Tag Archives: Kenji Watanabe

A graphene joke (of sorts): What did the electron ‘say’ to the phonon in the graphene sandwich?

Unfortunately, there isn’t a punch line but I appreciate the effort to inject a little lightness into the description of a fairly technical achievement, from a February 12, 2024 news item on Nanowerk, Note: A link has been removed,

Electrons carry electrical energy, while vibrational energy is carried by phonons. Understanding how they interact with each other in certain materials, like in a sandwich of two graphene layers, will have implications for future optoelectronic devices.

Key Takeaways

Twisted graphene layers exhibit unique electrical properties.

Electron-phonon interactions crucial for energy loss in graphene.

Discovery of a new physical process involving electron-phonon Umklapp scattering.

Potential implications for ultrafast optoelectronics and quantum applications.

A February 9, 2024 Eindhoven University of Technology (TU/e; Netherlands) press release, which originated the news item, is reproduced here in its entirety, Note: Links have been removed,

Electrons carry electrical energy, while vibrational energy is carried by phonons. Understanding how they interact with each other in certain materials, like in a sandwich of two graphene layers, will have implications for future optoelectronic devices. Recent work has revealed that graphene layers twisted relative to each other by a small ‘magic angle’ can act as perfect insulator or superconductor. But the physics of the electron-phonon interactions are a mystery. As part of a worldwide international collaboration, TU/e researcher Klaas-Jan Tielrooij has led a study on electron-phonon interactions in graphene layers. And they have made a startling discovery.

What did the electron say to the phonon between two layers of graphene?

This might sound like the start of a physics meme with a hilarious punchline to follow. But that’s not the case according to Klaas-Jan Tielrooij. He’s an associate professor at the Department of Applied Physics and Science Education at TU/e and the research lead of the new work published in Science Advances.

“We sought to understand how electrons and phonons ‘talk’ to each other within two twisted graphene layers,” says Tielrooij.

Electrons are the well-known charge and energy carriers associated with electricity, while a phonon is linked to the emergence of vibrations between atoms in an atomic crystal.

“Phonons aren’t particles like electrons though, they’re a quasiparticle. Yet, their interaction with electrons in certain materials and how they affect energy loss in electrons has been a mystery for some time,” notes Tielrooij.

But why would it be interesting to learn more about electron-phonon interactions? “These interactions can have a major effect on the electronic and optoelectronic properties of devices, made from materials like graphene, which we are going to see more of in the future.”

Twistronics: Breakthrough of the Year 2018

Tielrooij and his collaborators, who are based around the world in Spain, Germany, Japan, and the US, decided to study electron-phonon interactions in a very particular case – within two layers of graphene where the layers are ever-so-slightly misaligned.

Graphene is a two-dimensional layer of carbon atoms arranged in a honeycomb lattice that has several impressive properties such as high electrical conductivity, high flexibility, and high thermal conductivity, and it is also nearly transparent.

Back in 2018, the Physics World Breakthrough of the Year award went to Pablo Jarillo-Herrero and colleagues at MIT [Massachusetts Institute of Technology] for their pioneering work on twistronics, where adjacent layers of graphene are rotated very slightly relative to each other to change the electronic properties of the graphene.

Twist and astound!

“Depending on how the layers of graphene are rotated and doped with electrons, contrasting outcomes are possible. For certain dopings, the layers act as an insulator, which prevents the movement of electrons. For other doping, the material behaves as a superconductor – a material with zero resistance that allows the dissipation-less movement of electrons,” says Tielrooij.

Better known as twisted bilayer graphene, these outcomes occur at the so-called magic angle of misalignment, which is just over one degree of rotation. “The misalignment between the layers is tiny, but the possibility for a superconductor or an insulator is an astounding result.”

How electrons lose energy

For their study, Tielrooij and the team wanted to learn more about how electrons lose energy in magic-angle twisted bilayer graphene, or MATBG for short.

To achieve this, they used a material consisting of two sheets of monolayer graphene (each 0.3 nanometers thick), placed on top of each other, and misaligned relative to each other by about one degree.

Then using two optoelectronic measurement techniques, the researchers were able to probe the electron-phonon interactions in detail, and they made some staggering discoveries.

“We observed that the energy vanishes very quickly in the MATBG – it occurs on the picosecond timescale, which is one-millionth of one-millionth of a second!” says Tielrooij.

This observation is much faster than for the case of a single layer of graphene, especially at ultracold temperatures (specifically below -73 degrees Celsius). “At these temperatures, it’s very difficult for electrons to lose energy to phonons, yet it happens in the MATBG.”

Why electrons lose energy

So, why are the electrons losing the energy so quickly through interaction with the phonons? Well, it turns out the researchers have uncovered a whole new physical process.

“The strong electron-phonon interaction is a completely new physical process and involves so-called electron-phonon Umklapp scattering,” adds Hiroaki Ishizuka from Tokyo Institute of Technology in Japan, who developed the theoretical understanding of this process together with Leonid Levitov from Massachusetts Institute of Technology in the US.

Umklapp scattering between phonons is a process that often affects heat transfer in materials, because it enables relatively large amounts of momentum to be transferred between phonons.

“We see the effects of phonon-phonon Umklapp scattering all the time as it affects the ability for (non-metallic) materials at room temperature to conduct heat. Just think of an insulating material on the handle of a pot for example,” says Ishizuka. “However, electron-phonon Umklapp scattering is rare. Here though we have observed for the first time how electrons and phonons interact via Umklapp scattering to dissipate electron energy.”

Challenges solved together

Tielrooij and collaborators may have completed most of the work while he was based in Spain at the Catalan Institute of Nanoscience and Nanotechnology (ICN2), but as Tielrooij notes. “The international collaboration proved pivotal to making this discovery.”

So, how did all the collaborators contribute to the research? Tielrooij: “First, we needed advanced fabrication techniques to make the MATBG samples. But we also needed a deep theoretical understanding of what’s happening in the samples. Added to that, ultrafast optoelectronic measurement setups were required to measure what’s happening in the samples too.”

Tielrooij and the team received the magic-angle twisted samples from Dmitri Efetov’s group at Ludwig-Maximilians-Universität in Munich, who were the first group in Europe able to make such samples and who also performed photomixing measurements, while theoretical work at MIT in the US and at Tokyo Institute of Technology in Japan proved crucial to the success of the research.

At ICN2, Tielrooij and his team members Jake Mehew and Alexander Block used cutting-edge equipment particularly time-resolved photovoltage microscopy to perform their measurements of electron-phonon dynamics in the samples.

The future

So, what does the future look like for these materials then? According to Tielrooij, don’t expect anything too soon.

“As the material is only being studied for a few years, we’re still some way from seeing magic-angle twisted bilayer graphene having an impact on society.”

But there is a great deal to be explored about energy loss in the material.

“Future discoveries could have implications for charge transport dynamics, which could have implications for future ultrafast optoelectronics devices,” says Tielrooij. “In particular, they would be very useful at low temperatures, so that makes the material suitable for space and quantum applications.”

The research from Tielrooij and the international team is a real breakthrough when it comes to how electrons and phonons interact with each other.

But we’ll have to wait a little longer to fully understand the consequences of what the electron said to the phonon in the graphene sandwich.

