Tag Archives: Stephanie Simmons

Quantum Mechanics & Gravity conference (August 15 – 19, 2022) launches Vancouver (Canada)-based Quantum Gravity Institute and more

I received (via email) a July 21, 2022 news release about the launch of a quantum science initiative in Vancouver (BTW, I have more about the Canadian quantum scene later in this post),

World’s top physicists unite to tackle one of Science’s greatest
mysteries


Vancouver-based Quantum Gravity Society leads international quest to
discover Theory of Quantum Gravity

Vancouver, B.C. (July 21, 2022): More than two dozen of the world’s
top physicists, including three Nobel Prize winners, will gather in
Vancouver this August for a Quantum Gravity Conference that will host
the launch a Vancouver-based Quantum Gravity Institute (QGI) and a
new global research collaboration that could significantly advance our
understanding of physics and gravity and profoundly change the world as
we know it.

For roughly 100 years, the world’s understanding of physics has been
based on Albert Einstein’s General Theory of Relativity (GR), which
explored the theory of space, time and gravity, and quantum mechanics
(QM), which focuses on the behaviour of matter and light on the atomic
and subatomic scale. GR has given us a deep understanding of the cosmos,
leading to space travel and technology like atomic clocks, which govern
global GPS systems. QM is responsible for most of the equipment that
runs our world today, including the electronics, lasers, computers, cell
phones, plastics, and other technologies that support modern
transportation, communications, medicine, agriculture, energy systems
and more.

While each theory has led to countless scientific breakthroughs, in many
cases, they are incompatible and seemingly contradictory. Discovering a
unifying connection between these two fundamental theories, the elusive
Theory of Quantum Gravity, could provide the world with a deeper
understanding of time, gravity and matter and how to potentially control
them. It could also lead to new technologies that would affect most
aspects of daily life, including how we communicate, grow food, deliver
health care, transport people and goods, and produce energy.

“Discovering the Theory of Quantum Gravity could lead to the
possibility of time travel, new quantum devices, or even massive new
energy resources that produce clean energy and help us address climate
change,” said Philip Stamp, Professor, Department of Physics and
Astronomy, University of British Columbia, and Visiting Associate in
Theoretical Astrophysics at Caltech [California Institute of Technology]. “The potential long-term ramifications of this discovery are so incredible that life on earth 100
years from now could look as miraculous to us now as today’s
technology would have seemed to people living 100 years ago.”

The new Quantum Gravity Institute and the conference were founded by the
Quantum Gravity Society, which was created in 2022 by a group of
Canadian technology, business and community leaders, and leading
physicists. Among its goals are to advance the science of physics and
facilitate research on the Theory of Quantum Gravity through initiatives
such as the conference and assembling the world’s leading archive of
scientific papers and lectures associated with the attempts to reconcile
these two theories over the past century.

Attending the Quantum Gravity Conference in Vancouver (August 15-19 [2022])
will be two dozen of the world’s top physicists, including Nobel
Laureates Kip Thorne, Jim Peebles and Sir Roger Penrose, as well as
physicists Baron Martin Rees, Markus Aspelmeyer, Viatcheslav Mukhanov
and Paul Steinhardt. On Wednesday, August 17, the conference will be
open to the public, providing them with a once-in-a-lifetime opportunity
to attend keynote addresses from the world’s pre-eminent physicists.
… A noon-hour discussion on the importance of the
research will be delivered by Kip Thorne, the former Feynman Professor
of physics at Caltech. Thorne is well known for his popular books, and
for developing the original idea for the 2014 film “Interstellar.” He
was also crucial to the development of the book “Contact” by Carl Sagan,
which was also made into a motion picture.

“We look forward to welcoming many of the world’s brightest minds to
Vancouver for our first Quantum Gravity Conference,” said Frank
Giustra, CEO Fiore Group and Co-Founder, Quantum Gravity Society. “One
of the goals of our Society will be to establish Vancouver as a
supportive home base for research and facilitate the scientific
collaboration that will be required to unlock this mystery that has
eluded some of the world’s most brilliant physicists for so long.”

“The format is key,” explains Terry Hui, UC Berkley Physics alumnus
and Co-Founder, Quantum Gravity Society [and CEO of Concord Pacific].
“Like the Solvay Conference nearly 100 years ago, the Quantum Gravity
Conference will bring top scientists together in salon-style gatherings. The
relaxed evening format following the conference will reduce barriers and
allow these great minds to freely exchange ideas. I hope this will help accelerate
the solution of this hundred-year bottleneck between theories relatively
soon.”

