Tag Archives: Université du Québec à Montréal

Nanomaterials, toxicity, and Canada’s House of Commons Standing Committee on Health

Thanks to a reader who provided me with a link, I found a document (titled Evidence) about a ‘nanomaterials’ hearing held by Canada’s House of Commons Standing Committee on Health on June 10, 2010 and chaired by Joyce Murray, Member of Parliament, Vancouver Quadra. It makes for interesting reading and you can find it here.

The official title for the hearing was Potential Risks and Benefits of Nanotechnology, which I found out after much digging around. The purpose for the *hearing*  seemed to be the education of the committee members about nanotechnology both generally (what is it? is there anything good about it?) and about its possible toxicology.

For information about the committee and the meeting, go here to find the minutes, the evidence (direct link provided in 1st para.), and your choice of webcasts (English version, French version, and floor version). One comment before you go, keep scrolling down past the sidebar and the giant white box to find the list of meetings along with appropriate links and if you choose to listen to the webcast, wait at least 1 minute for the audio to start. There’s a list of the committee members here, again scroll down past the giant white box to find the information.

I am going to make a few comments about this hearing. I will have to confine myself to a few points as the committee covered quite a bit of ground in the proceedings as they grappled with understanding something about nanotechnology, health and safety issues, benefits, and regulatory frameworks, amongst other issues.

It was unexpected to find that Mihail Roco, a well known figure in the US nanotechnology field, was speaking via videoconference (from the document),

Dr. Mihail Roco (Senior Advisor for Nanotechnology, National Nanotechnology Initiative, National Science Foundation, As an Individual) (p. 1 in print version, p. 3 in PDF)

He did have this to say,

First of all, I would like to present an overview of different themes in the United States, and thereafter make some recommendations, some ideas for the future. [emphasis mine] (p. 5 in print version, p. 7 in PDF)

I have to say my eyebrows raised at Roco’s “… make some recommendations …” comment. While appreciative of his experience and perspective, I’ve sometimes found that speakers from the US tend to give recommendations that are better geared to their own situation and less so to the Canadian one. Thankfully,  he offered unexceptional advice that I heartily agree with,

I would like to say, in conclusion, that it’s important to have an anticipatory, participatory, and adaptive governance approach to nanotechnology in order to capture the new developments and also to prepare people, tools, and organizations for the future. (p. 6 in print version, p. 8 in PDF)

The Canadian guests are not as well known to me save for Dr. Nils Petersen who heads up Canada’s National Institute of Nanotechnology. Here is a list of the Canadian guest speakers,

Mr. (sometimes referred to as Dr. in the document) Claude Ostiguy (Director, Research and Expertise Support Department, Institut de recherche Robert-Sauvé en santé et en sécurité du travail) (p. 1 in print version, p. 3 in PDF)

Dr. Nils Petersen (Director General, National Research Council Canada, National Institute for Nanotechnology) (p. 2 in print version, p. 4 in PDF)

Dr. Claude Emond (Toxicologist, Department of Environmental and Occupational Health, Université de Montréal) (p. 3 in print version, p. 5 in PDF)

Ms. Françoise Maniet (Lecturer and Research Agent, Centre de recherche interdisciplinaire sur la biologie, la santé, la société et l’environnement (CINBIOSE) et Groupe de recherche en droit international et comparé de la consommation (GREDICC), Université du Québec à Montréal) (p. 4 in print version, p. 6 in PDF)

Emond spoke to the need for a national nanotechnology development strategy. He also mentioned communication although I’m not sure he and would agree much beyond the point that some communication programmes are necessary,

The different meetings I attend point out the necessity to integrate the social communication transparency education aspect in nanotechnology development, so many structures already exist around the words. As I said before with OECD, NNI, we also have ISO 229. Now we have a network called NE3LS in Quebec, and we also have this international team we created a few years ago, which I spoke about earlier [he leads an international team in nano safety with members from France, Japan, US, Germany, and Canada].

A Canadian strategy initiative in nanotechnology can be inspired by a group above. In closing the discussion, I want to say there is an urgent need to coordinate the national development of nanotechnology and more particularly in parallel with the nanosafety issue, including research, characterization exposure, toxicology, and assessment. I would like to conclude by saying that Canada has to assume leadership in nanosafety and contribute to this international community rather than wait and see.

The NE3LS in Québec is new to me and I wonder if  they liaise with the team in Alberta last mentioned here in connection with Alberta’s Nanotechnology Asset Map.

In response to a question from the committee member, Mrs. Cathy McLeod, Kamloops—Thompson—Cariboo,

First, because I am someone who is somewhat new to the understanding of this issue, could we take an example of either a cosmetic or a food or something that’s commonplace and follow it through from development into the product so I could understand the pathway of a nanoparticle in a cosmetic product or food? (p. 6 in print version, p. 8 in PDF)

The example Dr. Ostiguy used for his response was titanium dioxide nanoparticles in sunscreens and his focus was occupational safety, i.e., what happens to people working to produce these sunscreens.  The surprising moment came when I saw Dr. Petersen’s response as he added,

In the case of cosmetics, they take that nanoparticle and put it into the cream formulation at a factory site. Then it normally comes out to the consumer encapsulated or protected in one way or another. [emphasis mine]

In general, in those kinds of manufacturing environments the risks are at the start of the process, when you are making the particles and incorporating them into a material, and possibly at the end of the product’s life, when you’re disposing of it. It might then be released in ways that you might not have anticipated—for example, through the wearing down or opening of the cassette of toner or whatever.