Illustration showing the control of energy relaxation with twist angle. Image: Authors

Here’s a link to and a citation for the paper,

Ultrafast Umklapp-assisted electron-phonon cooling in magic-angle twisted bilayer graphene by Jake Dudley Mehew, Rafael Luque Merino, Hiroaki Ishizuka, Alexander Block, Jaime Díez Mérida, Andrés Díez Carlón, Kenji Watanabe, Takashi Taniguchi, Leonid S. Levitov, Dmitri K. Efetov, and Klaas-Jan Tielrooij. Science Advances 9 Feb 2024 Vol 10, Issue 6 DOI: 10.1126/sciadv.adj1361

This paper is open access.

Brainlike transistor and human intelligence

This brainlike transistor (not a memristor) is important because it functions at room temperature as opposed to others, which require cryogenic temperatures.

A December 20, 2023 Northwestern University news release (received via email; also on EurekAlert) fills in the details,

  • Researchers develop transistor that simultaneously processes and stores information like the human brain
  • Transistor goes beyond categorization tasks to perform associative learning
  • Transistor identified similar patterns, even when given imperfect input
  • Previous similar devices could only operate at cryogenic temperatures; new transistor operates at room temperature, making it more practical

EVANSTON, Ill. — Taking inspiration from the human brain, researchers have developed a new synaptic transistor capable of higher-level thinking.

Designed by researchers at Northwestern University, Boston College and the Massachusetts Institute of Technology (MIT), the device simultaneously processes and stores information just like the human brain. In new experiments, the researchers demonstrated that the transistor goes beyond simple machine-learning tasks to categorize data and is capable of performing associative learning.

Although previous studies have leveraged similar strategies to develop brain-like computing devices, those transistors cannot function outside cryogenic temperatures. The new device, by contrast, is stable at room temperatures. It also operates at fast speeds, consumes very little energy and retains stored information even when power is removed, making it ideal for real-world applications.

The study was published today (Dec. 20 [2023]) in the journal Nature.

“The brain has a fundamentally different architecture than a digital computer,” said Northwestern’s Mark C. Hersam, who co-led the research. “In a digital computer, data move back and forth between a microprocessor and memory, which consumes a lot of energy and creates a bottleneck when attempting to perform multiple tasks at the same time. On the other hand, in the brain, memory and information processing are co-located and fully integrated, resulting in orders of magnitude higher energy efficiency. Our synaptic transistor similarly achieves concurrent memory and information processing functionality to more faithfully mimic the brain.”

Hersam is the Walter P. Murphy Professor of Materials Science and Engineering at Northwestern’s McCormick School of Engineering. He also is chair of the department of materials science and engineering, director of the Materials Research Science and Engineering Center and member of the International Institute for Nanotechnology. Hersam co-led the research with Qiong Ma of Boston College and Pablo Jarillo-Herrero of MIT.

Recent advances in artificial intelligence (AI) have motivated researchers to develop computers that operate more like the human brain. Conventional, digital computing systems have separate processing and storage units, causing data-intensive tasks to devour large amounts of energy. With smart devices continuously collecting vast quantities of data, researchers are scrambling to uncover new ways to process it all without consuming an increasing amount of power. Currently, the memory resistor, or “memristor,” is the most well-developed technology that can perform combined processing and memory function. But memristors still suffer from energy costly switching.

“For several decades, the paradigm in electronics has been to build everything out of transistors and use the same silicon architecture,” Hersam said. “Significant progress has been made by simply packing more and more transistors into integrated circuits. You cannot deny the success of that strategy, but it comes at the cost of high power consumption, especially in the current era of big data where digital computing is on track to overwhelm the grid. We have to rethink computing hardware, especially for AI and machine-learning tasks.”

To rethink this paradigm, Hersam and his team explored new advances in the physics of moiré patterns, a type of geometrical design that arises when two patterns are layered on top of one another. When two-dimensional materials are stacked, new properties emerge that do not exist in one layer alone. And when those layers are twisted to form a moiré pattern, unprecedented tunability of electronic properties becomes possible.

For the new device, the researchers combined two different types of atomically thin materials: bilayer graphene and hexagonal boron nitride. When stacked and purposefully twisted, the materials formed a moiré pattern. By rotating one layer relative to the other, the researchers could achieve different electronic properties in each graphene layer even though they are separated by only atomic-scale dimensions. With the right choice of twist, researchers harnessed moiré physics for neuromorphic functionality at room temperature.

“With twist as a new design parameter, the number of permutations is vast,” Hersam said. “Graphene and hexagonal boron nitride are very similar structurally but just different enough that you get exceptionally strong moiré effects.”

To test the transistor, Hersam and his team trained it to recognize similar — but not identical — patterns. Just earlier this month, Hersam introduced a new nanoelectronic device capable of analyzing and categorizing data in an energy-efficient manner, but his new synaptic transistor takes machine learning and AI one leap further.

“If AI is meant to mimic human thought, one of the lowest-level tasks would be to classify data, which is simply sorting into bins,” Hersam said. “Our goal is to advance AI technology in the direction of higher-level thinking. Real-world conditions are often more complicated than current AI algorithms can handle, so we tested our new devices under more complicated conditions to verify their advanced capabilities.”

First the researchers showed the device one pattern: 000 (three zeros in a row). Then, they asked the AI to identify similar patterns, such as 111 or 101. “If we trained it to detect 000 and then gave it 111 and 101, it knows 111 is more similar to 000 than 101,” Hersam explained. “000 and 111 are not exactly the same, but both are three digits in a row. Recognizing that similarity is a higher-level form of cognition known as associative learning.”

In experiments, the new synaptic transistor successfully recognized similar patterns, displaying its associative memory. Even when the researchers threw curveballs — like giving it incomplete patterns — it still successfully demonstrated associative learning.

“Current AI can be easy to confuse, which can cause major problems in certain contexts,” Hersam said. “Imagine if you are using a self-driving vehicle, and the weather conditions deteriorate. The vehicle might not be able to interpret the more complicated sensor data as well as a human driver could. But even when we gave our transistor imperfect input, it could still identify the correct response.”

The study, “Moiré synaptic transistor with room-temperature neuromorphic functionality,” was primarily supported by the National Science Foundation.

Here’s a link to and a citation for the paper,

Moiré synaptic transistor with room-temperature neuromorphic functionality by Xiaodong Yan, Zhiren Zheng, Vinod K. Sangwan, Justin H. Qian, Xueqiao Wang, Stephanie E. Liu, Kenji Watanabe, Takashi Taniguchi, Su-Yang Xu, Pablo Jarillo-Herrero, Qiong Ma & Mark C. Hersam. Nature volume 624, pages 551–556 (2023) DOI: https://doi.org/10.1038/s41586-023-06791-1 Published online: 20 December 2023 Issue Date: 21 December 2023

This paper is behind a paywall.

Graphene can be used in quantum components

A November 3, 2022 news item on phys.org provides a brief history of graphene before announcing the latest work from ETH Zurich,

Less than 20 years ago, Konstantin Novoselov and Andre Geim first created two-dimensional crystals consisting of just one layer of carbon atoms. Known as graphene, this material has had quite a career since then.

Due to its exceptional strength, graphene is used today to reinforce products such as tennis rackets, car tires or aircraft wings. But it is also an interesting subject for fundamental research, as physicists keep discovering new, astonishing phenomena that have not been observed in other materials.