“As amazing as our journey of scientific discovery has been over the
past century, we still have so much to learn about how the universe
works on a macro, atomic and subatomic level,” added Paul Lee,
Managing Partner, Vanedge Capital, and Co-Founder, Quantum Gravity
Society. “New experiments and observations capable of advancing work
on this scientific challenge are becoming increasingly possible in
today’s physics labs and using new astronomical tools. The Quantum
Gravity Society looks forward to leveraging that growing technical
capacity with joint theory and experimental work that harnesses the
collective expertise of the world’s great physicists.”

About Quantum Gravity Society

Quantum Gravity Society was founded in Vancouver, Canada in 2020 by a
group of Canadian business, technology and community leaders, and
leading international physicists. The Society’s founding members
include Frank Giustra (Fiore Group), Terry Hui (Concord Pacific), Paul
Lee and Moe Kermani (Vanedge Capital) and Markus Frind (Frind Estate
Winery), along with renowned physicists Abhay Ashtekar, Sir Roger
Penrose, Philip Stamp, Bill Unruh and Birgitta Whaley. For more
information, visit Quantum Gravity Society.

About the Quantum Gravity Conference (Vancouver 2022)


The inaugural Quantum Gravity Conference (August 15-19 [2022]) is presented by
Quantum Gravity Society, Fiore Group, Vanedge Capital, Concord Pacific,
The Westin Bayshore, Vancouver and Frind Estate Winery. For conference
information, visit conference.quantumgravityinstitute.ca. To
register to attend the conference, visit Eventbrite.com.

The front page on the Quantum Gravity Society website is identical to the front page for the Quantum Mechanics & Gravity: Marrying Theory & Experiment conference website. It’s probable that will change with time.

This seems to be an in-person event only.

The site for the conference is in an exceptionally pretty location in Coal Harbour and it’s close to Stanley Park (a major tourist attraction),

The Westin Bayshore, Vancouver
1601 Bayshore Drive
Vancouver, BC V6G 2V4
View map

Assuming that most of my readers will be interested in the ‘public’ day, here’s more from the Wednesday, August 17, 2022 registration page on Eventbrite,

Tickets:

  • Corporate Table of 8 all day access – includes VIP Luncheon: $1,100
  • Ticket per person all day access – includes VIP Luncheon: $129
  • Ticket per person all day access (no VIP luncheon): $59
  • Student / Academia Ticket – all day access (no VIP luncheon): $30

Date:

Wednesday, August 17, 2022 @ 9:00 a.m. – 5:15 p.m. (PT)

Schedule:

  • Registration Opens: 8:00 a.m.
  • Morning Program: 9:00 a.m. – 12:30 p.m.
  • VIP Lunch: 12:30 p.m. – 2:30 p.m.
  • Afternoon Program: 2:30 p.m. – 4:20 p.m.
  • Public Discussion / Debate: 4:20 p.m. – 5:15 p.m.

Program:

9:00 a.m. Session 1: Beginning of the Universe

  • Viatcheslav Mukhanov – Theoretical Physicist and Cosmologist, University of Munich
  • Paul Steinhardt – Theoretical Physicist, Princeton University

Session 2: History of the Universe

  • Jim Peebles, 2019 Nobel Laureate, Princeton University
  • Baron Martin Rees – Cosmologist and Astrophysicist, University of Cambridge
  • Sir Roger Penrose, 2020 Nobel Laureate, University of Oxford (via zoom)

12:30 p.m. VIP Lunch Session: Quantum Gravity — Why Should We Care?

  • Kip Thorne – 2017 Nobel Laureate, Executive Producer of blockbuster film “Interstellar”

2:30 p.m. Session 3: What do Experiments Say?

  • Markus Aspelmeyer – Experimental Physicist, Quantum Optics and Optomechanics Leader, University of Vienna
  • Sir Roger Penrose – 2020 Nobel Laureate (via zoom)

Session 4: Time Travel

  • Kip Thorne – 2017 Nobel Laureate, Executive Producer of blockbuster film “Interstellar”

Event Partners

  • Quantum Gravity Society
  • Westin Bayshore
  • Fiore Group
  • Concord Pacific
  • VanEdge Capital
  • Frind Estate Winery

Marketing Partners

  • BC Business Council
  • Greater Vancouver Board of Trade

Please note that Sir Roger Penrose will be present via Zoom but all the others will be there in the room with you.

Given that Kip Thorne won his 2017 Nobel Prize in Physics (with Rainer Weiss and Barry Barish) for work on gravitational waves, it’s surprising there’s no mention of this in the publicity for a conference on quantum gravity. Finding gravitational waves in 2016 was a very big deal (see Josh Fischman’s and Steve Mirsky’s February 11, 2016 interview with Kip Thorne for Scientific American).

