Tag Archives: FPInnovations

Two new Canada Excellence Research Chairs (CERC) at the University of British Columbia (Canada) bring bioproducts and precision medicine skills

This is very fresh news. One of these chairs has not yet been listed (at the time of this writing) as a member of the institute that he will be leading. Here’s the big picture news from an
April 17, 2019 University of British Columbia (UBC) news release, Note: Links have been removed,

Two internationally recognized researchers join the University of British Columbia as Canada Excellence Research Chairs, bringing international talent in the fields of forest bioproducts and precision cancer drug design.

Orlando Rojas has accepted the Canada Excellence Research Chair in Forest Bioproducts, while Sriram Subramaniam will hold the Gobind Khorana Canada Excellence Research Chair in Precision Cancer Drug Design—named after late Nobel Prize-winning UBC biochemistry professor Har Gobind Khorana.

“We are delighted to welcome Dr. Rojas and Dr. Subramaniam to UBC,” said UBC President and Vice-Chancellor, Professor Santa J. Ono. “Thanks to the CERC program and the generous support of our partners, including VGH & UBC Hospital Foundation, we have an opportunity to continue to build on UBC’s reputation as a global leader in these vitally important research fields.”

The Canada Excellence Research Chairs (CERC) program was established by the federal government in 2008 to attract top research talent from abroad to Canada. UBC will receive up to $10 million over seven years to support each chair and their research teams. In addition, a philanthropic gift of $18 million made to VGH & UBC Hospital Foundation will support cancer drug design that will be carried out by Subramaniam in close partnership with UBC and the Vancouver Prostate Centre at VGH.

“VGH & UBC Hospital Foundation is honoured to announce an $18 million gift from Aqueduct Foundation on behalf of an anonymous donor that will increase capacity for discovering and testing new life-saving cancer treatments right here in B.C. This funding will specifically support the design of precise, targeted and cost-effective drugs for cancer in work led by Dr. Sriram Subramaniam in close partnership with UBC and the Vancouver Prostate Centre at VGH and other research centres,” says Barbara Grantham, president and CEO of VGH & UBC Hospital Foundation.

Bioproducts

The April 17, 2019 UBC news release, goes on to describe the two new chairs,

Breaking new ground in forest bioproducts

Orlando Rojas comes to UBC from Aalto University [Finland], where he directs with VTT, the Technical Research Centre of Finland, a scientific cluster to advance the Finnish materials bio-economy. A recipient of the Anselme Payen Award—one of the highest international recognitions in the area of cellulose and renewable materials—and an elected member of the American Chemical Society and the Finnish Academy of Science and Letters, Rojas is recognized as a worldwide leader in the area of nanocelluloses.

“I’m thrilled to join an already stellar team of researchers at UBC’s BioProducts Institute,” said Rojas. “My research is aimed at uncovering solutions that can be found in nature to fulfill our material needs by using sustainably, readily available bio-resources. I hope to break new grounds to create positive societal impacts and to better our quality of life.”

As the CERC in Forest Bioproducts, Rojas will establish a world-class research program in genomics, synthetic biology, materials science and engineering. Together with his team and by applying cutting-edge nano- and biotechnologies, he will discover new strategies to isolate and transform biomass components—non-fossil organic materials derived from plants (including wood)—as well as side-streams and residuals from forestry and agriculture, oils and biomolecules. The work will lead to the generation of new bio-based precursors and advanced materials critical to the future bioeconomy. Rojas will be the scientific director of the UBC BioProducts Institute, synergizing a distinguished group of professors and researchers across campus who will conduct multi- and cross-disciplinary research that will position UBC at the forefront in the area.

As climate change continues to be the greatest threat to our world, the need to transition toward a more sustainable bio-based circular economy is critical. Rojas’ research is vital in understanding the role of forest and other plant-based resources in facilitating the transition to renewable materials and bioproducts.

As I noted earlier, Rojas has yet to be added to the UBC BioProducts Institute roster but I did find a listing of his published papers on Google Scholar and noted a number of them are focused on nanocellulose with at least one study on cellulose nanocrystals (CNC),

  • Cellulose nanocrystals: chemistry, self-assembly, and applications [by] Y Habibi, LA Lucia, OJ Rojas Chemical reviews 110 (6), 3479-3500

The University of British Columbia was the site for much of the early work in Canada and internationally on cellulose nanocrystals. After the provincial government lost interest in supporting it, the researchers at FPInnovations (I think it was a university spin-off organization) moved their main headquarters (leaving a smaller group in British Columbia) to the province of Québec where they receive significant support . In turn, FPInnovations spun-off a company, CelluForce which produces CNC from forest products.This news about Roja’s appointment would seem to make for an interesting development in Canada’s nanocellulose story.

Precision medicine with cryo-electron microscopy

Now for the second CERC appointment, from the April 17, 2019 UBC news release,

Putting Canada at the forefront of precision medicine

Sriram Subramaniam is recognized as a global leader in the emerging field of cryo-electron microscopy, or cryo-EM, a technology that has sparked a revolution in imaging of protein complexes. Subramaniam and his team demonstrated that proteins and protein-bound drugs could be visualized at atomic resolution with cryo-EM, paving the way for this technology to be used in accelerating drug discovery.

Subramaniam comes to UBC’s faculty of medicine from the US National Cancer Institute (NCI) at the National Institutes of Health (NIH) where he led a research team that made seminal advances in molecular and cellular imaging using electron microscopy, including work on advancing vaccine design for viruses such as HIV. Subramaniam is also founding director of the National Cryo-EM Program at NCI, NIH.

As the Gobind Khorana Canada Excellence Research Chair in Precision Cancer Drug Design, Subramaniam will establish and direct a laboratory located at UBC, aimed at bringing about transformative discoveries in cancer, neuroscience and infectious disease. Subramaniam is appointed both in the department of urologic sciences and in biochemistry and molecular biology at UBC, and is linked to the precision cancer drug design program at the Vancouver Prostate Centre at VGH.