The right twist

Bilayer graphene crystals, in which the two atomic layers are slightly rotated relative to each other, are particularly interesting for researchers. About one year ago, a team of researchers led by Klaus Ensslin and Thomas Ihn at ETH Zurich’s Laboratory for Solid State Physics was able to demonstrate that twisted graphene could be used to create Josephson junctions, the fundamental building blocks of superconducting devices.

Based on this work, researchers were now able to produce the first superconducting quantum interference device, or SQUID, from twisted graphene for the purpose of demonstrating the interference of superconducting quasiparticles. Conventional SQUIDs are already being used, for instance in medicine, geology and archaeology. Their sensitive sensors are capable of measuring even the smallest changes in magnetic fields. However, SQUIDs work only in conjunction with superconducting materials, so they require cooling with liquid helium or nitrogen when in operation.

In quantum technology, SQUIDs can host quantum bits (qubits); that is, as elements for carrying out quantum operations. “SQUIDs are to superconductivity what transistors are to semiconductor technology—the fundamental building blocks for more complex circuits,” Ensslin explains.

A November 3, 2022 ETH Zurich news release by Felix Würsten, which originated the news item, delves further into the work,

The spectrum is widening

The graphene SQUIDs created by doctoral student Elías Portolés are not more sensitive than their conventional counterparts made from aluminium and also have to be cooled down to temperatures lower than 2 degrees above absolute zero. “So it’s not a breakthrough for SQUID technology as such,” Ensslin says. However, it does broaden graphene’s application spectrum significantly. “Five years ago, we were already able to show that graphene could be used to build single-electron transistors. Now we’ve added superconductivity,” Ensslin says.

What is remarkable is that the graphene’s behaviour can be controlled in a targeted manner by biasing an electrode. Depending on the voltage applied, the material can be insulating, conducting or superconducting. “The rich spectrum of opportunities offered by solid-state physics is at our disposal,” Ensslin says.

Also interesting is that the two fundamental building blocks of a semiconductor (transistor) and a superconductor (SQUID) can now be combined in a single material. This makes it possible to build novel control operations. “Normally, the transistor is made from silicon and the SQUID from aluminium,” Ensslin says. “These are different materials requiring different processing technologies.”

An extremely challenging production process

Superconductivity in graphene was discovered by an MIT [Massachusetts Institute of Technology] research group five years ago, yet there are only a dozen or so experimental groups worldwide that look at this phenomenon. Even fewer are capable of converting superconducting graphene into a functioning component.

The challenge is that scientists have to carry out several delicate work steps one after the other: First, they have to align the graphene sheets at the exact right angle relative to each other. The next steps then include connecting electrodes and etching holes. If the graphene were to be heated up, as happens often during cleanroom processing, the two layers re-align the twist angle vanishes. “The entire standard semiconductor technology has to be readjusted, making this an extremely challenging job,” Portolés says.

The vision of hybrid systems

Ensslin is thinking one step ahead. Quite a variety of different qubit technologies are currently being assessed, each with its own advantages and disadvantages. For the most part, this is being done by various research groups within the National Center of Competence in Quantum Science and Technology (QSIT). If scientists succeed in coupling two of these systems using graphene, it might be possible to combine their benefits as well. “The result would be two different quantum systems on the same crystal,” Ensslin says.

This would also generate new possibilities for research on superconductivity. “With these components, we might be better able to understand how superconductivity in graphene comes about in the first place,” he adds. “All we know today is that there are different phases of superconductivity in this material, but we do not yet have a theoretical model to explain them.”

Here’s a link to and a citation for the paper,

A tunable monolithic SQUID in twisted bilayer graphene by Elías Portolés, Shuichi Iwakiri, Giulia Zheng, Peter Rickhaus, Takashi Taniguchi, Kenji Watanabe, Thomas Ihn, Klaus Ensslin & Folkert K. de Vries. Nature Nanotechnology volume 17, pages 1159–1164 (2022) Issue Date: November 2022 DOI: https://doi.org/10.1038/s41565-022-01222-0 Published online: 24 October 2022

This paper is behind a paywall.

Better performing solar cells with newly discovered property of pristine graphene

Light-harvesting devices—I like that better than solar cells or the like but I think that the term serves as a category rather than a name/label for a specific device. Enough musing. A December 17, 2018 news item on Nanowerk describes the latest about graphene and light-harvesting devices (Note: A link has been removed,

An international research team, co-led by a physicist at the University of California, Riverside, has discovered a new mechanism for ultra-efficient charge and energy flow in graphene, opening up opportunities for developing new types of light-harvesting devices.

The researchers fabricated pristine graphene — graphene with no impurities — into different geometric shapes, connecting narrow ribbons and crosses to wide open rectangular regions. They found that when light illuminated constricted areas, such as the region where a narrow ribbon connected two wide regions, they detected a large light-induced current, or photocurrent.

The finding that pristine graphene can very efficiently convert light into electricity could lead to the development of efficient and ultrafast photodetectors — and potentially more efficient solar panels.

A December 14, 2018 University of California at Riverside (UCR) news release by Iqbal Pittalwala (also on EurekAlert but published Dec. 17, 2018), which originated the news item,gives a brief description of graphene while adding context for this research,


Graphene, a 1-atom thick sheet of carbon atoms arranged in a hexagonal lattice, has many desirable material properties, such as high current-carrying capacity and thermal conductivity. In principle, graphene can absorb light at any frequency, making it ideal material for infrared and other types of photodetection, with wide applications in bio-sensing, imaging, and night vision.

In most solar energy harvesting devices, a photocurrent arises only in the presence of a junction between two dissimilar materials, such as “p-n” junctions, the boundary between two types of semiconductor materials. The electrical current is generated in the junction region and moves through the distinct regions of the two materials.

“But in graphene, everything changes,” said Nathaniel Gabor, an associate professor of physics at UCR, who co-led the research project. “We found that photocurrents may arise in pristine graphene under a special condition in which the entire sheet of graphene is completely free of excess electronic charge. Generating the photocurrent requires no special junctions and can instead be controlled, surprisingly, by simply cutting and shaping the graphene sheet into unusual configurations, from ladder-like linear arrays of contacts, to narrowly constricted rectangles, to tapered and terraced edges.”

Pristine graphene is completely charge neutral, meaning there is no excess electronic charge in the material. When wired into a device, however, an electronic charge can be introduced by applying a voltage to a nearby metal. This voltage can induce positive charge, negative charge, or perfectly balance negative and positive charges so the graphene sheet is perfectly charge neutral.

“The light-harvesting device we fabricated is only as thick as a single atom,” Gabor said. “We could use it to engineer devices that are semi-transparent. These could be embedded in unusual environments, such as windows, or they could be combined with other more conventional light-harvesting devices to harvest excess energy that is usually not absorbed. Depending on how the edges are cut to shape, the device can give extraordinarily different signals.”

The research team reports this first observation of an entirely new physical mechanism — a photocurrent generated in charge-neutral graphene with no need for p-n junctions — in Nature Nanotechnology today [Dec. 17, 2018].

Previous work by the Gabor lab showed a photocurrent in graphene results from highly excited “hot” charge carriers. When light hits graphene, high-energy electrons relax to form a population of many relatively cooler electrons, Gabor explained, which are subsequently collected as current. Even though graphene is not a semiconductor, this light-induced hot electron population can be used to generate very large currents.

“All of this behavior is due to graphene’s unique electronic structure,” he said. “In this ‘wonder material,’ light energy is efficiently converted into electronic energy, which can subsequently be transported within the material over remarkably long distances.”

