Tag Archives: Innovation Science and Economic Development Canada (ISED)

Japan inaugurates world’s biggest experimental operating nuclear fusion reactor

Andrew Paul’s December 4, 2023 article for Popular Science attempts to give readers a sense of the scale and this is one of those times when words are better than pictures, Note: Links have been removed,

Japan and the European Union have officially inaugurated testing at the world’s largest experimental nuclear fusion plant. Located roughly 85 miles north of Tokyo, the six-story, JT-60SA “tokamak” facility heats plasma to 200 million degrees Celsius (around 360 million Fahrenheit) within its circular, magnetically insulated reactor. Although JT-60SA first powered up during a test run back in October [2023], the partner governments’ December 1 announcement marks the official start of operations at the world’s biggest fusion center, reaffirming a “long-standing cooperation in the field of fusion energy.”

The tokamak—an acronym of the Russian-language designation of “toroidal chamber with magnetic coils”—has led researchers’ push towards achieving the “Holy Grail” of sustainable green energy production for decades. …

Speaking at the inauguration event, EU energy commissioner Kadri Simson referred to the JT-60SA as “the most advanced tokamak in the world,” representing “a milestone for fusion history.”

But even if such a revolutionary milestone is crossed, it likely won’t be at JT-60SA. Along with its still-in-construction sibling, the International Thermonuclear Experimental Reactor (ITER) in Europe, the projects are intended solely to demonstrate scalable fusion’s feasibility. Current hopes estimate ITER’s operational start for sometime in 2025, although the undertaking has been fraught with financial, logistical, and construction issues since its groundbreaking back in 2011.

See what I mean about a picture not really conveying the scale,

Until ITER turns on, Japan’s JT-60SA fusion reactor will be the largest in the world.National Institutes for Quantum Science and Technology

Dennis Normile’s October 31, 2023 article for Science magazine describes the facility’s (Japan’s JT-60SA fusion reactor) test run and future implications for the EU’s ITER project,

The long trek toward practical fusion energy passed a milestone last week when the world’s newest and largest fusion reactor fired up. Japan’s JT-60SA uses magnetic fields from superconducting coils to contain a blazingly hot cloud of ionized gas, or plasma, within a doughnut-shaped vacuum vessel, in hope of coaxing hydrogen nuclei to fuse and release energy. The four-story-high machine is designed to hold a plasma heated to 200 million degrees Celsius for about 100 seconds, far longer than previous large tokamaks.

Last week’s achievement “proves to the world that the machine fulfills its basic function,” says Sam Davis, a project manager at Fusion for Energy, an EU organization working with Japan’s National Institutes for Quantum Science and Technology (QST) on JT-60SA and related programs. It will take another 2 years before JT-60SA produces the long-lasting plasmas needed for meaningful physics experiments, says Hiroshi Shirai, leader of the project for QST.

JT-60SA will also help ITER, the mammoth international fusion reactor under construction in France that’s intended to demonstrate how fusion can generate more energy than goes into producing it. ITER will rely on technologies and operating know-how that JT-60SA will test.

Japan got to host JT-60SA and two other small fusion research facilities as a consolation prize for agreeing to let ITER go to France. …

As Normile notes, the ITER project has had a long and rocky road so far.

The Canadians

As it turns out, there’s a company in British Columbia, Canada that is also on the road to fusion energy. Not so imaginatively, it’s called General Fusion but it has a different approach to developing this ‘clean energy’. (See my October 28, 2022 posting, “Overview of fusion energy scene,” which includes information about the international scene and some of the approaches, including General Fusion’s, to developing the technology and my October 11, 2023 posting offers an update to the General Fusion situation.) Since my October 2023 posting, there have been a few developments at General Fusion.

This December 4, 2023 General Fusion news release celebrates a new infusion of cash from the Canadian government and take special note of the first item in the ‘Quick Facts’ of the advantage this technology offers,

Today [December 4, 2023], General Fusion announced that Canada’s Strategic Innovation Fund (SIF) has awarded CA$5 million to support research and development to advance the company’s Magnetized Target Fusion (MTF) demonstration at its Richmond headquarters. Called LM26, this ground-breaking machine will progress major technical milestones required to commercialize zero-carbon fusion power by the early to mid-2030s. The funds are an addition to the existing contribution agreement with SIF, to support the development of General Fusion’s transformational technology.

Fusion energy is the ultimate clean energy solution. It is what powers the sun and stars. It’s the process by which two light nuclei merge to form a heavier one, emitting a massive amount of energy. By 2100, the production and export of the Canadian industry’s fusion energy technology could provide up to $1.26 trillion in economic benefits to Canada. Additionally, fusion could completely offset 600 MT CO2-e emissions, the equivalent of over 160 coal-fired power plants for a single year. When commercialized, a single General Fusion power plant will be designed to provide zero-carbon power to approximately 150,000 Canadian homes, with the ability to be placed close to energy demand at a cost competitive with other energy sources such as coal and natural gas.1

Quotes:

“For more than 20 years, General Fusion has advanced its uniquely practical Magnetized Target Fusion technology and IP at its Canadian headquarters. LM26 will significantly de-risk our commercialization program and puts us on track to bring our game-changing, zero-emissions energy solution to Canada, and the world, in the next decade,” said Greg Twinney, CEO, General Fusion.

“Fusion technology has the potential to completely revolutionize the energy sector by giving us access to an affordable unlimited renewable power source. Since General Fusion is at the forefront of this technology, our decision to keep supporting the company will give us the tools we need to reduce greenhouse gas emissions and reach our climate goals. Our government is proud to invest in this innovative project to drive the creation of hundreds of middle-class jobs and position Canada as a world leader in fusion energy technology,” said The Honourable François-Philippe Champagne, Minister of Innovation, Science and Industry.

“British Columbia has a thriving innovation economy. In August, the B.C. Government announced CA$5 million in provincial support for General Fusion’s homegrown technology, and we’re pleased to see the Federal government has now provided funds to support General Fusion. These investments will help General Fusion as they continue to develop their core technology right here in B.C.,” said Brenda Bailey, B.C. Minister of Jobs, Economic Development and Innovation.

Quick Facts:

*Magnetized Target Fusion uniquely sidesteps challenges to commercialization that other technologies face. The game-changer is a proprietary liquid metal liner in the commercial fusion machine that is mechanically compressed by high-powered pistons. This enables fusion conditions to be created in short pulses rather than creating a sustained reaction. General Fusion’s design does not require large superconducting magnets or an expensive array of lasers.

*LM26 aims to achieve two of the most significant technical milestones required to commercialize fusion energy, targeting fusion conditions of over 100 million degrees Celsius by 2025, and progressing toward scientific breakeven equivalent by 2026.

*LM26’s plasmas will be approximately 50 per cent scale of a commercial fusion machine. It aims to achieve deuterium-tritium breakeven equivalent using deuterium fuel.

*The Canadian government is investing an additional CA$5 million for a total of CA$54.3 million to support the development of General Fusion’s energy technology through the Strategic Innovation Fund program.

*As a result of the government’s ongoing support, General Fusion has advanced its technology, building more than 24 plasma prototypes, filing over 170 patents, and conducting more than 200,000 experiments at its Canadian labs.

This January 11, 2024 General Fusion news release highlights some of the company’s latest research,

General Fusion has published new, peer-reviewed scientific results that validate the company has achieved the smooth, rapid, and symmetric compression of a liquid cavity that is key to the design of a commercial Magnetized Target Fusion power plant. The results, published in one of the foremost scientific journals in fusion, Fusion Engineering and Design [open access paper], validate the performance of General Fusion’s proprietary liquid compression technology for Magnetized Target Fusion and are scalable to a commercial machine.

General Fusion’s Magnetized Target Fusion technology uses mechanical compression of a plasma to achieve fusion conditions. High-speed drivers rapidly power a precisely shaped, symmetrical collapse of a liquid metal cavity that envelopes the plasma. In three years, General Fusion commissioned a prototype of its liquid compression system and completed over 1,000 shots, validating the compression technology. In addition, this scale model of General Fusion’s commercial compression system verified the company’s open-source computational fluid dynamics simulation. The paper confirms General Fusion’s concept for the compression system of a commercial machine.

“General Fusion has proven success scaling individual technologies, creating the pathway to integrate, deploy, and commercialize practical fusion energy,” said Greg Twinney, CEO, General Fusion. “The publication of these results demonstrates General Fusion has the science and engineering capabilities to progress the design of our proprietary liquid compression system to commercialization.”

General Fusion’s approach to compressing plasma to create fusion energy is unique. Its Magnetized Target Fusion technology is designed to address the barriers to commercialization that other fusion technologies still face. The game-changer is the proprietary liquid metal liner in the fusion vessel that is mechanically compressed by high-powered pistons. This allows General Fusion to create fusion conditions in short pulses, rather than creating a sustained reaction, while protecting the machine’s vessel, extracting heat, and re-breeding fuel.

Today [January 11, 2024] at its Canadian labs, General Fusion is building a ground-breaking Magnetized Target Fusion demonstration called Lawson Machine 26 (LM26). Designed to reach fusion conditions of over 100 million degrees Celsius by 2025 and progress towards scientific breakeven equivalent by 2026, LM26 fast-tracks General Fusion’s technical progress to provide commercial fusion energy to the grid by the early to mid-2030s.

Exciting times for us all and I wish good luck to all of the clean energy efforts wherever they are being pursued.

Canada’s voluntary code of conduct relating to advanced generative AI (artificial intelligence) systems

These days there’s a lot of international interest in policy and regulation where AI is concerned. So even though this is a little late, here’s what happened back in September 2023, the Canadian government came to an agreement with various technology companies about adopting a new voluntary code. Quinn Henderson’s September 28, 2023 article for the Daily Hive starts in a typically Canadian fashion, Note: Links have been removed,

While not quite as star-studded [emphasis mine] at the [US] White House’s AI summit, the who’s who of Canadian tech companies have agreed to new rules concerning AI.