His research is supported by a philanthropic gift of $18 million made to VGH & UBC Hospital Foundation. He will work in close partnership with the Vancouver Prostate Centre at VGH.

“We would not be able to undertake this path aimed at leveraging advances in imaging technology to improve patient outcomes if it weren’t for the generous support of the donor, the Canadian government, and VGH & UBC Hospital Foundation,” said Subramaniam. “I am proud to be part of a team of outstanding researchers here in Vancouver, and working together to harness the true potential of cryo-EM to accelerate drug design. Our work has the potential to establish VGH, UBC and Canada at the forefront of the emerging era of precision medicine.”

I was not able to find much in the way of additional information about Subramaniam—other than this (from the High Resolution Electron Microscopy Lab Members webpage),

Sriram Subramaniam received his Ph.D. in Physical Chemistry from Stanford University and completed postdoctoral training in the Departments of Chemistry and Biology at M.I.T. [Massachusetts Institute of Technology] He is chief of the Biophysics Section in the Laboratory of Cell Biology at the Center for Cancer Research, National Cancer Institute. He holds a visiting faculty appointment at the Johns Hopkins University School of Medicine.

Welcome to both Orlando J. Rohas and Sriram Subramaniam!

nano tech 2017 being held in Tokyo from February 15-17, 2017

I found some news about the Alberta technology scene in the programme for Japan’s nano tech 2017 exhibition and conference to be held Feb. 15 – 17, 2017 in Tokyo. First, here’s more about the show in Japan from a Jan. 17, 2017 nano tech 2017 press release on Business Wire (also on Yahoo News),

The nano tech executive committee (chairman: Tomoji Kawai, Specially Appointed Professor, Osaka University) will be holding “nano tech 2017” – one of the world’s largest nanotechnology exhibitions, now in its 16th year – on February 15, 2017, at the Tokyo Big Sight convention center in Japan. 600 organizations (including over 40 first-time exhibitors) from 23 countries and regions are set to exhibit at the event in 1,000 booths, demonstrating revolutionary and cutting edge core technologies spanning such industries as automotive, aerospace, environment/energy, next-generation sensors, cutting-edge medicine, and more. Including attendees at the concurrently held exhibitions, the total number of visitors to the event is expected to exceed 50,000.

The theme of this year’s nano tech exhibition is “Open Nano Collaboration.” By bringing together organizations working in a wide variety of fields, the business matching event aims to promote joint development through cross-field collaboration.

Special Symposium: “Nanotechnology Contributing to the Super Smart Society”

Each year nano tech holds Special Symposium, in which industry specialists from top organizations from Japan and abroad speak about the issues surrounding the latest trends in nanotech. The themes of this year’s Symposium are Life Nanotechnology, Graphene, AI/IoT, Cellulose Nanofibers, and Materials Informatics.

Notable sessions include:

Life Nanotechnology
“Development of microRNA liquid biopsy for early detection of cancer”
Takahiro Ochiya, National Cancer Center Research Institute Division of Molecular and Cellular Medicine, Chief

AI / IoT
“AI Embedded in the Real World”
Hideki Asoh, AIST Deputy Director, Artificial Intelligence Research Center

Cellulose Nanofibers [emphasis mine]
“The Current Trends and Challenges for Industrialization of Nanocellulose”
Satoshi Hirata, Nanocellulose Forum Secretary-General

Materials Informatics
“Perspective of Materials Research”
Hideo Hosono, Tokyo Institute of Technology Professor

View the full list of sessions:
>> http://nanotech2017.icsbizmatch.jp/Presentation/en/Info/List#main_theater

nano tech 2017 Homepage:
>> http://nanotechexpo.jp/

nano tech 2017, the 16th International Nanotechnology Exhibition & Conference
Date: February 15-17, 2017, 10:00-17:00
Venue: Tokyo Big Sight (East Halls 4-6 & Conference Tower)
Organizer: nano tech Executive Committee, JTB Communication Design

As you may have guessed the Alberta information can be found in the .Cellulose Nanofibers session. From the conference/seminar program page; scroll down about 25% of the way to find the Alberta presentation,

Production and Applications Development of Cellulose Nanocrystals (CNC) at InnoTech Alberta

Behzad (Benji) Ahvazi
InnoTech Alberta Team Lead, Cellulose Nanocrystals (CNC)

[ Abstract ]

The production and use of cellulose nanocrystals (CNC) is an emerging technology that has gained considerable interest from a range of industries that are working towards increased use of “green” biobased materials. The construction of one-of-a-kind CNC pilot plant [emphasis mine] at InnoTech Alberta and production of CNC samples represents a critical step for introducing the cellulosic based biomaterials to industrial markets and provides a platform for the development of novel high value and high volume applications. Major key components including feedstock, acid hydrolysis formulation, purification, and drying processes were optimized significantly to reduce the operation cost. Fully characterized CNC samples were provided to a large number of academic and research laboratories including various industries domestically and internationally for applications development.

[ Profile ]

Dr. Ahvazi completed his Bachelor of Science in Honours program at the Department of Chemistry and Biochemistry and graduated with distinction at Concordia University in Montréal, Québec. His Ph.D. program was completed in 1998 at McGill Pulp and Paper Research Centre in the area of macromolecules with solid background in Lignocellulosic, organic wood chemistry as well as pulping and paper technology. After completing his post-doctoral fellowship, he joined FPInnovations formally [formerly?] known as PAPRICAN as a research scientist (R&D) focusing on a number of confidential chemical pulping and bleaching projects. In 2006, he worked at Tembec as a senior research scientist and as a Leader in Alcohol and Lignin (R&D). In April 2009, he held a position as a Research Officer in both National Bioproducts (NBP1 & NBP2) and Industrial Biomaterials Flagship programs at National Research Council Canada (NRC). During his tenure, he had directed and performed innovative R&D activities within both programs on extraction, modification, and characterization of biomass as well as polymer synthesis and formulation for industrial applications. Currently, he is working at InnoTech Alberta as Team Lead for Biomass Conversion and Processing Technologies.