He explained that, about a decade ago, pristine graphene was predicted to exhibit very unusual electronic behavior: electrons should behave like a liquid, allowing energy to be transferred through the electronic medium rather than by moving charges around physically.
“But despite this prediction, no photocurrent measurements had been done on pristine graphene devices — until now,” he said.

The new work on pristine graphene shows electronic energy travels great distances in the absence of excess electronic charge.

The research team has found evidence that the new mechanism results in a greatly enhanced photoresponse in the infrared regime with an ultrafast operation speed.
“We plan to further study this effect in a broad range of infrared and other frequencies, and measure its response speed,” said first author Qiong Ma, a postdoctoral associate in physics at the Massachusetts Institute of Technology, or MIT.

The researchers have provided an image illustrating their work,

Caption: Shining light on graphene: Although graphene has been studied vigorously for more than a decade, new measurements on high-performance graphene devices have revealed yet another unusual property. In ultra-clean graphene sheets, energy can flow over great distances, giving rise to an unprecedented response to light. Credit: Max Grossnickle and QMO Labs, UC Riverside.

Here’s a link to and a citation for the paper,

Giant intrinsic photoresponse in pristine graphene by Qiong Ma, Chun Hung Lui, Justin C. W. Song, Yuxuan Lin, Jian Feng Kong, Yuan Cao, Thao H. Dinh, Nityan L. Nair, Wenjing Fang, Kenji Watanabe, Takashi Taniguchi, Su-Yang Xu, Jing Kong, Tomás Palacios, Nuh Gedik, Nathaniel M. Gabor, & Pablo Jarillo-Herrero. Nature Nanotechnology (2018) Published 17 December 2018 DOI: https://doi.org/10.1038/s41565-018-0323-8

This paper is behind a paywall.

Psst: secret marriage … Buckyballs and Graphene get together!

A March 1, 2018 news item on Nanowerk announces  a new coupling,

Scientists combined buckyballs, [also known as buckminsterfullerenes, fullerenes, or C60] which resemble tiny soccer balls made from 60 carbon atoms, with graphene, a single layer of carbon, on an underlying surface. Positive and negative charges can transfer between the balls and graphene depending on the nature of the surface as well as the structural order and local orientation of the carbon ball. Scientists can use this architecture to develop tunable junctions for lightweight electronic devices.

The researchers have made this illustration of their work available,

Researchers are developing new, lightweight electronics that rapidly conduct electricity by covering a sheet of carbon (graphene) with buckyballs. Electricity is the flow of electrons. On these lightweight structures, electrons as well as positive holes (missing electrons) transfer between the balls and graphene. The team showed that the crystallinity and orientation of the balls, as well as the underlying layer, affected this charge transfer. The top image shows a calculation of the charge density for a specific orientation of the balls on graphene. The blue represents positive charges, while the red is negative. The bottom image shows that the balls are in a close-packed structure. The bright dots correspond to the projected images of columns of buckyball molecules. Courtesy: US Department of Energy Office of Science

A February 28, 2018 US Department of Energy (DoE) Office of Science news release, which originated the news item, provides more detail,

The Impact

Fast-moving electrons and their counterpart, holes, were preserved in graphene with crystalline buckyball overlayers. Significantly, the carbon ball provides charge transfer to the graphene. Scientists expect the transfer to be highly tunable with external voltages. This marriage has ramifications for smart electronics that run longer and do not break as easily, bringing us closer to sensor-embedded smart clothing and robotic skin.

Summary

Charge transfer at the interface between dissimilar materials is at the heart of almost all electronic technologies such as transistors and photovoltaic devices. In this study, scientists studied charge transfer at the interface region of buckyball molecules deposited on graphene, with and without a supporting substrate, such as hexagonal boron nitride. They employed ab initio density functional theory with van der Waals interactions to model the structure theoretically. Van der Waals interactions are weak connections between neutral molecules. The team used high-resolution transmission electron microscopy and electronic transport measurements to characterize experimentally the properties of the interface. The researchers observed that charge transfer between buckyballs and the graphene was sensitive to the nature of the underlying substrate, in addition, to the crystallinity and local orientation of the buckyballs. These studies open an avenue to devices where buckyball layers on top of graphene can serve as electron acceptors and other buckyball layers as electron donors. Even at room temperature, buckyball molecules were orientationally locked into position. This is in sharp contrast to buckyball molecules in un-doped bulk crystalline configurations, where locking occurs only at low temperature. High electron and hole mobilities are preserved in graphene with crystalline buckyball overlayers. This finding has ramifications for the development of organic high-mobility field-effect devices and other high mobility applications.

Here’s a link to and a citation for the paper,

Molecular Arrangement and Charge Transfer in C60 /Graphene Heterostructures by Claudia Ojeda-Aristizabal, Elton J. G. Santos, Seita Onishi, Aiming Yan, Haider I. Rasool, Salman Kahn, Yinchuan Lv, Drew W. Latzke, Jairo Velasco Jr., Michael F. Crommie, Matthew Sorensen, Kenneth Gotlieb, Chiu-Yun Lin, Kenji Watanabe, Takashi Taniguchi, Alessandra Lanzara, and Alex Zettl. ACS Nano, 2017, 11 (5), pp 4686–4693 DOI: 10.1021/acsnano.7b00551 Publication Date (Web): April 24, 2017

Copyright © 2017 American Chemical Society

This paper is behind a paywall.

Light-captured energetics (harvesting light for optoelectronics)

Comparing graphene to a tiger is unusual but that’s what researcher Sanfeng Wu does—eventually—in a May 13, 2016 University of Washington news release (also on EurekAlert) about his work,

In the quest to harvest light for electronics, the focal point is the moment when photons — light particles — encounter electrons, those negatively-charged subatomic particles that form the basis of our modern electronic lives. If conditions are right when electrons and photons meet, an exchange of energy can occur. Maximizing that transfer of energy is the key to making efficient light-captured energetics possible.

“This is the ideal, but finding high efficiency is very difficult,” said University of Washington physics doctoral student Sanfeng Wu. “Researchers have been looking for materials that will let them do this — one way is to make each absorbed photon transfer all of its energy to many electrons, instead of just one electron in traditional devices.”

In traditional light-harvesting methods, energy from one photon only excites one electron or none depending on the absorber’s energy gap, transferring just a small portion of light energy into electricity. The remaining energy is lost as heat. But in a paper released May 13 in Science Advances, Wu, UW associate professor Xiaodong Xu and colleagues at four other institutions describe one promising approach to coax photons into stimulating multiple electrons. Their method exploits some surprising quantum-level interactions to give one photon multiple potential electron partners. Wu and Xu, who has appointments in the UW’s Department of Materials Science & Engineering and the Department of Physics, made this surprising discovery using graphene.

There has been intense research on graphene’s electrical properties but the researchers’ discovery adds a new property to be investigated (from the news release),

“Graphene is a substance with many exciting properties,” said Wu, the paper’s lead author. “For our purposes, it shows a very efficient interaction with light.”

Graphene is a two-dimensional hexagonal lattice of carbon atoms bonded to one another, and electrons are able to move easily within graphene. The researchers took a single layer of graphene — just one sheet of carbon atoms thick — and sandwiched it between two thin layers of a material called boron-nitride.

