Tag Archives: Holland

Desalination and toxic brine

Have you ever wondered about the possible effects and impact of desalinating large amounts of ocean water? It seems that some United Nations University (UNU) researchers have asked and are beginning to answer that question. The following table illustrates the rise in desalination plants and processes,


Today 15,906 operational desalination plants are found in 177 countries. Almost half of the global desalination capacity is located in the Middle East and North Africa region (48 percent), with Saudi Arabia (15.5 percent), the United Arab Emirates (10.1 percent) and Kuwait (3.7 percent) being both the major producers in the region and globally. Credit: UNU-INWEH [downloaded from http://inweh.unu.edu/un-warns-of-rising-levels-of-toxic-brine-as-desalination-plants-meet-growing-water-needs/]

A January 14, 2019 news item on phys.org highlights the study on desalination from the UNU,

The fast-rising number of desalination plants worldwide—now almost 16,000, with capacity concentrated in the Middle East and North Africa—quench a growing thirst for freshwater but create a salty dilemma as well: how to deal with all the chemical-laden leftover brine.

In a UN-backed paper, experts estimate the freshwater output capacity of desalination plants at 95 million cubic meters per day—equal to almost half the average flow over Niagara Falls.
For every litre of freshwater output, however, desalination plants produce on average 1.5 litres of brine (though values vary dramatically, depending on the feedwater salinity and desalination technology used, and local conditions). Globally, plants now discharge 142 million cubic meters of hypersaline brine every day (a 50% increase on previous assessments).

That’s enough in a year (51.8 billion cubic meters) to cover Florida under 30.5 cm (1 foot) of brine.

The authors, from UN University’s Canadian-based Institute for Water, Environment and Health [at McMaster University], Wageningen University, The Netherlands, and the Gwangju Institute of Science and Technology, Republic of Korea, analyzed a newly-updated dataset—the most complete ever compiled—to revise the world’s badly outdated statistics on desalination plants.

And they call for improved brine management strategies to meet a fast-growing challenge, noting predictions of a dramatic rise in the number of desalination plants, and hence the volume of brine produced, worldwide.

A January 14, 2017 UNU press release, which originated the news item, details the findings,

The paper found that 55% of global brine is produced in just four countries: Saudi Arabia (22%), UAE (20.2%), Kuwait (6.6%) and Qatar (5.8%). Middle Eastern plants, which largely operate using seawater and thermal desalination technologies, typically produce four times as much brine per cubic meter of clean water as plants where river water membrane processes dominate, such as in the US.

The paper says brine disposal methods are largely dictated by geography but traditionally include direct discharge into oceans, surface water or sewers, deep well injection and brine evaporation ponds.

Desalination plants near the ocean (almost 80% of brine is produced within 10km of a coastline) most often discharge untreated waste brine directly back into the marine environment.

The authors cite major risks to ocean life and marine ecosystems posed by brine greatly raising the salinity of the receiving seawater, and by polluting the oceans with toxic chemicals used as anti-scalants and anti-foulants in the desalination process (copper and chlorine are of major concern).

“Brine underflows deplete dissolved oxygen in the receiving waters,” says lead author Edward Jones, who worked at UNU-INWEH, and is now at Wageningen University, The Netherlands. “High salinity and reduced dissolved oxygen levels can have profound impacts on benthic organisms, which can translate into ecological effects observable throughout the food chain.”

Meanwhile, the paper highlights economic opportunities to use brine in aquaculture, to irrigate salt tolerant species, to generate electricity, and by recovering the salt and metals contained in brine — including magnesium, gypsum, sodium chloride, calcium, potassium, chlorine, bromine and lithium.

With better technology, a large number of metals and salts in desalination plant effluent could be mined. These include sodium, magnesium, calcium, potassium, bromine, boron, strontium, lithium, rubidium and uranium, all used by industry, in products, and in agriculture. The needed technologies are immature, however; recovery of these resources is economically uncompetitive today.

“There is a need to translate such research and convert an environmental problem into an economic opportunity,” says author Dr. Manzoor Qadir, Assistant Director of UNU-INWEH. “This is particularly important in countries producing large volumes of brine with relatively low efficiencies, such as Saudi Arabia, UAE, Kuwait and Qatar.”

“Using saline drainage water offers potential commercial, social and environmental gains. Reject brine has been used for aquaculture, with increases in fish biomass of 300% achieved. It has also been successfully used to cultivate the dietary supplement Spirulina, and to irrigate forage shrubs and crops (although this latter use can cause progressive land salinization).”

“Around 1.5 to 2 billion people currently live in areas of physical water scarcity, where water resources are insufficient to meet water demands, at least during part of the year. Around half a billion people experience water scarcity year round,” says Dr. Vladimir Smakhtin, a co-author of the paper and the Director of UNU-INWEH, whose institute is actively pursuing research related to a variety of unconventional water sources.

“There is an urgent need to make desalination technologies more affordable and extend them to low-income and lower-middle income countries. At the same time, though, we have to address potentially severe downsides of desalination — the harm of brine and chemical pollution to the marine environment and human health.”

“The good news is that efforts have been made in recent years and, with continuing technology refinement and improving economic affordability, we see a positive and promising outlook.”

¹The authors use the term “brine” to refer to all concentrate discharged from desalination plants, as the vast majority of concentrate (>95%) originates from seawater and highly brackish groundwater sources.

Here’s a link to and a citation for the paper,

The state of desalination and brine production: A global outlook by Edward Jones, Manzoor Qadir, Michelle T.H.van Vliet, Vladimir Smakhtin, Seong-mu Kang. Science of The Total Environment Volume 657, 20 March 2019, Pages 1343-1356 DOI: https://doi.org/10.1016/j.scitotenv.2018.12.076 Available online 7 December 2018

Surprisingly (to me anyway), this paper is behind a paywall.

Science inspired by superheroes, Ant-Man and the Wasp

It’s interesting to see scientists take science fiction and use it as inspiration; something which I think happens more often than we know. After all, when someone asks where you got an idea, it can be difficult to track down the thought process that started it all.

Scientists at Virginia Tech (Virginia Polytechnic Institute and State University) are looking for a new source of inspiration after offering a close examination of how insect-size superheroes, Ant-Man and the Wasp might breathe. From a December 11, 2018 news item on phys.org (Note: A link has been removed),

Max Mikel-Stites and Anne Staples were searching for a sequel.

This summer, Staples, an associate professor in the Department of Biomedical Engineering and Mechanics in the College of Engineering, and graduate student Mikel-Stites published a paper in the inaugural issue of the Journal of Superhero Science titled, “Ant-Man and the Wasp: Microscale Respiration and Microfluidic Technology.”

Now, they needed a new hero.

The two were working with a team of graduate students, brainstorming who could be the superhero subject for their next scientific inquiry. Superman? Batgirl? Aquaman?

Mikel-Stites lobbied for an investigation of Dazzler’s sonoluminescent powers. Staples was curious how Mera, The Princes sof Atlantis, used her hydrokinetic powers.