I think those are the two areas. Most consumers would see a product in which nanoparticles are encapsulated or incorporated— maybe inside a cellphone, or something like that—and often not be exposed in that way. (p. 7 in print version, p. 9 in PDF)

As I understand Petersen’s comments, he believes that the nanoparticles in sunscreens (and other cosmetics) do not make direct contact as they are somehow incorporated into a shell or capsule. He then makes a comparison to cell phones to prove his point. This is incorrect. Yes, any nanomaterials in a cell phone are bound to the product (cell phones are not rubbed onto the skin) but the nanoparticles in sunscreens make direct contact and *penetrate the skin. *ETA June 28, 2010: It has not been unequivocally proved that nanoparticles penetrate healthy adult skin. I apologize for the error. ** ETA July 19, 2010: As per the July 18, 2010 posting on Andrew Maynard’s 2020 Science blog, the evidence so far suggests that there is no skin penetration by nanoparticles in sunscreens.

I have posted extensively about nanoparticles and sunscreens and will try later to lay in some links either to my posts or to more informed parties as to safety issues regarding consumers.

There was an interesting development towards the end of the meeting with Carolyn Bennett, St. Paul’s,

Firstly, I wanted to apologize for being late. I think some of you know it was the tenth anniversary of CIHR [Canadian Institutes of Health Research] this morning, the breakfast, and some of us who were there at the birth were supposed to be there at the birthday party. So my apologies.

What happened on the way in to the breakfast was that I ran into Liz Dowdeswell, from the Council of Canadian Academies, and it seems that they have just done a review of nanotechnology in terms of pros and cons. [emphasis mine]So I would first ask the clerk and the analyst to circulate that report to the committee, because I think it might be very helpful to us, and then I think it would be interesting to know if the witnesses had seen it and whether they had further comments on whether you felt it was taking Canada in the right direction.

The report mentioned by Bennett was released in July 8, 2008 (news release). You can find the full report here and the abridged version here.

I wouldn’t describe this report as having just been “done” but I think that as a primer it stands up well. (You can read my 2008 comments here.)

I do find it sad that neither this committee nor Peter Julian the Member of Parliament who earlier this year tabled the first bill concerned with nanotechnology were aware of the report’s existence. It adds weight to an issue (nobody in Ottawa seems to be aware of their work) for the Council of Canadian Academies mentioned on this blog here (where you will find links to a more informed discussion by Rob Annan at Don’t leave Canada behind and the folks at The Black Hole).

I’m glad to see there’s some interest in nanotechnology in Ottawa and I hope they continue to dig for more information.

I have sent Joyce Murray a set of questions which I hope she’ll answer about the committee’s interest in nanotechnology and about the science resources and advice available to the Members of Parliament.

ETA June 30, 2010: I received this correction from Mr. Julian’s office today:

I would like to bring to your attention incorrect information provided in the Frogheart posting on June 23, Nanomaterials, Toxicity, and Canada’s House of Commons Standing Committee on Health. Of particular concern are the closing comments:

“I do find it sad that neither this committee nor Peter Julian the Member of Parliament who earlier this year tabled the first bill concerned with nanotechnology were aware of the report’s existence. It adds weight to an issue (nobody in Ottawa seems to be aware of their work) for the Council of Canadian Academies mentioned on this blog here (where you will find links to a more informed discussion by Rob Annan at Don’t leave Canada behind and the folks at The Black Hole). I’m glad to see there’s some interest in nanotechnology in Ottawa and I hope they continue to dig for more information.”

Mr. Julian is indeed aware of the Council of Canadian Academies excellent report on nanotechnology in 2008. The document is one of many that formed the basis of Mr. Julian’s Bill C-494 which was tabled in Parliament on March 10. It is incorrect to assume that Mr. Julian was not aware of the report’s existence.

There is indeed interest in nanotechnology in Ottawa. Canadians should expect sustained interest when the House of Commons reconvenes in September with a focus on better ensuring that nanotechnology’s benefits are safely produced in the marketplace.

I apologize for the error and I shouldn’t have made the assumption. I am puzzled that the Council of Canadian Academies report was not mentioned in the interview Mr. Julian very kindly gave me and where I explicitly requested some recommendations for Canadians who want to read up about nanotechnology. Mr. Julian’s reply (part 2 of the interview) did not include a reference to the Council’s nanotechnology report, which I consider more readable than some of the suggestions offered.

*’haring’ changed to ‘hearing’ on July 26, 2016.