Boron-nitride is a material that has excited a great deal of interest in the last 12 to 18 months (from the news release),

“Boron-nitride has a lattice structure that is very similar to graphene, but has very different chemical properties,” said Wu. “Electrons do not flow easily within boron-nitride; it essentially acts as an insulator.”

Xu and Wu discovered that when the graphene layer’s lattice is aligned with the layers of boron-nitride, a type of “superlattice” is created with properties allowing efficient optoelectronics that researchers had sought. These properties rely on quantum mechanics, the occasionally baffling rules that govern interactions between all known particles of matter. Wu and Xu detected unique quantum regions within the superlattice known as Van Hove singularities.

Here’s an animated .gif illustrating the superlattice in action,

The Moire superlattice they created by aligning graphene and boron-nitride. Credit: Sanfeng Wu.

The Moire superlattice they created by aligning graphene and boron-nitride. Credit: Sanfeng Wu.

The news release goes on to describe the Van Hove singularities within the superlattice and to mention the ‘tiger’,

“These are regions of huge electron density of states, and they were not accessed in either the graphene or boron-nitride alone,” said Wu. “We only created these high electron density regions in an accessible way when both layers were aligned together.”

When Xu and Wu directed energetic photons toward the superlattice, they discovered that those Van Hove singularities were sites where one energized photon could transfer its energy to multiple electrons that are subsequently collected by electrodes— not just one electron or none with the remaining energy lost as heat. By a conservative estimate, Xu and Wu report that within this superlattice one photon could “kick” as many as five electrons to flow as current.

With the discovery of collecting multiple electrons upon the absorption of one photon, researchers may be able to create highly efficient devices that could harvest light with a large energy profit. Future work would need to uncover how to organize the excited electrons into electrical current for optimizing the energy-converting efficiency and remove some of the more cumbersome properties of their superlattice, such as the need for a magnetic field. But they believe this efficient process between photons and electrons represents major progress.

“Graphene is a tiger with great potential for optoelectronics, but locked in a cage,” said Wu. “The singularities in this superlattice are a key to unlocking that cage and releasing graphene’s potential for light harvesting application.”

H/t to a May 13, 2016 news item on phys.org.

Here’s a link to and a citation for the paper,

Multiple hot-carrier collection in photo-excited graphene Moiré superlattices by Sanfeng Wu, Lei Wang, You Lai, Wen-Yu Shan, Grant Aivazian, Xian Zhang, Takashi Taniguchi, Kenji Watanabe, Di Xiao, Cory Dean, James Hone, Zhiqiang Li, and Xiaodong Xu. Science Advances 13 May 2016: Vol. 2, no. 5, e1600002 DOI: 10.1126/sciadv.1600002

This paper is open access.

Graphene like water

This is graphene research from Harvard University and Raytheon according to a Feb. 11, 2016 news item on phys.org (Note: Links have been removed),

It’s one atom thick [i.e., two-dimensional], stronger than steel, harder than diamond and one of the most conductive materials on earth.

But, several challenges must be overcome before graphene products are brought to market. Scientists are still trying to understand the basic physics of this unique material. Also, it’s very challenging to make and even harder to make without impurities.

In a new paper published in Science, researchers at the [sic] Harvard and Raytheon BBN Technology have advanced our understanding of graphene’s basic properties, observing for the first time electrons in a metal behaving like a fluid.

A Feb. 11, 2016 Harvard University press release by Leah Burrows (also on EurekAlert), which originated the news item, provides more detail,

In order to make this observation, the team improved methods to create ultra-clean graphene and developed a new way measure its thermal conductivity. This research could lead to novel thermoelectric devices as well as provide a model system to explore exotic phenomena like black holes and high-energy plasmas.

An electron super highway

In ordinary, three-dimensional metals, electrons hardly interact with each other. But graphene’s two-dimensional, honeycomb structure acts like an electron superhighway in which all the particles have to travel in the same lane. The electrons in graphene act like massless relativistic objects, some with positive charge and some with negative charge. They move at incredible speed — 1/300 of the speed of light — and have been predicted to collide with each other ten trillion times a second at room temperature.  These intense interactions between charge particles have never been observed in an ordinary metal before.

The team created an ultra-clean sample by sandwiching the one-atom thick graphene sheet between tens of layers of an electrically insulating perfect transparent crystal with a similar atomic structure of graphene.

“If you have a material that’s one atom thick, it’s going to be really affected by its environment,” said Jesse Crossno, a graduate student in the Kim Lab [Philip Kim, professor of physics and applied physics] and first author of the paper.  “If the graphene is on top of something that’s rough and disordered, it’s going to interfere with how the electrons move. It’s really important to create graphene with no interference from its environment.”

The technique was developed by Kim and his collaborators at Columbia University before he moved to Harvard in 2014 and now have been perfected in his lab at SEAS [Harvard School of Engineering and Applied Sciences].

Next, the team set up a kind of thermal soup of positively charged and negatively charged particles on the surface of the graphene, and observed how those particles flowed as thermal and electric currents.

What they observed flew in the face of everything they knew about metals.

A black hole on a chip

Most of our world — how water flows or how a curve ball curves —  is described by classical physics. Very small things, like electrons, are described by quantum mechanics while very large and very fast things, like galaxies, are described by relativistic physics, pioneered by Albert Einstein.

Combining these laws of physics is notoriously difficult but there are extreme examples where they overlap. High-energy systems like supernovas and black holes can be described by linking classical theories of hydrodynamics with Einstein’s theories of relativity.

But it’s difficult to run an experiment on a black hole. Enter graphene.

When the strongly interacting particles in graphene were driven by an electric field, they behaved not like individual particles but like a fluid that could be described by hydrodynamics.

“Instead of watching how a single particle was affected by an electric or thermal force, we could see the conserved energy as it flowed across many particles, like a wave through water,” said Crossno.

“Physics we discovered by studying black holes and string theory, we’re seeing in graphene,” said Andrew Lucas, co-author and graduate student with Subir Sachdev, the Herchel Smith Professor of Physics at Harvard. “This is the first model system of relativistic hydrodynamics in a metal.”

Moving forward, a small chip of graphene could be used to model the fluid-like behavior of other high-energy systems.

Industrial implications

So we now know that strongly interacting electrons in graphene behave like a liquid — how does that advance the industrial applications of graphene?

First, in order to observe the hydrodynamic system, the team needed to develop a precise way to measure how well electrons in the system carry heat.  It’s very difficult to do, said co-PI Kin Chung Fong, scientist with Raytheon BBN Technology.

Materials conduct heat in two ways: through vibrations in the atomic structure or lattice; and carried by the electrons themselves.

“We needed to find a clever way to ignore the heat transfer from the lattice and focus only on how much heat is carried by the electrons,” Fong said.

To do so, the team turned to noise. At finite temperature, the electrons move about randomly:  the higher the temperature, the noisier the electrons. By measuring the temperature of the electrons to three decimal points, the team was able to precisely measure the thermal conductivity of the electrons.

“This work provides a new way to control the rate of heat transduction in graphene’s electron system, and as such will be key for energy and sensing-related applications,” said Leonid Levitov, professor of physics at MIT [Massachusetts Institute of Technology].

“Converting thermal energy into electric currents and vice versa is notoriously hard with ordinary materials,” said Lucas. “But in principle, with a clean sample of graphene there may be no limit to how good a device you could make.”