What happened: A handful of Canada’s biggest tech companies, including Blackberry, OpenText, and Cohere, agreed to sign on to new voluntary government guidelines for the development of AI technologies and a “robust, responsible AI ecosystem in Canada.”

What’s next: The code of conduct is something of a stopgap until the government’s *real* AI regulation, the Artificial Intelligence and Data Act (AIDA), comes into effect in two years.

The regulation race is on around the globe. The EU is widely viewed as leading the way with the world’s first comprehensive regulatory AI framework set to take effect in 2026. The US is also hard at work but only has a voluntary code in place.

Henderson’s September 28, 2023 article offers a good, brief summary of the situation regarding regulation and self-regulation of AI here in Canada and elsewhere around the world, albeit, from a few months ago. Oddly, there’s no mention of what was then an upcoming international AI summit in the UK (see my November 2, 2023 posting, “UK AI Summit (November 1 – 2, 2023) at Bletchley Park finishes“).

Getting back to Canada’s voluntary code of conduct. here’s the September 27, 2023 Innovation, Science and Economic Development Canada (ISED) news release about it, Note: Links have been removed,

Today [September 27, 2023], the Honourable François-Philippe Champagne, Minister of Innovation, Science and Industry, announced Canada’s Voluntary Code of Conduct on the Responsible Development and Management of Advanced Generative AI Systems, which is effective immediately. The code identifies measures that organizations are encouraged to apply to their operations when they are developing and managing general-purpose generative artificial intelligence (AI) systems. The Government of Canada has already taken significant steps toward ensuring that AI technology evolves responsibly and safely through the proposed Artificial Intelligence and Data Act (AIDA), which was introduced as part of Bill C-27 in June 2022. This code is a critical bridge between now and when that legislation would be coming into force.The code outlines measures that are aligned with six core principles:

Accountability: Organizations will implement a clear risk management framework proportionate to the scale and impact of their activities.

Safety: Organizations will perform impact assessments and take steps to mitigate risks to safety, including addressing malicious or inappropriate uses.

Fairness and equity: Organizations will assess and test systems for biases throughout the lifecycle.

Transparency: Organizations will publish information on systems and ensure that AI systems and AI-generated content can be identified.

Human oversight and monitoring: Organizations will ensure that systems are monitored and that incidents are reported and acted on.

Validity and robustness: Organizations will conduct testing to ensure that systems operate effectively and are appropriately secured against attacks.

This code is based on the input received from a cross-section of stakeholders, including the Government of Canada’s Advisory Council on Artificial Intelligence, through the consultation on the development of a Canadian code of practice for generative AI systems. The government will publish a summary of feedback received during the consultation in the coming days. The code will also help reinforce Canada’s contributions to ongoing international deliberations on proposals to address common risks encountered with large-scale deployment of generative AI, including at the G7 and among like-minded partners.

Quotes

“Advances in AI have captured the world’s attention with the immense opportunities they present. Canada is a global AI leader, among the top countries in the world, and Canadians have created many of the world’s top AI innovations. At the same time, Canada takes the potential risks of AI seriously. The government is committed to ensuring Canadians can trust AI systems used across the economy, which in turn will accelerate AI adoption. Through our Voluntary Code of Conduct on the Responsible Development and Management of

Advanced Generative AI Systems, leading Canadian companies will adopt responsible guardrails for advanced generative AI systems in order to build safety and trust as the technology spreads. We will continue to ensure Canada’s AI policies are fit for purpose in a fast-changing world.”
– The Honourable François-Philippe Champagne, Minister of Innovation, Science and Industry

“We are very pleased to see the Canadian government taking a strong leadership role in building a regulatory framework that will help society maximize the benefits of AI, while addressing the many legitimate concerns that exist. It is essential that we, as an industry, address key issues like bias and ensure that humans maintain a clear role in oversight and monitoring of this incredibly exciting technology.”
– Aidan Gomez, CEO and Co-founder, Cohere

“AI technologies represent immense opportunities for every citizen and business in Canada. The societal impacts of AI are profound across education, biotech, climate and the very nature of work. Canada’s AI Code of Conduct will help accelerate innovation and citizen adoption by setting the standard on how to do it best. As Canada’s largest software company, we are honoured to partner with Minister Champagne and the Government of Canada in supporting this important step forward.”
– Mark J. Barrenechea, CEO and CTO, OpenText

“CCI has been calling for Canada to take a leadership role on AI regulation, and this should be done in the spirit of collaboration between government and industry leaders. The AI Code of Conduct is a meaningful step in the right direction and marks the beginning of an ongoing conversation about how to build a policy ecosystem for AI that fosters public trust and creates the conditions for success among Canadian companies. The global landscape for artificial intelligence regulation and adoption will evolve, and we are optimistic to see future collaboration to adapt to the emerging technological reality.”
– Benjamin Bergen, President, Council of Canadian Innovators

Quick facts

*The proposed Artificial Intelligence and Data Act (AIDA), part of Bill C-27, is designed to promote the responsible design, development and use of AI systems in Canada’s private sector, with a focus on systems with the greatest impact on health, safety and human rights (high-impact systems).

*Since the introduction of the bill, the government has engaged extensively with stakeholders on AIDA and will continue to seek the advice of Canadians, experts—including the government’s Advisory Council on AI—and international partners on the novel challenges posed by generative AI, as outlined in the Artificial Intelligence and Data Act (AIDA) – Companion document.

*Bill C-27 was adopted at second reading in the House of Commons in April 2023 and was referred to the House of Commons Standing Committee on Industry and Technology for study.

You can read more about Canada’s regulation efforts (Bill C-27) and some of the critiques in my May 1, 2023 posting, “Canada, AI regulation, and the second reading of the Digital Charter Implementation Act, 2022 (Bill C-27).”

For now, the “Voluntary Code of Conduct on the Responsible Development and Management of Advanced Generative AI Systems” can be found on this ISED September 2023 webpage.

Other Canadian AI policy bits and bobs

Back in 2016, shiny new Prime Minister Justin Trudeau announced the Pan-Canadian Artificial Intelligence Strategy (you can find out more about the strategy (Pillar 1: Commercialization) from this ISED Pan-Canadian Artificial Intelligence Strategy webpage, which was last updated July 20, 2022).

More recently, the Canadian Institute for Advanced Research (CIFAR), a prominent player in the Pan-Canadian AI strategy, published a report about regulating AI, from a November 21, 2023 CIFAR news release by Kathleen Sandusky, Note: Links have been removed,

New report from the CIFAR AI Insights Policy Briefs series cautions that current efforts to regulate AI are doomed to fail if they ignore a crucial aspect: the transformative impact of AI on regulatory processes themselves.

As rapid advances in artificial intelligence (AI) continue to reshape our world, global legislators and policy experts are working full-tilt to regulate this transformative technology. A new report, part of the CIFAR AI Insights Policy Briefs series, provides novel tools and strategies for a new way of thinking about regulation.

“Regulatory Transformation in the Age of AI” was authored by members of the Schwartz Reisman Institute for Technology and Society at the University of Toronto: Director and Chair Gillian Hadfield, who is also a Canada CIFAR AI Chair at the Vector Institute; Policy Researcher Jamie Amarat Sandhu; and Graduate Affiliate Noam Kolt.

The report challenges the current regulatory focus, arguing that the standard “harms paradigm” of regulating AI is necessary but incomplete. For example, current car safety regulations were not developed to address the advent of autonomous vehicles. In this way, the introduction of AI into vehicles has made some existing car safety regulations inefficient or irrelevant.

Through three Canadian case studies—in healthcare, financial services, and nuclear energy—the report illustrates some of the ways in which the targets and tools of regulation could be reconsidered for a world increasingly shaped by AI.

The brief proposes a novel concept—Regulatory Impacts Analysis (RIA)—as a means to evaluate the impact of AI on regulatory regimes. RIA aims to assess the likely impact of AI on regulatory targets and tools, helping policymakers adapt governance institutions to the changing conditions brought about by AI. The authors provide a real-world adaptable tool—a sample questionnaire—for policymakers to identify potential gaps in their domain as AI becomes more prevalent.

This report also highlights the need for a comprehensive regulatory approach that goes beyond mitigating immediate harms, recognizing AI as a “general-purpose technology” with far-reaching implications, including on the very act of regulation itself.

As AI is expected to play a pivotal role in the global economy, the authors emphasize the need for regulators to go beyond traditional approaches. The evolving landscape requires a more flexible and adaptive playbook, with tools like RIA helping to shape strategies to harness the benefits of AI, address associated risks, and prepare for the technology’s transformative impact.

You can find CIFAR’s November 2023 report, “Regulatory Transformation in the Age of AI” (PDF) here.

I have two more AI bits and these concern provincial AI policies, one from Ontario and the other from British Columbia (BC),

Stay tuned, there will be more about AI policy throughout 2024.

Margot Lee Shetterly (Hidden Figures author) in Toronto, Canada and a little more STEM (science, technology, engineering, and mathematics) information

Ms. Shetterly was at the University of Toronto (Hart House) as a mentor at Tundra Technical Solutions’ 2023 Launchpad event. The company is a ‘talent recruitment’ agency and this is part of their outreach/public relations programme. This undated video (runtime: 2 mins. 27 secs.) from a previous Hart House event gives you a pretty good idea of what this year’s Toronto event was like,

This November 9, 2023 Tundra Technical Solutions news release (on Cision) suggests that this is a US-based company while supplying more information about their 2023 STEM or Launchpad mentorship event at Hart House,

On the heels of [US] National STEM Day, a landmark event unfolds tonight to advance the role of women in Science, Technology, Engineering, and Mathematics (STEM). Tundra, a trailblazer championing diversity within the world’s most innovative industries, hosts its annual Launchpad Mentorship Event at the University of Toronto’s Hart House.