Canada scene update

InnoTech Alberta was until Nov. 1, 2016 known as Alberta Innovates – Technology Futures. Here’s more about InnoTech Alberta from the Alberta Innovates … home page,

Effective November 1, 2016, Alberta Innovates – Technology Futures is one of four corporations now consolidated into Alberta Innovates and a wholly owned subsidiary called InnoTech Alberta.

You will find all the existing programs, services and information offered by InnoTech Alberta on this website. To access the basic research funding and commercialization programs previously offered by Alberta Innovates – Technology Futures, explore here. For more information on Alberta Innovates, visit the new Alberta Innovates website.

As for InnoTech Alberta’s “one-of-a-kind CNC pilot plant,” I’d like to know more about it’s one-of-a-kind status since there are two other CNC production plants in Canada. (Is the status a consequence of regional chauvinism or a writer unfamiliar with the topic?). Getting back to the topic, the largest company (and I believe the first) with a CNC plant was CelluForce, which started as a joint venture between Domtar and FPInnovations and powered with some very heavy investment from the government of Canada. (See my July 16, 2010 posting about the construction of the plant in Quebec and my June 6, 2011 posting about the newly named CelluForce.) Interestingly, CelluForce will have a booth at nano tech 2017 (according to its Jan. 27, 2017 news release) although the company doesn’t seem to have any presentations on the schedule. The other Canadian company is Blue Goose Biorefineries in Saskatchewan. Here’s more about Blue Goose from the company website’s home page,

Blue Goose Biorefineries Inc. (Blue Goose) is pleased to introduce our R3TM process. R3TM technology incorporates green chemistry to fractionate renewable plant biomass into high value products.

Traditionally, separating lignocellulosic biomass required high temperatures, harsh chemicals, and complicated processes. R3TM breaks this costly compromise to yield high quality cellulose, lignin and hemicellulose products.

The robust and environmentally friendly R3TM technology has numerous applications. Our current product focus is cellulose nanocrystals (CNC). Cellulose nanocrystals are “Mother Nature’s Building Blocks” possessing unique properties. These unique properties encourage the design of innovative products from a safe, inherently renewable, sustainable, and carbon neutral resource.

Blue Goose assists companies and research groups in the development of applications for CNC, by offering CNC for sale without Intellectual Property restrictions. [emphasis mine]

Bravo to Blue Goose! Unfortunately, I was not able to determine if the company will be at nano tech 2017.

One final comment, there was some excitement about CNC a while back where I had more than one person contact me asking for information about how to buy CNC. I wasn’t able to be helpful because there was, apparently, an attempt by producers to control sales and limit CNC access to a select few for competitive advantage. Coincidentally or not, CelluForce developed a stockpile which has persisted for some years as I noted in my Aug. 17, 2016 posting (scroll down about 70% of the way) where the company announced amongst other events that it expected deplete its stockpile by mid-2017.

CelluForce finalist in Global Cleantech Cluster Association (GCCA) 2013 Later Stage Awards

The Global Cleantech Cluster Association (GCCA) is a cluster of cleantech cluster associations. In other words, if you lead a cleantech association whose membership includes cleantech businesses and ventures, you might call your organization a cleantech cluster and that organization could be eligible for membership in the global association (or cluster of clusters), the GCCA.

CelluForce, a Québec-based company, has emerged as one of 30 finalists in the GCCA’s 2013 Later Stage Awards. From the Nov. 11, 2013 CelluForce news release,

CelluForce, the world leader in the commercial development of Cellulose Nanocrystals (CNC), also referred to as NanoCrystalline Cellulose (CelluForce NCC™), is pleased to be recognized among the Global Top 30 in the prestigious Global Cleantech Cluster Association (GCCA) 2013 Later Stage Awards and the top three finalists in the lighting and energy efficiency category.

Each company was evaluated based on their merits in technological innovation and business acumen using the Keystone Compact Method. The Global Top 10 winners will be announced at the Corporate Cleantech Venture Day in Lathi, Finland on November 20th, 2013.

“The 2013 Global Top 30 demonstrate investability, strong product differentiation, scalable business models and have secured solid market traction in their various clean technology sectors,” said Dr. Peter Adriaens, Head Judge of the GCCA Later Stage Awards and developer of the Keystone Compact™ and associated scoring method.

“Narrowing down the nominations from 160 to 30 follows a detailed and robust process and analytics. The 2013 Global Top 30 some of the world’s most sought after equity

investable cleantech companies based on value capture potential in their CleanTech industry sectors.” An interview of Dr. Adriaens is available at http://www.globalcleantech.org/awards/criteria-and-eligibility/

“It is an honor to be part of this prestigious list of the world’s top Cleantech companies” said Jean Moreau, CelluForce President and CEO. “This honor is a reflection of the hard work and resilience demonstrated by the CelluForce team and its partners in developing commercial applications for CNC”, added Moreau. CelluForce is a member of Cleantech cluster Écotech Québec, a founding member of the Global Cleantech Cluster Association.

About CelluForce Inc.

CelluForce Inc. is the world leader in the commercial development of Cellulose Nanocrystals (CNC), also referred to as NanoCrystalline Cellulose (CelluForce NCC™).

The company is a joint venture of Domtar Inc. and FPInnovations. CelluForce manufactures NCC/CNC in the world’s first demonstration plant of its kind, located in Windsor, Québec, develops new applications for NCC/CNC, markets and sells it. The company’s head office is in Montreal. www.celluforce.com

About the Global Cleantech Cluster Association

The Global Cleantech Cluster Association (GCCA) is a network of 49 cleantech clusters, representing over 10,000 companies. It creates conduits for companies to

harness the tremendous benefits of international cleantech cluster collaboration in an efficient, affordable, and structured network. The GCCA provides a gateway for established and emerging cleantech companies to gain exposure to potential investors, new markets, influential networks, innovative technologies and best practices. GCCA was founded by swisscleantech, the Finnish Cleantech Cluster, and Watershed Capital, and Technica Communications. For more information about the GCCA, please visit www.globalcleantech.org.