It turns out, comic books are a great inspiration for scientific discovery.

This month, Mikel-Stites is presenting the findings of their paper at the American Physical Society’s Division of Fluid Dynamics meeting.

The wonder team’s paper looked at how Ant-Man and the Wasp breathe when they shrink down to insect-size and Staples’ lab studied how fluids flow in nature. Insects naturally move fluids and gases efficiently at tiny scales. If engineers can learn how insects breathe, they can use the knowledge to invent new microfluidic technologies.

A November 2018 Virginia Tech news release (also on EurekAlert but published on December 11, 2018) by Nancy Dudek describes the ‘Ant-Man and Wasp respiratory project’ before revealing the inspiration for the team’s new project,

“Before the 2018 ‘Ant-Man and the Wasp’ movie, my lab was already wondering about insect-scale respiration,” said Staples. “I wanted to get people to appreciate different breathing mechanisms.”

For most of Mikel-Stites’ life, he had been nit-picking at the “science” in science-fiction movies.

“I couldn’t watch ‘Armageddon’ once they got up to space station Mir and there was artificial gravity. Things like that have always bothered me. But for ‘Ant-Man and the Wasp’ it was worse,” he said.

Staples and Mikel-Stites decided to join forces to research Ant-Man’s microscale respiration.

Mikel-Stites was stung by what he dubbed “the altitude problem or death-zone dilemma.” For Ant-Man and the Wasp to shrink down to insect size and still breathe, they would have to overcome an atmospheric density similar to the top of Mt. Everest. Their tiny bodies would also require higher metabolisms. For their survival, the Marvel comic universe had to give Ant-Man and the Wasp superhero technologies.

“I thought it would be fun to find a solution for how this small-scale respiration would work,”said Mikel-Stites.”I started digging through Ant-Man’s history. I looped through scenes in the 2015 movie where we could address the physics. Then I did the same thing with trailers from the 2018 movie. I used that to make a list of problems and a list of solutions.”

Ant-Man and the Wasp solve the altitude problem with their superhero suits. In their publication, Mikel-Stites and Staples write that the masks in Ant-Man and the Wasp’s suits contain “a combination of an air pump, a compressor, and a molecular filter including Pym particle technology,” that allows them to breathe while they are insect-sized.

“This publication showed how different physics phenomena can dominate at different size scales, how well-suited organisms are for their particular size, and what happens when you start altering that,” said Mikel-Stites. “It also shows that Hollywood doesn’t always get it right when it comes to science!”

Their manuscript was accepted by the Journal of Superhero Science before the release of the sequel, “Ant-Man and the Wasp.” Mikel-Stites was concerned the blockbuster might include new technologies or change Ant-Man’s canon. If the Marvel comic universe changed between the 2015 ‘Ant-Man’ movie and the sequel, their hypotheses would be debunked and they would be forced to retract their paper.

“I went to the 2018 movie before the manuscript came out in preprint so that if the movie contradicted us we could catch it. But the 2018 movie actually supported everything we had said, which was really nice,” said Mikel-Stites. Most moviegoers simply watched the special effects and left the theater entertained. But Mikel-Stitesleft the movie with confirmation of the paper’s hypotheses.

The Staples lab members are not the only ones interested in tiny technologies. From lab-on-a-chip microfluidic devices to nanoparticles that deliver drugs directly to cells, consumers will ultimately benefit from this small scientific field that delivers big results.

“In both the movies and science, shrinking is a common theme and has been for the last 50-60 years. This idea is something that we all like to think about. Given enough time, we can reach the point where science can take it from the realms of magic into something that we actually have an explanation for,” Mikel-Stites said.

In fact, the Staples lab group has already done just that.

While Mikel-Stites is presenting his superhero science at the APS meeting, his colleague Krishnashis Chatterjee, who recently completed his Ph.D. in engineering mechanics will be presenting his research on fabricating and testing four different insect-inspired micro-fluidic devices.

From fiction to function, the Staples lab likes to have fun along the way.

“I think that it is really important to connect with people and be engaged in science with topics they already know about. With this superhero science paper I wanted to support this mission,” Staples said.

And who did the lab mates choose for their next superhero science subject? The Princess of Atlantis, Mera. They hope they can publish another superhero science paper that really makes waves.

Here’s a link to and a citation for the paper,

Ant-Man and The Wasp: Microscale Respiration and Microfluidic Technology by Anne Staples and Maxwell Mikel-Stites. Superhero Science and Technology (SST) Vol 1 No 1 (2018): https://doi.org/10.24413/sst.2018.1.2474 July 2018 ISSN 2588-7637

This paper is open access.

And, just because the idea of a superhero science journal tickles my fancy, here’s a little more from the journal’s About webpage,

Serial title
Superhero Science and Technolog

Focus and Scope
Superhero Science and Technology (SST) is multi-disciplinary journal that considers new research in the fields of science, technology, engineering and ethics motivated and presented using the superhero genre.

The superhero genre has become one of the most popular in modern cinema. Since the 2000 film X-Men, numerous superhero-themed films based on characters from Marvel Comics and DC Comics have been released. Films such as The Avengers, Iron Man 3, Avengers: Age of Ultron and Captain America: Civil War have all earned in excess of $1 billion dollars at the box office, thus demonstrating their relevance in modern society and popular culture.

Of particular interest for Superhero Science and Technology are articles that motivate new research by using the platform of superheroes, supervillains, their superpowers, superhero/supervillain exploits in Hollywood blockbuster films or superhero/supervillain adventures from comic books. Articles should be written in a manner so that they are accessible to both the academic community and the interested non-scientist i.e. general public, given the popularity of the superhero genre.

Dissemination of content using this approach provides a potential for the researcher to communicate their work to a larger audience, thus increasing their visibility and outreach within and outside of the academic domain.

The scope of the journal includes but is not limited to:
Genetic editing approaches;
Innovations in the field of robotics;
New and advanced materials;
Additive Manufacturing i.e. 3D printing, for both bio and non-bio applications;
Advancements in bio-chemical processing;
Biomimicry technologies;
Space physics, astrophysical and cosmological research;
Developments in propulsion systems;
Responsible innovation;
Ethical issues pertaining to technologies and their use for human enhancement or augmentation.

Open Access Policy
SST is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You are free to use the work, but you have to attribute (refer to) the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work). The easiest way to refer to an article is to use the HOWTO CITE tool that you’ll find alongside each article in the right sidebar.

I also looked up the editorial team, from the journal’s Editorial Team webpage,

Editor-in-Chief
Dr. Barry W. Fitzgerald, TU Delft, the Netherlands
Editorial Board
Prof. Wim Briels, University of Twente, the Netherlands
Dr. Ian Clancy, University of Limerick, Ireland
Dr. Neil Clancy, University College London, UK
Dr. Tom Hunt, University of Kent, UK
Ass. Prof. Johan Padding, TU Delft, the Netherlands
Ass. Prof. Aimee van Wynsberghe, TU Delft, the Netherlands
Prof. Ilja Voets, TU Eindhoven, the Netherlands


For anyone unfamiliar with the abbreviation, TU stands for University of Technology or Technische Universiteit in Dutch.