Some thoughts on this conference and the Canadian quantum scene

This conference has a fascinating collection of players. Even I recognized some of the names, e.g., Penrose, Rees, Thorne.

The academics were to be expected and every presenter is an academic, often with their own Wikipedia page. Weirdly, there’s no one from the Perimeter Institute Institute for Theoretical Physics or TRIUMF (a national physics laboratory and centre for particle acceleration) or from anywhere else in Canada, which may be due to their academic specialty rather than an attempt to freeze out Canadian physicists. In any event, the conference academics are largely from the US (a lot of them from CalTech and Stanford) and from the UK.

The business people are a bit of a surprise. The BC Business Council and the Greater Vancouver Board of Trade? Frank Giustra who first made his money with gold mines, then with Lionsgate Entertainment, and who continues to make a great deal of money with his equity investment company, Fiore Group? Terry Hui, Chief Executive Office of Concord Pacific, a real estate development company? VanEdge Capital, an early stage venture capital fund? A winery? Missing from this list is D-Wave Systems, Canada’s quantum calling card and local company. While their area of expertise is quantum computing, I’d still expect to see them present as sponsors.

The academics? These people are not cheap dates (flights, speaker’s fees, a room at the Bayshore, meals). This is a very expensive conference and $129 for lunch and a daypass is likely a heavily subsidized ticket.

Another surprise? No government money/sponsorship. I don’t recall seeing another academic conference held in Canada without any government participation.

Canadian quantum scene

A National Quantum Strategy was first announced in the 2021 Canadian federal budget and reannounced in the 2022 federal budget (see my April 19, 2022 posting for a few more budget details).. Or, you may find this National Quantum Strategy Consultations: What We Heard Report more informative. There’s also a webpage for general information about the National Quantum Strategy.

As evidence of action, the Natural Science and Engineering Research Council of Canada (NSERC) announced new grant programmes made possible by the National Quantum Strategy in a March 15, 2022 news release,

Quantum science and innovation are giving rise to promising advances in communications, computing, materials, sensing, health care, navigation and other key areas. The Government of Canada is committed to helping shape the future of quantum technology by supporting Canada’s quantum sector and establishing leadership in this emerging and transformative domain.

Today [March 15, 2022], the Honourable François-Philippe Champagne, Minister of Innovation, Science and Industry, is announcing an investment of $137.9 million through the Natural Sciences and Engineering Research Council of Canada’s (NSERC) Collaborative Research and Training Experience (CREATE) grants and Alliance grants. These grants are an important next step in advancing the National Quantum Strategy and will reinforce Canada’s research strengths in quantum science while also helping to develop a talent pipeline to support the growth of a strong quantum community.

Quick facts

Budget 2021 committed $360 million to build the foundation for a National Quantum Strategy, enabling the Government of Canada to build on previous investments in the sector to advance the emerging field of quantum technologies. The quantum sector is key to fuelling Canada’s economy, long-term resilience and growth, especially as technologies mature and more sectors harness quantum capabilities.

Development of quantum technologies offers job opportunities in research and science, software and hardware engineering and development, manufacturing, technical support, sales and marketing, business operations and other fields.

The Government of Canada also invested more than $1 billion in quantum research and science from 2009 to 2020—mainly through competitive granting agency programs, including Natural Sciences and Engineering Research Council of Canada programs and the Canada First Research Excellence Fund—to help establish Canada as a global leader in quantum science.

In addition, the government has invested in bringing new quantum technologies to market, including investments through Canada’s regional development agencies, the Strategic Innovation Fund and the National Research Council of Canada’s Industrial Research Assistance Program.

Bank of Canada, cryptocurrency, and quantum computing

My July 25, 2022 posting features a special project, Note: All emphases are mine,

… (from an April 14, 2022 HKA Marketing Communications news release on EurekAlert),

Multiverse Computing, a global leader in quantum computing solutions for the financial industry and beyond with offices in Toronto and Spain, today announced it has completed a proof-of-concept project with the Bank of Canada through which the parties used quantum computing to simulate the adoption of cryptocurrency as a method of payment by non-financial firms.

“We are proud to be a trusted partner of the first G7 central bank to explore modelling of complex networks and cryptocurrencies through the use of quantum computing,” said Sam Mugel, CTO [Chief Technical Officer] at Multiverse Computing. “The results of the simulation are very intriguing and insightful as stakeholders consider further research in the domain. Thanks to the algorithm we developed together with our partners at the Bank of Canada, we have been able to model a complex system reliably and accurately given the current state of quantum computing capabilities.”

