next phase of the Lunar Exploration Accelerator Program to support the Canada’s world-class space industry and help accelerate the development of new technologies.
  • Budget 2023 also proposes to provide $76.5 million [emphasis mine] over eight years, starting in 2023-24, on a cash basis, to the Canadian Space Agency in support of Canadian science on the Lunar Gateway station.

Investing in Canada’s Forest Economy

The forestry sector plays an important role in Canada’s natural resource economy [emphasis mine], and is a source of good careers in many rural communities across Canada, including Indigenous communities. As global demand for sustainable forest products grows, continued support for Canada’s forestry sector will help it innovate, grow, and support good middle class jobs for Canadians.

  • Budget 2023 proposes to provide $368.4 million over three years, starting in 2023-24, with $3.1 million in remaining amortization, to Natural Resources Canada to renew and update forest sector support, including for research and development, Indigenous and international leadership, and data. Of this amount, $30.1 million would be sourced from existing departmental resources.

Establishing the Dairy Innovation and Investment Fund

The dairy sector is facing a growing surplus of solids non-fat (SNF) [emphasis mine], a by-product of dairy processing. Limited processing capacity for SNF results in lost opportunities for dairy processors and farmers.

  • Budget 2023 proposes to provide $333 million over ten years, starting in 2023-24, for Agriculture and Agri-Food Canada to support investments in research and development of new products based on SNF, market development for these products, and processing capacity for SNF-based products more broadly.

Supporting Farmers for Diversifying Away from Russian Fertilizers

Russia’s illegal invasion of Ukraine has resulted in higher prices for nitrogen fertilizers, which has had a notable impact on Eastern Canadian farmers who rely heavily on imported fertilizer.

  • Budget 2023 proposes to provide $34.1 million over three years, starting in 2023-24, to Agriculture and Agri-Food Canada’s On-Farm Climate Action Fund to support adoption of nitrogen management practices by Eastern Canadian farmers, that will help optimize the use and reduce the need for fertilizer.

Providing Interest Relief for Agricultural Producers

Farm production costs have increased in Canada and around the world, including as a result Russia’s illegal invasion of Ukraine and global supply chain disruptions. It is important that Canada’s agricultural producers have access to the cash flow they need to cover these costs until they sell their products.

  • Budget 2023 proposes to provide $13 million in 2023-24 to Agriculture and Agri-Food Canada to increase the interest-free limit for loans under the Advance Payments Program from $250,000 to $350,000 for the 2023 program year.

Additionally, the government will consult with provincial and territorial counterparts to explore ways to extend help to small agricultural producers who demonstrate urgent financial need.

Maintaining Livestock Sector Exports with a Foot-and-Mouth Disease Vaccine Bank

Foot-and-Mouth Disease (FMD) is a highly transmissible illness that can affect cattle, pigs, and other cloven-hoofed animals. Recent outbreaks in Asia and Africa have increased the risk of global spread, and a FMD outbreak in Canada would cut off exports for all livestock sectors, with major economic implications. However, the impact of a potential outbreak would be significantly reduced with the early vaccination of livestock. 

  • Budget 2023 proposes to provide $57.5 million over five years, starting in 2023-24, with $5.6 million ongoing, to the Canadian Food Inspection Agency to establish a FMD vaccine bank for Canada, and to develop FMD response plans. The government will seek a cost-sharing arrangement with provinces and territories.

Canadian economic theory (the staples theory), mining, nuclear energy, quantum science, and more

Critical minerals are getting a lot of attention these days. (They were featured in the 2022 budget, see my April 19, 2022 posting, scroll down to the Mining subhead.) This year, US President Joe Biden, in his first visit to Canada as President, singled out critical minerals at the end of his 28 hour state visit (from a March 24, 2023 CBC news online article by Alexander Panetta; Note: Links have been removed),

There was a pot of gold at the end of President Joe Biden’s jaunt to Canada. It’s going to Canada’s mining sector.

The U.S. military will deliver funds this spring to critical minerals projects in both the U.S. and Canada. The goal is to accelerate the development of a critical minerals industry on this continent.

The context is the United States’ intensifying rivalry with China.

The U.S. is desperate to reduce its reliance on its adversary for materials needed to power electric vehicles, electronics and many other products, and has set aside hundreds of millions of dollars under a program called the Defence Production Act.

The Pentagon already has told Canadian companies they would be eligible to apply. It has said the cash would arrive as grants, not loans.

On Friday [March 24, 2023], before Biden left Ottawa, he promised they’ll get some.

The White House and the Prime Minister’s Office announced that companies from both countries will be eligible this spring for money from a $250 million US fund.

Which Canadian companies? The leaders didn’t say. Canadian officials have provided the U.S. with a list of at least 70 projects that could warrant U.S. funding.

“Our nations are blessed with incredible natural resources,” Biden told Canadian parliamentarians during his speech in the House of Commons.

Canada in particular has large quantities of critical minerals [emphasis mine] that are essential for our clean energy future, for the world’s clean energy future.

I don’t believe that Joe Biden has ever heard of the Canadian academic Harold Innis (neither have most Canadians) but Biden is echoing a rather well known theory, in some circles, about Canada’s economy (from the Harold Innis Wikipedia entry),

Harold Adams Innis FRSC (November 5, 1894 – November 9, 1952) was a Canadian professor of political economy at the University of Toronto and the author of seminal works on media, communication theory, and Canadian economic history. He helped develop the staples thesis, which holds that Canada’s culture, political history, and economy have been decisively influenced by the exploitation and export of a series of “staples” such as fur, fish, lumber, wheat, mined metals, and coal. The staple thesis dominated economic history in Canada from the 1930s to 1960s, and continues to be a fundamental part of the Canadian political economic tradition.[8] [all emphases mine]

The staples theory is referred to informally as “hewers of wood and drawers of water.”

Critical Minerals Infrastructure Fund

I cannot find an announcement for this fund (perhaps it’s a US government fund?) but there is a March 7, 2023 Natural Resources Canada news release, Note: A link has been removed,

Simply put, our future depends on critical minerals. The Government of Canada is committed to investing in this future, which is why the Canadian Critical Minerals Strategy — launched by the Honourable Jonathan Wilkinson, Minister of Natural Resources, in December 2022 — is backed by up to $3.8 billion in federal funding. [emphases mine] Today [March 7, 2023], Minister Wilkinson announced more details on the implementation of this Strategy. Over $344 million in funding is supporting the following five new programs and initiatives:

  • Critical Minerals Technology and Innovation Program – $144.4 million for the research, development, demonstration, commercialization and adoption of new technologies and processes that support sustainable growth in Canadian critical minerals value chains and associated innovation ecosystems. 
  • Critical Minerals Geoscience and Data Initiative – $79.2 million to enhance the quality and availability of data and digital technologies to support geoscience and mapping that will accelerate the efficient and effective development of Canadian critical minerals value chains, including by identifying critical minerals reserves and developing pathways for sustainable mineral development. 
  • Global Partnerships Program – $70 million to strengthen Canada’s global leadership role in enhancing critical minerals supply chain resiliency through international collaborations related to critical minerals. 
  • Northern Regulatory Initiative – $40 million to advance Canada’s northern and territorial critical minerals agenda by supporting regulatory dialogue, regional studies, land-use planning, impact assessments and Indigenous consultation.
  • Renewal of the Critical Minerals Centre of Excellence (CMCE) – $10.6 million so the CMCE can continue the ongoing development and implementation of the Canadian Critical Minerals Strategy.