This event welcomes hundreds of high school female students across the GTA [Greater Toronto Area?] to inspire and empower them to consider careers in STEM.

The night opens with a fascinating keynote speech by Margot Lee Shetterly, acclaimed author of the #1 New York Times bestseller Hidden Figures. Margot will share her insights into the critical contributions of African-American women mathematicians at NASA, setting a powerful tone for the evening. The spotlight also shines brightly on Arushi Nath, a 14-year-old Canadian prodigy and Tundra Launchpad Mentee of the Year whose contributions to astronomy have propelled her onto the world stage.

The Launchpad Event panel discussion features an impressive lineup of leaders, with Anne Steptoe, VP of Infrastructure at Wealthsimple; Linda Siksna, SVP of Technology Ops and Platforms at Canadian Tire; Natasha Nelson, VP of Ecostruxure at Schneider Electric; and Allison Atkins, National Leader for Cloud Endpoint at Microsoft. Moderated by Marisa Sterling, Assistant Dean and Director of Diversity, Inclusion, and Professionalism at the University of Toronto, the panel tackles the challenges and opportunities within STEM fields, emphasizing the need for diversity and inclusion.

In a seamless transition from Shetterly’s keynote to the voices of present-day STEM leaders, the event spotlights the potential of young women in these fields. Arushi Nath [emphasis mine], the 9th-grade Canadian astronomy sensation, embodied this potential. Fresh from her success at the European Union Contest for Young Scientists, Arushi’s presence will be a vibrant reminder of what the next generation can achieve with support from initiatives like Tundra’s Launchpad Event.

Tundra’s commitment to nurturing and developing STEM leaders of tomorrow is evident through its substantial investments in youth. Every year, Tundra connects thousands of students who identify as female and non-binary with mentors, awarding scholarships and prize packs to help students excel in their future.

Tundra’s dedication to diversity and empowerment in STEM remains unwavering since the Launchpad’s inception in 2019. The event is a testament to the bright future that awaits when we invest in the mentorship and recognition of young talent.

Female-identifying or non-binary students in grades 10-12 can apply for Tundra’s next Launchpad Scholarship here [deadline: December 3, 2023].

You can find out more about the Tundra Technical Solutions STEM initiatives here. (I’m not sure why they’ve listed Vancouver as a location for the event on the STEM initiatives page since there is no mention of it in the news release or elsewhere on the page.)

Arushi Nath was last mentioned here in a November 17, 2023 posting where her wins at the 2023 Canada Wide Science awards and the 34th European Union Contest for Young Scientists (EUCYS) and her appearance at the 2023 Natural Sciences and Engineering Research Council of Canada (NSERC) Awards were highlighted.

I’m having trouble keeping with her!

She has written up an account of her experience at the 2023 Launchpad Mentorship event at Hart House in a November 18 (?), 2023 blog posting on the HotPopRobot website,

Almost 150 students from across Toronto and the region attended the event. In addition, around 20 mentors from several organizations gathered to interact with the students. Many staff members from Tundra were also present to support the event.

Keynote Speech: Science and Space is for All

The evening started with a keynote speech from Margot Lee Shetterly, the author of Hidden Figures book. Hidden Figures [movie] explores the biographies of three African-American women who worked as computers to solve problems for engineers and others at NASA.

In her speech, she talked about her journey writing the book and what drew her to the topic. The fact that one of the three women was her neighbour was a big inspiring force. She shared the background of these brilliant women mathematicians, their personal stories, anecdotes and the crucial roles they played during the Space Race.

Several questions were posed to her, including how she felt about having her book transformed into a movie before the book was even complete and how students could merge their other passions with science.

Prizes and Awards: Winning 2023 Mentee of the Year Award

At the end of the raffle, I was surprised to hear my name called on the stage. I was honoured to receive the 2023 Mentee of the Year Award. I thanked the organizers for this gesture and for organizing such a wonderful evening of fun, learning and networking.

With Margot Lee Shetterly, the Author of Hidden Figures book [downloaded from https://hotpoprobot.com/2023/11/18/encouraging-young-women-in-science-technology-engineering-and-math-reflections-from-the-2023-launchpad-mentorship-event/]

More about Hidden Figures on FrogHeart

First mentioned here in a September 2, 2016 posting titled, “Movies and science, science, science (Part 1 of 2),” it focused heavily on Margot Lee Shetterly‘s 2016 nonfiction book, “Hidden Figures: The American Dream and the Untold Story of the Black Women Who Helped Win the Space Race.”

The movie focused primarily on three women but the book cast a wider net. It’s fascinating social history.

They were computers

These days we think of computers as pieces of technology but for a significant chunk of time, computers were people with skills in mathematics. Over time, computers were increasingly women because they worked harder and they worked for less money than men.

I have an embedded video trailer for the then upcoming movie and more about human computers in my September 2, 2016 posting.

There’s also something about the Hidden Figures script writing process in my February 6, 2017 posting; scroll down about 80% of the way. Sadly, I was not using subheads that day.

More Canadian STEM information

The government of Canada (Innovation, Science and Economic Development Canada) has a webpage devoted to STEM initiatives, their own and others,

Canada has emerged as a world leader in many science, technology, engineering and math (STEM) fields, and many new jobs and career opportunities that have emerged in recent years are STEM-related. As more and more businesses and organizations look to innovate, modernize and grow, the demand for people who can fill STEM-related jobs will only increase. Canada needs a workforce that can continue to meet the challenges of the future.

Additionally, young Canadians today need to think carefully and critically about science misinformation. Misinformation is not new, but the intensity and speed in which it has been spreading is both increasing and concerning, especially within the science realm. Science literacy encourages people to question, evaluate, and understand information. By equipping youth with science literacy skills, they will be better positioned to navigate online information and make better decisions based on understanding the difference between personal opinions and evidence-based conclusions.

The Government of Canada and its federal partners have put forward several new opportunities that are aimed at increasing science literacy and the participation of Canadians in STEM, including under-represented groups like women and Indigenous communities.

CanCode (Innovation, Science and Economic Develoment Canada)

CanCode is an Innovation, Science and Economic Development Canada (ISED) funding program that provides financial support for organizations to equip Canadian youth, including traditionally underrepresented groups, with the skills they need to be prepared for further studies. This includes advanced digital skills, like coding and STEM courses, leading to jobs of the future. For more information on the program and future Calls for Proposals, visit the CanCode webpage.

Citizen Science Portal (ISED)

The Citizen Science Portal provides information and access to science projects and science experiments happening in various communities for Canadians to participate in. Some may only be available at certain times of year or in certain areas, but with a little exploration, there are exciting ways to take part in science.

Objective: Moon – including Junior Astronauts (Canadian Space Agency)

The Canadian Space Agency (CSA) aims to engage young Canadians, to get them excited about STEM and future careers in the field of space through a suite of resources for youth and educators. The CSA also helps them understand how they can play a role in Canada’s mission to the Moon. As part of Canada’s participation in Lunar Gateway, the Objective: Moon portfolio of activities, including the Junior Astronauts campaign that ended in July 2021, makes learning science fun and engaging for youth in grades K – 12.

Actua

Actua is a Canadian charitable organization preparing youth, ages 6-26, to be the next generation of leaders and innovators. It engages youth in inclusive, hands-on STEM experiences that build critical employability skills and confidence. Through a national outreach team and a vast member network of universities and colleges, Actua reaches youth in every province and territory in Canada through summer camps, classroom workshops, clubs, teacher training, and community outreach activities.

Mitacs

Mitacs is a national not-for-profit organization that designs and delivers internships and training programs in Canada. Working with universities, companies and federal and provincial governments, Mitacs builds and maintains partnerships that support industrial and social innovation in Canada. More information on Mitacs’ programs can be found here.

Science fairs, STEM competitions and awards

The Government of Canada supports the discoveries and the ingenuity of tomorrow’s scientists, engineers and inventors.

Canada’s science fairs and STEM competitions

The page has not been updated since August 13, 2021.

There are more organizations and STEM efforts (e.g. ScienceRendezvous [a national one day science fair], Beakerhead [a four day science fair held annually in Calgary, Alberta], the Perimeter Institute for Theoretical Physics [they also offer “Inside the Perimeter” with all kinds of resources online]) than are listed on the page, which is a good place to start, but keep on looking.

A reminder: Tundra Launchpad scholarship deadline

Female-identifying or non-binary students in grades 10-12 can apply for Tundra’s next Launchpad Scholarship here [deadline: December 3, 2023].

Canada, quantum technology, and a public relations campaign?

Stephanie Simmons’ October 31, 2022 essay on quantum technology and Canada for The Conversation (h/t Nov.1.22 news item on phys.org) was a bit startling—not due to the content—but for the chosen communications vehicle. It’s the kind of piece i expect to find in the Globe and Mail or the National Post not The Conversation, which aspires to present in depth, accessible academic research and informed news stories (or so I thought). (See The Conversation (website) Wikipedia entry for more.)

Simmons (who is an academic) seems to have ‘written’ a run-of-the-mill public relations piece (with a good and accessible description of quantum encryption and its future importance) about Canada and quantum technology aimed at influencing government policy makers while using some magic words (Note: Links have been removed),

Canada is a world leader in developing quantum technologies and is well-positioned to secure its place in the emerging quantum industry.

Quantum technologies are new and emerging technologies based on the unique properties of quantum mechanics — the science that deals with the physical properties of nature on an atomic and subatomic level.

In the future, we’ll see quantum technology transforming computing, communications, cryptography and much more. They will be incredibly powerful, offering capabilities that reach beyond today’s technologies.

The potential impact of these technologies on the Canadian economy [emphasis mine] will be transformative: the National Research Council of Canada has identified quantum technology as a $142 billion opportunity that could employ 229,000 Canadians by 2040 [emphasis mine].