Here’s a link to and a citation for the paper,

Observation of the Dirac fluid and the breakdown of the Wiedemann-Franz law in graphene by Jesse Crossno, Jing K. Shi, Ke Wang, Xiaomeng Liu, Achim Harzheim, Andrew Lucas, Subir Sachdev, Philip Kim, Takashi Taniguchi, Kenji Watanabe, Thomas A. Ohki, Kin Chung Fong.Science  11 Feb 2016: pp. DOI: 10.1126/science.aad0343

This paper is behind a paywall.

Here’s an image illustrating the research,

Caption: In a new paper published in Science, researchers at the Harvard and Raytheon BBN Technology have advanced our understanding of graphene's basic properties, observing for the first time electrons in a metal behaving like a fluid. Credit: Peter Allen/Harvard SEAS

Caption: In a new paper published in Science, researchers at the Harvard and Raytheon BBN Technology have advanced our understanding of graphene’s basic properties, observing for the first time electrons in a metal behaving like a fluid. Credit: Peter Allen/Harvard SEAS

Scaling graphene production up to industrial strength

If graphene is going to be a ubiquitous material in the future, production methods need to change. An Aug. 7, 2015 news item on Nanowerk announces a new technique to achieve that goal,

Producing graphene in bulk is critical when it comes to the industrial exploitation of this exceptional two-dimensional material. To that end, [European Commission] Graphene Flagship researchers have developed a novel variant on the chemical vapour deposition process which yields high quality material in a scalable manner. This advance should significantly narrow the performance gap between synthetic and natural graphene.

An Aug. 7, 2015 European Commission Graphene Flagship press release by Francis Sedgemore, which originated the news item, describes the problem,

Media-friendly Nobel laureates peeling layers of graphene from bulk graphite with sticky tape may capture the public imagination, but as a manufacturing process the technique is somewhat lacking. Mechanical exfoliation may give us pristine graphene, but industry requires scalable and cost-effective production processes with much higher yields.

On to the new method (from the press release),

Flagship-affiliated physicists from RWTH Aachen University and Forschungszentrum Jülich have together with colleagues in Japan devised a method for peeling graphene flakes from a CVD substrate with the help of intermolecular forces. …

Key to the process is the strong van der Waals interaction that exists between graphene and hexagonal boron nitride, another 2d material within which it is encapsulated. The van der Waals force is the attractive sum of short-range electric dipole interactions between uncharged molecules.

Thanks to strong van der Waals interactions between graphene and boron nitride, CVD graphene can be separated from the copper and transferred to an arbitrary substrate. The process allows for re-use of the catalyst copper foil in further growth cycles, and minimises contamination of the graphene due to processing.

Raman spectroscopy and transport measurements on the graphene/boron nitride heterostructures reveals high electron mobilities comparable with those observed in similar assemblies based on exfoliated graphene. Furthermore – and this comes as something of a surprise to the researchers – no noticeable performance changes are detected between devices developed in the first and subsequent growth cycles. This confirms the copper as a recyclable resource in the graphene fabrication process.

“Chemical vapour deposition is a highly scalable and cost-efficient technology,” says Christoph Stampfer, head of the 2nd Institute of Physics A in Aachen, and co-author of the technical article. “Until now, graphene synthesised this way has been significantly lower in quality than that obtained with the scotch-tape method, especially when it comes to the material’s electronic properties. But no longer. We demonstrate a novel fabrication process based on CVD that yields ultra-high quality synthetic graphene samples. The process is in principle suitable for industrial-scale production, and narrows the gap between graphene research and its technological applications.”

With their dry-transfer process, Banszerus and his colleagues have shown that the electronic properties of CVD-grown graphene can in principle match those of ultrahigh-mobility exfoliated graphene. The key is to transfer CVD graphene from its growth substrate in such a way that chemical contamination is avoided. The high mobility of pristine graphene is thus preserved, and the approach allows for the substrate material to be recycled without degradation.

Here’s a link to and citation for the paper,

Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper by Luca Banszerus, Michael Schmitz, Stephan Engels, Jan Dauber, Martin Oellers, Federica Haupt, Kenji Watanabe, Takashi Taniguchi, Bernd Beschoten, and Christoph Stampfer. Science Advances  31 Jul 2015: Vol. 1, no. 6, e1500222 DOI: 10.1126/sciadv.1500222

This article appears to be open access.

For those interested in finding out more about chemical vapour deposition (CVD), David Chandler has written a June 19, 2015 article for the Massachusetts Institute of Technology (MIT) titled:  Explained: chemical vapor deposition (Technique enables production of pure, uniform coatings of metals or polymers, even on contoured surfaces.)

US National Institute of Standards and Technology (NIST) and its whispering gallery for graphene electrons

I like this old introduction about research that invoked whispering galleries well enough to reuse it here. From a Feb. 8, 2012 post about whispering galleries for light,

Whispering galleries are always popular with all ages. I know that because I can never get enough time in them as I jostle with seniors, children, young adults, etc. For most humans, the magic of having someone across from you on the other side of the room sound as if they’re beside you whispering in your ear is ever fresh.

According to a May 12, 2015 news item on Nanowerk, the US Institute of National Standards and Technology’s (NIST) whispering gallery is not likely to cause any jostling for space as it exists at the nanoscale,

An international research group led by scientists at the U.S. Commerce Department’s National Institute of Standards and Technology (NIST) has developed a technique for creating nanoscale whispering galleries for electrons in graphene. The development opens the way to building devices that focus and amplify electrons just as lenses focus light and resonators (like the body of a guitar) amplify sound.

The NIST has provided a rather intriguing illustration of this work,

Caption: An international research group led by scientists at NIST has developed a technique for creating nanoscale whispering galleries for electrons in graphene. The researchers used the voltage from a scanning tunneling microscope (right) to push graphene electrons out of a nanoscale area to create the whispering gallery (represented by the protuberances on the left), which is like a circular wall of mirrors to the electron. credit: Jon Wyrick, CNST/NIST

Caption: An international research group led by scientists at NIST has developed a technique for creating nanoscale whispering galleries for electrons in graphene. The researchers used the voltage from a scanning tunneling microscope (right) to push graphene electrons out of a nanoscale area to create the whispering gallery (represented by the protuberances on the left), which is like a circular wall of mirrors to the electron.
credit: Jon Wyrick, CNST/NIST

A May 8, 2015 NIST news release, which originated the news item, gives a delightful introduction to whispering galleries and more details about this research (Note: Links have been removed),

In some structures, such as the dome in St. Paul’s Cathedral in London, a person standing near a curved wall can hear the faintest sound made along any other part of that wall. This phenomenon, called a whispering gallery, occurs because sound waves will travel along a curved surface much farther than they will along a flat one. Using this same principle, scientists have built whispering galleries for light waves as well, and whispering galleries are found in applications ranging from sensing, spectroscopy and communications to the generation of laser frequency combs.

“The cool thing is that we made a nanometer scale electronic analogue of a classical wave effect,” said NIST researcher Joe Stroscio. “These whispering galleries are unlike anything you see in any other electron based system, and that’s really exciting.”

Ever since graphene, a single layer of carbon atoms arranged in a honeycomb lattice, was first created in 2004, the material has impressed researchers with its strength, ability to conduct electricity and heat and many interesting optical, magnetic and chemical properties.

However, early studies of the behavior of electrons in graphene were hampered by defects in the material. As the manufacture of clean and near-perfect graphene becomes more routine, scientists are beginning to uncover its full potential.