Commentary from the mining community

Mariaan Webb wrote a March 29,2023 article about the budget and the response from the mining community for miningweekly.com, Note: Links have been removed,

The 2023 Budget, delivered by Finance Minister Chrystia Freeland on Tuesday, bolsters the ability of the Canadian mining sector to deliver for the country, recognising the industry’s central role in enabling the transition to a net-zero economy, says Mining Association of Canada (MAC) president and CEO Pierre Gratton.

“Without mining, there are no electric vehicles, no clean power from wind farms, solar panels or nuclear energy, [emphasis mine] and no transmission lines,” said Gratton.

What kind of nuclear energy?

There are two kinds of nuclear energy: fission and fusion. (Fission is the one where the atom is split and requires minerals. Fusion energy is how stars are formed. Much less polluting than fission energy, at this time it is not a commercially viable option nor is it close to being so.)

As far as I’m aware, fusion energy does not require any mined materials. So, Gratton appears to be referring to fission nuclear energy when he’s talking about the mining sector and critical minerals.

I have an October 28, 2022 posting, which provides an overview of fusion energy and the various projects designed to capitalize on it.

Smart Cities in Canada

I was happy to be updated on the Smart Cities Challenge. When I last wrote about it (a March 20, 2018 posting; scroll down to the “Smart Cities, the rest of the country, and Vancouver” subhead). I notice that the successful applicants are from Montreal, Quebec; Guelph, Ontario; communities of Nunavut; and Bridgewater, Nova Scotia. It’s about time northern communities got some attention. It’s hard not to notice that central Canada (i.e., Ontario and Quebec) again dominates.

I look forward to hearing more about the new, upcoming challenge.

The quantum crew

I first made note of what appears to be a fracture in the Canadian quantum community in a May 4, 2021 posting (scroll down to the National Quantum Strategy subhead) about the 2021 budget. I made note of it again in a July 26, 2022 posting (scroll down to the Canadian quantum scene subhead).

In my excerpts from the 3.5 Investing in Tomorrow’s Technology section of the 2023 budget, Xanadu Quantum Technologies, headquartered in Toronto, Ontario is singled out with three other companies (none of which are in the quantum computing field). Oddly, D-Wave Systems (located in British Columbia), which as far as I’m aware is the star of Canada’s quantum computing sector, has yet to be singled out in any budget I’ve seen yet. (I’m estimating I’ve reviewed about 10 budgets.)

Canadians in space

Shortly after the 2023 budget was presented, Canadian astronaut Jeremy Hansen was revealed as one of four astronauts to go on a mission to orbit the moon. From a Canadian Broadcasting (CBC) April 3, 2023 news online article by Nicole Mortillaro (Note: A link has been removed),

Jeremy Hansen is heading to the moon.

The 47-year old Canadian astronaut was announced today as one of four astronauts — along with Christina Koch, Victor Glover and Reid Wiseman — who will be part of NASA’s [US National Aeronautics and Space Administration] Artemis II mission.

Hansen was one of four active Canadian astronauts that included Jennifer Sidey-Gibbons, Joshua Kutryk and David Saint-Jacques vying for a seat on the Orion spacecraft set to orbit the moon.

Artemis II is the second step in NASA’s mission to return astronauts to the surface of the moon. 

The astronauts won’t be landing, but rather they will orbit for 10 days in the Orion spacecraft, testing key components to prepare for Artemis III that will place humans back on the moon some time in 2025 for the first time since 1972.

Canada gets a seat on Artemis II due to its contributions to Lunar Gateway, a space station that will orbit the moon. But Canada is also building a lunar rover provided by Canadensys Aerospace.

On Monday [April 3, 2023], Hansen noted there are two reasons a Canadian is going to the moon, adding that it “makes me smile when I say that.”

The first, he said, is American leadership, and the decision to curate an international team.

“The second reason is Canada’s can-do attitude,” he said proudly.

In addition to our ‘can-do attitude,” we’re also spending some big money, i.e., the Canadian government has proposed in its 2023 budget some $2.5B to various space and lunar efforts over the next several years.

Chapter 3 odds and sods

First seen in the 2022 budget, the patent box regime makes a second appearance in the 2023 budget where apparently ‘stakeholders will be engaged’ later this year. At least, they’re not rushing into this. (For the original announcement and an explanation of a patent box regime, see my April 19, 2022 budget review; scroll down to the Review of Tax Support to R&D and Intellectual Property subhead.)

I’m happy to see the Dairy Innovation and Investment Fund. I’m particularly happy to see a focus on finding uses for solids non-fat (SNF) by providing “$333 million over ten years, starting in 2023-24, … research and development of new products based on SNF [emphasis mine], market development for these products, and processing capacity for SNF-based products more broadly.”

This investment contrasts with the approach to cellulose nanocrystals (CNC) derived from wood (i.e., the forest economy), where the Canadian government invested heavily in research and even opened a production facility under the auspices of a company, CelluForce. It was a little problematic.

By 2013, the facility had a stockpile of CNC and nowhere to sell it. That’s right, no market for CNC as there had been no product development. (See my May 8, 2012 posting where that lack is mentioned, specifically there’s a quote from Tim Harper in an excerpted Globe and Mail article. My August 17, 2016 posting notes that the stockpile was diminishing. The CelluForce website makes no mention of it now in 2023.)

It’s good to see the government emphasis on research into developing products for SNFs especially after the CelluForce stockpile and in light of US President Joe Biden’s recent enthusiasm over our critical minerals.

Chapter 4: Advancing Reconciliation and Building a Canada That Works for Everyone

Chapter 4: Advancing Reconciliation and Building a Canada That Works for Everyone offers this, from https://www.budget.canada.ca/2023/report-rapport/toc-tdm-en.html,

4.3 Clean Air and Clean Water

Progress on Biodiversity

Montreal recently hosted the Fifteenth Conference of the Parties (COP15) to the United Nations Convention on Biological Diversity, which led to a new Post-2020 Global Biodiversity Framework. During COP15, Canada announced new funding for biodiversity and conservation measures at home and abroad that will support the implementation of the Global Biodiversity Framework, including $800 million to support Indigenous-led conservation within Canada through the innovative Project Finance for Permanence model.

Protecting Our Freshwater

Canada is home to 20 per cent of the world’s freshwater supply. Healthy lakes and rivers are essential to Canadians, communities, and businesses across the country. Recognizing the threat to freshwater caused by climate change and pollution, the federal government is moving forward to establish a new Canada Water Agency and make major investments in a strengthened Freshwater Action Plan.

  • Budget 2023 proposes to provide $650 million over ten years, starting in 2023-24, to support monitoring, assessment, and restoration work in the Great Lakes, Lake Winnipeg, Lake of the Woods, St. Lawrence River, Fraser River, Saint John River, Mackenzie River, and Lake Simcoe. Budget 2023 also proposes to provide $22.6 million over three years, starting in 2023-24, to support better coordination of efforts to protect freshwater across Canada.
  • Budget 2023 also proposes to provide $85.1 million over five years, starting in 2023-24, with $0.4 million in remaining amortization and $21 million ongoing thereafter to support the creation of the Canada Water Agency [emphasis mine], which will be headquartered in Winnipeg. By the end of 2023, the government will introduce legislation that will fully establish the Canada Water Agency as a standalone entity.