Canada could gain far-reaching economic and social benefits from the rapidly developing quantum industry, but it must act now to secure them — before someone else [emphasis mine] delivers the first large-scale quantum computer, which will likely be sooner than expected.

This is standard stuff, any professional business writer, after a little research, could have pulled the article together. But, it’s Stephanie Simmons whose academic titles (Associate Professor, SFU and Tier 2 Canada Research Chair in Silicon Quantum Technologies, Simon Fraser University) and position as founder and Chief Quantum Officer of Photonic, Inc. give her comments added weight. (For an academic, this is an unusual writing style [perhaps Simmons had some help?] and it better belongs in the newspapers I’ve previously cited.)

Simmons, having stoked a little anxiety with “it [Canada] must act now to secure them [economic and social benefits] — before someone else delivers the first large-scale quantum computer, which will likely be sooner than expected,” gets to her main points, from the October 31, 2022 essay,

To maintain its leadership, Canada needs to move beyond research and development and accelerate a quantum ecosystem that includes a strong talent pipeline, businesses supported by supply chains and governments and industry involvement. There are a few things Canada can do to drive this leadership:

Continue to fund quantum research: … The Canadian government has invested more than $1 billion since 2005 in quantum research and will likely announce a national quantum strategy soon [emphasis mine]. Canada must continue funding quantum research or risk losing its talent base and current competitive advantage. [Note: Canada has announced a national quantum strategy in both the 2021 and 2022 federal budgets See more under the ‘Don’t we already have a national quantum strategy? subhead]

Build our talent pipeline with more open immigration: …

Be our own best customers: Canadian companies are leading the way, but they need support [emphasis mine; by support, does she mean money?]. Quantum Industry Canada boasts of more than 30 member companies. Vancouver is home to the pioneering D-Wave and Photonic Inc., …

As noted in a previous post (July 26, 2022 titled “Quantum Mechanics & Gravity conference [August 15 – 19, 2022] launches Vancouver (Canada)-based Quantum Gravity Institute and more”), all of this enthusiasm tends to come down to money, as in, ‘We will make money which will somehow benefit you but, first, we need more money from you’. As for the exhortation to loosen up immigration, that sounds like an attempt to exacerbate ‘brain drain’, i.e., lure people from other countries to settle in Canada. As a country whose brains were drained in the 1960s, 70s, etc., it should be noted those drives were deeply resented here and I expect that we will become objects of resentment should we resort to the same tactics although I thought we already had.

Same anxieties, same solution

Simmons concludes with a cautionary tale, from the October 31, 2022 essay, Note: Links have been removed,

Canada has an opportunity to break out of its pattern of inventing transformative technology, but not reaping the rewards. This is what happened with the invention of the transistor.

The first transistor patent was actually filed in Canada by Canadian-Hungarian physicist Julius Edgar Lilienfeld, 20 years before the Bell Labs demonstration. Canada was also one of the places where Alexander Graham Bell worked to develop and patent the telephone.

Despite this, the transistor was commercialized in the U.S. and led to the country’s US$63 billion semiconductor industry. Bell commercialized the telephone through The Bell Telephone Company, which eventually became AT&T.

Canada is poised to make even greater contributions to quantum technology. Much existing technology has been invented here in Canada — including quantum cryptography, which was co-invented by University of Montreal professor Gilles Brassard. Instead of repeating its past mistakes, Canada should act now to secure the success of the quantum technology industry.

I bought into this narrative too. It’s compelling and generally accepted (in short, it’s a part of Canadian culture) but somebody who’s smarter about business and economics than I am pointed out that Canada has a good standard of living and has had that standard for many years despite decades of worry over our ‘inability’ to commercialize our discoveries. Following on that thought, what’s so bad about our situation? Are we behind because we don’t have a huge semiconductor industry? I don’t know but perhaps we need to question this narrative a little more closely. Where some people see loss, others might see agility, inventiveness, and the ability to keep capitalizing on early stage technology, over and over again.

What I haven’t yet seen discussed as a problem is a Canadian culture that encourages technology entrepreneurs to create startups with the intention of selling them to a big US (or other country) corporation. I’m most familiar with the situation in the province of British Columbia where a 2003 British Columbia Techmap (developed by the accounting firm PriceWaterhouseCoopers [PWC]) provides a genealogy which stretched from the 1890s to 2003. The number of technology companies acquired by foreign corporations is astonishing. Our technology has been bought—over and over, since the 1890s.

(I believe there were three editions of the British Columbia Techmap: 1997, 2003 and 2012. PWC seems to have discontinued publication and the 2012 online edition is no longer available. For the curious, there’s a June 15, 2012 announcement, which provides a little information about and interesting facts from the 2012 digital edition.)

This ‘startup and sell’ story holds true at the national level as well. We have some large technology companies but none of them compare to these: Huawei (China), Ali Baba (China), Intel (US), Apple (US), Siemens (Germany), Sanofi (France; technically a pharmaceutical but heavily invested in technology), etc.

So, is this “… inventing transformative technology, but not reaping the rewards …” really a problem when Canadians live well? If so, we need to change our entrepreneurial and business culture.

Don’t we already have a national quantum strategy?

It’s a little puzzling to see Simmons appear to be arguing for a national quantum strategy given this (from my July 26, 2022 posting),

A National Quantum Strategy was first announced in the 2021 Canadian federal budget and reannounced in the 2022 federal budget (see my April 19, 2022 posting for a few more budget details).. Or, you may find this National Quantum Strategy Consultations: What We Heard Report more informative. There’s also a webpage for general information about the National Quantum Strategy.

As evidence of action, the Natural Science and Engineering Research Council of Canada (NSERC) announced new grant programmes made possible by the National Quantum Strategy in a March 15, 2022 news release,

Quantum science and innovation are giving rise to promising advances in communications, computing, materials, sensing, health care, navigation and other key areas. The Government of Canada is committed to helping shape the future of quantum technology by supporting Canada’s quantum sector and establishing leadership in this emerging and transformative domain.

Today [March 15, 2022], the Honourable François-Philippe Champagne, Minister of Innovation, Science and Industry, is announcing an investment of $137.9 million through the Natural Sciences and Engineering Research Council of Canada’s (NSERC) Collaborative Research and Training Experience (CREATE) grants and Alliance grants. These grants are an important next step in advancing the National Quantum Strategy and will reinforce Canada’s research strengths in quantum science while also helping to develop a talent pipeline to support the growth of a strong quantum community.

it gets even more puzzling when you know that Simmons is part of a Canadian Council of Academies (CCA) expert panel (announced in May 2022) to produce a report on Quantum Technologies,

Budget 2021 included a National Quantum Strategy [emphasis mine] to amplify Canada’s strength in quantum research, grow quantum-ready technologies, and solidify Canada’s global leadership in this area. A comprehensive exploration of the capabilities and potential vulnerabilities of these technologies will help to inform their future deployment across the society and the economy.

This assessment will examine the impacts, opportunities, and challenges quantum technologies present for industry, governments, and people in Canada. [emphases mine]

The Sponsor:

National Research Council Canada and Innovation, Science and Economic Development Canada [emphasis mine]

It’s possible someone else wrote the essay, someone who doesn’t know about the strategy or Simmons’ involvement in a CCA report on how to address the issues highlighted in her October 31, 2022 essay. It’s also possible that Simmons is trying to emphasize the need for a commercialization strategy for quantum technologies.

Given that the Council of Canadian Academies (CCA) was asked to produce what looks like a comprehensive national strategy including commercialization, I prefer the second possibility.

*ETA December 29, 2022 1020 hours PT: On a purely speculative note, I just noticed involvement from a US PR agency in this project, from my “Bank of Canada and Multiverse Computing model complex networks & cryptocurrencies with quantum computing” July 25, 2022 posting,

As for the company that produced the news release, HKA Marketing Communications, based in Southern California, they claim this “Specialists in Quantum Tech PR: #1 agency in this space” on their homepage.

Simmons is on the CCA’s Quantum Technologies’ expert panel along with Eric Santor, Advisor to the Governor, Bank of Canada. HKA’s involvement would certainly explain why the writer didn’t know there’s already a National Quantum Strategy and not know about Simmons’ membership in the expert panel. As I noted, this is pure speculation; I have no proof.*

At any rate, there may be another problem, our national quantum dilemma may be due to difficulties within the Canadian quantum community.

A fractious Canadian quantum community

I commented on the competitiveness within the quantum technologies community in my May 4, 2021 posting about the federal 2021 budget, “While the folks in the quantum world are more obviously competitive … ,” i.e., they are strikingly public in comparison to the genomic and artificial intelligence communities. Scroll down to the ‘National Quantum Strategy’ subhead in the May 4, 2021 posting for an example.

It can also be seen in my July 26, 2022 posting about the Vancouver (Canada) launch of the Quantum Gravity Institute where I noted the lack of Canadian physicists (not one from the CCA expert panel, the Perimeter Institute, or TRIUMF; Canada’s particle accelerator centre, or the Institute for Quantum Computing at the University of Waterloo) in the speaker list and the prominent role wealthy men who’ve taken up quantum science as a hobby played in its founding. BTW, it seems two Canadian physicists (in addition to Philip Stamp; all from the University of British Columbia) were added to the speaker list and D-Wave Systems was added to the institute’s/conference’s webpage sponsorship list (scroll down about 70% of the way) after I posted.

Hopefully the quantum science/research community will pull together, in public, at least.

Who is the audience?

Getting back to Simmons’ piece on The Conversation, her essay, especially one that appears to be part of a public relations campaign, can appeal to more than one audience. The trick, as all (script, news, business, public relations, science, etc.) writers will tell you, is to write for one audience. As counter-intuitive as that trick may seem, it works.

Canadian policy makers should already know that the federal government has announced a national quantum strategy in two different budgets. Additionally, affected scientists should already know about the national strategy, such as it is. Clearly, children are not the intended audience. Perhaps it’s intended for a business audience but the specific business case is quite weak and, as I’ve noted here and elsewhere, the ‘failure’ to take advantage of early developments is a well worn science business trope which ignores a Canadian business model focused on developing emerging technology then, selling it.