Multiverse Computing conducted its innovative work related to applying quantum computing for modelling complex economic interactions in a research project with the Bank of Canada. The project explored quantum computing technology as a way to simulate complex economic behaviour that is otherwise very difficult to simulate using traditional computational techniques.

By implementing this solution using D-Wave’s annealing quantum computer, the simulation was able to tackle financial networks as large as 8-10 players, with up to 2^90 possible network configurations. Note that classical computing approaches cannot solve large networks of practical relevance as a 15-player network requires as many resources as there are atoms in the universe.

Quantum Technologies and the Council of Canadian Academies (CCA)

In a May 26, 2022 blog posting the CCA announced its Expert Panel on Quantum Technologies (they will be issuing a Quantum Technologies report),

The emergence of quantum technologies will impact all sectors of the Canadian economy, presenting significant opportunities but also risks. At the request of the National Research Council of Canada (NRC) and Innovation, Science and Economic Development Canada (ISED), the Council of Canadian Academies (CCA) has formed an Expert Panel to examine the impacts, opportunities, and challenges quantum technologies present for Canadian industry, governments, and Canadians. Raymond Laflamme, O.C., FRSC, Canada Research Chair in Quantum Information and Professor in the Department of Physics and Astronomy at the University of Waterloo, will serve as Chair of the Expert Panel.

“Quantum technologies have the potential to transform computing, sensing, communications, healthcare, navigation and many other areas,” said Dr. Laflamme. “But a close examination of the risks and vulnerabilities of these technologies is critical, and I look forward to undertaking this crucial work with the panel.”

As Chair, Dr. Laflamme will lead a multidisciplinary group with expertise in quantum technologies, economics, innovation, ethics, and legal and regulatory frameworks. The Panel will answer the following question:

In light of current trends affecting the evolution of quantum technologies, what impacts, opportunities and challenges do these present for Canadian industry, governments and Canadians more broadly?

The Expert Panel on Quantum Technologies:

Raymond Laflamme, O.C., FRSC (Chair), Canada Research Chair in Quantum Information; the Mike and Ophelia Lazaridis John von Neumann Chair in Quantum Information; Professor, Department of Physics and Astronomy, University of Waterloo

Sally Daub, Founder and Managing Partner, Pool Global Partners

Shohini Ghose, Professor, Physics and Computer Science, Wilfrid Laurier University; NSERC Chair for Women in Science and Engineering

Paul Gulyas, Senior Innovation Executive, IBM Canada

Mark W. Johnson, Senior Vice-President, Quantum Technologies and Systems Products, D-Wave Systems

Elham Kashefi, Professor of Quantum Computing, School of Informatics, University of Edinburgh; Directeur de recherche au CNRS, LIP6 Sorbonne Université

Mauritz Kop, Fellow and Visiting Scholar, Stanford Law School, Stanford University

Dominic Martin, Professor, Département d’organisation et de ressources humaines, École des sciences de la gestion, Université du Québec à Montréal

Darius Ornston, Associate Professor, Munk School of Global Affairs and Public Policy, University of Toronto

Barry Sanders, FRSC, Director, Institute for Quantum Science and Technology, University of Calgary

Eric Santor, Advisor to the Governor, Bank of Canada

Christian Sarra-Bournet, Quantum Strategy Director and Executive Director, Institut quantique, Université de Sherbrooke

Stephanie Simmons, Associate Professor, Canada Research Chair in Quantum Nanoelectronics, and CIFAR Quantum Information Science Fellow, Department of Physics, Simon Fraser University

Jacqueline Walsh, Instructor; Director, initio Technology & Innovation Law Clinic, Dalhousie University

You’ll note that both the Bank of Canada and D-Wave Systems are represented on this expert panel.

The CCA Quantum Technologies report (in progress) page can be found here.

Does it mean anything?

Since I only skim the top layer of information (disparagingly described as ‘high level’ by the technology types I used to work with), all I can say is there’s a remarkable level of interest from various groups who are self-organizing. (The interest is international as well. I found the International Society for Quantum Gravity [ISQG], which had its first meeting in 2021.)

I don’t know what the purpose is other than it seems the Canadian focus seems to be on money. The board of trade and business council have no interest in primary research and the federal government’s national quantum strategy is part of Innovation, Science and Economic Development (ISED) Canada’s mandate. You’ll notice ‘science’ is sandwiched between ‘innovation’, which is often code for business, and economic development.

The Bank of Canada’s monetary interests are quite obvious.