Cleaner and Healthier Ports

Canada’s ports are at the heart of our supply chains, delivering goods to Canadians and allowing our businesses to reach global markets. As rising shipping levels enable and create economic growth and good jobs, the federal government is taking action to protect Canada’s coastal ecosystems and communities.

  • Budget 2023 proposes to provide $165.4 million over seven years, starting in 2023-24, to Transport Canada to establish a Green Shipping Corridor Program to reduce the impact of marine shipping on surrounding communities and ecosystems. The program will help spur the launch of the next generation of clean ships, invest in shore power technology, and prioritize low-emission and low-noise vessels at ports.

Water, water everywhere

I wasn’t expecting to find mention of establishing a Canada Water Agency and details are sketchy other than, It will be in Winnipeg, Manitoba and there will be government funding. Fingers crossed that this agency will do some good work (whatever that might be). Personally, I’d like to see some action with regard to droughts.

In British Columbia (BC) where I live and which most of us think of as ‘water rich’, is suffering under conditions such that our rivers and lakes are at very low levels according to an April 6, 2023 article by Glenda Luymes for the Vancouver Sun (print version, p. A4),

On the North American WaterWatch map, which codes river flows using a series of coloured dots, high flows are represented in various shades of blue while low flows are represented in red hues. On Wednesday [April 5, 2023], most of BC was speckled red, brown and orange, with the majority of the province’s rivers flowing “much below normal.”

“It does not bode well for the fish populations,” said Marvin Rosenau, a fisheries and ecosystems instructor at BCIT [British Columbia Institute of Technology]. …

Rosenau said low water last fall [2022], when much of BC was in the grip of drought, decreased salmon habitat during spawning season. …

BC has already seen small early season wildfires, including one near Merritt last weekend [April 1/2, 2023]. …

Getting back to the Canada Water Agency, there’s this March 29, 2023 CBC news online article by Bartley Kives,

The 2023 federal budget calls for a new national water agency to be based in Winnipeg, provided Justin Trudeau’s Liberal government remains in power long enough to see it established [emphasis mine] in the Manitoba capital.

The budget announced on Tuesday [March 28, 2023] calls for the creation of the Canada Water Agency, a new federal entity with a headquarters in Winnipeg.

While the federal government is still determining precisely what the new agency will do, one Winnipeg-based environmental organization expects it to become a one-stop shop for water science, water quality assessment and water management [emphasis mine].

“This is something that we don’t actually have in this country at the moment,” said Matt McCandless, a vice-president for the non-profit International Institute for Sustainable Development.

Right now, municipalities, provinces and Indigenous authorities take different approaches to managing water quality, water science, flooding and droughts, said McCandless, adding a national water agency could provide more co-ordination.

For now, it’s unknown how many employees will be based at the Canada Water Agency’s Winnipeg headquarters. According to the budget, legislation to create the agency won’t be introduced until later this year [emphasis mine].

That means the Winnipeg headquarters likely won’t materialize before 2024, one year before the Trudeau minority government faces re-election, assuming it doesn’t lose the confidence of the House of Commons beforehand [emphasis mine].

Nonetheless, several Canadian cities and provinces were vying for the Canada Water Agency’s headquarters, including Manitoba.

The budget also calls for $65 million worth of annual spending on lake science and restoration, with an unstated fraction of that cash devoted to Lake Winnipeg.

McCandless calls the spending on water science an improvement over previous budgets.

Kives seems a tad jaundiced but you get that way (confession: I have too) when covering government spending promises.

Part 2 (military spending and general comments) will be posted sometime during the week of April 24-28, 2023.

Modernizing ‘Maxwell’s demon’ for a quantum computing feat

Maxwell is James Clerk Maxwell, a Scottish mathematician and scientist, considered a genius for his work on electromagnetism. His ‘demon’ is a thought experiment that has influenced research for over 150 years as this November 29, 2022 news item on ScienceDaily makes clear,

A team of quantum engineers at UNSW [University of New South Wales] Sydney has developed a method to reset a quantum computer — that is, to prepare a quantum bit in the ‘0’ state — with very high confidence, as needed for reliable quantum computations. The method is surprisingly simple: it is related to the old concept of ‘Maxwell’s demon’, an omniscient being that can separate a gas into hot and cold by watching the speed of the individual molecules.

A November 30, 2022 UNSW press release (also on EurekAlert but published on November 29, 2022), which originated the news item, modernizes the demon,

“Here we used a much more modern ‘demon’ – a fast digital voltmeter – to watch the temperature of an electron drawn at random from a warm pool of electrons. In doing so, we made it much colder than the pool it came from, and this corresponds to a high certainty of it being in the ‘0’ computational state,” says Professor Andrea Morello of UNSW, who led the team.

“Quantum computers are only useful if they can reach the final result with very low probability of errors. And one can have near-perfect quantum operations, but if the calculation started from the wrong code, the final result will be wrong too. Our digital ‘Maxwell’s demon’ gives us a 20x improvement in how accurately we can set the start of the computation.”

The research was published in Physical Review X, a journal published by the American Physical Society.

Watching an electron to make it colder

Prof. Morello’s team has pioneered the use of electron spins in silicon to encode and manipulate quantum information, and demonstrated record-high fidelity – that is, very low probability of errors – in performing quantum operations. The last remaining hurdle for efficient quantum computations with electrons was the fidelity of preparing the electron in a known state as the starting point of the calculation.

“The normal way to prepare the quantum state of an electron is go to extremely low temperatures, close to absolute zero, and hope that the electrons all relax to the low-energy ‘0’ state,” explains Dr Mark Johnson, the lead experimental author on the paper. “Unfortunately, even using the most powerful refrigerators, we still had a 20 per cent chance of preparing the electron in the ‘1’ state by mistake. That was not acceptable, we had to do better than that.”

Dr Johnson, a UNSW graduate in Electrical Engineering, decided to use a very fast digital measurement instrument to ‘watch’ the state of the electron, and use real-time decision-making processor within the instrument to decide whether to keep that electron and use it for further computations. The effect of this process was to reduce the probability of error from 20 per cent to 1 per cent.

A new spin on an old idea

“When we started writing up our results and thought about how best to explain them, we realized that what we had done was a modern twist on the old idea of the ‘Maxwell’s demon’,” Prof. Morello says.

The concept of ‘Maxwell’s demon’ dates back to 1867, when James Clerk Maxwell imagined a creature with the capacity to know the velocity of each individual molecule in a gas. He would take a box full of gas, with a dividing wall in the middle, and a door that can be opened and closed quickly. With his knowledge of each molecule’s speed, the demon can open the door to let the slow (cold) molecules pile up on one side, and the fast (hot) ones on the other.

“The demon was a thought experiment, to debate the possibility of violating the second law of thermodynamics, but of course no such demon ever existed,” Prof. Morello says.

“Now, using fast digital electronics, we have in some sense created one. We tasked him with the job of watching just one electron, and making sure it’s as cold as it can be. Here, ‘cold’ translates directly in it being in the ‘0’ state of the quantum computer we want to build and operate.”

The implications of this result are very important for the viability of quantum computers. Such a machine can be built with the ability to tolerate some errors, but only if they are sufficiently rare. The typical threshold for error tolerance is around 1 per cent. This applies to all errors, including preparation, operation, and readout of the final result.

This electronic version of a ‘Maxwell’s demon’ allowed the UNSW team to reduce the preparation errors twenty-fold, from 20 per cent to 1 per cent.