This leaves a ‘general’ audience as the only one left and that audience doesn’t tend to read The Conversation website. Here’s the description of the publisher from its Wikipedia entry, Note: Links have been removed,

The Conversation is a network of not-for-profit media outlets publishing news stories and research reports online, with accompanying expert opinion and analysis.[1][2] Articles are written by academics and researchers [emphasis mine]under a free Creative Commons license, allowing reuse without modification.[3][2] Its model has been described as explanatory journalism.[4][5][6] [emphasis mine] Except in “exceptional circumstances”, it only publishes articles by “academics employed by, or otherwise formally connected to, accredited institutions, including universities and accredited research bodies”.[7]: 8 

Simmons’ piece is not so much explanatory as it is a plea for a policy on a website that newspapers use for free, pre-edited, and proofed content.

I imagine the hope was that a Canadian national newspaper such as the Globe & Mail and/or the National Post would republish it. That hope was realized when the National Post and, unexpectedly, a local paper, the Winnipeg Free Press, both republished it on November 1, 2022.

To sum up, it’s not clear to me what the goal for this piece was. Government policy makers don’t need it, the business case is not sufficiently supported, children are not going to care, and affected scientists are already aware of the situation. (Scientists who will be not affected by a national quantum policy will have their own agendas.) As for a member of the general audience, am I supposed to do something … other than care, that is?

The meaning of a banana

It is an odd piece which may or may not be part of a larger public relations campaign.

As a standalone piece, it reiterates the age old message regarding Canadian technology (“we don’t do a good job of commercializing our technology) to no great avail. As part of a strategy, it seems to be a misfire since we already have a national quantum strategy and Simmons is working on an expert panel that should be delivering the kind of policy she’s requesting.

In the end, all that can be said for certain is that Stephanie Simmons’ October 31, 2022 essay on quantum technology and Canada was published in The Conversation then republished elsewhere.

As Freud may or may not have said, “Sometimes a banana is just a banana.”

Are we spending money on the right research? Government of Canada launches Advisory Panel

it’s a little surprising that this is not being managed by the Council of Canadian Academies (CCA) but perhaps their process is not quite nimble enough (from an October 6, 2022 Innovation, Science and Economic Development Canada news release),

Government of Canada launches Advisory Panel on the Federal Research Support System

Members to recommend enhancements to system to position Canadian researchers for success

October 6, 2022 – Ottawa, Ontario

Canada’s success is in large part due to our world-class researchers and their teams who are globally recognized for unleashing bold new ideas, driving technological breakthroughs and addressing complex societal challenges. The Government of Canada recognizes that for Canada to achieve its full potential, support for science and research must evolve as Canadians push beyond what is currently imaginable and continue to find Canadian-made solutions to the world’s toughest problems.

Today [October 6, 2022], the Honourable François-Philippe Champagne, Minister of Innovation, Science and Industry, and the Honourable Jean-Yves Duclos, Minister of Health, launched the Advisory Panel on the Federal Research Support System. Benefiting from the insights of leaders in the science, research and innovation ecosystem, the panel will provide independent, expert policy advice on the structure, governance and management of the federal system supporting research and talent. This will ensure that Canadian researchers are positioned for even more success now and in the future.

The panel will focus on the relationships among the federal research granting agencies—the Natural Sciences and Engineering Research Council of Canada, the Social Sciences and Humanities Research Council of Canada and the Canadian Institutes of Health Research—and the relationship between these agencies and the Canada Foundation for Innovation.

As the COVID-19 pandemic and climate crisis have shown, addressing the world’s most pressing challenges requires greater collaboration within the Canadian research community, government and industry, as well as with the international community. A cohesive and agile research support system will ensure Canadian researchers can quickly and effectively respond to the questions of today and tomorrow. Optimizing Canada’s research support system will equip researchers to transcend disciplines and borders, seize new opportunities and be responsive to emerging needs and interests to improve Canadians’ health, well-being and prosperity.

Quotes

“Canada is known for world-class research thanks to the enormous capabilities of our researchers. Canadian researchers transform curiosity into bold new ideas that can significantly enhance Canadians’ lives and well-being. With this advisory panel, our government will ensure our support for their research is just as cutting-edge as Canada’s science and research community.”
– The Honourable François-Philippe Champagne, Minister of Innovation, Science and Industry

“Our priority is to support Canada’s world-class scientific community so it can respond effectively to the challenges of today and the future. That’s why we are leveraging the expertise and perspectives of a newly formed advisory panel to maximize the impact of research and downstream innovation, which contributes significantly to Canadians’ well-being and prosperity.”
– The Honourable Jean-Yves Duclos, Minister of Health

Quick facts

The Advisory Panel on the Federal Research Support System has seven members, including the Chair. The members were selected by the Minister of Innovation, Science and Industry and the Minister of Health. The panel will consult with experts and stakeholders to draw on their diverse experiences, expertise and opinions. 

Since 2016, the Government of Canada has committed more than $14 billion to support research and science across Canada. 

Here’s a list of advisory panel members I’ve assembled from the Advisory Panel on the Federal Research Support System: Member biographies webpage,

  • Frédéric Bouchard (Chair) is Dean of the Faculty of Arts and Sciences at the Université de Montréal, where he has been a professor of philosophy of science since 2005.
  • Janet Rossant is a Senior Scientist Emeritus in the Developmental and Stem Cell Biology Program, the Hospital for Sick Children and a Professor Emeritus at the University of Toronto’s Department of Molecular Genetics.
  • [Gilles Patry] is Professor Emeritus and President Emeritus at the University of Ottawa. Following a distinguished career as a consulting engineer, researcher and university administrator, Gilles Patry is now a consultant and board director [Royal Canadian Mint].
  • Yolande E. Chan joined McGill University’s Desautels Faculty of Management as Dean and James McGill Professor in 2021. Her research focuses on innovation, knowledge strategy, digital strategy, digital entrepreneurship, and business-IT alignment.
  • Laurel Schafer is a Professor at the Department of Chemistry at the University of British Columbia. Her research focuses on developing novel organometallic catalysts to carry out difficult transformations in small molecule organic chemistry.
  • Vianne Timmons is the President and Vice-Chancellor of Memorial University of Newfoundland since 2020. She is a nationally and internationally recognized researcher and advocate in the field of inclusive education.
  • Dr. Baljit Singh is a highly accomplished researcher, … . He began his role as Vice-President Research at the University of Saskatchewan in 2021, after serving as Dean of the University of Calgary Faculty of Veterinary Medicine (2016 – 2020), and as Associate Dean of Research at the Western College of Veterinary Medicine at the University of Saskatchewan (2010 – 2016).

Nobody from the North. Nobody who’s worked there or lived there or researched there. It’s not the first time I’ve noticed a lack of representation for the North.

Canada’s golden triangle (Montréal, Toronto, Ottawa) is well represented and, as is often the case, there’s representation for other regions: one member from the Prairies, one member from the Maritimes or Atlantic provinces, and one member from the West.

The mandate indicates they could have five to eight members. With seven spots filled, they could include one more member, one from the North.

Even if they don’t add an eighth member, I’m not ready to abandon all hope for involvement from the North when there’s this, from the mandate,

Communications and deliverables

In pursuing its mandate, and to strengthen its advice, the panel may engage with experts and stakeholders to expand access [emphasis mine] to diverse experience, expertise and opinion, and enhance members’ understanding of the topics at hand.

To allow for frank and open discussion, internal panel deliberations among members will be closed.

The panel will deliver a final confidential report by December 2022 [emphasis mine] to the Ministers including recommendations and considerations regarding the modernization of the research support system. A summary of the panel’s observations on the state of the federal research support system may be made public once its deliberations have concluded. The Ministers may also choose to seek confidential advice and/or feedback from the panel on other issues related to the research system.

The panel may also be asked to deliver an interim confidential report to the Ministers by November 2022 [emphases mine], which will provide the panel’s preliminary observations up to that point.

it seems odd there’s no mention of the Pan-Canadian Artificial Intelligence Strategy. It’s my understanding that the funding goes directly from the federal government to the Canadian Institute for Advanced Research (CIFAR), which then distributes the funds. There are other unmentioned science funding agencies, e.g., the National Research Council of Canada and Genome Canada, which (as far as I know) also receive direct funding. It seems that the panel will not be involved in a comprehensive review of Canada’s research support ecosystem.

Plus, I wonder why everything is being kept ‘confidential’. According the government news release, the panel is tasked with finding ways of “optimizing Canada’s research support system.” Do they have security concerns or is this a temporary state of affairs while the government analysts examine the panel’s report?

Science Summit at the 77th United Nations General Assembly (Science Summit UNGA77) from September 13 – 30, 2022

Late last week (at the end of Friday, Sept. 16, 2022) I saw a notice about a Science Summit at the 77th United Nations (UN) General Assembly. (BTW, Canadians may want to check out the Special note further down this posting.) Here’s more about the 8th edition of the Science Summit from the UN Science Summit webpage (Note: I have made some formatting changes),

ISC [International Science Council] and its partners will organise the 8th edition of the Science Summit around the 77th United Nations General Assembly (UNGA77) on 13-30 September 2022.

The role and contribution of science to attaining the United Nations Sustainable Development Goals (SDGs) will be the central theme of the Summit. The objective is to develop and launch science collaborations to demonstrate global science mechanisms and activities to support the attainment of the UN SDGs, Agenda 2030 and Local2030. The meeting will also prepare input for the United Nations Summit of the Future, which will take place during UNGA78 beginning on 12 September 2023.