The van Gogh-Roosegaarde path, a solar powered bike path

From YouTube, Heijmans NV Published on Nov 12, 2014 Inspired by Vincent van Gogh’s work, the cycle path combines innovation and design with cultural heritage and tourism. The Van Gogh-Roosegaarde cycle path is being constructed by Heijmans from a design by Daan Roosegaarde and forms part of the Van Gogh cycle route in Brabant.

According to other sources, the path was inspired by van Gogh’s ‘Starry Night’. From a November 21, 2014 article by Elizabeth Montalbano for Design News (Note: A link has been removed),

The Dutch are known for their love of bicycling, and they’ve also long been early adopters of green-energy and smart-city technologies. So it seems fitting that a town in which painter Vincent van Gogh once lived has given him a very Dutch-like tribute — a bike path lit by a special smart paint in the style of the artist’s “Starry Night” painting.

Designed by artist Daan Roosegaarde of Studio Roosegaarde, the van Gogh-Roosegaarde bike path — in the Dutch town of Nuenen en Eindhoven, where van Gogh lived from 1883-1885 — is a kilometer long and features technologies developed as part of the Smart Highway project, a joint venture of the studio and Dutch infrastructure company Heijmans.

A team of 12 designers and engineers worked on the project for eight months, while site production took 10 days. The opening of the path marked the official launch of the international van Gogh 2015 year.

The path uses stones painted with a smart coating that charges by the heat of the sun during the day and then glow at night for up to eight hours. When there is not enough sunlight during the day to charge the stones, the path can draw electricity from a solar panel installed nearby. There are also LEDs in the path that provides lighting.

How does the technology work?

Despite my best efforts, I never did unearth a good technical explanation. There is some sort of photoluminescent powder or paint. I vote for a powder that’s been emulsified in a paint/coating. material. Somehow, this material is charged by sunlight and then at night glows with the help of a solar panel and light-emitting diodes (LEDs).

Here’s the clearest explanation I found; it’s from Dan Howarth’s November 12, 2014 article for dezeen.com (Note: A link has been removed), ,

The surface of the Van Gogh-Roosegaarde Bicycle Path is coated with a special paint that uses energy gathered during the day to glow after dark.


[Daan] Roosegaarde told Dezeen that this method of illumination is “more gentle to the eye and surrounding nature” that other lighting infrastructure, and creates a “connection with cultural history”.

A nearby solar panel is used to generate power to illuminate the coated surface, which was developed with infrastructure firm Heijmans. LEDs along the side of certain curves in the path cast extra light, meaning the path will still be partially lit if the weather has been too cloudy for the panel to charge the surface to its full brightness.

“It’s a new total system that is self-sufficient and practical, and just incredibly poetic,” said Roosegaarde.

Lily Hay Newman’s November 14, 2014 article for Slate.com succinctly sums up the technical aspects,

The path is coated in photoluminescent paint that’s also embedded with small LEDs powered by nearby solar panels. The path essentially charges all day so that it can glow during the night, and it also has backup power in case it’s overcast.

This October 30, 2012 article by Liat Clark for Wired.com provides a bit more detail about the powder/paint as Clark delves into the Roosegaarde Studo’s Smart Highway project (the cycle path made use of the same technology) ,

The studio has developed a photo-luminising powder that will replace road markings – it charges up in sunlight, giving it up to 10 hours of glow-in-the-dark time come nightfall. “It’s like the glow in the dark paint you and I had when we were children,” designer Roosegaarde explained, “but we teamed up with a paint manufacturer and pushed the development. Now, it’s almost radioactive“. [perhaps not the wisest choice of hyperbole]

Special paint will also be used to paint markers like snowflakes across the road’s surface – when temperatures fall to a certain point, these images will become visible, indicating that the surface will likely be slippery. Roosegaarde says this technology has been around for years, on things like baby food – the studio has just upscaled it.

Not everyone is in love

Shaunacy Ferro’s July 26, 2017 article for dentalfloss.com highlights a glow-in-the-dark path project for Singapore and a little criticism (Note: Links have been removed),

Glow-in-the-dark materials are no longer for toys. Photoluminescence can help cities feel safer at night, whether it’s part of a mural, a bike lane, or a highway. Glow-in-the-dark paths have been tested in several European cities (the above is a Van Gogh-inspired bike path by the Dutch artist Daan Roosegaarde) and in Texas, but now, the technology may be coming to Singapore. The city-state is currently developing a 15-mile greenway called the Rail Corridor, and it now has a glow-in-the-dark path, as Mashable reports.

The 328-foot stretch of glowing path is part of a test of multiple surface materials that might eventually be used throughout the park, depending on public opinion. In addition to the strontium aluminate-beaded [emphasis mine] path that glows at night, there are also three other 328-foot stretches of the path that are paved with fine gravel, cement aggregate, and part-grass/part-gravel. The glow-in-the-dark material embedded in the walkway absorbs UV light from the sun during the day and can emit light for up to eight hours once the sun goes down.

However, in practice, glow-in-the-dark paths can be less dazzling than they seem. [emphasis mine] Mashable’s reporter called the glowing effect on Singapore’s path “disappointingly feeble.” [emphasis mine] In 2014, a glowing highway-markings pilot by Studio Roosegaarde in the Netherlands revealed that the first road markings faded after exposure to heavy rains. [emphases mine] When it comes to glowing roads, the renderings tend to look better than the actual result, [emphasis mine] and there are still kinks to work out. (The studio worked the issue out eventually.) While a person walking or biking down Singapore’s glowing path might be able to tell that they were staying on the path better than if they were fumbling along dark pavement, it’s not the equivalent of a streetlight, for sure.

Ferro had reported earlier on Studio Roosegaarde’s Smart Highway project in an October 23, 2014 article for Fast Company where Ferro first mentioned the rain problem (Note: Links have been removed),

Glowing Lanes is a collaboration between Dutch engineering company Heijmans and Daan Roosegaarde, a tech-loving artist and designer whose previous work includes Intimacy 2.0, a dress that becomes transparent when the wearer gets aroused. The glow-in-the-dark lane markers are intended to increase road visibility in a more energy-efficient way than traditional street lighting. Photoluminescent paint charges during the day and slowly emits light over the course of eight hours during the evening.

After a few technical challenges (an early version of the markers didn’t fare so well in the rain), the final system has been installed, and according to Studio Roosegaarde, the kinks have been worked out, and initial reports of the paint fading were “overstated.” [emphases mine]

“This was part of any normal learning process,” according to an email from the studio’s PR, and “now the project is ‘matured.’”

But not to the point where it’s no longer a novelty. According to the email from Studio Roosegaarde, the glowing highway caused a minor traffic jam last night as people rushed to look at it.