“Just by using a modern electronic instrument, with no additional complexity in the quantum hardware layer, we’ve been able to prepare our electron quantum bits within good enough accuracy to permit a reliable subsequent computation,” Dr Johnson says.

“This is an important result for the future of quantum computing. And it’s quite peculiar that it also represents the embodiment of an idea from 150 years ago!”

Hat’s off to whoever prepared the opening sequences for this informative and entertaining video from UNSW,

Here’s a link to and a citation for the paper,

Beating the Thermal Limit of Qubit Initialization with a Bayesian Maxwell’s Demon by Mark A. I. Johnson, Mateusz T. Mądzik, Fay E. Hudson, Kohei M. Itoh, Alexander M. Jakob, David N. Jamieson, Andrew Dzurak, and Andrea Morello. Phys. Rev. X 12, 041008 Vol. 12, Iss. 4: October – December 2022 Published 25 October 2022

This paper is open access.

For years, James Clerk Maxwell’s role as a poet has fascinated me. Yes, a physicist who wrote poetry about physics and other matters as noted in my April 24, 2019 (The poetry of physics from Canada’s Perimeter Institute) where you’ll find poems by various physicists including the aforementioned Maxwell, as well as, a link to the original Perimeter Institute for Theoretical Physics (PI) posting featuring the excerpted poems even more physics poems.

Graphene can be used in quantum components

A November 3, 2022 news item on phys.org provides a brief history of graphene before announcing the latest work from ETH Zurich,

Less than 20 years ago, Konstantin Novoselov and Andre Geim first created two-dimensional crystals consisting of just one layer of carbon atoms. Known as graphene, this material has had quite a career since then.

Due to its exceptional strength, graphene is used today to reinforce products such as tennis rackets, car tires or aircraft wings. But it is also an interesting subject for fundamental research, as physicists keep discovering new, astonishing phenomena that have not been observed in other materials.

The right twist

Bilayer graphene crystals, in which the two atomic layers are slightly rotated relative to each other, are particularly interesting for researchers. About one year ago, a team of researchers led by Klaus Ensslin and Thomas Ihn at ETH Zurich’s Laboratory for Solid State Physics was able to demonstrate that twisted graphene could be used to create Josephson junctions, the fundamental building blocks of superconducting devices.

Based on this work, researchers were now able to produce the first superconducting quantum interference device, or SQUID, from twisted graphene for the purpose of demonstrating the interference of superconducting quasiparticles. Conventional SQUIDs are already being used, for instance in medicine, geology and archaeology. Their sensitive sensors are capable of measuring even the smallest changes in magnetic fields. However, SQUIDs work only in conjunction with superconducting materials, so they require cooling with liquid helium or nitrogen when in operation.

In quantum technology, SQUIDs can host quantum bits (qubits); that is, as elements for carrying out quantum operations. “SQUIDs are to superconductivity what transistors are to semiconductor technology—the fundamental building blocks for more complex circuits,” Ensslin explains.

A November 3, 2022 ETH Zurich news release by Felix Würsten, which originated the news item, delves further into the work,

The spectrum is widening

The graphene SQUIDs created by doctoral student Elías Portolés are not more sensitive than their conventional counterparts made from aluminium and also have to be cooled down to temperatures lower than 2 degrees above absolute zero. “So it’s not a breakthrough for SQUID technology as such,” Ensslin says. However, it does broaden graphene’s application spectrum significantly. “Five years ago, we were already able to show that graphene could be used to build single-electron transistors. Now we’ve added superconductivity,” Ensslin says.

What is remarkable is that the graphene’s behaviour can be controlled in a targeted manner by biasing an electrode. Depending on the voltage applied, the material can be insulating, conducting or superconducting. “The rich spectrum of opportunities offered by solid-state physics is at our disposal,” Ensslin says.

Also interesting is that the two fundamental building blocks of a semiconductor (transistor) and a superconductor (SQUID) can now be combined in a single material. This makes it possible to build novel control operations. “Normally, the transistor is made from silicon and the SQUID from aluminium,” Ensslin says. “These are different materials requiring different processing technologies.”

An extremely challenging production process

Superconductivity in graphene was discovered by an MIT [Massachusetts Institute of Technology] research group five years ago, yet there are only a dozen or so experimental groups worldwide that look at this phenomenon. Even fewer are capable of converting superconducting graphene into a functioning component.

The challenge is that scientists have to carry out several delicate work steps one after the other: First, they have to align the graphene sheets at the exact right angle relative to each other. The next steps then include connecting electrodes and etching holes. If the graphene were to be heated up, as happens often during cleanroom processing, the two layers re-align the twist angle vanishes. “The entire standard semiconductor technology has to be readjusted, making this an extremely challenging job,” Portolés says.

The vision of hybrid systems

Ensslin is thinking one step ahead. Quite a variety of different qubit technologies are currently being assessed, each with its own advantages and disadvantages. For the most part, this is being done by various research groups within the National Center of Competence in Quantum Science and Technology (QSIT). If scientists succeed in coupling two of these systems using graphene, it might be possible to combine their benefits as well. “The result would be two different quantum systems on the same crystal,” Ensslin says.

This would also generate new possibilities for research on superconductivity. “With these components, we might be better able to understand how superconductivity in graphene comes about in the first place,” he adds. “All we know today is that there are different phases of superconductivity in this material, but we do not yet have a theoretical model to explain them.”

Here’s a link to and a citation for the paper,

A tunable monolithic SQUID in twisted bilayer graphene by Elías Portolés, Shuichi Iwakiri, Giulia Zheng, Peter Rickhaus, Takashi Taniguchi, Kenji Watanabe, Thomas Ihn, Klaus Ensslin & Folkert K. de Vries. Nature Nanotechnology volume 17, pages 1159–1164 (2022) Issue Date: November 2022 DOI: https://doi.org/10.1038/s41565-022-01222-0 Published online: 24 October 2022

This paper is behind a paywall.

Ancient Namibian gemstone could be key to new light-based quantum computers

Researchers in Scotland, the US, Australia, and Denmark have a found a solution to a problem with creating light-based computers according to an April 15, 2022 news item on phys.org,

A special form of light made using an ancient Namibian gemstone could be the key to new light-based quantum computers, which could solve long-held scientific mysteries, according to new research led by the University of St Andrews.

The research, conducted in collaboration with scientists at Harvard University in the US, Macquarie University in Australia and Aarhus University in Denmark and published in Nature Materials, used a naturally mined cuprous oxide (Cu2O) gemstone from Namibia to produce Rydberg polaritons, the largest hybrid particles of light and matter ever created.

Cuprous oxide – the mined crystal from Namibia used for making Rydberg polaritons. Courtesy: University of St. Andrews

An April 15, 2022 University of St. Andrews press release, which originated the news item, describes Rydberg polaritons and explains why they could be the key to light-based quantum computing,

Rydberg polaritons switch continually from light to matter and back again. In Rydberg polaritons, light and matter are like two sides of a coin, and the matter side is what makes polaritons interact with each other.

This interaction is crucial because this is what allows the creation of quantum simulators, a special type of quantum computer, where information is stored in quantum bits. These quantum bits [qubits], unlike the binary bits in classical computers that can only be 0 or 1, can take any value between 0 and 1. They can therefore store much more information and perform several processes simultaneously.