When moving electrons encounter a potential barrier in conventional semiconductors, it takes an increase in energy for the electron to continue flowing. As a result, they are often reflected, just as one would expect from a ball-like particle.

However, because electrons can sometimes behave like a wave, there is a calculable chance that they will ignore the barrier altogether, a phenomenon called tunneling. Due to the light-like properties of graphene electrons, they can pass through unimpeded—no matter how high the barrier—if they hit the barrier head on. This tendency to tunnel makes it hard to steer electrons in graphene.

Enter the graphene electron whispering gallery.

To create a whispering gallery in graphene, the team first enriched the graphene with electrons from a conductive plate mounted below it. With the graphene now crackling with electrons, the research team used the voltage from a scanning tunneling microscope (STM) to push some of them out of a nanoscale-sized area. This created the whispering gallery, which is like a circular wall of mirrors to the electron.

“An electron that hits the step head-on can tunnel straight through it,” said NIST researcher Nikolai Zhitenev. “But if electrons hit it at an angle, their waves can be reflected and travel along the sides of the curved walls of the barrier until they began to interfere with one another, creating a nanoscale electronic whispering gallery mode.”

The team can control the size and strength, i.e., the leakiness, of the electronic whispering gallery by varying the STM tip’s voltage. The probe not only creates whispering gallery modes, but can detect them as well.

NIST researcher Yue Zhao fabricated the high mobility device and performed the measurements with her colleagues Fabian Natterer and Jon Wyrick. A team of theoretical physicists from the Massachusetts Institute of Technology developed the theory describing whispering gallery modes in graphene.

Here’s a link to and a citation for the paper,

Creating and probing electron whispering-gallery modes in graphene by Yue Zhao, Jonathan Wyrick, Fabian D. Natterer1, Joaquin F. Rodriguez-Nieva, Cyprian Lewandowski, Kenji Watanabe, Takashi Taniguchi, Leonid S. Levitov, Nikolai B. Zhitenev, & Joseph A. Stroscio. Science 8 May 2015:
Vol. 348 no. 6235 pp. 672-675 DOI: 10.1126/science.aaa7469

This paper is behind a paywall.

Transition metal dichalcogenides (molybdenum disulfide and tungsten diselenide) rock the graphene boat

Anyone who’s read stories about scientific discovery knows that the early stages are characterized by a number of possibilities so the current race to unseat graphene as the wonder material of the nanoworld is a ‘business as usual’ sign although I imagine it can be confusing for investors and others hoping to make their fortunes. As for the contenders to the ‘wonder nanomaterial throne’, they are transition metal dichalcogenides: molybdenum disulfide and tungsten diselenide both of which have garnered some recent attention.

A March 12, 2014 news item on Nanwerk features research on molybdenum disulfide from Poland,

Will one-atom-thick layers of molybdenum disulfide, a compound that occurs naturally in rocks, prove to be better than graphene for electronic applications? There are many signs that might prove to be the case. But physicists from the Faculty of Physics at the University of Warsaw have shown that the nature of the phenomena occurring in layered materials are still ill-understood and require further research.

….

Researchers at the University of Warsaw, Faculty of Physics (FUW) have shown that the phenomena occurring in the crystal network of molybdenum disulfide sheets are of a slightly different nature than previously thought. A report describing the discovery, achieved in collaboration with Laboratoire National des Champs Magnétiques Intenses in Grenoble, has recently been published in Applied Physics Letters.

“It will not become possible to construct complex electronic systems consisting of individual atomic sheets until we have a sufficiently good understanding of the physics involved in the phenomena occurring within the crystal network of those materials. Our research shows, however, that research still has a long way to go in this field”, says Prof. Adam Babinski at the UW Faculty of Physics.

A March 12, 2014 Dept. of Physics University of Warsaw (FUW) news release, which originated the news item, describes the researchers’ ideas about graphene and alternative materials such as molybdenum disulfide,

“It will not become possible to construct complex electronic systems consisting of individual atomic sheets until we have a sufficiently good understanding of the physics involved in the phenomena occurring within the crystal network of those materials. Our research shows, however, that research still has a long way to go in this field”, says Prof. Adam Babiński at the UW Faculty of Physics.

The simplest method of creating graphene is called exfoliation: a piece of scotch tape is first stuck to a piece of graphite, then peeled off. Among the particles that remain stuck to the tape, one can find microscopic layers of graphene. This is because graphite consists of many graphene sheets adjacent to one another. The carbon atoms within each layer are very strongly bound to one another (by covalent bonds, to which graphene owes its legendary resilience), but the individual layers are held together by significantly weaker bonds (van de Walls [van der Waals] bonds). Ordinary scotch tape is strong enough to break the latter and to tear individual graphene sheets away from the graphite crystal.

A few years ago it was noticed that just as graphene can be obtained from graphite, sheets a single atom thick can similarly be obtained from many other crystals. This has been successfully done, for instance, with transition metals chalcogenides (sulfides, selenides, and tellurides). Layers of molybdenum disulfide (MoS2), in particular, have proven to be a very interesting material. This compound exists in nature as molybdenite, a crystal material found in rocks around the world, frequently taking the characteristic form of silver-colored hexagonal plates. For years molybdenite has been used in the manufacturing of lubricants and metal alloys. Like in the case of graphite, the properties of single-atom sheets of MoS2 long went unnoticed.

From the standpoint of applications in electronics, molybdenum disulfide sheets exhibit a significant advantage over graphene: they have an energy gap, an energy range within which no electron states can exist. By applying electric field, the material can be switched between a state that conducts electricity and one that behaves like an insulator. By current calculations, a switched-off molybdenum disulfide transistor would consume even as little as several hundred thousand times less energy than a silicon transistor. Graphene, on the other hand, has no energy gap and transistors made of graphene cannot be fully switched off.

The news release goes on to describe how the researchers refined their understanding of molybdenum disulfide and its properties,

Valuable information about a crystal’s structure and phenomena occurring within it can be obtained by analyzing how light gets scattered within the material. Photons of a given energy are usually absorbed by the atoms and molecules of the material, then reemitted at the same energy. In the spectrum of the scattered light one can then see a distinctive peak, corresponding to that energy. It turns out, however, that one out of many millions of photons is able to use some of its energy otherwise, for instance to alter the vibration or circulation of a molecule. The reverse situation also sometimes occurs: a photon may take away some of the energy of a molecule, and so its own energy slightly increases. In this situation, known as Raman scattering, two smaller peaks are observed to either side of the main peak.

The scientists at the UW Faculty of Physics analyzed the Raman spectra of molybdenum disulfide carrying on low-temperature microscopic measurements. The higher sensitivity of the equipment and detailed analysis methods enabled the team to propose a more precise model of the phenomena occurring in the crystal network of molybdenum disulfide.

“In the case of single-layer materials, the shape of the Raman lines has previously been explained in terms of phenomena involving certain characteristic vibrations of the crystal network. We have shown for molybdenum disulfide sheets that the effects ascribed to those vibrations must actually, at least in part, be due to other network vibrations not previously taken into account”, explains Katarzyna Gołasa, a doctorate student at the UW Faculty of Physics.

The presence of the new type of vibration in single-sheet materials has an impact on how electrons behave. As a consequence, these materials must have somewhat different electronic properties than previously anticipated.