I was not able to find either the source of GCCA funds, presumably they derive their income from memberships, or information about the prizes. There is this about the judging crriteria, from the GCCA’s Criteria and Eligibility webpage (Note: Links have been removed)

Judging Criteria
Companies must fit into one of the following categories:

Biofuels/BioEnergy
CleanWeb/Sustainable IT
Energy Storage/Smart Grid
Green Building
Lighting/Energy Efficiency
Smart Cities (products & services)
Solar & Wind Energy
Transportation
Waste Management
Water (Resource recovery, energy, treatment, etc)

Renowned experts of the global Cleantech investment community (VC’s, PE, etc.) and award category experts are forming the judging panel, coordinated by GCCA.

The following are areas that Award nominees will be judged on:

Clarity of the business strategy: does a viable business with significant markets exist?
The BIG Idea: why is it BIG in terms of breakthrough in innovation, concept and commercial potential?
Core team – profile & tenure: is there a relevant mix of requisite expertise and experience?
Funding: what are current and future sources?
ROI and/or exit strategy: is the business plan reasonable?
Sustainability: what is the positive impact on the environment?

Learn more about the The KeyStone Method™ and review the Keystone Score Brief.

Eligibility

To participate in the GCCA Later Stage Award, Cleantech clusters can nominate any later stage Cleantech company that is member of a cleantech cluster associated with GCCA.

Later stage companies are defined as companies with a proven track record (revenue) in their home market and the strategic goal to expand internationally, and/or a scalable technology or service with international growth potential (pre-revenue, but proven in pilot and demonstration projects).

Nominees may be disqualified if the GCCA jury (at their sole discretion) considers the nominee not eligible to participate.

Please send questions or comments about the GCCA Later Stage Award to award@globalcleantech.org

**All prizes are awarded at the discretion of the judging panel and all judging decisions are final and not subject to appeal.

You can find out more about the Keystone Compact here and Keystone Score here. Good luck to the folks at CelluForce on Nov. 20, 2013 (when they announce the winner in Finland). CelluForce’s two competitors at this stage are: SELC (Ireland) and ThinkEco (US)..

2013 (5th annual) Canadian Science Policy Conference announces some new (for this year) initiatives

An Oct. 29, 2013  announcement highlights some of the speakers you can expect at the 2013 (5th annual) Canadian Science Policy Conference (CSPC) being held in Toronto, Ontario from Nov. 20 – 22, 2013. The conference whose overarching theme is ScienceNext: Incubating Innovation and Ingenuity features (Note: I have bolded this year’s new initiatives),,

CSPC 2013 Welcomes Minister Rickford:
We are thrilled to announce that the Honourable Greg Rickford, [Canada’s] Minister of State (Science and Technology, and Federal Economic Development Initiative for Northern Ontario) will speak at CSPC 2013, more details to follow. Be sure not to miss it, register now!

Are you the next Rick Mercer? Bill Nye?
CSPC presents its first ever humorous speech contest, Whose Science is it Anyway? Thursday, November 21st at 9pm. To enter, send your name, contact info and 2-3 lines about your story to aanchal.kamra@gmail.com. Attractive prizes to be won! Deadline: 5pm, Friday, Nov. 15 (Finalists will be notified Monday, Nov. 18)

CSPC is now Accepting Donations:
We are quite pleased to announce that with the generous support from Ryerson University, CSPC can issue charitable tax receipts for donations. If you wish to donate please contact us or visit cspc2013.ca for more details. www.cspc2013.ca

> CONFERENCE HIGHLIGHTS

• 600+ participants, 28 panel sessions, 150+ speakers including:

– Hon. Reza Moridi, MPP,Ontario Minister of Research and Innovation

– John Knubley, Deputy Minister, Industry Canada

– Robert Hardt, President and CEO, Siemens Canada Limited

– Wendy Cukier, Vice President of Research and Innovation, Ryerson University

– Pierre Meulien, President and CEO, Genome Canada

– Paul Young, Vice President Research, University of Toronto

More exciting names are being added to the Program.

Inauguration of the Awards of Excellence in Science Policy – a first in Canada

• 3 pre conference full day workshops/symposiums

– Science Policy Nuts and Bolts
– Science Diplomacy
– Communication of Science

> CONFERENCE HONORARY CO-CHAIRS

• The Honourable Michael H. Wilson, Chairman, Barclays Capital Canada Inc. and Chancellor, University of Toronto

• Mandy Shapansky, President and Chief Executive Officer, Xerox Canada Ltd.

> CSPC 2013 CONFERENCE THEMES

• Private Sector R&D and Innovation: New Realities and New Models

• Emerging Trends: Science & Technology in International Trade and Diplomacy

• Science and Technology Communication

• Graduate Studies and Research Training: Prospects in a Changing Environment

• Emerging Issues in Canadian Science Policy

A couple of comments. I notice that Member of Parliament (NDP) Kennedy Stewart,, the Official Opposition Critic for Science and Technology, and member of the Standing Committee on Industry, Science and Technology, is included as a feature speaker this year. Last year (2012), he held an impromptu, after official conference presentation hours sessions on science policy. Good to see that he’s been included in the official programme for 2013. Perhaps next year (2014) will see the Liberal critic for Science and Technology. Ted Hsu as a speaker.

Pierre Lapointe is another speaker whose name caught my attention as he is the President and Chief Executive Officer of FPInnovations, one of the partners behind CelluForce (the other partner is Domtar), the Canadian nanocrystalline cellulose (NCC, aka, cellulose nanocrystals, CNC) initiative. In my Oct. 3, 2013 posting,  I noted that CelluForce had stopped producing NCC as they had a stockpile of the product. Unfortunately, it doesn’t look like there’ll be any mention of the stockpile since Lapointe is on a panel organized by Genome Canada and titled: The complexity of driving the bio-economy: Genomics, Canada’s natural resources and private-public collaborations.