The Perimeter Institute mentioned earlier was founded by Mike Lazaridis (from his Wikipedia entry) Note: Links have been removed,

… a Canadian businessman [emphasis mine], investor in quantum computing technologies, and founder of BlackBerry, which created and manufactured the BlackBerry wireless handheld device. With an estimated net worth of US$800 million (as of June 2011), Lazaridis was ranked by Forbes as the 17th wealthiest Canadian and 651st in the world.[4]

In 2000, Lazaridis founded and donated more than $170 million to the Perimeter Institute for Theoretical Physics.[11][12] He and his wife Ophelia founded and donated more than $100 million to the Institute for Quantum Computing at the University of Waterloo in 2002.[8]

That Institute for Quantum Computing? There’s an interesting connection. Raymond Laflamme, the chair for the CCA expert panel, was its director for a number of years and he’s closely affiliated with the Perimeter Institute. (I’m not suggesting anything nefarious or dodgy. It’s a small community in Canada and relationships tend to be tightly interlaced.) I’m surprised he’s not part of the quantum mechanics and gravity conference but that could have something to do with scheduling.

One last interesting bit about Laflamme, from his Wikipedia entry, Note: Links have been removed)

As Stephen Hawking’s PhD student, he first became famous for convincing Hawking that time does not reverse in a contracting universe, along with Don Page. Hawking told the story of how this happened in his famous book A Brief History of Time in the chapter The Arrow of Time.[3] Later on Laflamme made a name for himself in quantum computing and quantum information theory, which is what he is famous for today.

Getting back to the Quantum Mechanics & Gravity: Marrying Theory & Experiment, the public day looks pretty interesting and when is the next time you’ll have a chance to hobnob with all those Nobel Laureates?

#BCTECH: preview of Summit 2017

The 2017 (2nd annual) version of the BC (British Columvai) Tech Summit will take place March 14 -15, 2017 in Vancouver, BC,  Canada. A Nov. 25, 2016 BC Innovation Council (BCIC), one of the producing partners, news release made the announcement,

Technology is transforming key industries in B.C. and around the globe at an unprecedented pace.

 From natural resources and agriculture to health and digital media, the second #BCTECH Summit returns with Microsoft as title sponsor, and will explore how tech is impacting every part of B.C.’s economy and changing lives.

Presented by the Province and the BC Innovation Council, B.C.͛s largest tech event will arm attendees with the tools to propel their companies to the next level, establish valuable business connections and inspire students to pursue careers in technology. From innovations in precision health, autonomous vehicles and customer experience, to emerging ideas in cleantech, agritech and aerospace, the #BCTECH Summit will showcase high-tech solutions to important local and global challenges.

New to the summit this year is the Future Realities Room, presented by Microsoft. It will be a dedicated space for B.C. companies to showcase their innovative augmented reality, virtual reality and mixed reality applications. From artificial intelligence to the internet-of-things, emerging technologies are disrupting industries and reshaping the path for future generations.

What attendees can expect at #BCTECH Summit 2017:

  •  Keynotes from thought leaders including Shahrzad Rafati of BroadbandTV, Ben Parr, author of Captivology, Microsoft and IBM.
  • Sector-specific deep dives from experts exploring the innovations transforming their industries and every part of B.C’s economy.
  • Opportunities to connect with tech buyers, scouts and investors through B2B meetings and the Investment Showcase.
  • Expanded Marketplace, Technology Showcase including Startup Square and Research Runway, and the Future Realities Room presented by Microsoft.
  • Youth Innovation Day to expose grades 10-12 students to diverse career paths in the technology sector.
  • Evening networking receptions and Techfest by Techvibes, a recruiting event that connects hiring companies with tech talent.

The two-day event is attracting regional, national and international attendees seeking solutions for their business, investment opportunities and talent in the province. The summit builds on the success of the inaugural summit this past January, which attracted global attention and exceeded its goal of 1,000 attendees with more than 3,500 people in attendance.

There is a special deal at the moment where you can save $300 off your $899 registration.  According to the site, the deal expires on Feb. 14, 2017. For the undecided, here’s a listing of a few of the speakers (from the #BCTECH Summit speakers page),

Thomas Tannert
BC Leadership Chair in Tall Wood Construction
University of Northern British Columbia

Thomas joined the University of Northern British Columbia in 2016 as BC Leadership Chair in Tall Wood Construction. He received his PhD from the University of British Columbia in Vancouver, a Master’s degree in Wood Science and Technology from the University of Bio-Bio in Chile, and a Civil Engineering degree from the Bauhaus-University Weimar in Germany.