This capability could allow quantum simulators to solve important mysteries of physics, chemistry and biology, for example, how to make high-temperature superconductors for highspeed trains, how cheaper fertilisers could be made potentially solving global hunger, or how proteins fold making it easier to produce more effective drugs.

Project lead Dr Hamid Ohadi, of the School of Physics and Astronomy at the University of St Andrews, said: “Making a quantum simulator with light is the holy grail of science. We have taken a huge leap towards this by creating Rydberg polaritons, the key ingredient of it.”

To create Rydberg polaritons, the researchers trapped light between two highly reflective mirrors. A cuprous oxide crystal from a stone mined in Namibia was then thinned and polished to a 30-micrometer thick slab (thinner than a strand of human hair) and sandwiched between the two mirrors to make Rydberg polaritons 100 times larger than ever demonstrated before.

One of the leading authors Dr Sai Kiran Rajendran, of the School of Physics and Astronomy at the University of St Andrews, said: “Purchasing the stone on eBay was easy. The challenge was to make Rydberg polaritons that exist in an extremely narrow colour range.”

The team is currently further refining these methods in order to explore the possibility of making quantum circuits, which are the next ingredient for quantum simulators.

The research was funded by UK Engineering and Physical Sciences Research Council (EPSRC).

Here’s a link to and a citation for the paper,

Rydberg exciton–polaritons in a Cu2O microcavity by Konstantinos Orfanakis, Sai Kiran Rajendran, Valentin Walther, Thomas Volz, Thomas Pohl & Hamid Ohadi. Nature Materials (2022) DOI: DOIhttps://doi.org/10.1038/s41563-022-01230-4 Published: 14 April 2022

This paper is behind a paywall.

Quantum memristors

This March 24, 2022 news item on Nanowerk announcing work on a quantum memristor seems to have had a rough translation from German to English,

In recent years, artificial intelligence has become ubiquitous, with applications such as speech interpretation, image recognition, medical diagnosis, and many more. At the same time, quantum technology has been proven capable of computational power well beyond the reach of even the world’s largest supercomputer.

Physicists at the University of Vienna have now demonstrated a new device, called quantum memristor, which may allow to combine these two worlds, thus unlocking unprecedented capabilities. The experiment, carried out in collaboration with the National Research Council (CNR) and the Politecnico di Milano in Italy, has been realized on an integrated quantum processor operating on single photons.

Caption: Abstract representation of a neural network which is made of photons and has memory capability potentially related to artificial intelligence. Credit: © Equinox Graphics, University of Vienna

A March 24, 2022 University of Vienna (Universität Wien) press release (also on EurekAlert), which originated the news item, explains why this work has an impact on artificial intelligence,

At the heart of all artificial intelligence applications are mathematical models called neural networks. These models are inspired by the biological structure of the human brain, made of interconnected nodes. Just like our brain learns by constantly rearranging the connections between neurons, neural networks can be mathematically trained by tuning their internal structure until they become capable of human-level tasks: recognizing our face, interpreting medical images for diagnosis, even driving our cars. Having integrated devices capable of performing the computations involved in neural networks quickly and efficiently has thus become a major research focus, both academic and industrial.

One of the major game changers in the field was the discovery of the memristor, made in 2008. This device changes its resistance depending on a memory of the past current, hence the name memory-resistor, or memristor. Immediately after its discovery, scientists realized that (among many other applications) the peculiar behavior of memristors was surprisingly similar to that of neural synapses. The memristor has thus become a fundamental building block of neuromorphic architectures.

A group of experimental physicists from the University of Vienna, the National Research Council (CNR) and the Politecnico di Milano led by Prof. Philip Walther and Dr. Roberto Osellame, have now demonstrated that it is possible to engineer a device that has the same behavior as a memristor, while acting on quantum states and being able to encode and transmit quantum information. In other words, a quantum memristor. Realizing such device is challenging because the dynamics of a memristor tends to contradict the typical quantum behavior. 

By using single photons, i.e. single quantum particles of lights, and exploiting their unique ability to propagate simultaneously in a superposition of two or more paths, the physicists have overcome the challenge. In their experiment, single photons propagate along waveguides laser-written on a glass substrate and are guided on a superposition of several paths. One of these paths is used to measure the flux of photons going through the device and this quantity, through a complex electronic feedback scheme, modulates the transmission on the other output, thus achieving the desired memristive behavior. Besides demonstrating the quantum memristor, the researchers have provided simulations showing that optical networks with quantum memristor can be used to learn on both classical and quantum tasks, hinting at the fact that the quantum memristor may be the missing link between artificial intelligence and quantum computing.

“Unlocking the full potential of quantum resources within artificial intelligence is one of the greatest challenges of the current research in quantum physics and computer science”, says Michele Spagnolo, who is first author of the publication in the journal “Nature Photonics”. The group of Philip Walther of the University of Vienna has also recently demonstrated that robots can learn faster when using quantum resources and borrowing schemes from quantum computation. This new achievement represents one more step towards a future where quantum artificial intelligence become reality.

Here’s a link to and a citation for the paper,

Experimental photonic quantum memristor by Michele Spagnolo, Joshua Morris, Simone Piacentini, Michael Antesberger, Francesco Massa, Andrea Crespi, Francesco Ceccarelli, Roberto Osellame & Philip Walther. Nature Photonics volume 16, pages 318–323 (2022) DOI: https://doi.org/10.1038/s41566-022-00973-5 Published 24 March 2022 Issue Date April 2022

This paper is open access.

Shaving the ‘hairs’ off nanocrystals for more efficient electronics

A March 24, 2022 news item on phys.org announced research into nanoscale crystals and how they might be integrated into electronic devices, Note: A link has been removed,

You can carry an entire computer in your pocket today because the technological building blocks have been getting smaller and smaller since the 1950s. But in order to create future generations of electronics—such as more powerful phones, more efficient solar cells, or even quantum computers—scientists will need to come up with entirely new technology at the tiniest scales.

One area of interest is nanocrystals. These tiny crystals can assemble themselves into many configurations, but scientists have had trouble figuring out how to make them talk to each other.  

A new study introduces a breakthrough in making nanocrystals function together electronically. Published March 25 [2022] in Science, the research may open the doors to future devices with new abilities. 

A March 25, 2022 University of Chicago news release (also on EurekAlert but published on March 24, 2022), which originated the news item, expands on the possibilities the research makes possible, Note: Links have been removed,

“We call these super atomic building blocks, because they can grant new abilities—for example, letting cameras see in the infrared range,” said University of Chicago Prof. Dmitri Talapin, the corresponding author of the paper. “But until now, it has been very difficult to both assemble them into structures and have them talk to each other. Now for the first time, we don’t have to choose. This is a transformative improvement.”  

In their paper, the scientists lay out design rules which should allow for the creation of many different types of materials, said Josh Portner, a Ph.D. student in chemistry and one of the first authors of the study. 

A tiny problem

Scientists can grow nanocrystals out of many different materials: metals, semiconductors, and magnets will each yield different properties. But the trouble was that whenever they tried to assemble these nanocrystals together into arrays, the new supercrystals would grow with long “hairs” around them. 

These hairs made it difficult for electrons to jump from one nanocrystal to another. Electrons are the messengers of electronic communication; their ability to move easily along is a key part of any electronic device. 

The researchers needed a method to reduce the hairs around each nanocrystal, so they could pack them in more tightly and reduce the gaps in between. “When these gaps are smaller by just a factor of three, the probability for electrons to jump across is about a billion times higher,” said Talapin, the Ernest DeWitt Burton Distinguished Service Professor of Chemistry and Molecular Engineering at UChicago and a senior scientist at Argonne National Laboratory. “It changes very strongly with distance.”