… Roosegaarde has also been asked to create a smart highway design for Afsluitdijk–an almost 20-mile-long dike that connects North Holland to the province of Friesland across the water–and according to his studio, there are plans in the works to launch the glowing lanes in China and Japan as well.

Comments

In the following excerpt, there’s a reference to strontium aluminate-coated materials, given the interview which follows this section, the project in Singapore did not use the photoluminescent paint developed by Roosegaarde Studio. I found this paint reference in a July 26, 2017 article by Yi Shu Ng for Mashable (h/t Ferro’s July 26, 2017 article) which notes the product’s ubiquity,

The track glows because it’s got strontium aluminate compounds embedded in it — the chemical is commonly found in glow-in-the-dark products, which absorb ultraviolet light in the day, to emit luminescence at night.

There are some inconsistencies in the reporting about the number of hours, eight hours or 10 hours, the bicycle path or smart highway remains lit after being charged. Given that this was a newish technology being used in a new application, the rain problem and other technical glitches were to be expected. I wish the writer had been a little less dismissive and that the studio had been a little more forthcoming about how they solved the problems. In any case, I dug further and this is what I got.

Interview

I’m not sure who answered the questions but this comes direct from Studio Roosegaarde,

  • Could you give me a capsule description of what’s happened since the path was opened in 2014/15? For example, How does the bike path look these days? Does it still glow? Don’t the bicycles on the path destroy the ‘Starry Night’ pattern over time? Do the stones have to be coated over and over again to maintain their solar charging capacities? 

    The Van Gogh Path is still working perfectly and is visited every night by couples, tourists and local people. The stones are inside the concrete so are still in place and will work for a minimum of 10 years. It is great to see we have created a place of wonder. It is the most published bicycle path in the world. We have even had children books published about it.
  • Are there more bike paths like the Van Gogh Path in other parts of Holland and/or elsewhere?

    No, this is the only one. There have been some copycats in other countries.The Smart Highway project is still growing, and our recent Gates of Light is the next step of poetic and energy-neutral landscapes like the Van Gogh Path:  https://www.studioroosegaarde.net/project/gates-of-light
  • How has your project evolved? And, have there been any unanticipated benefits and/or setbacks? Is there a change in the technology, I noticed you were investigating bioluminscence.

    Yes, we are still developing new landscapes of the future. What we have learned from Van Gogh Path we have applied in new projects such as Glowing Nature: https://www.studioroosegaarde.net/project/glowing-nature We also do something new.
  • I was struck by how gentle the lighting is. I understand there has been some criticism about how much light the path radiates and I’m wondering about your thoughts on that.

    Yes, since the path is a nature protected environment, normal LED lighting was not allowed. So the light is gentle but still visible, and sustainable.There are some bad copy-cats using cheap materials which don’t work well, like the one in Singapore. But we are happy that our path is still working.

Thank you to the folks at Studio Roosegaarde for taking the time to provide this interview. Here are links to Studio Roosegaarde and their industrial partner, Heijmans.

Baroness Elsa von Freytag-Loringhoven, Marcel Duchamp, and the Fountain

There is a controversy over one of the important pieces (it’s considered foundational) of modern art, “Fountain.”

The original Fountain by Marcel Duchamp photographed by Alfred Stieglitz at the 291 (Art Gallery) after the 1917 Society of Independent Artists exhibit. Stieglitz used a backdrop of The Warriors by Marsden Hartley to photograph the urinal. The entry tag is clearly visible. [downloaded from https://en.wikipedia.org/wiki/Fountain_%28Duchamp%29

Elsa von Freytag-Loringhoven the real artist behind the ‘Fountain’

According to Theo Paijmans in his June 2018 article (abstract) on See All This, the correct attribution is not Marcel Duchamp,

In 1917, when the United States was about to enter the First World War and women in the United Kingdom had just earned their right to vote, a different matter occupied the sentiments of the small, modernist art scene in New York. It had organised an exhibit where anyone could show his or her art against a small fee, but someone had sent in a urinal for display. This was against even the most avant-garde taste of the organisers of the exhibit. The urinal, sent in anonymously, without title and only signed with the enigmatic ‘R. Mutt’, quickly vanished from view. Only one photo of the urinal remains.

Theo Paijmans, June 2018

In 1935 famous surrealist artist André Breton attributed the urinal to Marcel Duchamp. Out of this grew the consensus that Duchamp was its creator. Over time Duchamp commissioned a number of replicas of the urinal that now had a name: Fountain – coined by a reviewer who briefly visited the exhibit in 1917. The original urinal had since long disappeared. In all probability it had been unceremoniously dumped on the trash heap, but ironically it was destined to become one of the most iconic works of modern art. In 2004, some five hundred artists and art experts heralded Fountain as the most influential piece of modern art, even leaving Picasso’s Les Demoiselles d’Avignon behind. Once again it cemented the reputation of Duchamp as one of the towering geniuses in the history of modern art.

But then things took a turn

Portrait of Elsa von Freytag-Loringhoven

In 1982 a letter written by Duchamp came to light. Dated 11 April 1917, it was written just a few days after that fateful exhibit. It contains one sentence that should have sent shockwaves through the world of modern art: it reveals the true creator behind Fountain – but it was not Duchamp. Instead he wrote that a female friend using a male alias had sent it in for the New York exhibition. Suddenly a few other things began to make sense. Over time Duchamp had told two different stories of how he had created Fountain, but both turned out to be untrue. An art historian who knew Duchamp admitted that he had never asked him about Fountain, he had published a standard-work on Fountain nevertheless. The place from where Fountain was sent raised more questions. That place was Philadelphia, but Duchamp had been living in New York.

Female friend

Who was living in Philadelphia? Who was this ‘female friend’ that had sent the urinal using a pseudonym that Duchamp mentions? That woman was, as Duchamp wrote, the future. Art history knows her as Elsa von Freytag-Loringhoven. She was a brilliant pioneering New York dada artist, and Duchamp knew her well. This glaring truth has been known for some time in the art world, but each time it has to be acknowledged, it is met with indifference and silence.

You have to pay to read the rest but See All This does include a video with the abstract for the article,

You may want to know one other thing, the magazine appears to be available only in Dutch. Taking that into account, here’s a link to the magazine along with some details about the experts who consulted with Paijmans,

This is an abstract from the Dutch article ‘Het urinoir is niet van Duchamp’ that is published in See All This art magazine’s summer issue. For his research, the author interviewed Irene Gammel (biographer of Elsa von Freytag-Loringhoven and professor at the Ryerson University in Toronto), Glyn Thompson (art historian, curator and writer), Julian Spalding (art critic and former director of Glasgow museums and galleries), and John Higgs (cultural historian and journalist).

The [2018] summer issue of See All This magazine is dedicated to 99 genius women in the art world, to celebrate the voice of women and the 100th anniversary of women’s right to vote in the Netherlands in 2019. Buy this issue online.