Before coming to UNBC, Thomas worked on multi-disciplinary teams in Germany, Chile, and Switzerland and was Associate Chair in Wood Building Design and Construction at UBC. He is an expert in the development of design methods for timber joints and structures and the assessment and monitoring of timber structures.

Thomas is actively involved in fostering collaboration among timber design experts in industry and academia, and is a member on multiple international committees as well as the Canadian Standard Association technical committee CSA-O86 “Engineering design in wood”.

Sarah Applebaum
Director, Pangea Spark
Pangea Ventures

Sarah Applebaum is the Director of Pangaea Spark at Pangaea Ventures. Sarah is a member of the Young Private Capitalist Committee of the CVCA, advisory board member for the CIX Cleantech Conference, start up showcase review board for SXSW Eco and mentor to the Singularity University Labs Accelerator. She is the co-founder of TNT Events, a Vancouver-based organization that strives to create a more interconnected and multi-disciplinary innovation ecosystem.

Sarah holds an MBA from the Schulich School of Business and a BSc. from Dalhousie University.

Natalie Cartwright
Co-founder
Finn.ai

Nat is a co-founder of Finn.ai, a white-label virtual banking assistance, powered by artificial intelligence. Nat holds a Master of Public Health from Lund University and a Masters of Business Administration from IE Business School.

Before founding Finn.ai in 2014, Nat worked at the Global Fund, the largest global financing institution for HIV, tuberculosis and malaria programs, where she managed $250 million USD in investment to countries like Djibouti, South Sudan and Tajikistan.

Whether working in international development or in financial technology, Nat likes to act on the potential she sees for improvement and innovation.

Martin Monkman
Provincial Statistician & Director, BC Stats
Province of British Columbia

Since first joining BC Stats (British Columbia’s statistics bureau) in 1993, Martin has built a wide range of experience using data science to support evidence-based policy and business management decisions. Now the Provincial Statistician & Director at BC Stats, Martin leads a dynamic and innovative team of professional researchers in analyzing statistical information about the economic and social conditions of British Columbia and measuring public sector organizational performance.

Martin holds Bachelor of Science and Master of Arts degrees in Geography from the University of Victoria. He is a member of the Statistical Analysis Committee of the Society for American Baseball Research (SABR), and blogs about baseball statistics and data science using the statistical software R at bayesball.blogspot.com.

Loc Dao
Chief Digital Officer
National Film Board of Canada

Loc is a Canadian digital media creator and co-founder of the groundbreaking NFB Digital and CBC Radio 3 studios and their industry shifting bodies of work.

Loc recently became the chief digital officer (CDO) of the National Film Board of Canada, after serving as executive producer and creative technologist for the NFB Digital Studio in Vancouver since 2011. His NFB credits include the interactive documentaries Bear 71, Welcome to Pine Point, Circa 1948, Waterlife, The Last Hunt and Cardboard Crash VR which have been credited with inventing the new form of the interactive documentary.

In December 2011, Loc was named Canada’s Top Digital Producer for 2011 at the Digi Awards in Toronto. In addition, his CBC Radio 3 was one of the world’s first cross media success stories combining the award-winning CBC Radio 3 web magazine, terrestrial and satellite radio, podcasts and 3 user generated content sites that preceded MySpace and YouTube.

Janice Cheam
Co-founder, President & CEO
Neurio Technology Inc.

Janice is an entrepreneurial executive whose vision, commitment, and passion has been the driving force behind Neurio. Coming from over 7 years of utility experience, as the CEO of Neurio Technology, Janice has been working to help businesses promote energy efficiency and engagement among users for over a decade. Having seen a huge unmet need in the smart home market, she and her co-founders answered it by creating Neurio, a smart energy monitoring platform used by over 100,000 homes.

George Rubin
Vice-President, Business Development
General Fusion

George is the Vice-President of Business Development at General Fusion, a company transforming the world’s energy supply by developing the world’s first fusion power plant based on commercially viable technology.

Previously, George was a co-founder, Vice-President and subsequently President of Day4 Energy Inc., where he was instrumental to developing the solar company’s strategic vision and was directly responsible for execution of the corporate development plan. Following his time at Day4, George founded Pacific Surf Partners and served as its Managing Director. In 2016 he joined General Fusion to develop and coordinate relationships in the business and research communities.

A graduate of Moscow State University with a Masters Degree in Quantum Radio Physics, and a British Columbia Institute of Technology graduate with a Diploma in Financial Management and a Bachelor Degree in Accounting, George combines his knowledge of science and business with the experience of over a decade in the cleantech industry.