Here’s what the rocks look like,

Molybdenum disulfide occurs in nature as molybdenite, crystalline material that frequently takes the characteristic form of silver-colored hexagonal plates. (Source: FUW)

Molybdenum disulfide occurs in nature as molybdenite, crystalline material that frequently takes the characteristic form of silver-colored hexagonal plates. (Source: FUW)

I am not able to find the published research at this time (March 13, 2014).

The tungsten diselenide story is specifically application-centric. Dexter Johnson in a March 11, 2014 post on his Nanoclast blog (on the IEEE [Institute of Electrical and Electronics Engineers] website) describes the differing perspectives and potential applications suggested by the three teams that cooperated to produce papers united by a joint theme ,

The three research groups focused on optoelectronics applications of tungsten diselenide, but each with a slightly different emphasis.

The University of Washington scientists highlighted applications of the material for a light emitting diode (LED). The Vienna University of Technology group focused on the material’s photovoltaic applications. And, finally, the MIT [Massachusetts Institute of Technology] group looked at all of the optoelectronic applications for the material that would result from the way it can be switched from being a p-type to a n-type semiconductor.

Here are some details of the research from each of the institutions’ news releases.

A March 10, 2014 University of Washington (state) news release highlights their LED work,

University of Washington [UW] scientists have built the thinnest-known LED that can be used as a source of light energy in electronics. The LED is based off of two-dimensional, flexible semiconductors, making it possible to stack or use in much smaller and more diverse applications than current technology allows.

“We are able to make the thinnest-possible LEDs, only three atoms thick yet mechanically strong. Such thin and foldable LEDs are critical for future portable and integrated electronic devices,” said Xiaodong Xu, a UW assistant professor in materials science and engineering and in physics.

The UW’s LED is made from flat sheets of the molecular semiconductor known as tungsten diselenide, a member of a group of two-dimensional materials that have been recently identified as the thinnest-known semiconductors. Researchers use regular adhesive tape to extract a single sheet of this material from thick, layered pieces in a method inspired by the 2010 Nobel Prize in Physics awarded to the University of Manchester for isolating one-atom-thick flakes of carbon, called graphene, from a piece of graphite.

In addition to light-emitting applications, this technology could open doors for using light as interconnects to run nano-scale computer chips instead of standard devices that operate off the movement of electrons, or electricity. The latter process creates a lot of heat and wastes power, whereas sending light through a chip to achieve the same purpose would be highly efficient.

“A promising solution is to replace the electrical interconnect with optical ones, which will maintain the high bandwidth but consume less energy,” Xu said. “Our work makes it possible to make highly integrated and energy-efficient devices in areas such as lighting, optical communication and nano lasers.”

Here’s a link to and a citation for this team’s paper,

Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p–n junctions by Jason S. Ross, Philip Klement, Aaron M. Jones, Nirmal J. Ghimire, Jiaqiang Yan, D. G. Mandrus, Takashi Taniguchi, Kenji Watanabe, Kenji Kitamura, Wang Yao, David H. Cobden, & Xiaodong Xu. Nature Nanotechnology (2014) doi:10.1038/nnano.2014.26 Published online 09 March 2014

This paper is behind a paywall.

A March 9, 2014 University of Vienna news release highlights their work on tungsten diselinide and its possible application in solar cells,

… With graphene as a light detector, optical signals can be transformed into electric pulses on extremely short timescales.

For one very similar application, however, graphene is not well suited for building solar cells. “The electronic states in graphene are not very practical for creating photovoltaics”, says Thomas Mueller. Therefore, he and his team started to look for other materials, which, similarly to graphene, can arranged in ultrathin layers, but have even better electronic properties.

The material of choice was tungsten diselenide: It consists of one layer of tungsten atoms, which are connected by selenium atoms above and below the tungsten plane. The material absorbs light, much like graphene, but in tungsten diselenide, this light can be used to create electrical power.

The layer is so thin that 95% of the light just passes through – but a tenth of the remaining five percent, which are absorbed by the material, are converted into electrical power. Therefore, the internal efficiency is quite high. A larger portion of the incident light can be used if several of the ultrathin layers are stacked on top of each other – but sometimes the high transparency can be a useful side effect. “We are envisioning solar cell layers on glass facades, which let part of the light into the building while at the same time creating electricity”, says Thomas Mueller.

Today, standard solar cells are mostly made of silicon, they are rather bulky and inflexible. Organic materials are also used for opto-electronic applications, but they age rather quickly. “A big advantage of two-dimensional structures of single atomic layers is their crystallinity. Crystal structures lend stability”, says Thomas Mueller.

Here’s a link to and a citation for the University of Vienna paper,

Solar-energy conversion and light emission in an atomic monolayer p–n diode by Andreas Pospischil, Marco M. Furchi, & Thomas Mueller. Nature Nanotechnology (2014) doi:10.1038/nnano.2014.14 Published online 09 March 2014

This paper is behind a paywll.

Finally, a March 10, 2014 MIT news release details their work about material able to switch from p-type (p = positive) to a n-type (n = negative) semiconductors,

The material they used, called tungsten diselenide (WSe2), is part of a class of single-molecule-thick materials under investigation for possible use in new optoelectronic devices — ones that can manipulate the interactions of light and electricity. In these experiments, the MIT researchers were able to use the material to produce diodes, the basic building block of modern electronics.

Typically, diodes (which allow electrons to flow in only one direction) are made by “doping,” which is a process of injecting other atoms into the crystal structure of a host material. By using different materials for this irreversible process, it is possible to make either of the two basic kinds of semiconducting materials, p-type or n-type.

But with the new material, either p-type or n-type functions can be obtained just by bringing the vanishingly thin film into very close proximity with an adjacent metal electrode, and tuning the voltage in this electrode from positive to negative. That means the material can easily and instantly be switched from one type to the other, which is rarely the case with conventional semiconductors.

In their experiments, the MIT team produced a device with a sheet of WSe2 material that was electrically doped half n-type and half p-type, creating a working diode that has properties “very close to the ideal,” Jarillo-Herrero says.

By making diodes, it is possible to produce all three basic optoelectronic devices — photodetectors, photovoltaic cells, and LEDs; the MIT team has demonstrated all three, Jarillo-Herrero says. While these are proof-of-concept devices, and not designed for scaling up, the successful demonstration could point the way toward a wide range of potential uses, he says.

“It’s known how to make very large-area materials” of this type, Churchill says. While further work will be required, he says, “there’s no reason you wouldn’t be able to do it on an industrial scale.”

In principle, Jarillo-Herrero says, because this material can be engineered to produce different values of a key property called bandgap, it should be possible to make LEDs that produce any color — something that is difficult to do with conventional materials. And because the material is so thin, transparent, and lightweight, devices such as solar cells or displays could potentially be built into building or vehicle windows, or even incorporated into clothing, he says.

While selenium is not as abundant as silicon or other promising materials for electronics, the thinness of these sheets is a big advantage, Churchill points out: “It’s thousands or tens of thousands of times thinner” than conventional diode materials, “so you’d use thousands of times less material” to make devices of a given size.

Here’s a link to and a citation for the MIT paper,

Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenide by Britton W. H. Baugher, Hugh O. H. Churchill, Yafang Yang, & Pablo Jarillo-Herrero. Nature Nanotechnology (2014) doi:10.1038/nnano.2014.25 Published online 09 March 2014

This paper is behind a paywall.

These are very exciting, if not to say, electrifying times. (Couldn’t resist the wordplay.)