It’s certainly a provocative thesis and it seems there’s a fair degree of evidence to support it. Although there is an alternative attribution, also female. From the Baroness Elsa von Freytag-Loringhoven Wikipedia entry (Note: Links have been removed),

In a letter written by Marcel Duchamp to his sister Suzanne dated April 11, 1917 he refers to his famous ready-made, Fountain (1917) and states: “One of my female friends under a masculine pseudonym, Richard Mutt, sent in a porcelain urinal as a sculpture.”[33] Some have claimed that the friend in question was the Baroness, but Francis Naumann, the New York-based critic and expert on Dada who put together a compilation of Duchamp’s letters and organized Making Mischief: Dada Invades New York for the Whitney Museum of American Art in 1997, explains this “female friend” is Louise Norton who contributed an essay to The Blind Man discussing Fountain. Norton was living at 110 West 88th Street in New York City and this address is partially discernible (along with “Richard Mutt”) on the paper entry ticket attached to the object, as seen in Stieglitz’s photograph of Fountain.[emphases mine]

Or is it Louise Norton?

The “Fountain” Wikipedia entry does not clarify matters (Note: Links have been removed),

Marcel Duchamp arrived in the United States less than two years prior to the creation of Fountain and had become involved with Dada, an anti-rational, anti-art cultural movement, in New York City. According to one version, the creation of Fountain began when, accompanied by artist Joseph Stella and art collector Walter Arensberg, he purchased a standard Bedfordshire model urinal from the J. L. Mott Iron Works, 118 Fifth Avenue. The artist brought the urinal to his studio at 33 West 67th Street, reoriented it to a position 90 degrees from its normal position of use, and wrote on it, “R. Mutt 1917”.[3][4]

According to another version, Duchamp did not create Fountain, but rather assisted in submitting the piece to the Society of Independent Artists for a female friend. In a letter dated 11 April 1917 Duchamp wrote to his sister Suzanne telling her about the circumstances around Fountain’s submission: “Une de mes amies sous un pseudonyme masculin, Richard Mutt, avait envoyé une pissotière [urinal] en porcelaine comme sculpture” (“One of my female friends, who had adopted the male pseudonym, Richard Mutt, sent me a porcelain urinal as a sculpture.”)[5][6] Duchamp never identified his female friend, but two candidates have been proposed: the Dadaist Elsa von Freytag-Loringhoven[7][8] whose scatological aesthetic echoed that of Duchamp, or Louise Norton, who contributed an essay to The Blind Man discussing Fountain. Norton, who recently had separated from her husband, was living at the time in an apartment owned by her parents at 110 West 88th Street in New York City, and this address is partially discernible (along with “Richard Mutt”) on the paper entry ticket attached to the object, as seen in Stieglitz’s photograph.[9]

Rhonda Roland Shearer in the online journal Tout-Fait (2000) has concluded that the photograph is a composite of different photos, while other scholars such as William Camfield have never been able to match the urinal shown in the photo to any urinals found in the catalogues of the time period.[10] [emphases mine]

Attributing “Fountain” to a woman changes my understanding of the work. It seems to me. After all, it’s a woman submitting a urinal (plumbing designed specifically for the male anatomy) as a work of art.What was she (whichever she) is saying?

It’s tempting to read a commentary on patriarchy and art into the piece but von Freytag-Loringhoven (I’ll get to Norton next) may have had other issues in mind, from her Wikipedia entry (Note: Links have been removed),

There has been substantial new research indicating that some artworks attributed to other artists of the period can now either be attributed to the Baroness, or raise the possibility that she may have created the works. One work, called God (1917) had for a number of years been attributed to the artist Morton Livingston Schamberg. The Philadelphia Museum of Art, whose collection includes God, now credits the Baroness as a co-artist of this piece. Amelia Jones idenitified that this artwork’s concept and title was created by the Baroness, however, it was constructed by both Shamberg and the Baroness.[30] This sculpture, God (1917), involved a cast iron pumbing trap and a wooden mitre box, assembled in a phallic-like manner. [31] Her concept behind the shape and choice of materials is indicative of her commentary on the worship and love that Americans have for plumbing that trumps all else; additionally, it is revealing of the Baroness’s rejection of technology. [emphases mine]

As for Norton, unfortunately I’m not familiar with her work and this is the only credible reference to her that I’ve been able to find (Note: The link is in an essay on Duchamp and the “Fountain” on the Phaidon website [scroll down to the ninth paragraph]),

Allen Norton was an American poet and literary editor of the 1910s and 20s. He and his wife Louise Norton [emphasis mine] edited the little magazine Rogue, published from March 1915 to December 1916.

There is another Louise Norton, an artist who has a Wikipedia entry but that suggests this is an entirely different ‘Louise’.

Of the two and for what it’s worth, I find von Freytag-Loringhoven to be the more credible candidate. Nell Frizzell in her Nov. 7, 2014 opinion piece for the Guardian has absolutely no doubts on the matter (Note: Links have been removed),

Men may fill them, but it takes a woman to take the piss out of a urinal. Or so Julian Spalding, the former director of Glasgow Museums, and the academic Glyn Thompson have claimed. The argument, which has been swooshing around the cistern of contemporary art criticism since the 1980s, is that Duchamp’s famous artwork Fountain – a pissoir laid on its side – was actually the creation of the poet, artist and wearer of tin cans, Baroness Elsa von Freytag-Loringhoven.

That Von Freytag-Loringhoven has been written out of the story is not only a great injustice, it is also a formidable loss to art history. This was a woman, after all, whose idea of getting gussied-up for a private view was to scatter her outfit liberally with flattened tin cans and stuffed parrots. A woman who danced on verandas in little more than a pair of stockings, some feathers and enough bangles to shake out the percussion track from Walk Like an Egyptian. A woman who draped her way through several open marriages, including one to Oscar Wilde’s translator Felix Paul Greve (who faked his own suicide to escape his creditors and flee with her to America)….

Mind you, there is a difference between theft and misattribution. While Valerie Solanas, the somewhat troubled feminist and writer of the Scum manifesto, openly accused Andy Warhol of stealing her script Up Your Ass and even attempted to murder him, other works exist in a more complicated, murky grey area. Matisse certainly directed the creation of his gouaches découpées – large collage works made by pasting torn-off pieces of gouache-painted paper – yet it is impossible to draw the line between where his creativity ends and that of his assistants intention begins. Similarly, while John Milton’s daughters ostensibly simply transcribed their father’s work, how can we say that in the act of writing they were not also editing, questioning, suggesting imagery and offering phrasing?

Art historians and academics have pointed out that in 1917 Duchamp wrote to his sister, recounting how “one of my female friends under a masculine pseudonym, Richard Mutt, sent in a porcelain urinal as a sculpture”. Duchamp revealed that this model of urinal wasn’t even in production at the factory where he claimed to have picked it up; and that this artwork bore a more than passing similarity to the Elsa von Freytag-Loringhoven readymade sculpture called God, both in appearance and concept.