The UN General Assembly (UNGA) has elected, by acclamation, Csaba Kőrösi, Director of Environmental Sustainability at the Office of the President of Hungary, to serve as President of its 77th session. In his acceptance speech, Kőrösi said his presidency’s efforts will be guided by the motto, ‘Solutions through Solidarity, Sustainability and Science.’ He will succeed Abdulla Shahid of Maldives, current UNGA President, assuming the presidency on 13 September 2022

The Summit will examine what enabling policy, regulatory and financial environments are needed to implement and sustain the science mechanisms required to support genuinely global scientific collaborations across continents, nations and themes. Scientific discovery through the analysis of massive data sets is at hand. This data-enabled approach to science, research and development will be necessary if the SDGs are to be achieved.

SSUNGA77 builds on the successful Science Summit at UNGA76, which brought together over 460 speakers from all continents in more than 80 sessions.

SSUNGA77 will bring together thought leaders, scientists, technologists, innovators, policymakers, decision-makers, regulators, financiers, philanthropists, journalists and editors, and community leaders to increase health science and citizen collaborations across a broad spectrum of themes ICT, nutrition, agriculture and the environment.

Objectives

Present key science initiatives in a series of workshops, presentations, seminars, roundtables and plenary sessions addressing each UN SDG.

Promote collaboration by enabling researchers, scientists and civil society organisations to become aware of each other and work to understand and address critical challenges.

Promote inclusive science, including increasing access to scientific data by lower and middle-income countries.

Focus meetings will be organised around each of the UN SDGs, bringing key stakeholders together to understand and advance global approaches.

Priority will be given to developing science capacity globally to implement the SDGs.

Demonstrate how research infrastructures work as a driver for international cooperation.

Promote awareness of data-enabled science and related capacities and infrastructures.

Understand how key UN initiatives, including The Age of Digital Interdependence, LOCAL 2030, and the Summit of the Future,can provide a basis for increasing science cooperation globally to address global challenges.

Highlights

Two days of meetings on Wall Street at the New York Stock Exchange while highlighting the theme of science contribution to the SDGs and launching a series of meetings with corporate financiers on science funding.

Science and ICT [Information and Communications Technology]/Digital ministers in the world will be approached for their engagement and support, to have their respective missions at the United Nations host individual meetings and to request the participation of their Prime Minister.

A powerful youth programme for children, teens and students. This includes a space-related initiative currently involving some 60 countries, and this number is; very likely to increase. To inspire the world’s youth to come together and lead regional inter-generation projects to attain the “moonshots” of the 21st century – the first in this series would be the 2030 SDGs.

13-30 September 2022: Thematic Sessions and Scientific Sessions: approximately 400 sessions are planned: approximately 100 hybrid events will take place in New York City, with the remainder taking place online;

20 Keynote Lectures by eminent scientists and innovative thinkers;

12 Thematic Days, covering soil, biodiversity, indigenous knowledge, materials, clean water

4 Plenary Sessions;

100 Ministers will participate, covering science, health, environment, climate, industry and regulation;

At least 100,000 participants – in person and online.

Here’s a link to the Agenda for the 8th Science Summit and should one or more sessions pique your interest, you can Register for free here. Sessions are in person and/or via Zoom.

Special notes

Dr. Mona Nemer, Chief Science Advisor of Canada, is presenting at 4 pm EDT (1 pm PDT) today, on Monday, September 19, 2022. Here’s more from the session page (keep scrolling down past the registration button)

(REF 19052 – Hybrid) Keynote Speech: Dr Mona Nemer, Chief Science Advisor of Canada (In-Person)

“Science knows no country, because knowledge belongs to humanity,” Pasteur famously said nearly 150 years ago. In the time since, the world has seen an enormous increase in the pace of scientific discovery and consequent need for collaboration, as our challenges become both more urgent and more complex. From climate change and food security to pandemic preparedness and building the societies of tomorrow, science has a major role to play in guiding us toward a peaceful, healthy and sustainable future, and getting there requires that we work together.

In this talk, Canada’s Chief Science Advisor, Dr. Mona Nemer, shares her insights on the importance of a global science culture that promotes openness, diversity and collaboration, and how growing our science advisory systems will help to both frame the emerging issues that the world faces and provide the evidence needed to solve them.

“Science knows no country …” Really?

One final bit, it’s regarding the second highlight (Science and ICT [Information and Communications Technology]/Digital ministers …), Canada did have a Minister of Digital Government and, sometimes, has a Minister of Science. Currently, neither position exists. For the nitpicky, there is Innovation, Science and Economic Development Canada (ISED) which seems to be largely dedicated to monetizing science rather than the pursuit of science.

Quantum Mechanics & Gravity conference (August 15 – 19, 2022) launches Vancouver (Canada)-based Quantum Gravity Institute and more

I received (via email) a July 21, 2022 news release about the launch of a quantum science initiative in Vancouver (BTW, I have more about the Canadian quantum scene later in this post),

World’s top physicists unite to tackle one of Science’s greatest
mysteries


Vancouver-based Quantum Gravity Society leads international quest to
discover Theory of Quantum Gravity

Vancouver, B.C. (July 21, 2022): More than two dozen of the world’s
top physicists, including three Nobel Prize winners, will gather in
Vancouver this August for a Quantum Gravity Conference that will host
the launch a Vancouver-based Quantum Gravity Institute (QGI) and a
new global research collaboration that could significantly advance our
understanding of physics and gravity and profoundly change the world as
we know it.

For roughly 100 years, the world’s understanding of physics has been
based on Albert Einstein’s General Theory of Relativity (GR), which
explored the theory of space, time and gravity, and quantum mechanics
(QM), which focuses on the behaviour of matter and light on the atomic
and subatomic scale. GR has given us a deep understanding of the cosmos,
leading to space travel and technology like atomic clocks, which govern
global GPS systems. QM is responsible for most of the equipment that
runs our world today, including the electronics, lasers, computers, cell
phones, plastics, and other technologies that support modern
transportation, communications, medicine, agriculture, energy systems
and more.

While each theory has led to countless scientific breakthroughs, in many
cases, they are incompatible and seemingly contradictory. Discovering a
unifying connection between these two fundamental theories, the elusive
Theory of Quantum Gravity, could provide the world with a deeper
understanding of time, gravity and matter and how to potentially control
them. It could also lead to new technologies that would affect most
aspects of daily life, including how we communicate, grow food, deliver
health care, transport people and goods, and produce energy.

“Discovering the Theory of Quantum Gravity could lead to the
possibility of time travel, new quantum devices, or even massive new
energy resources that produce clean energy and help us address climate
change,” said Philip Stamp, Professor, Department of Physics and
Astronomy, University of British Columbia, and Visiting Associate in
Theoretical Astrophysics at Caltech [California Institute of Technology]. “The potential long-term ramifications of this discovery are so incredible that life on earth 100
years from now could look as miraculous to us now as today’s
technology would have seemed to people living 100 years ago.”

The new Quantum Gravity Institute and the conference were founded by the
Quantum Gravity Society, which was created in 2022 by a group of
Canadian technology, business and community leaders, and leading
physicists. Among its goals are to advance the science of physics and
facilitate research on the Theory of Quantum Gravity through initiatives
such as the conference and assembling the world’s leading archive of
scientific papers and lectures associated with the attempts to reconcile
these two theories over the past century.

Attending the Quantum Gravity Conference in Vancouver (August 15-19 [2022])
will be two dozen of the world’s top physicists, including Nobel
Laureates Kip Thorne, Jim Peebles and Sir Roger Penrose, as well as
physicists Baron Martin Rees, Markus Aspelmeyer, Viatcheslav Mukhanov
and Paul Steinhardt. On Wednesday, August 17, the conference will be
open to the public, providing them with a once-in-a-lifetime opportunity
to attend keynote addresses from the world’s pre-eminent physicists.
… A noon-hour discussion on the importance of the
research will be delivered by Kip Thorne, the former Feynman Professor
of physics at Caltech. Thorne is well known for his popular books, and
for developing the original idea for the 2014 film “Interstellar.” He
was also crucial to the development of the book “Contact” by Carl Sagan,
which was also made into a motion picture.

“We look forward to welcoming many of the world’s brightest minds to
Vancouver for our first Quantum Gravity Conference,” said Frank
Giustra, CEO Fiore Group and Co-Founder, Quantum Gravity Society. “One
of the goals of our Society will be to establish Vancouver as a
supportive home base for research and facilitate the scientific
collaboration that will be required to unlock this mystery that has
eluded some of the world’s most brilliant physicists for so long.”

“The format is key,” explains Terry Hui, UC Berkley Physics alumnus
and Co-Founder, Quantum Gravity Society [and CEO of Concord Pacific].
“Like the Solvay Conference nearly 100 years ago, the Quantum Gravity
Conference will bring top scientists together in salon-style gatherings. The
relaxed evening format following the conference will reduce barriers and
allow these great minds to freely exchange ideas. I hope this will help accelerate
the solution of this hundred-year bottleneck between theories relatively
soon.”

“As amazing as our journey of scientific discovery has been over the
past century, we still have so much to learn about how the universe
works on a macro, atomic and subatomic level,” added Paul Lee,
Managing Partner, Vanedge Capital, and Co-Founder, Quantum Gravity
Society. “New experiments and observations capable of advancing work
on this scientific challenge are becoming increasingly possible in
today’s physics labs and using new astronomical tools. The Quantum
Gravity Society looks forward to leveraging that growing technical
capacity with joint theory and experimental work that harnesses the
collective expertise of the world’s great physicists.”

About Quantum Gravity Society

Quantum Gravity Society was founded in Vancouver, Canada in 2020 by a
group of Canadian business, technology and community leaders, and
leading international physicists. The Society’s founding members
include Frank Giustra (Fiore Group), Terry Hui (Concord Pacific), Paul
Lee and Moe Kermani (Vanedge Capital) and Markus Frind (Frind Estate
Winery), along with renowned physicists Abhay Ashtekar, Sir Roger
Penrose, Philip Stamp, Bill Unruh and Birgitta Whaley. For more
information, visit Quantum Gravity Society.