Gary Goodyear rouses passions: more on Canada’s National Research Council and its new commitment to business

Gary Goodyear’s, Minister of State (Science and Technology), office in attempting to set the record straight has, inadvertently, roused even more passion in Phil Plait’s (Slate.com blogger) bosom and inspired me to examine more commentary about the situation regarding the NRC and its ‘new’ commitment to business.

Phil Plait in a May 22, 2013 followup to one 0f his recent postings (I have the details about Plait’s and other commentaries in my May 13, 2013 posting about the NRC’s recent declarations) responds to an email from Michele-Jamali Paquette, the director of communication for Goodyear (Note: A link has been removed),

I read the transcripts, and assuming they are accurate, let me be very clear: Yes, the literal word-for-word quotation I used was incorrect, and one point I made was technically and superficially in error. But the overall point—that this is a terrible move by the NRC and the conservative Canadian government, short-changing real science—still stands. And, in my opinion, Goodyear’s office is simply trying to spin what has become a PR problem.

I’ll note that in her email to me, Paquette quoted my own statement:

John MacDougal [sic], President of the NRC, literally said, “Scientific discovery is not valuable unless it has commercial value”

Paquette took exception to my use of the word “literally,” emphasizing it in her email. (The link, in both her email and my original post, goes to the Toronto Sun story with the garbled quotation.) Apparently MacDougal did not literally say that. But the objection strikes me as political spin since the meaning of what MacDougal said at the press conference is just as I said it was in my original post.

As I pointed out in my first post: Science can and should be done for its own sake. It pays off in the end, but that’s not why we do it. To wit …

Paquette’s choice of what issues (the 2nd issue was Plait’s original description of the NRC as a funding agency) to dispute seem odd and picayune as they don’t have an impact on Plait’s main argument,

Unfortunately, despite these errors, the overall meaning remains the same: The NRC is moving away from basic science to support business better, and the statements by both Goodyear and MacDougal [sic] are cause for concern.

Plait goes on to restate his argument and provide a roundup of commentaries. It’s well worth reading for the roundup alone.  (One picayune comment from me, I wish Plait would notice that the head of Canada’s National Research Council’s name is spelled this way, John McDougall.)

Happily, Nassif Ghoussoub has also chimed in with a May 22, 2013 posting (on his Piece of Mind blog) regarding the online discussion (Note: Links have been removed),

The Canadian twitter world has been split in the last couple of days. … But then, you have the story of the Tories’ problem with science, be it defunding, muzzling, disbelieving, doubting, preventing, delegitimizing etc. The latter must have restarted with the incredible announcement about the National Research Council (NRC), presented as “Canada sells out science” in Slate, and as “Failure doesn’t come cheap” in Maclean’s. What went unnoticed was the fact that the restructuring turned out to be totally orthogonal to the recommendations of the Jenkins report about the NRC. Then came the latest Science, Technology and Innovation Council (STIC) report, which showed that Canada’s expenditure on research and development has fallen from 16th out of 41 comparable countries in the year Stephen Harper became prime minister, to 23rd in 2011. Paul Wells seems to be racking up hits on his Maclean’s article,  “Stephen Harper and the knowledge economy: perfect strangers.”  But the story of the last 48 hours has been John Dupuis’s chronology of what he calls, “The Canadian war on science” and much more.

Yes, it’s another roundup but it’s complementary (albeit with one or two repetitions) since Plait does not seem all that familiar with the Canadian scene (I find it’s always valuable to have an outside perspective) and Nassif is a longtime insider.

John Dupuis’ May 20, 2013 posting (on his Confessions of a Science Librarian blog), mentioned by both Nassif and Plait, provides an extraordinary listing of stories ranging from 2006 through to 2013 whose headlines alone paint a very bleak picture of the practice of science in Canada,

As is occasionally my habit, I have pulled together a chronology of sorts. It is a chronology of all the various cuts, insults, muzzlings and cancellations that I’ve been able to dig up. Each of them represents a single shot in the Canadian Conservative war on science. It should be noted that not every item in this chronology, if taken in isolation, is necessarily the end of the world. It’s the accumulated evidence that is so damning.

As I’ve noted before, I am no friend of Stephen Harper and his Conservative government and many of their actions have been reprehensible and, at times, seem childishly spiteful but they do occasionally get something right. There was a serious infrastructure problem in Canada. Buildings dedicated to the pursuit of science were sadly aged and no longer appropriate for the use to which they were being put. Harper and his government have poured money into rebuilding infrastructure and for that they should be acknowledged.

As for what the Conservatives are attempting with this shift in direction for the National Research Council (NRC), which has been ongoing for at least two years as I noted in my May 13, 2013 posting, I believe they are attempting to rebalance the Canadian research enterprise.  It’s generally agreed that Canada historically has very poor levels of industrial research and development (R&D) and high levels of industrial R&D are considered, internationally, as key to a successful economy. (Richard Jones, Pro-Vice Chancellor for Research and Innovation at the University of Sheffield, UK, discusses how a falling percentage of industrial R&D, taking place over decades,  is affecting the UK economy in a May 10, 2013 commentary on the University of  Sheffield SPERI [Sheffield Political Economy Research Institute] website.)

This NRC redirection when taken in conjunction with the recent StartUp visa programme (my May 20, 2013 posting discusses Minister of Immigration Jason Kenney’s recent recruitment tour in San Francisco [Silicon Valley]),  is designed to take Canada and Canadians into uncharted territory—the much desired place where we develop a viable industrial R&D sector and an innovative economy in action.

In having reviewed at least some of the commentary, there are a couple of questions left unasked about this international obsession with industrial R&D,

  • is a country’s economic health truly tied to industrial R&D or is this ‘received’ wisdom?
  • if industrial R&D is the key to economic health, what would be the best balance between it and the practice of basic science?

As for the Canadian situation, what might be some of the unintended consequences? It occurs to me that if scientists are rewarded for turning their research into commercially viable products they might be inclined to constrain access to materials. Understandable if the enterprise is purely private but the NRC redirection is aimed at bringing together academics and private enterprise in a scheme that seems a weird amalgam of both.