To shave off the hairs, they sought to understand what was going on at the atomic level. For this, they needed the aid of powerful X-rays at the Center for Nanoscale Materials at Argonne and the Stanford Synchrotron Radiation Lightsource at SLAC National Accelerator Laboratory, as well as powerful simulations and models of the chemistry and physics at play. All these allowed them to understand what was happening at the surface—and find the key to harnessing their production.

Part of the process to grow supercrystals is done in solution—that is, in liquid. It turns out that as the crystals grow, they undergo an unusual transformation in which gas, liquid and solid phases all coexist. By precisely controlling the chemistry of that stage, they could create crystals with harder, slimmer exteriors which could be packed in together much more closely. “Understanding their phase behavior was a massive leap forward for us,” said Portner. 

The full range of applications remains unclear, but the scientists can think of multiple areas where the technique could lead. “For example, perhaps each crystal could be a qubit in a quantum computer; coupling qubits into arrays is one of the fundamental challenges of quantum technology right now,” said Talapin. 

Portner is also interested in exploring the unusual intermediate state of matter seen during supercrystal growth: “Triple phase coexistence like this is rare enough that it’s intriguing to think about how to take advantage of this chemistry and build new materials.”

The study included scientists with the University of Chicago, Technische Universität Dresden, Northwestern University, Arizona State University, SLAC, Lawrence Berkeley National Laboratory, and the University of California, Berkeley.

Here’s a link to and a citation for the paper,

Self-assembly of nanocrystals into strongly electronically coupled all-inorganic supercrystals by Igor Coropceanu, Eric M. Janke, Joshua Portner, Danny Haubold, Trung Dac Nguyen, Avishek Das, Christian P. N. Tanner, James K. Utterback, Samuel W. Teitelbaum¸ Margaret H. Hudson, Nivedina A. Sarma, Alex M. Hinkle, Christopher J. Tassone, Alexander Eychmüller, David T. Limmer, Monica Olvera de la Cruz, Naomi S. Ginsberg and Dmitri V. Talapin. Science • 24 Mar 2022 • Vol 375, Issue 6587 • pp. 1422-1426 • DOI: 10.1126/science.abm6753

This paper is behind a paywall.

Quantum Mechanics & Gravity conference (August 15 – 19, 2022) launches Vancouver (Canada)-based Quantum Gravity Institute and more

I received (via email) a July 21, 2022 news release about the launch of a quantum science initiative in Vancouver (BTW, I have more about the Canadian quantum scene later in this post),

World’s top physicists unite to tackle one of Science’s greatest
mysteries


Vancouver-based Quantum Gravity Society leads international quest to
discover Theory of Quantum Gravity

Vancouver, B.C. (July 21, 2022): More than two dozen of the world’s
top physicists, including three Nobel Prize winners, will gather in
Vancouver this August for a Quantum Gravity Conference that will host
the launch a Vancouver-based Quantum Gravity Institute (QGI) and a
new global research collaboration that could significantly advance our
understanding of physics and gravity and profoundly change the world as
we know it.

For roughly 100 years, the world’s understanding of physics has been
based on Albert Einstein’s General Theory of Relativity (GR), which
explored the theory of space, time and gravity, and quantum mechanics
(QM), which focuses on the behaviour of matter and light on the atomic
and subatomic scale. GR has given us a deep understanding of the cosmos,
leading to space travel and technology like atomic clocks, which govern
global GPS systems. QM is responsible for most of the equipment that
runs our world today, including the electronics, lasers, computers, cell
phones, plastics, and other technologies that support modern
transportation, communications, medicine, agriculture, energy systems
and more.

While each theory has led to countless scientific breakthroughs, in many
cases, they are incompatible and seemingly contradictory. Discovering a
unifying connection between these two fundamental theories, the elusive
Theory of Quantum Gravity, could provide the world with a deeper
understanding of time, gravity and matter and how to potentially control
them. It could also lead to new technologies that would affect most
aspects of daily life, including how we communicate, grow food, deliver
health care, transport people and goods, and produce energy.

“Discovering the Theory of Quantum Gravity could lead to the
possibility of time travel, new quantum devices, or even massive new
energy resources that produce clean energy and help us address climate
change,” said Philip Stamp, Professor, Department of Physics and
Astronomy, University of British Columbia, and Visiting Associate in
Theoretical Astrophysics at Caltech [California Institute of Technology]. “The potential long-term ramifications of this discovery are so incredible that life on earth 100
years from now could look as miraculous to us now as today’s
technology would have seemed to people living 100 years ago.”

The new Quantum Gravity Institute and the conference were founded by the
Quantum Gravity Society, which was created in 2022 by a group of
Canadian technology, business and community leaders, and leading
physicists. Among its goals are to advance the science of physics and
facilitate research on the Theory of Quantum Gravity through initiatives
such as the conference and assembling the world’s leading archive of
scientific papers and lectures associated with the attempts to reconcile
these two theories over the past century.

Attending the Quantum Gravity Conference in Vancouver (August 15-19 [2022])
will be two dozen of the world’s top physicists, including Nobel
Laureates Kip Thorne, Jim Peebles and Sir Roger Penrose, as well as
physicists Baron Martin Rees, Markus Aspelmeyer, Viatcheslav Mukhanov
and Paul Steinhardt. On Wednesday, August 17, the conference will be
open to the public, providing them with a once-in-a-lifetime opportunity
to attend keynote addresses from the world’s pre-eminent physicists.
… A noon-hour discussion on the importance of the
research will be delivered by Kip Thorne, the former Feynman Professor
of physics at Caltech. Thorne is well known for his popular books, and
for developing the original idea for the 2014 film “Interstellar.” He
was also crucial to the development of the book “Contact” by Carl Sagan,
which was also made into a motion picture.

“We look forward to welcoming many of the world’s brightest minds to
Vancouver for our first Quantum Gravity Conference,” said Frank
Giustra, CEO Fiore Group and Co-Founder, Quantum Gravity Society. “One
of the goals of our Society will be to establish Vancouver as a
supportive home base for research and facilitate the scientific
collaboration that will be required to unlock this mystery that has
eluded some of the world’s most brilliant physicists for so long.”

“The format is key,” explains Terry Hui, UC Berkley Physics alumnus
and Co-Founder, Quantum Gravity Society [and CEO of Concord Pacific].
“Like the Solvay Conference nearly 100 years ago, the Quantum Gravity
Conference will bring top scientists together in salon-style gatherings. The
relaxed evening format following the conference will reduce barriers and
allow these great minds to freely exchange ideas. I hope this will help accelerate
the solution of this hundred-year bottleneck between theories relatively
soon.”

“As amazing as our journey of scientific discovery has been over the
past century, we still have so much to learn about how the universe
works on a macro, atomic and subatomic level,” added Paul Lee,
Managing Partner, Vanedge Capital, and Co-Founder, Quantum Gravity
Society. “New experiments and observations capable of advancing work
on this scientific challenge are becoming increasingly possible in
today’s physics labs and using new astronomical tools. The Quantum
Gravity Society looks forward to leveraging that growing technical
capacity with joint theory and experimental work that harnesses the
collective expertise of the world’s great physicists.”