About the Quantum Gravity Conference (Vancouver 2022)


The inaugural Quantum Gravity Conference (August 15-19 [2022]) is presented by
Quantum Gravity Society, Fiore Group, Vanedge Capital, Concord Pacific,
The Westin Bayshore, Vancouver and Frind Estate Winery. For conference
information, visit conference.quantumgravityinstitute.ca. To
register to attend the conference, visit Eventbrite.com.

The front page on the Quantum Gravity Society website is identical to the front page for the Quantum Mechanics & Gravity: Marrying Theory & Experiment conference website. It’s probable that will change with time.

This seems to be an in-person event only.

The site for the conference is in an exceptionally pretty location in Coal Harbour and it’s close to Stanley Park (a major tourist attraction),

The Westin Bayshore, Vancouver
1601 Bayshore Drive
Vancouver, BC V6G 2V4
View map

Assuming that most of my readers will be interested in the ‘public’ day, here’s more from the Wednesday, August 17, 2022 registration page on Eventbrite,

Tickets:

  • Corporate Table of 8 all day access – includes VIP Luncheon: $1,100
  • Ticket per person all day access – includes VIP Luncheon: $129
  • Ticket per person all day access (no VIP luncheon): $59
  • Student / Academia Ticket – all day access (no VIP luncheon): $30

Date:

Wednesday, August 17, 2022 @ 9:00 a.m. – 5:15 p.m. (PT)

Schedule:

  • Registration Opens: 8:00 a.m.
  • Morning Program: 9:00 a.m. – 12:30 p.m.
  • VIP Lunch: 12:30 p.m. – 2:30 p.m.
  • Afternoon Program: 2:30 p.m. – 4:20 p.m.
  • Public Discussion / Debate: 4:20 p.m. – 5:15 p.m.

Program:

9:00 a.m. Session 1: Beginning of the Universe

  • Viatcheslav Mukhanov – Theoretical Physicist and Cosmologist, University of Munich
  • Paul Steinhardt – Theoretical Physicist, Princeton University

Session 2: History of the Universe

  • Jim Peebles, 2019 Nobel Laureate, Princeton University
  • Baron Martin Rees – Cosmologist and Astrophysicist, University of Cambridge
  • Sir Roger Penrose, 2020 Nobel Laureate, University of Oxford (via zoom)

12:30 p.m. VIP Lunch Session: Quantum Gravity — Why Should We Care?

  • Kip Thorne – 2017 Nobel Laureate, Executive Producer of blockbuster film “Interstellar”

2:30 p.m. Session 3: What do Experiments Say?

  • Markus Aspelmeyer – Experimental Physicist, Quantum Optics and Optomechanics Leader, University of Vienna
  • Sir Roger Penrose – 2020 Nobel Laureate (via zoom)

Session 4: Time Travel

  • Kip Thorne – 2017 Nobel Laureate, Executive Producer of blockbuster film “Interstellar”

Event Partners

  • Quantum Gravity Society
  • Westin Bayshore
  • Fiore Group
  • Concord Pacific
  • VanEdge Capital
  • Frind Estate Winery

Marketing Partners

  • BC Business Council
  • Greater Vancouver Board of Trade

Please note that Sir Roger Penrose will be present via Zoom but all the others will be there in the room with you.

Given that Kip Thorne won his 2017 Nobel Prize in Physics (with Rainer Weiss and Barry Barish) for work on gravitational waves, it’s surprising there’s no mention of this in the publicity for a conference on quantum gravity. Finding gravitational waves in 2016 was a very big deal (see Josh Fischman’s and Steve Mirsky’s February 11, 2016 interview with Kip Thorne for Scientific American).

Some thoughts on this conference and the Canadian quantum scene

This conference has a fascinating collection of players. Even I recognized some of the names, e.g., Penrose, Rees, Thorne.

The academics were to be expected and every presenter is an academic, often with their own Wikipedia page. Weirdly, there’s no one from the Perimeter Institute Institute for Theoretical Physics or TRIUMF (a national physics laboratory and centre for particle acceleration) or from anywhere else in Canada, which may be due to their academic specialty rather than an attempt to freeze out Canadian physicists. In any event, the conference academics are largely from the US (a lot of them from CalTech and Stanford) and from the UK.

The business people are a bit of a surprise. The BC Business Council and the Greater Vancouver Board of Trade? Frank Giustra who first made his money with gold mines, then with Lionsgate Entertainment, and who continues to make a great deal of money with his equity investment company, Fiore Group? Terry Hui, Chief Executive Office of Concord Pacific, a real estate development company? VanEdge Capital, an early stage venture capital fund? A winery? Missing from this list is D-Wave Systems, Canada’s quantum calling card and local company. While their area of expertise is quantum computing, I’d still expect to see them present as sponsors. *ETA December 6, 2022: I just looked at the conference page again and D-Wave is now listed as a sponsor.*

The academics? These people are not cheap dates (flights, speaker’s fees, a room at the Bayshore, meals). This is a very expensive conference and $129 for lunch and a daypass is likely a heavily subsidized ticket.

Another surprise? No government money/sponsorship. I don’t recall seeing another academic conference held in Canada without any government participation.

Canadian quantum scene

A National Quantum Strategy was first announced in the 2021 Canadian federal budget and reannounced in the 2022 federal budget (see my April 19, 2022 posting for a few more budget details).. Or, you may find this National Quantum Strategy Consultations: What We Heard Report more informative. There’s also a webpage for general information about the National Quantum Strategy.

As evidence of action, the Natural Science and Engineering Research Council of Canada (NSERC) announced new grant programmes made possible by the National Quantum Strategy in a March 15, 2022 news release,

Quantum science and innovation are giving rise to promising advances in communications, computing, materials, sensing, health care, navigation and other key areas. The Government of Canada is committed to helping shape the future of quantum technology by supporting Canada’s quantum sector and establishing leadership in this emerging and transformative domain.

Today [March 15, 2022], the Honourable François-Philippe Champagne, Minister of Innovation, Science and Industry, is announcing an investment of $137.9 million through the Natural Sciences and Engineering Research Council of Canada’s (NSERC) Collaborative Research and Training Experience (CREATE) grants and Alliance grants. These grants are an important next step in advancing the National Quantum Strategy and will reinforce Canada’s research strengths in quantum science while also helping to develop a talent pipeline to support the growth of a strong quantum community.

Quick facts

Budget 2021 committed $360 million to build the foundation for a National Quantum Strategy, enabling the Government of Canada to build on previous investments in the sector to advance the emerging field of quantum technologies. The quantum sector is key to fuelling Canada’s economy, long-term resilience and growth, especially as technologies mature and more sectors harness quantum capabilities.

Development of quantum technologies offers job opportunities in research and science, software and hardware engineering and development, manufacturing, technical support, sales and marketing, business operations and other fields.

The Government of Canada also invested more than $1 billion in quantum research and science from 2009 to 2020—mainly through competitive granting agency programs, including Natural Sciences and Engineering Research Council of Canada programs and the Canada First Research Excellence Fund—to help establish Canada as a global leader in quantum science.

In addition, the government has invested in bringing new quantum technologies to market, including investments through Canada’s regional development agencies, the Strategic Innovation Fund and the National Research Council of Canada’s Industrial Research Assistance Program.

Bank of Canada, cryptocurrency, and quantum computing

My July 25, 2022 posting features a special project, Note: All emphases are mine,

… (from an April 14, 2022 HKA Marketing Communications news release on EurekAlert),

Multiverse Computing, a global leader in quantum computing solutions for the financial industry and beyond with offices in Toronto and Spain, today announced it has completed a proof-of-concept project with the Bank of Canada through which the parties used quantum computing to simulate the adoption of cryptocurrency as a method of payment by non-financial firms.

“We are proud to be a trusted partner of the first G7 central bank to explore modelling of complex networks and cryptocurrencies through the use of quantum computing,” said Sam Mugel, CTO [Chief Technical Officer] at Multiverse Computing. “The results of the simulation are very intriguing and insightful as stakeholders consider further research in the domain. Thanks to the algorithm we developed together with our partners at the Bank of Canada, we have been able to model a complex system reliably and accurately given the current state of quantum computing capabilities.”

Multiverse Computing conducted its innovative work related to applying quantum computing for modelling complex economic interactions in a research project with the Bank of Canada. The project explored quantum computing technology as a way to simulate complex economic behaviour that is otherwise very difficult to simulate using traditional computational techniques.

By implementing this solution using D-Wave’s annealing quantum computer, the simulation was able to tackle financial networks as large as 8-10 players, with up to 2^90 possible network configurations. Note that classical computing approaches cannot solve large networks of practical relevance as a 15-player network requires as many resources as there are atoms in the universe.

Quantum Technologies and the Council of Canadian Academies (CCA)

In a May 26, 2022 blog posting the CCA announced its Expert Panel on Quantum Technologies (they will be issuing a Quantum Technologies report),

The emergence of quantum technologies will impact all sectors of the Canadian economy, presenting significant opportunities but also risks. At the request of the National Research Council of Canada (NRC) and Innovation, Science and Economic Development Canada (ISED), the Council of Canadian Academies (CCA) has formed an Expert Panel to examine the impacts, opportunities, and challenges quantum technologies present for Canadian industry, governments, and Canadians. Raymond Laflamme, O.C., FRSC, Canada Research Chair in Quantum Information and Professor in the Department of Physics and Astronomy at the University of Waterloo, will serve as Chair of the Expert Panel.

“Quantum technologies have the potential to transform computing, sensing, communications, healthcare, navigation and many other areas,” said Dr. Laflamme. “But a close examination of the risks and vulnerabilities of these technologies is critical, and I look forward to undertaking this crucial work with the panel.”