Here is “God,”

“God” By Baroness Elsa von Freytag-Loringhoven and Morton Schamberg (1917)Museum of Fine Arts, Houston Blue pencil.svg wikidata:Q1565911  Source/Photographer: TgGFztK3lZWxdg at Google Cultural Institute, zoom level maximum

The “Fountain” graced this blog previously in a March 8, 2016 posting about an exhibition titled: “Mashup: The Birth of Modern Culture” at the Vancouver Art Gallery where I did not have an inkling as to this controversy.  Given the zeitgeist surrounding women and their issues, it’s an interesting time to learn of it.

China is world leader in nanotechnology and in other fields too?

State of Chinese nanoscience/nanotechnology

China claims to be the world leader in the field in a white paper announced in an August 29, 2017 Springer Nature press release,

Springer Nature, the National Center for Nanoscience and Technology, China and the National Science Library of the Chinese Academy of Sciences (CAS) released in both Chinese and English a white paper entitled “Small Science in Big China: An overview of the state of Chinese nanoscience and technology” at NanoChina 2017, an international conference on nanoscience and technology held August 28 and 29 in Beijing. The white paper looks at the rapid growth of China’s nanoscience research into its current role as the world’s leader [emphasis mine], examines China’s strengths and challenges, and makes some suggestions for how its contribution to the field can continue to thrive.

The white paper points out that China has become a strong contributor to nanoscience research in the world, and is a powerhouse of nanotechnology R&D. Some of China’s basic research is leading the world. China’s applied nanoscience research and the industrialization of nanotechnologies have also begun to take shape. These achievements are largely due to China’s strong investment in nanoscience and technology. China’s nanoscience research is also moving from quantitative increase to quality improvement and innovation, with greater emphasis on the applications of nanotechnologies.

“China took an initial step into nanoscience research some twenty years ago, and has since grown its commitment at an unprecedented rate, as it has for scientific research as a whole. Such a growth is reflected both in research quantity and, importantly, in quality. Therefore, I regard nanoscience as a window through which to observe the development of Chinese science, and through which we could analyze how that rapid growth has happened. Further, the experience China has gained in developing nanoscience and related technologies is a valuable resource for the other countries and other fields of research to dig deep into and draw on,” said Arnout Jacobs, President, Greater China, Springer Nature.

The white paper explores at China’s research output relative to the rest of the world in terms of research paper output, research contribution contained in the Nano database, and finally patents, providing insight into China’s strengths and expertise in nano research. The white paper also presents the results of a survey of experts from the community discussing the outlook for and challenges to the future of China’s nanoscience research.

China nano research output: strong rise in quantity and quality

In 1997, around 13,000 nanoscience-related papers were published globally. By 2016, this number had risen to more than 154,000 nano-related research papers. This corresponds to a compound annual growth rate of 14% per annum, almost four times the growth in publications across all areas of research of 3.7%. Over the same period of time, the nano-related output from China grew from 820 papers in 1997 to over 52,000 papers in 2016, a compound annual growth rate of 24%.

China’s contribution to the global total has been growing steadily. In 1997, Chinese researchers co-authored just 6% of the nano-related papers contained in the Science Citation Index (SCI). By 2010, this grew to match the output of the United States. They now contribute over a third of the world’s total nanoscience output — almost twice that of the United States.

Additionally, China’s share of the most cited nanoscience papers has kept increasing year on year, with a compound annual growth rate of 22% — more than three times the global rate. It overtook the United States in 2014 and its contribution is now many times greater than that of any other country in the world, manifesting an impressive progression in both quantity and quality.

The rapid growth of nanoscience in China has been enabled by consistent and strong financial support from the Chinese government. As early as 1990, the State Science and Technology Committee, the predecessor of the Ministry of Science and Technology (MOST), launched the Climbing Up project on nanomaterial science. During the 1990s, the National Natural Science Foundation of China (NSFC) also funded nearly 1,000 small-scale projects in nanoscience. In the National Guideline on Medium- and Long-Term Program for Science and Technology Development (for 2006−2020) issued in early 2006 by the Chinese central government, nanoscience was identified as one of four areas of basic research and received the largest proportion of research budget out of the four areas. The brain boomerang, with more and more foreign-trained Chinese researchers returning from overseas, is another contributor to China’s rapid rise in nanoscience.

The white paper clarifies the role of Chinese institutions, including CAS, in driving China’s rise to become the world’s leader in nanoscience. Currently, CAS is the world’s largest producer of high impact nano research, contributing more than twice as many papers in the 1% most-cited nanoscience literature than its closest competitors. In addition to CAS, five other Chinese institutions are ranked among the global top 20 in terms of output of top cited 1% nanoscience papers — Tsinghua University, Fudan University, Zhejiang University, University of Science and Technology of China and Peking University.

Nano database reveals advantages and focus of China’s nano research

The Nano database (http://nano.nature.com) is a comprehensive platform that has been recently developed by Nature Research – part of Springer Nature – which contains nanoscience-related papers published in 167 peer-reviewed journals including Advanced Materials, Nano Letters, Nature, Science and more. Analysis of the Nano database of nanomaterial-containing articles published in top 30 journals during 2014–2016 shows that Chinese scientists explore a wide range of nanomaterials, the five most common of which are nanostructured materials, nanoparticles, nanosheets, nanodevices and nanoporous materials.

In terms of the research of applications, China has a clear leading edge in catalysis research, which is the most popular area of the country’s quality nanoscience papers. Chinese nano researchers also contributed significantly to nanomedicine and energy-related applications. China is relatively weaker in nanomaterials for electronics applications, compared to other research powerhouses, but robotics and lasers are emerging applications areas of nanoscience in China, and nanoscience papers addressing photonics and data storage applications also see strong growth in China. Over 80% of research from China listed in the database explicitly mentions applications of the nanostructures and nanomaterials described, notably higher than from most other leading nations such as the United States, Germany, the UK, Japan and France.

Nano also reveals the extent of China’s international collaborations in nano research. China has seen the percentage of its internationally collaborated papers increasing from 36% in 2014 to 44% in 2016. This level of international collaboration, similar to that of South Korea, is still much lower than that of the western countries, and the rate of growth is also not as fast as those in the United States, France and Germany.

The United States is China’s biggest international collaborator, contributing to 55% of China’s internationally collaborated papers on nanoscience that are included in the top 30 journals in the Nano database. Germany, Australia and Japan follow in a descending order as China’s collaborators on nano-related quality papers.

China’s patent output: topping the world, mostly applied domestically

Analysis of the Derwent Innovation Index (DII) database of Clarivate Analytics shows that China’s accumulative total number of patent applications for the past 20 years, amounting to 209,344 applications, or 45% of the global total, is more than twice as many as that of the United States, the second largest contributor to nano-related patents. China surpassed the United States and ranked the top in the world since 2008.