About Quantum Gravity Society

Quantum Gravity Society was founded in Vancouver, Canada in 2020 by a
group of Canadian business, technology and community leaders, and
leading international physicists. The Society’s founding members
include Frank Giustra (Fiore Group), Terry Hui (Concord Pacific), Paul
Lee and Moe Kermani (Vanedge Capital) and Markus Frind (Frind Estate
Winery), along with renowned physicists Abhay Ashtekar, Sir Roger
Penrose, Philip Stamp, Bill Unruh and Birgitta Whaley. For more
information, visit Quantum Gravity Society.

About the Quantum Gravity Conference (Vancouver 2022)


The inaugural Quantum Gravity Conference (August 15-19 [2022]) is presented by
Quantum Gravity Society, Fiore Group, Vanedge Capital, Concord Pacific,
The Westin Bayshore, Vancouver and Frind Estate Winery. For conference
information, visit conference.quantumgravityinstitute.ca. To
register to attend the conference, visit Eventbrite.com.

The front page on the Quantum Gravity Society website is identical to the front page for the Quantum Mechanics & Gravity: Marrying Theory & Experiment conference website. It’s probable that will change with time.

This seems to be an in-person event only.

The site for the conference is in an exceptionally pretty location in Coal Harbour and it’s close to Stanley Park (a major tourist attraction),

The Westin Bayshore, Vancouver
1601 Bayshore Drive
Vancouver, BC V6G 2V4
View map

Assuming that most of my readers will be interested in the ‘public’ day, here’s more from the Wednesday, August 17, 2022 registration page on Eventbrite,

Tickets:

  • Corporate Table of 8 all day access – includes VIP Luncheon: $1,100
  • Ticket per person all day access – includes VIP Luncheon: $129
  • Ticket per person all day access (no VIP luncheon): $59
  • Student / Academia Ticket – all day access (no VIP luncheon): $30

Date:

Wednesday, August 17, 2022 @ 9:00 a.m. – 5:15 p.m. (PT)

Schedule:

  • Registration Opens: 8:00 a.m.
  • Morning Program: 9:00 a.m. – 12:30 p.m.
  • VIP Lunch: 12:30 p.m. – 2:30 p.m.
  • Afternoon Program: 2:30 p.m. – 4:20 p.m.
  • Public Discussion / Debate: 4:20 p.m. – 5:15 p.m.

Program:

9:00 a.m. Session 1: Beginning of the Universe

  • Viatcheslav Mukhanov – Theoretical Physicist and Cosmologist, University of Munich
  • Paul Steinhardt – Theoretical Physicist, Princeton University

Session 2: History of the Universe

  • Jim Peebles, 2019 Nobel Laureate, Princeton University
  • Baron Martin Rees – Cosmologist and Astrophysicist, University of Cambridge
  • Sir Roger Penrose, 2020 Nobel Laureate, University of Oxford (via zoom)

12:30 p.m. VIP Lunch Session: Quantum Gravity — Why Should We Care?

  • Kip Thorne – 2017 Nobel Laureate, Executive Producer of blockbuster film “Interstellar”

2:30 p.m. Session 3: What do Experiments Say?

  • Markus Aspelmeyer – Experimental Physicist, Quantum Optics and Optomechanics Leader, University of Vienna
  • Sir Roger Penrose – 2020 Nobel Laureate (via zoom)

Session 4: Time Travel

  • Kip Thorne – 2017 Nobel Laureate, Executive Producer of blockbuster film “Interstellar”

Event Partners

  • Quantum Gravity Society
  • Westin Bayshore
  • Fiore Group
  • Concord Pacific
  • VanEdge Capital
  • Frind Estate Winery

Marketing Partners

  • BC Business Council
  • Greater Vancouver Board of Trade

Please note that Sir Roger Penrose will be present via Zoom but all the others will be there in the room with you.

Given that Kip Thorne won his 2017 Nobel Prize in Physics (with Rainer Weiss and Barry Barish) for work on gravitational waves, it’s surprising there’s no mention of this in the publicity for a conference on quantum gravity. Finding gravitational waves in 2016 was a very big deal (see Josh Fischman’s and Steve Mirsky’s February 11, 2016 interview with Kip Thorne for Scientific American).

Some thoughts on this conference and the Canadian quantum scene

This conference has a fascinating collection of players. Even I recognized some of the names, e.g., Penrose, Rees, Thorne.

The academics were to be expected and every presenter is an academic, often with their own Wikipedia page. Weirdly, there’s no one from the Perimeter Institute Institute for Theoretical Physics or TRIUMF (a national physics laboratory and centre for particle acceleration) or from anywhere else in Canada, which may be due to their academic specialty rather than an attempt to freeze out Canadian physicists. In any event, the conference academics are largely from the US (a lot of them from CalTech and Stanford) and from the UK.

The business people are a bit of a surprise. The BC Business Council and the Greater Vancouver Board of Trade? Frank Giustra who first made his money with gold mines, then with Lionsgate Entertainment, and who continues to make a great deal of money with his equity investment company, Fiore Group? Terry Hui, Chief Executive Office of Concord Pacific, a real estate development company? VanEdge Capital, an early stage venture capital fund? A winery? Missing from this list is D-Wave Systems, Canada’s quantum calling card and local company. While their area of expertise is quantum computing, I’d still expect to see them present as sponsors. *ETA December 6, 2022: I just looked at the conference page again and D-Wave is now listed as a sponsor.*

The academics? These people are not cheap dates (flights, speaker’s fees, a room at the Bayshore, meals). This is a very expensive conference and $129 for lunch and a daypass is likely a heavily subsidized ticket.

Another surprise? No government money/sponsorship. I don’t recall seeing another academic conference held in Canada without any government participation.

Canadian quantum scene

A National Quantum Strategy was first announced in the 2021 Canadian federal budget and reannounced in the 2022 federal budget (see my April 19, 2022 posting for a few more budget details).. Or, you may find this National Quantum Strategy Consultations: What We Heard Report more informative. There’s also a webpage for general information about the National Quantum Strategy.

As evidence of action, the Natural Science and Engineering Research Council of Canada (NSERC) announced new grant programmes made possible by the National Quantum Strategy in a March 15, 2022 news release,

Quantum science and innovation are giving rise to promising advances in communications, computing, materials, sensing, health care, navigation and other key areas. The Government of Canada is committed to helping shape the future of quantum technology by supporting Canada’s quantum sector and establishing leadership in this emerging and transformative domain.

Today [March 15, 2022], the Honourable François-Philippe Champagne, Minister of Innovation, Science and Industry, is announcing an investment of $137.9 million through the Natural Sciences and Engineering Research Council of Canada’s (NSERC) Collaborative Research and Training Experience (CREATE) grants and Alliance grants. These grants are an important next step in advancing the National Quantum Strategy and will reinforce Canada’s research strengths in quantum science while also helping to develop a talent pipeline to support the growth of a strong quantum community.

Quick facts

Budget 2021 committed $360 million to build the foundation for a National Quantum Strategy, enabling the Government of Canada to build on previous investments in the sector to advance the emerging field of quantum technologies. The quantum sector is key to fuelling Canada’s economy, long-term resilience and growth, especially as technologies mature and more sectors harness quantum capabilities.

Development of quantum technologies offers job opportunities in research and science, software and hardware engineering and development, manufacturing, technical support, sales and marketing, business operations and other fields.