For example, cellulose nanocrystals (CNC) are not easily accessed if you’re a run-of-the-mill entrepreneur. I’ve had more than one back-channel request about how to purchase the material and it would seem that access is tightly controlled by the academics and publicly funded enterprise, in this case, a private business, who produce the material. (I’m speaking of the FPInnovations and Domtar comingling in CelluForce, a CNC production facility and much more. It would make a fascinating case study on how public monies are used to help finance private enterprises and their R&D efforts; the relationship between nongovernmental agencies (FPInnovations, which I believe was an NRC spinoff), various federal public funding agencies, and Domtar, a private enterprise; and the power dynamics between all the players including the lowly entrepreneur.

TAPPI 2012 nanotechnology conference in Canada

This coming Monday, June 4 to Thursday, June 7, 2012, the Nanotechnology for Renewable Materials conference (2012 TAPPI [Technical Association of the Pulp and Paper Industry] International Conference) will be taking place in Montréal, Québec.

As one might expect, there’s going to be a major emphasis on nanocrystalline cellulose (NCC) and Celluforce’s new NCC production plant in Windsor, Québec. Keynote speakers for the conference include (from the Keynote Speakers webpage),

Dr. Dylan J. Boday
Advisory Engineer Team Lead
IBM’s Materials Engineering Laboratory

Dr. Dylan J. Boday is the Advisory Engineer Team Lead for IBM’s Materials Engineering Laboratory. In this role, he leads efforts across multiple divisions to advance technological capabilities and enhance product performance.

Dylan’s research at IBM focuses on creating inventive pathways toward the development of polymers, composites, surface science, nanoparticles and hybrid materials. He has organized several strategic partnerships to leverage new materials development that align with specific business needs for IBM. He also established and now leads a global team focused on the sustainability of IBM’s products and is the co-lead of an upcoming international conference that will focus on the advances and challenges of sustainable materials.

As a member of the American Chemical Society Polymer Board, he provides leadership to the broader polymer science field. His technical contributions have led to more than 30 patent filings in the areas of electrostatic discharge and thermally conductive composites, functional nanomaterials and printed circuit board materials. He also has numerous published articles on composites, self healing materials and anti-corrosion coatings, in addition to serving as a reviewer for several scientific journals. In 2011, he was named an IBM Master Inventor and is a member of the IBM Smarter Planet invention review board.

Dylan holds a bachelor’s degree in Chemistry and a doctorate degree in Materials Engineering from the University of Arizona.

Jean Moreau
President and Chief Executive Officer
CelluForce

As President and CEO of CelluForce since February 2011, Jean Moreau brings a wealth of experience in finance, operations and business development which he acquired in both private and public corporations, in various fields including manufacturing, entertainment, distribution and consumer goods.

A chartered accountant for over 10 years at Arthur Andersen and Co., Mr. Moreau was responsible for the acquisition of numerous large companies and plants.

Among others, he headed financial and production planning teams as Vice President of Finance, Paper Production sector and Vice President of Supply for Domtar. As Chief Financial Officer, he was also involved in the introduction of the Supremex Income Fund on the Toronto Stock Exchange, raising $300M in capital funding and, in addition was responsible for the implementation of a strategic business plan at Guess Canada, which was subsequently named one of Canada’s 50 Best Managed Companies.

As head of the CelluForce team, Jean wished to promote, within several sectors of activity, the development of commercial applications related to NCC around the world, thus ensuring the company’s manufacturing and commercial growth.

Jean Hamel, Eng.
Vice President
FPInnovations

Jean Hamel, Eng., Vice President, FPInnovations, received his B.Sc. (1983), and M. Eng. (1985), in Mechanical Engineering from the University of Sherbrooke. He joined Pulp and Paper Research Institute of Canada (Paprican) as a Research Engineer to work on the technical development, optimization and troubleshooting of paper finishing equipment.

In 1995 he joined St-Laurent Paperboard as a Senior Process Engineer to work on product development, paper machine optimization and start-up of new finishing equipment. In 1996, he returned to Paprican where he led the construction of the pilot paper machine and developed the new Roll Testing Facility, the first business unit concept of the organization. In 2004 he became Manager of the Product Performance Program. Soon after merging of three research institutes (Paprican, Forintek, FERIC) to form FPInnovations in 2007, he was named the Director of Research for the Pulp & Paper Division of FPInnovations where he focused on accelerating the technology transfer and developing new innovation processes.

Since 2009 he has been the Vice President of FPInnovations, leading the innovation program on pulp and paper and shifting the R&D effort to develop new chemicals, biomaterials and composites from wood fibers. He currently sits on the boards of CelluForce, a Domtar-FPInnovations joint venture on nanocrystalline cellulose (NCC) production, Sustainable Chemistry Alliance (SCA), ICGQ, ADRIQ and NSERC Green Fiber Network.

Andy Atkinson
Manager, Emerging Sciences Policy
Policy, Planning and Coordination Division
Strategic Policy Branch
Health Canada

Andrew Atkinson is currently Manager of the Emerging Science Policy group under the Strategic Policy Branch of Health Canada.

Andrew is currently overseeing coordination of science policy issues across the various regulatory and research programs under the mandate of Health Canada. Prior to Health Canada, he was a manager under Environment Canada’s CEPA new chemicals program, where he oversaw chemical and nanomaterial risk assessments, as well as the development of risk assessment methodologies.

In parallel to domestic work, he has been actively engaged in ISO and OECD nanotechnology efforts, including co-chairing groups on nomenclature of nano-objects under ISO TC229.

It seems more heavily weighted towards Canadian keynote speakers with, as I hinted earlier,  a special nod to CelluForce. I did glance through the full conference programme and see that there is  healthy representation internationally (Hungary, China, Finland, US, Sweden, Japan, Alberta [sometimes that province does seem like a separate country],  etc.).