Gareth Manderson
General Manager, BC Works
Rio Tinto

Gareth is the General Manager of Rio Tinto’s  BC Works. In this role, he leads Rio Tinto Aluminium’s business in British Columbia, incorporating the operations of the Kitimat Smelter, Kemano Power Generation Facility and the Nechako Watershed. Prior to this, he led the Weipa Bauxite Business in Australia comprising of two mining operations, a port and the local town of Weipa.

Gareth has lived and worked in Australia, Canada, the USA and Italy, and completed assignments in a number of other countries. He has held accountability for business and operational leadership, consulting services, administrative and function support, and taken part in strategy development and due diligence work.

Gareth lives in Kitimat, British Columbia, with his wife and two children. He holds an Engineering Degree, a Master of Business Administration and is a Graduate of the Australian Institute of Company Directors.

Stephanie Simmons
Canada Research Chair in Quantum Nanoelectronics & Assistant Professor
Simon Fraser University

Stephanie is an assistant professor in the Department of Physics at Simon Fraser University (SFU), where she leads the Silicon Quantum Technology research group. Stephanie earned a Ph.D. in Materials Science at Oxford University in 2011 as a Clarendon Scholar and a B.Math (Pure Mathematics and Mathematical Physics) from the University of Waterloo. She was a Postdoctoral Research Fellow of the Electrical Engineering Department at UNSW, Australia, and completed her Junior Research Fellowship from St. John’s College, Oxford University.

Stephanie joined SFU as a Canada Research Chair in Quantum Nanoelectronics in fall 2015 and is working to build a silicon-based quantum computer. Her work on silicon quantum technologies was awarded a Physics World Top Ten Breakthrough of the Year of 2013 and again in 2015, and has been covered by the New York Times, CBC, BBC, Scientific American, the New Scientist, and others.

I recently had the pleasure of hearing Simmons speak at the SFU President’s Faculty Lecture on Nov. 30, 2016. You can watch her talk here (the talk is approximately 1 hr. in length).

Getting back to #BCTECH Summit 2017, I’ve provided a small sample of the speakers. By my count there are 103 in total. BTW, kudos to the organizers’ skills and commitment as approximately 35% of the speakers are women. Yes, it could be better but compared to a lot of the meetings I’ve mentioned here, this statistic is a significant improvement. As for diversity, it seems to me that they could probably do a bit better there too.

Surviving 39 minutes at room temperature—recordbreaking for quantum materials

There are two news releases about this work which brings quantum computing a step closer to reality. I’ll start with the Nov. 15, 2013 Simon Fraser University (SFU; located in Vancouver, Canada) news release (Note: A link has been removed),,

An international team of physicists led by Simon Fraser University professor Mike Thewalt has overcome a key barrier to building practical quantum computers, taking a significant step to bringing them into the mainstream.

In their record-breaking experiment conducted on SFU’s Burnaby campus, [part of Metro Vancouver] the scientists were able to get fragile quantum states to survive in a solid material at room temperature for 39 minutes. For the average person, it may not seem like a long time, but it’s a veritable eternity to a quantum physicist.

“This opens up the possibility of truly long-term coherent information storage at room temperature,” explains Thewalt.

Quantum computers promise to significantly outperform today’s machines at certain tasks, by exploiting the strange properties of subatomic particles. Conventional computers process data stored as strings of ones or zeroes, but quantum objects are not constrained to the either/or nature of binary bits.

Instead, each quantum bit – or qubit – can be put into a superposition of both one and zero at the same time, enabling them to perform multiple calculations simultaneously. For instance, this ability to multi-task could allow quantum computers to crack seemingly secure encryption codes.

“A powerful universal quantum computer would change technology in ways that we already understand, and doubtless in ways we do not yet envisage,” says Thewalt, whose research was published in Science today.

“It would have a huge impact on security, code breaking and the transmission and storage of secure information. It would be able to solve problems which are impossible to solve on any conceivable normal computer. It would be able to model the behaviour of quantum systems, a task beyond the reach of normal computers, leading, for example, to the development of new drugs by a deeper understanding of molecular interactions.”

However, the problem with attempts to build these extraordinary number-crunchers is that superposition states are delicate structures that can collapse like a soufflé if nudged by a stray particle, such as an air molecule.

To minimize this unwanted process, physicists often cool their qubit systems to almost absolute zero (-273 C) and manipulate them in a vacuum. But such setups are finicky to maintain and, ultimately, it would be advantageous for quantum computers to operate robustly at everyday temperatures and pressures.

“Our research extends the demonstrated coherence time in a solid at room temperature by a factor of 100 – and at liquid helium temperature by a factor of 60 (from three minutes to three hours),” says Thewalt.

“These are large, significant improvements in what is possible.”