The Government of Canada also invested more than $1 billion in quantum research and science from 2009 to 2020—mainly through competitive granting agency programs, including Natural Sciences and Engineering Research Council of Canada programs and the Canada First Research Excellence Fund—to help establish Canada as a global leader in quantum science.

In addition, the government has invested in bringing new quantum technologies to market, including investments through Canada’s regional development agencies, the Strategic Innovation Fund and the National Research Council of Canada’s Industrial Research Assistance Program.

Bank of Canada, cryptocurrency, and quantum computing

My July 25, 2022 posting features a special project, Note: All emphases are mine,

… (from an April 14, 2022 HKA Marketing Communications news release on EurekAlert),

Multiverse Computing, a global leader in quantum computing solutions for the financial industry and beyond with offices in Toronto and Spain, today announced it has completed a proof-of-concept project with the Bank of Canada through which the parties used quantum computing to simulate the adoption of cryptocurrency as a method of payment by non-financial firms.

“We are proud to be a trusted partner of the first G7 central bank to explore modelling of complex networks and cryptocurrencies through the use of quantum computing,” said Sam Mugel, CTO [Chief Technical Officer] at Multiverse Computing. “The results of the simulation are very intriguing and insightful as stakeholders consider further research in the domain. Thanks to the algorithm we developed together with our partners at the Bank of Canada, we have been able to model a complex system reliably and accurately given the current state of quantum computing capabilities.”

Multiverse Computing conducted its innovative work related to applying quantum computing for modelling complex economic interactions in a research project with the Bank of Canada. The project explored quantum computing technology as a way to simulate complex economic behaviour that is otherwise very difficult to simulate using traditional computational techniques.

By implementing this solution using D-Wave’s annealing quantum computer, the simulation was able to tackle financial networks as large as 8-10 players, with up to 2^90 possible network configurations. Note that classical computing approaches cannot solve large networks of practical relevance as a 15-player network requires as many resources as there are atoms in the universe.

Quantum Technologies and the Council of Canadian Academies (CCA)

In a May 26, 2022 blog posting the CCA announced its Expert Panel on Quantum Technologies (they will be issuing a Quantum Technologies report),

The emergence of quantum technologies will impact all sectors of the Canadian economy, presenting significant opportunities but also risks. At the request of the National Research Council of Canada (NRC) and Innovation, Science and Economic Development Canada (ISED), the Council of Canadian Academies (CCA) has formed an Expert Panel to examine the impacts, opportunities, and challenges quantum technologies present for Canadian industry, governments, and Canadians. Raymond Laflamme, O.C., FRSC, Canada Research Chair in Quantum Information and Professor in the Department of Physics and Astronomy at the University of Waterloo, will serve as Chair of the Expert Panel.

“Quantum technologies have the potential to transform computing, sensing, communications, healthcare, navigation and many other areas,” said Dr. Laflamme. “But a close examination of the risks and vulnerabilities of these technologies is critical, and I look forward to undertaking this crucial work with the panel.”

As Chair, Dr. Laflamme will lead a multidisciplinary group with expertise in quantum technologies, economics, innovation, ethics, and legal and regulatory frameworks. The Panel will answer the following question:

In light of current trends affecting the evolution of quantum technologies, what impacts, opportunities and challenges do these present for Canadian industry, governments and Canadians more broadly?

The Expert Panel on Quantum Technologies:

Raymond Laflamme, O.C., FRSC (Chair), Canada Research Chair in Quantum Information; the Mike and Ophelia Lazaridis John von Neumann Chair in Quantum Information; Professor, Department of Physics and Astronomy, University of Waterloo

Sally Daub, Founder and Managing Partner, Pool Global Partners

Shohini Ghose, Professor, Physics and Computer Science, Wilfrid Laurier University; NSERC Chair for Women in Science and Engineering

Paul Gulyas, Senior Innovation Executive, IBM Canada

Mark W. Johnson, Senior Vice-President, Quantum Technologies and Systems Products, D-Wave Systems

Elham Kashefi, Professor of Quantum Computing, School of Informatics, University of Edinburgh; Directeur de recherche au CNRS, LIP6 Sorbonne Université

Mauritz Kop, Fellow and Visiting Scholar, Stanford Law School, Stanford University

Dominic Martin, Professor, Département d’organisation et de ressources humaines, École des sciences de la gestion, Université du Québec à Montréal

Darius Ornston, Associate Professor, Munk School of Global Affairs and Public Policy, University of Toronto

Barry Sanders, FRSC, Director, Institute for Quantum Science and Technology, University of Calgary

Eric Santor, Advisor to the Governor, Bank of Canada

Christian Sarra-Bournet, Quantum Strategy Director and Executive Director, Institut quantique, Université de Sherbrooke

Stephanie Simmons, Associate Professor, Canada Research Chair in Quantum Nanoelectronics, and CIFAR Quantum Information Science Fellow, Department of Physics, Simon Fraser University

Jacqueline Walsh, Instructor; Director, initio Technology & Innovation Law Clinic, Dalhousie University

You’ll note that both the Bank of Canada and D-Wave Systems are represented on this expert panel.

The CCA Quantum Technologies report (in progress) page can be found here.

Does it mean anything?

Since I only skim the top layer of information (disparagingly described as ‘high level’ by the technology types I used to work with), all I can say is there’s a remarkable level of interest from various groups who are self-organizing. (The interest is international as well. I found the International Society for Quantum Gravity [ISQG], which had its first meeting in 2021.)

I don’t know what the purpose is other than it seems the Canadian focus seems to be on money. The board of trade and business council have no interest in primary research and the federal government’s national quantum strategy is part of Innovation, Science and Economic Development (ISED) Canada’s mandate. You’ll notice ‘science’ is sandwiched between ‘innovation’, which is often code for business, and economic development.

The Bank of Canada’s monetary interests are quite obvious.

The Perimeter Institute mentioned earlier was founded by Mike Lazaridis (from his Wikipedia entry) Note: Links have been removed,

… a Canadian businessman [emphasis mine], investor in quantum computing technologies, and founder of BlackBerry, which created and manufactured the BlackBerry wireless handheld device. With an estimated net worth of US$800 million (as of June 2011), Lazaridis was ranked by Forbes as the 17th wealthiest Canadian and 651st in the world.[4]

In 2000, Lazaridis founded and donated more than $170 million to the Perimeter Institute for Theoretical Physics.[11][12] He and his wife Ophelia founded and donated more than $100 million to the Institute for Quantum Computing at the University of Waterloo in 2002.[8]

That Institute for Quantum Computing? There’s an interesting connection. Raymond Laflamme, the chair for the CCA expert panel, was its director for a number of years and he’s closely affiliated with the Perimeter Institute. (I’m not suggesting anything nefarious or dodgy. It’s a small community in Canada and relationships tend to be tightly interlaced.) I’m surprised he’s not part of the quantum mechanics and gravity conference but that could have something to do with scheduling.

One last interesting bit about Laflamme, from his Wikipedia entry, Note: Links have been removed)

As Stephen Hawking’s PhD student, he first became famous for convincing Hawking that time does not reverse in a contracting universe, along with Don Page. Hawking told the story of how this happened in his famous book A Brief History of Time in the chapter The Arrow of Time.[3] Later on Laflamme made a name for himself in quantum computing and quantum information theory, which is what he is famous for today.

Getting back to the Quantum Mechanics & Gravity: Marrying Theory & Experiment, the public day looks pretty interesting and when is the next time you’ll have a chance to hobnob with all those Nobel Laureates?