Five Chinese institutions, including the CAS, Zhejiang University, Tsinghua University, Hon Hai Precision Industry Co., Ltd. and Tianjin University can be found among the global top 10 institutional contributors to nano-related patent applications. CAS has been at the top of the global rankings since 2008, with a total of 11,218 patent applications for the past 20 years. Interestingly, outside of China, most of the other big institutional contributors among the top 10 are commercial enterprises, while in China, research or academic institutions are leading in patent applications.

However, the number of nano-related patents China applied overseas is still very low, accounting for only 2.61% of its total patent applications for the last 20 years cumulatively, whereas the proportion in the United States is nearly 50%. In some European countries, including the UK and France, more than 70% of patent applications are filed overseas.

China has high numbers of patent applications in several popular technical areas for nanotechnology use, and is strongest in patents for polymer compositions and macromolecular compounds. In comparison, nano-related patent applications in the United States, South Korea and Japan are mainly for electronics or semiconductor devices, with the United States leading the world in the cumulative number of patents for semiconductor devices.

Outlook, opportunities and challenges

The white paper highlights that the rapid rise of China’s research output and patent applications has painted a rosy picture for the development of Chinese nanoscience, and in both the traditionally strong subjects and newly emerging areas, Chinese nanoscience shows great potential.

Several interviewed experts in the survey identify catalysis and catalytic nanomaterials as the most promising nanoscience area for China. The use of nanotechnology in the energy and medical sectors was also considered very promising.

Some of the interviewed experts commented that the industrial impact of China’s nanotechnology is limited and there is still a gap between nanoscience research and the industrialization of nanotechnologies. Therefore, they recommended that the government invest more in applied research to drive the translation of nanoscience research and find ways to encourage enterprises to invest more in R&D.

As more and more young scientists enter the field, the competition for research funding is becoming more intense. However, this increasing competition for funding was not found to concern most interviewed young scientists, rather, they emphasized that the soft environment is more important. They recommended establishing channels that allow the suggestions or creative ideas of the young to be heard. Also, some interviewed young researchers commented that they felt that the current evaluation system was geared towards past achievements or favoured overseas experience, and recommended the development of an improved talent selection mechanism to ensure a sustainable growth of China’s nanoscience.

I have taken a look at the white paper and found it to be well written. It also provides a brief but thorough history of nanotechnology/nanoscience even adding a bit of historical information that was new to me. As for the rest of the white paper, it relies on bibliometrics (number of published papers and number of citations) and number of patents filed to lay the groundwork for claiming Chinese leadership in nanotechnology. As I’ve stated many times before, these are problematic measures but as far as I can determine they are almost the only ones we have. Frankly, as a Canadian, it doesn’t much matter to me since Canada no matter how you slice or dice it is always in a lower tier relative to science leadership in major fields. It’s the Americans who might feel inclined to debate leadership with regard to nanotechnology and other major fields and I leave it to to US commentators to take up the cudgels should they be inclined. The big bonuses here are the history, the glimpse into the Chinese perspective on the field of nanotechnology/nanoscience, and the analysis of weaknesses and strengths.

Coming up fast on Google and Amazon

A November 16, 2017 article by Christina Bonnington for Slate explores the possibility that a Chinese tech giant, Baidu,  will provide Google and Amazon serious competition in their quests to dominate world markets (Note: Links have been removed,

raven_h
The company took a playful approach to the form—but it has functional reasons for the design, too. Baidu

 

One of the most interesting companies in tech right now isn’t based in Palo Alto, or San Francisco, or Seattle. Baidu, a Chinese company with headquarters in Beijing, is taking on America’s biggest and most innovative tech titans—with style.

Baidu, a titan in its own right, leapt onto the scene as a competitor to Google in the search engine space. Since then, the company, largely underappreciated here in the U.S., has focused on beefing up its artificial intelligence efforts. Former AI chief Andrew Ng, upon leaving the company in March, credited Baidu’s CEO Robin Li on being one of the first technology leaders to fully appreciate the value of deep learning. Baidu now has a 1,300 person AI group, and that investment in AI has helped the company catch up to older, more established companies like Google and Amazon—both in emerging spaces, such as autonomous vehicles, and in consumer tech, as its latest announcement shows.

On Thursday [November 16, 2017], Baidu debuted its entrants to the popular virtual assistant space: a connected speaker and two robots. Baidu aims for the speaker to compete against options such as Amazon’s Echo line, Google Home, and Apple HomePod. Inside, the $256 device will utilize Baidu’s DuerOS conversational artificial intelligence platform, which is already used in more than 100 different smart home brands’ products. DuerOS will let you use your voice to do things like ask the speaker for information, play music, or hail a cab. Called the Raven H, the speaker includes high-end audio components from Tymphany and a unique design jointly created by acquired startup Raven Tech and Swedish consumer electronics company Teenage Engineering.

While the focus is on exciting new technology products from Baidu, the subtext, such as it is, suggests US companies had best keep an eye on its Chinese competitor(s).

Dutch/Chinese partnership to produce nanoparticles at the touch of a button

Now back to China and nanotechnology leadership and the production of nanoparticles. This announcement was made in a November 17, 2017 news item on Azonano,

Delft University of Technology [Netherlands] spin-off VSPARTICLE enters the booming Chinese market with a radical technology that allows researchers to produce nanoparticles at the push of a button. VSPARTICLE’s nanoparticle generator uses atoms, the worlds’ smallest building blocks, to provide a controllable source of nanoparticles. The start-up from Delft signed a distribution agreement with Bio-Sun to make their VSP-G1 nanoparticle generator available in China.

A November 16, 2017 VSPARTICLE press release, which originated the news item,

“We are honoured to cooperate with VSPARTICLE and bring the innovative VSP-G1 nanoparticle generator into the Chinese market. The VSP-G1 will create new possibilities for researchers in catalysis, aerosol, healthcare and electronics,” says Yinghui Cai, CEO of Bio-Sun.

With an exponential growth in nanoparticle research in the last decade, China is one of the leading countries in the field of nanotechnology and its applications. Vincent Laban, CFO of VSPARTICLE, explains: “Due to its immense investments in IOT, sensors, semiconductor technology, renewable energy and healthcare applications, China will eventually become one of our biggest markets. The collaboration with Bio-Sun offers a valuable opportunity to enter the Chinese market at exactly the right time.”

NANOPARTICLES ARE THE BUILDING BLOCKS OF THE FUTURE

Increasingly, scientists are focusing on nanoparticles as a key technology in enabling the transition to a sustainable future. Nanoparticles are used to make new types of sensors and smart electronics; provide new imaging and treatment possibilities in healthcare; and reduce harmful waste in chemical processes.

CURRENT RESEARCH TOOLKIT LACKS A FAST WAY FOR MAKING SPECIFIC BUILDING BLOCKS

With the latest tools in nanotechnology, researchers are exploring the possibilities of building novel materials. This is, however, a trial-and-error method. Getting the right nanoparticles often is a slow struggle, as most production methods take a substantial amount of effort and time to develop.