After hearing a murmur about developing standards for nanocellulose at the Feb. 2012 annual meeting of the American Association for Advancement of Science (AAAS), I was excited to find this on on p. 8 of the conference programme,

The success of the 2011 Workshop on International Standards for Nancellulose has resulted in writing of the Roadmap for the Development of International Standards for Nanocellulose (Draft 4). Since then TAPPI has formed the International Nanocellulose Standards Coordination Committee (INSCC) in its Nanotechnology Division to house and coordinate the execution of the Roadmap. The 2012 Workshop on International Standards for Nancellulose will bring workshop participants up-to-date on nanocellulose standards activities since the completion of the Roadmap (Draft 4), initiate coordination activities in several areas of nanocellulose standards development, and if necessary, discuss revisions to the Roadmap.

Perhaps one of these days they’ll have a final version of their Roadmap.

I last mentioned this annual conference in my Sept. 24, 2009 posting when it was held in Alberta and made passing references to the 2010 edition in Finland during an interview (my Aug. 27, 2010 posting) with Dr. Richard Berry of FPInnovations and to the 2011 edition in Washington, DC in my June 6, 2011 posting about the formation, by Domtar and FPInnovations, of CelluForce.

As for the 2012 edition, I wonder if they considered inviting Janelle Tam, the 16 year old student who won a national award for her work on a new application for NCC (my Disease-fighting and anti-aging with nanocrystalline cellulose (NCC) and Janelle Tam posting on May 11, 2012) to this conference. In any event, her national win entitled her to compete for an international award in Boston, Massachusetts June 18, 2012.

Double honours for NCC (ArboraNano and CelluForce recognized)

Congratulations to both ArboraNano and CelluForce (and FPInnovations, too)  on receiving a Celebrating Partnerships! Award from the Association for the Development of Research and Innovation of Québec (Canada). The May 25, 2012 news item on Azonano by Will Soutter focuses on ArboraNano,

The Association for the Development of Research and Innovation of Quebec has presented a ‘Celebrate Partnerships!’ award to ArboraNano, the Canadian Forest NanoProducts Network, for its collaborative work with CelluForce, NanoQuébec and FPInnovations in the commercialization of nanocrystalline cellulose.

ArboraNano received the award on May 17, 2012 in a ceremony conducted at Marché Bonsecours in Montréal.

The May 17, 2012 news release from CelluForce offers additional details,

In its third edition, the Celebrate Partnerships! Award recognizes partnerships between entrepreneurs and researchers from Quebec and encourages them to develop these partnerships further. Award recipients are distinguished based on the economic return resulting from their collaborations, helping to build a stronger, more innovative and competitive Quebec.

“Nanocrystalline cellulose is perhaps the most promising discovery of this Century. I salute our industrial and government partners, respectively Domtar, NRCan [Natural Resources Canada], and Quebec’s MRNF and MDBIE, for having the foresight and the courage to embark on the world’s first NCC adventure. I offer my congratulations to the devoted researchers and employees of all of our organizations for this well deserved recognition,” states Pierre Lapointe, President and Chief Executive Officer at FPInnovations.

That quote from Lapointe reflects the fact that this was composed in French where the formal style can seem fulsome to English speakers. Although even by French standards that bit about “the discovery of the Century” seems a little grandiose. Sadly, I’ve just  remembered my own comments about the Canadian tendency to be  downbeat on occasion, from my May 8, 2012 posting,

We tout innovation but at the same are deeply disconcerted by and hesitant about the risktaking required to be truly innovative. (I have to note that I too write pieces that can be quite restrained and critical of these types of endeavours.) Really, it’s as much a question of culture as anything else. How do we support innovation and risktaking while maintaining some of our quintessential character?

rather than celebrating the moment. Such a quandary! In the meantime, I trust the recipients had a good time at the party.

ETA May 29, 2012: I have been brooding about my headline since technically it is one award not two. (sigh) I’ll take the easy way out, since each partner got an award, it’s a double honour.

It’s now official, the CelluForce NCC plant has been inaugurated

I’ve been writing (July 16, 2010 posting) about the nanocrystalline cellulose (NCC) manufacturing plant in Windsor, Québec since construction was first announced. CelluForce’s (a joint partnership between Domtar and FPInnovations) new plant was officially opened by Canada’s Minister of Natural Resources, Joe Oliver, on Thursday, Jan. 26, 2012. (For anyone curious about NCC [derived from wood cellulose] and/or CelluForce, there are more details in my Dec. 15, 2011 posting where I mentioned that the plant was then operational.)

This NCC plant represents a major investment from the Government of Canada and the Province of Québec. The latest funds from these two levels of government are noted here in the Jan. 26, 2012 CelluForce news release (you may have to scroll down to find it),

The Canadian and Québec governments made a significant contribution to the financing of the $36 million plant with $23.2 million coming from Natural Resources Canada (Pulp and Paper Green Transformation Program and Transformative Technologies Program) and $10.2 million from Québec’s Natural Resources and Wildlife Department.

If my arithmetic is right, those numbers mean that someone (Domtar?) provided $2.5M to make the total $36M. (It almost seems that Domtar might be a junior partner in this endeavour.)

There are some grand plans for both the plant and NCC,

CelluForce is ramping up its production of NCC with a target of reaching a 1,000 kg (1 metric ton) per day production rate in 2012. Trials integrating NCC into the manufacturing process of different products are currently taking place through technical collaboration agreements between CelluForce and 15 companies based in Canada, the United States, Europe and Asia in four main industrial sectors: paints and coatings, films and barriers, textiles, and composites.

As I noted in my Jan. 27, 2012 posting about ArboraNano’s appearance at an international symposium on nanotechnology and its economic impacts, NCC seems to be on the international agenda and, at this point, Canadians are world leaders in this area of research.

In the interests of being comprehensive regarding the Canadian NCC production scene, there is a demonstration plant in Alberta slated to produce up to 100kg of NCC/day, as I noted in my July 5, 2011 posting. For some reason (I’m guessing it has something to do with regional rivalries), the two groups are resolutely ignoring each other.