Bacterial nanobots build a pyramid; solar cell breakthrough in Quebec; global nano regulatory framework conference at Northeastern University; Robert Fulford talks about the poetry of nanotechnology

Just when I was thinking that the Canadian nanotechnology scene was slowing down there’s this: A research team at the École Polytechnique de Montréal (Québec) has announced that they’ve trained bacteria to build structures shaped like pyramids. From the news item on Nanowerk,

Faster than lion tamers… More powerful than snake charmers… Make way for the bacteria trainers! Professor Sylvain Martel and his team at the École Polytechnique de Montréal NanoRobotics Laboratory have achieved a new world first: “training” living bacteria to build a nanopyramid.

These miniature construction workers are magnetotactic bacteria (MTB): they have their own internal compasses, allowing them to be pulled by magnetic fields. MTB possess flagella bundles enabling each individual to generate a thrust force of approximately 4 picoNewtons. Professor Martel’s team has succeeded in directing the motion of a group of such bacteria using computer-controlled magnetic fields. In an experiment conducted by Polytechnique researchers, the bacteria transported several epoxy nanobricks and assembled them into a step-pyramid structure, completing the task in just 15 minutes. The researchers have also managed to pilot a group of bacteria through the bloodstream of a rat using the same control apparatus.

Nanowerk also features a video of the magnetotactic bacteria at work.

Solar cell breakthrough?

More Canadian nano from Québec: a researcher (Professor Benoît Marsan) and his team at the Université du Québec à Montréal (UQAM) have provided solutions to two problems which have been inhibiting the development of the very promising Graetzel solar cell that was developed in the 1990s in Switzerland. From the news item on Nanowerk a description of the problems,

Most of the materials used to make this cell are low-cost, easy to manufacture and flexible, allowing them to be integrated into a wide variety of objects and materials. In theory, the Graetzel solar cell has tremendous possibilities. Unfortunately, despite the excellence of the concept, this type of cell has two major problems that have prevented its large-scale commercialisation:

– The electrolyte is: a) extremely corrosive, resulting in a lack of durability; b) densely coloured, preventing the efficient passage of light; and c) limits the device photovoltage to 0.7 volts.

– The cathode is covered with platinum, a material that is expensive, non-transparent and rare. Despite numerous attempts, until Professor Marsan’s recent contribution, no one had been able to find a satisfactory solution to these problem

Now a description of the solutions,

– For the electrolyte, entirely new molecules have been created in the laboratory whose concentration has been increased through the contribution of Professor Livain Breau, also of the Chemistry Department. The resulting liquid or gel is transparent and non-corrosive and can increase the photovoltage, thus improving the cell’s output and stability.

– For the cathode, the platinum can be replaced by cobalt sulphide, which is far less expensive. It is also more efficient, more stable and easier to produce in the laboratory.

More details about the work and publication of the study are at Nanowerk.

Northeastern University and nano regulatory frameworks

According to a news item on Azonano, Northeastern University’s (Boston, MA) School of Law will be hosting a two-day conference on international regulatory frameworks for nanotechnology.

Leading international experts on the global regulation of nanotechnologies, including scientists, lawyers, ethicists and officials from governments, industry stakeholders, and NGOs will join in a two-day conference May 7-8, 2010 at Northeastern University’s School of Law.

The conference will identify best practices that address the needs of industries, the public and regulators. Speakers include representatives from the U.S. Environmental Protection Agency, the Brazil Ministry of Science and Technology, the Korean government, the International Conference of Chemicals Management and National Science Foundation-funded university-industry collaborations.

I checked out the law school’s conference website and noted a pretty good range of speakers from Asia, Europe, and North and South America. It can’t have been easy pulling such a diverse group together. Unfortunately, I didn’t recognize names other than two Canadian ones: Dr. Mark Saner and Pat Roy Mooney.

Saner who’s from Carleton University (Ottawa, Ontario) co-wrote a paper cited by Peter Julian (Canadian Member of Parliament) as one of the materials he used for reference when drawing up his recently tabled bill on nanotechnology regulation. (You can see Julian’s list here.) Saner, when he worked with the Council of Canadian Academies, was charged with drawing together the expert panel that wrote the council’s paper on nanotechnology. That panel put together a report (Small is Different: A Science Perspective on the Regulatory Challenges of the Nanoscale) that does a thoughtful job of discussing nanotechnology, regulations, the precautionary principle, etc. and which you can find here. (As I recall I don’t agree with everything as written in the report but it is, as I noted, thoughtful.)

As for Pat Roy Mooney, he’s the executive director for the ETC Group which is a very well-known (to many scientists and businesses in the technology sectors) civil society group. There’s an Oct. 2009 interview with Mooney here where he discusses (in English) nanotechnology during a festival in Austria.

Robert Fulford and nanotechnology

Canadian journalist and author, Robert Fulford just penned an essay/article about nanotechnology for the National Post. From the article,

Fresh bulletins regularly bring news of startling developments in this era’s most surprising and perhaps most poetic form of science, nanotechnology, the study of the unthinkably small.

It’s a pleasure to read as a literary piece. Fulford mostly concerns himself with visions of what nanotechnology could accomplish and with a book (No small matter) by Felice Frankel and George Whitesides which I first saw mentioned by Andrew Maynard on his 2020 Science blog here.