The November 15, 2013 University of Oxford news release (also on EurekAlert), features their own researcher and more information (e.g., the previous record for maintaining coherence of a solid state at room temperature),

An international team including Stephanie Simmons of Oxford University report in this week’s Science a test performed as part of a project led by Mike Thewalt of Simon Fraser University, Canada, and colleagues. …

In the experiment, the team raised the temperature of a system, in which information is encoded in the nuclei of phosphorus atoms in silicon, from -269°C to 25°C and demonstrated that the superposition states survived at this balmy temperature for 39 minutes – outside of silicon the previous record for such a state’s survival at room temperature was around two seconds. [emphasis mine] The team even found that they could manipulate the qubits as the temperature of the system rose, and that they were robust enough for this information to survive being ‘refrozen’ (the optical technique used to read the qubits only works at very low temperatures).

‘Thirty-nine minutes may not seem very long but as it only takes one-hundred-thousandth of a second to flip the nuclear spin of a phosphorus ion – the type of operation used to run quantum calculations – in theory over two million operations could be applied in the time it takes for the superposition to naturally decay by 1%. Having such robust, as well as long-lived, qubits could prove very helpful for anyone trying to build a quantum computer,’ said Stephanie Simmons of Oxford University’s Department of Materials, an author of the paper.

The team began with a sliver of silicon doped with small amounts of other elements, including phosphorus. Quantum information was encoded in the nuclei of the phosphorus atoms: each nucleus has an intrinsic quantum property called ‘spin’, which acts like a tiny bar magnet when placed in a magnetic field. Spins can be manipulated to point up (0), down (1), or any angle in between, representing a superposition of the two other states.

The team prepared their sample at just 4°C above absolute zero (-269°C) and placed it in a magnetic field. Additional magnetic field pulses were used to tilt the direction of the nuclear spin and create the superposition states. When the sample was held at this cryogenic temperature, the nuclear spins of about 37% of the ions – a typical benchmark to measure quantum coherence – remained in their superposition state for three hours. The same fraction survived for 39 minutes when the temperature of the system was raised to 25°C.

There is still some work ahead before the team can carry out large-scale quantum computations. The nuclear spins of the 10 billion or so phosphorus ions used in this experiment were all placed in the same quantum state. To run calculations, however, physicists will need to place different qubits in different states. ‘To have them controllably talking to one another – that would address the last big remaining challenge,’ said Simmons.

Even for the uninitiated, going from a record of two seconds to 39 minutes has to raise an eyebrow.

Here’s a link to and a citation for the paper,

Room-Temperature Quantum Bit Storage Exceeding 39 Minutes Using Ionized Donors in Silicon-28.by Kamyar Saeedi, Stephanie Simmons, Jeff Z. Salvail, Phillip Dluhy, Helge Riemann, Nikolai V. Abrosimov, Peter Becker, Hans-Joachim Pohl, John J. L. Morton, & Mike L. W. Thewalt.  Science 15 November 2013: Vol. 342 no. 6160 pp. 830-833 DOI: 10.1126/science.1239584

This paper is behind a paywall.

ETA Nov. 18 ,2013:  The University College of London has also issued a Nov. 15, 2013 news release on EurekAlert about this work. While some of this is repetitive, I think there’s enough new information to make this excerpt worthwhile,

The team even found that they could manipulate the qubits as the temperature of the system rose, and that they were robust enough for this information to survive being ‘refrozen’ (the optical technique used to read the qubits only works at very low temperatures). 39 minutes may not sound particularly long, but since it only takes a tiny fraction of a second to run quantum computations by flipping the spin of phosphorus ions (electrically charged phosphorus atoms), many millions of operations could be carried out before a system like this decays.

“This opens up the possibility of truly long-term coherent information storage at room temperature,” said Mike Thewalt (Simon Fraser University), the lead researcher in this study.

The team began with a sliver of silicon doped with small amounts of other elements, including phosphorus. They then encoded quantum information in the nuclei of the phosphorus atoms: each nucleus has an intrinsic quantum property called ‘spin’, which acts like a tiny bar magnet when placed in a magnetic field. Spins can be manipulated to point up (0), down (1), or any angle in between, representing a superposition of the two other states.

The team prepared their sample at -269 °C, just 4 degrees above absolute zero, and placed it in a magnetic field. They used additional magnetic field pulses to tilt the direction of the nuclear spin and create the superposition states. When the sample was held at this cryogenic temperature, the nuclear spins of about 37 per cent of the ions – a typical benchmark to measure quantum coherence – remained in their superposition state for three hours. The same fraction survived for 39 minutes when the temperature of the system was raised to 25 °C.