CelluForce (nanocrystalline cellulose) plant opens

Before launching into the news about its manufacturing plant, here’s a little information about the company itself, CelluForce, a joint venture between FPInnovations and Domtar, from the About CelluForce page,

The company is a joint venture of Domtar Corporation and FPInnovations and was created to manufacture NCC in the world’s first plant of its kind, located in Windsor, Québec.

I wrote about CelluForce in my June 6, 2011 posting around the time it was launched and now its raison d’être, the manufacturing plant, is operational. From the Dec. 13, 2011 news item on Nanowerk,

Members of the board, management and employees of CelluForce are pleased to announce the end of the construction phase and the start of operations at the first manufacturing plant for NanoCrystalline Cellulose (NCC) in the world.

For the last eight weeks, CelluForce has been progressively starting up the equipment for the first ever large-scale production of NCC. The nanomaterial will be produced in state-of-the-art facilities located at Domtar’s pulp and paper plant in Windsor, Quebec. Construction extended over a fourteen-month period. It required a total investment of $36M including the financial participation of both the Federal and Québec governments. The company is particularly pleased to have completed construction phase on time.

CelluForce President and CEO Jean Moreau declared, “Wood pulp is being delivered to the plant to test the new equipment and we are making progress on a daily basis. NCC will start to be produced by the end of the year, with production gradually increasing until it reaches a steady rhythm of 1,000 kg per day in 2012”.

For anyone who’s unfamiliar with NanoCrystalline Cellulose (NCC), I posted an interview with Dr. Richard Berry of FPInnovations who kindly answered some very basic questions on NCC in my Aug. 27, 2010 posting.

The opening of the CelluForce manufacturing plant is very exciting news given that Canadians have a worldwide lead in this research area. Being able to produce NCC in amounts that are meaningful at an industrial scale will make research easier not just in Canada but elsewhere too.

From the news item on Nanowerk,

CelluForce will, on a worldwide basis, market NanoCrystalline Cellulose for strength applications under the CelluForce Impact™ brand, and for optical applications of NCC under the CelluForce Allure™ brand.

I don’t think this video adds much information but it is very slick and entertaining,

Here’s a listing of applications that NCC can be used to produce (from the CelluForce Applications page),

NCC’s properties and many potential forms enable many uses, including:

  • Biocomposites for bone replacement and tooth repair
  • Pharmaceuticals and drug delivery
  • Additives for foods and cosmetics
  • Improved paper and building products
  • Advanced or “intelligent” packaging
  • High-strength spun fibres and textiles
  • Additives for coatings, paints, lacquers and adhesives
  • Reinforced polymers and innovative bioplastics
  • Advanced reinforced composite materials
  • Recyclable interior and structural components for the transportation industry
  • Aerospace and transportation structures
  • Iridescent and protective films
  • Films for optical switching
  • Pigments and inks
  • Electronic paper printers
  • Innovative coatings and new fillers for papermaking

One of the most notable attributes of this material is that it can be used to form iridescent coloured films that can be adjusted precisely, making it possible to revolutionize many applications, including, among others;

  • Security papers
  • Iridescent pigments
  • Switchable optical filters and barriers
  • Sunscreens
  • Cosmetics
  • Packaging
  • Coatings

I hope to hear more about CelluForce and its efforts with NCC.

On a somewhat related note, I wonder what’s happening with the NCC efforts in Alberta? I noted in my July 5, 2011 posting that an NCC pilot plant was being opened in that Canadian province but I haven’t heard anything since.

I also noted that there is going to be a session titled NanoCellulose: An Abundant, Sustainable, Versatile Biopolymer at the American Association for the Advancement of Science (AAAS) annual meeting in Vancouver this February 2012 featuring a researcher from Alberta.

Here’s the session description and speakers,

Saturday, February 18, 2012: 3:00 PM-4:30 PM

Room 220 (VCC West Building)

Nanocellulose is a generic name for a new family of novel fibrils derived from plant cell walls or bacteria. Just as cellulose has been an abundant natural resource for millennia with substantial contributions to the development of civilizations, the unique nanocelluloses are sustainable biopolymers poised to have a major role in improving the quality of human life in this century. A rapidly expanding field of nanocellulose science has emerged with pioneering results, leading some to predict that the field could parallel history, where the 1920s studies on cellulose contributed to the discovery of polymers and led to the origin of polymer science. Fibrillated, crystalline, and bacterial nanocelluloses have unsurpassed versatility and strength for composite materials, films, medical implants, drug delivery systems, and a biomaterial rivaling Kevlar, which is made from fossil fuels. With cellulosic biofuels becoming a competitive alternative to fossil fuels, research in enzymology is targeting high-value nanofibrillated cellulose as a biofuel co-product. This symposium will present current findings that bridge multidisciplines, from genomics of tree and plant breeding, plant cell wall structure and function, advanced techniques for characterizing cell walls and nanocellulose, and specialized methods for isolating nanofibrils, to novel biomaterials. The speakers represent three international science and technology centers at the forefront of this new wave of cellulose research.

Organizer:

Barbara Illman, U.S. Forest Service

Moderator:

Barbara Illman, U.S. Forest Service

Speakers:

Theodore Wegner, U.S. Forest Service
A World View of Nanocellulose

Nils Petersen, National Research Council Canada
Nano-Scale Devices for Nanocellulose

Ali Harlin, VTT Technical Research Center of Finland
Nanocellulosic Technologies: A Success Story

It looks interesting but I would have liked to have heard from an FPInnovations researcher and the Brazilian researchers who are working on nanocellulose fibres from pineapples and bananas (my Mar. 28, 2011 and June 16, 2011 postings) and Israeli researchers who are working on NCC foams (my Aug. 2, 2011 posting). These panels are always difficult to organize as you try to get everyone in the same room at the same time although the panel does seem to be focused on wood products as a source for NCC.  (If you search Ali Harlin on LinkedIn, you’ll find paper and wood products are Harlin’s area of expertise.)

I notice Nils Petersen, one of the speakers, who in addition to being a National Research Council (NRC) scientist is also the Director General for Canada’s National Institute of Nanotechnology located in Alberta.