As Chair, Dr. Laflamme will lead a multidisciplinary group with expertise in quantum technologies, economics, innovation, ethics, and legal and regulatory frameworks. The Panel will answer the following question:

In light of current trends affecting the evolution of quantum technologies, what impacts, opportunities and challenges do these present for Canadian industry, governments and Canadians more broadly?

The Expert Panel on Quantum Technologies:

Raymond Laflamme, O.C., FRSC (Chair), Canada Research Chair in Quantum Information; the Mike and Ophelia Lazaridis John von Neumann Chair in Quantum Information; Professor, Department of Physics and Astronomy, University of Waterloo

Sally Daub, Founder and Managing Partner, Pool Global Partners

Shohini Ghose, Professor, Physics and Computer Science, Wilfrid Laurier University; NSERC Chair for Women in Science and Engineering

Paul Gulyas, Senior Innovation Executive, IBM Canada

Mark W. Johnson, Senior Vice-President, Quantum Technologies and Systems Products, D-Wave Systems

Elham Kashefi, Professor of Quantum Computing, School of Informatics, University of Edinburgh; Directeur de recherche au CNRS, LIP6 Sorbonne Université

Mauritz Kop, Fellow and Visiting Scholar, Stanford Law School, Stanford University

Dominic Martin, Professor, Département d’organisation et de ressources humaines, École des sciences de la gestion, Université du Québec à Montréal

Darius Ornston, Associate Professor, Munk School of Global Affairs and Public Policy, University of Toronto

Barry Sanders, FRSC, Director, Institute for Quantum Science and Technology, University of Calgary

Eric Santor, Advisor to the Governor, Bank of Canada

Christian Sarra-Bournet, Quantum Strategy Director and Executive Director, Institut quantique, Université de Sherbrooke

Stephanie Simmons, Associate Professor, Canada Research Chair in Quantum Nanoelectronics, and CIFAR Quantum Information Science Fellow, Department of Physics, Simon Fraser University

Jacqueline Walsh, Instructor; Director, initio Technology & Innovation Law Clinic, Dalhousie University

You’ll note that both the Bank of Canada and D-Wave Systems are represented on this expert panel.

The CCA Quantum Technologies report (in progress) page can be found here.

Does it mean anything?

Since I only skim the top layer of information (disparagingly described as ‘high level’ by the technology types I used to work with), all I can say is there’s a remarkable level of interest from various groups who are self-organizing. (The interest is international as well. I found the International Society for Quantum Gravity [ISQG], which had its first meeting in 2021.)

I don’t know what the purpose is other than it seems the Canadian focus seems to be on money. The board of trade and business council have no interest in primary research and the federal government’s national quantum strategy is part of Innovation, Science and Economic Development (ISED) Canada’s mandate. You’ll notice ‘science’ is sandwiched between ‘innovation’, which is often code for business, and economic development.

The Bank of Canada’s monetary interests are quite obvious.

The Perimeter Institute mentioned earlier was founded by Mike Lazaridis (from his Wikipedia entry) Note: Links have been removed,

… a Canadian businessman [emphasis mine], investor in quantum computing technologies, and founder of BlackBerry, which created and manufactured the BlackBerry wireless handheld device. With an estimated net worth of US$800 million (as of June 2011), Lazaridis was ranked by Forbes as the 17th wealthiest Canadian and 651st in the world.[4]

In 2000, Lazaridis founded and donated more than $170 million to the Perimeter Institute for Theoretical Physics.[11][12] He and his wife Ophelia founded and donated more than $100 million to the Institute for Quantum Computing at the University of Waterloo in 2002.[8]

That Institute for Quantum Computing? There’s an interesting connection. Raymond Laflamme, the chair for the CCA expert panel, was its director for a number of years and he’s closely affiliated with the Perimeter Institute. (I’m not suggesting anything nefarious or dodgy. It’s a small community in Canada and relationships tend to be tightly interlaced.) I’m surprised he’s not part of the quantum mechanics and gravity conference but that could have something to do with scheduling.

One last interesting bit about Laflamme, from his Wikipedia entry, Note: Links have been removed)

As Stephen Hawking’s PhD student, he first became famous for convincing Hawking that time does not reverse in a contracting universe, along with Don Page. Hawking told the story of how this happened in his famous book A Brief History of Time in the chapter The Arrow of Time.[3] Later on Laflamme made a name for himself in quantum computing and quantum information theory, which is what he is famous for today.

Getting back to the Quantum Mechanics & Gravity: Marrying Theory & Experiment, the public day looks pretty interesting and when is the next time you’ll have a chance to hobnob with all those Nobel Laureates?

Canada’s exploratory talks about joining the European Union’s science funding programme (Horizon Europe)

Thanks to Dr. Mona Nemer, Canada’s Chief Science Advisor, for the update (via an April 21, 2022 tweet) on the talks concerning Canada’s possible association with the European Union’s Horizon Europe science funding programme.

I’ve done some digging and found this February 6, 2019 article by Michael Rogers for mairecuriealumni.eu which describes the first expressions of interest,

The EU’s biggest ever R&D programme, which will run for seven years from 2021, will offer “more flexible” entry terms for foreign countries, the European Commission’s director-general for research and innovation said Tuesday [February 5, 2019].

Successive EU R&D programmes have welcomed outside participation, but the offer of association membership to Horizon Europe, a status that allows countries to participate in EU research under the same conditions as member states, will be much wider than in the past, said Jean-Eric Paquet.

“Our goal for association is very ambitious and aimed at making it much more agile and palatable for a broader range of partners,” Paquet told a Science|Business conference in Brussels.

Already, there is interest. “I want us to be an associate member,” said Rémi Quirion, chief scientist of Québec. He was speaking for his own province but said he believes the Canadian federal government shares this ambition.

“What’s happening in the US with the current president is an opportunity for us. We need new friends,” Quirion said. “Our Prime Minister Justin Trudeau says, ‘Canada is back on the global scene’, and we want to play with you.”

Negotiations to associate with Horizon Europe, which will be one of the largest funding initiatives in the world for scientific research with a proposed budget of €94.1 billion, haven’t yet begun, though there have been some preliminary discussions.

Then, there was this June 15, 2021 article by Goda Naujokaitytė for Science Business,

Canada: doors open to Horizon Europe association

The EU is making moves to welcome Canada as an associated country in the new €95.5 billion R&D programme, Horizon Europe, European Commission president Ursula von der Leyen said in a statement following the EU-Canada summit in Brussels on Monday [June 14, 2021].

“We invited Canadian researchers to participate in our programmes. We want them with us to intensify the exchanges between our innovators, for example in bioeconomy, advanced manufacturing, clean energy, digital technologies, you just name it,” said von der Leyen. “And our Canadian friends were happy about this invitation.”

Following the summit “exploratory discussions” towards “a possible association of Canada” to Horizon Europe will begin. There will be a particular focus on supporting the green and digital transitions, including green hydrogen, artificial intelligence and quantum cooperation.

The Commission has been sounding out to Canada about possible membership for a while, but serious talks on an enhanced level of cooperation with Canada as an associated country under Horizon Europe stalled as EU officials focused on tying up loose ends with Brexit.

Following this, the row on the terms of associated country participation in sensitive quantum and space research projects led to further delays.

Beyond Horizon Europe, the Commission hopes to strengthen cooperation with Canada in a number of other areas.

As the COVID-19 pandemic drags on, the two sides hope to ensure uninterrupted vaccine flows between the countries and intensify cooperation in health.

One initiative will be a new health alliance. Details are yet to be revealed, but the alliance will have a global dimension, working to ensure that new technologies, such as mRNA, can reach other parts of the world, like Africa and Latin America. “We will share expertise; we will share lessons learnt and best practices to be better prepared and work closely together on these issues,” said von der Leyen.

Another area of cooperation will be in raw materials. Guaranteed supplies of certain minerals and metals [emphasis mine] are essential to the European economy and currently the EU is too dependent on China.

“We, as Europeans, want to diversify our imports away from producers like China. Because we want more sustainability, we want less environmental damage and we want transparency on labour conditions,” von der Leyen said.

It’s not unusual to see raw materials, such as minerals, prove to be one of Canada’s substantive attractions. Interestingly, critical minerals played a starring role in our latest federal budget (see my April 19, 2022 posting and scroll down about 50% of the way to the ‘Mining’ subhead).

Here’s the latest news from an April 21, 2022 news update (titled: Conclusion of exploratory talks on the association of New Zealand and Canada to Horizon Europe: towards formal negotiations) on the European Commission website (as mentioned on Dr. Nemer’s April 21, 2022 tweet),

The informal exploratory talks launched on 10 February 2022 between the European Commission, DG Research and Innovation, and New Zealand’s Ministry of Business, Innovation and Employment, and on 15 July 2021 between DG Research and Innovation and Innovation, Science and Economic Development Canada (ISED), have reached a conclusion.

These exploratory talks have paved the way to move towards the next stage of the process, the formal negotiation of the association agreement. They provided all parties with the opportunity to discuss the technical aspects of the envisaged association, including the prospective terms and conditions for participation in Horizon Europe actions and in the Programme’s governance.

The Commission will now prepare recommendations to the Council to launch the two negotiation processes and seek negotiating directives. Once the Council adopts such directives, the formal negotiations could commence upon readiness of New Zealand and of Canada. All parties expressed the hope that New Zealand and Canada could be associated to Horizon Europe as from 2023.

Although it’s dated December 21, 2021 this news update from the European Commission (titled: Updates on the association of third countries to Horizon Europe) is being continuously updated with the latest being dated April 25, 2022,

As of 25 April 2022, Armenia, Bosnia and Herzegovina, Georgia, Iceland, Israel, Kosovo*, Moldova, Montenegro, North Macedonia, Norway, Serbia and Turkey have applicable association agreements in place. Association agreements have also been signed with Albania, Tunisia, Ukraine. They are currently undergoing national ratification procedures and are expected to enter into force shortly.

It gives you an idea of the international scope.