VSPARTICLE’S VSP-G1 NANOPARTICLE GENERATOR

With the VSP-G1 nanoparticle generator, VSPARTICLE makes the production of nanoparticles as easy as pushing a button. . Easy and fast iterations enable researchers to fast forward their research cycle, and verify their hypotheses.

VSPARTICLE

Born out of the research labs of Delft University of Technology, with over 20 years of experience in the synthesis of aerosol, VSPARTICLE believes there is a whole new world of possibilities and materials at the nanoscale. The company was founded in 2014 and has an international sales network in Europe, Japan and China.

BIO-SUN

Bio-Sun was founded in Beijing in 2010 and is a leader in promoting nanotechnology and biotechnology instruments in China. It serves many renowned customers in life science, drug discovery and material science. Bio-Sun has four branch offices in Qingdao, Shanghai, Guangzhou and Wuhan City, and a nationwide sale network.

That’s all folks!

Historic and other buildings get protection from pollution?

This Sept. 15, 2017 news item on Nanowerk announces a new product for protecting buildings from pollution,

The organic pollution decomposing properties of titanium dioxide (TiO2 ) have been known for about half a century. However, practical applications have been few and hard to develop, but now a Greek paint producer claims to have found a solution

A Sept. 11, 2017 Youris (European Research Media Center) press release by Koen Mortelmans which originated the news item expands on the theme,

The photocatalytic properties of anatase, one of the three naturally occurring forms of titanium dioxide, were discovered in Japan in the late 1960s. Under the influence of the UV-radiation in sunlight, it can decompose organic pollutants such as bacteria, fungi and nicotine, and some inorganic materials into carbon dioxide. The catalytic effect is caused by the nanostructure of its crystals.

Applied outdoors, this affordable and widely available material could represent an efficient self-cleaning solution for buildings. This is due to the chemical reaction, which leaves a residue on building façades, a residue then washed away when it rains. Applying it to monuments in urban areas may save our cultural heritage, which is threatened by pollutants.

However, “photocatalytic paints and additives have long been a challenge for the coating industry, because the catalytic action affects the durability of resin binders and oxidizes the paint components,” explains Ioannis Arabatzis, founder and managing director of NanoPhos, based in the Greek town of Lavrio, in one of the countries home to some of the most important monuments of human history. The Greek company is testing a paint called Kirei, inspired by a Japanese word meaning both clean and beautiful.

According to Arabatzis, it’s an innovative product because it combines the self-cleaning action of photocatalytic nanoparticles and the reflective properties of cool wall paints. “When applied on exterior surfaces this paint can reflect more than 94% of the incident InfraRed radiation (IR), saving energy and reducing costs for heating and cooling”, he says. “The reflection values are enhanced by the self-cleaning ability. Compared to conventional paints, they remain unchanged for longer.”

The development of Kirei has been included in the European project BRESAER (BREakthrough Solutions for Adaptable Envelopes in building Refurbishment) which is studying a sustainable and adaptable “envelope system” to renovate buildings. The new paint was tested and subjected to quality controls following ISO standard procedures at the company’s own facilities and in other independent laboratories. “The lab results from testing in artificial, accelerated weathering conditions are reliable,” Arabatzis claims. “There was no sign of discolouration, chalking, cracking or any other paint defect during 2,000 hours of exposure to the simulated environmental conditions. We expect the coating’s service lifetime to be at least ten years.”

Many studies are being conducted to exploit the properties of titanium dioxide. Jan Duyzer, researcher at the Netherlands Organisation for Applied Scientific Research (TNO) in Utrecht, focused on depollution: “There is no doubt about the ability of anatase to decrease the levels of nitrogen oxides in the air. But in real situations, there are many differences in pollution, wind, light, and temperature. We were commissioned by the Dutch government specifically to find a way to take nitrogen oxides out of the air on roads and in traffic tunnels. We used anatase coated panels. Our results were disappointing, so the government decided to discontinue the research. Furthermore, we still don’t know what caused the difference between lab and life. Our best current hypothesis is that the total surface of the coated panels is very small compared to the large volumes of polluted air passing over them,” he tells youris.com.

Experimental deployment of titanium dioxide panels on an acoustic wall along a Dutch highway – Courtesy of Netherlands Organisation for Applied Scientific Research (TNO)

“In laboratory conditions the air is blown over the photocatalytic surface with a certain degree of turbulence. This results in the NOx-particles and the photocatalytic material coming into full contact with one another,” says engineer Anne Beeldens, visiting professor at KU Leuven, Belgium. Her experience with photocatalytic TiO2 is also limited to nitrogen dioxide (NOx) pollution.

In real applications, the air stream at the contact surface becomes laminar. This results in a lower velocity of the air at the surface and a lower depollution rate. Additionally, not all the air will be in contact with the photocatalytic surfaces. To ensure a good working application, the photocatalytic material needs to be positioned so that all the air is in contact with the surface and flows over it in a turbulent manner. This would allow as much of the NOx as possible to be in contact with photocatalytic material. In view of this, a good working application could lead to a reduction of 5 to 10 percent of NOx in the air, which is significant compared to other measures to reduce pollutants.”

The depollution capacity of TiO2 is undisputed, but most applications and tests have only involved specific kinds of substances. More research and measurements are required if we are to benefit more from the precious features of this material.

I think the most recent piece here on protecting buildings, i.e., the historic type, from pollution is an Oct. 21, 2014 posting: Heart of stone.

‘Nano-hashtags’ for Majorana particles?

The ‘nano-hashtags’ are in fact (assuming a minor leap of imagination) nanowires that resemble hashtags.

Scanning electron microscope image of the device wherein clearly a ‘hashtag’ is formed. Credit: Eindhoven University of Technology

An August 23, 2017 news item on ScienceDaily makes the announcement,

In Nature, an international team of researchers from Eindhoven University of Technology [Netherlands], Delft University of Technology [Netherlands] and the University of California — Santa Barbara presents an advanced quantum chip that will be able to provide definitive proof of the mysterious Majorana particles. These particles, first demonstrated in 2012, are their own antiparticle at one and the same time. The chip, which comprises ultrathin networks of nanowires in the shape of ‘hashtags’, has all the qualities to allow Majorana particles to exchange places. This feature is regarded as the smoking gun for proving their existence and is a crucial step towards their use as a building block for future quantum computers.

An August 23, 2017 Eindhoven University press release (also on EurekAlert), which originated the news item, provides some context and information about the work,

In 2012 it was big news: researchers from Delft University of Technology and Eindhoven University of Technology presented the first experimental signatures for the existence of the Majorana fermion. This particle had been predicted in 1937 by the Italian physicist Ettore Majorana and has the distinctive property of also being its own anti-particle. The Majorana particles emerge at the ends of a semiconductor wire, when in contact with a superconductor material.

Smoking gun

While the discovered particles may have properties typical to Majoranas, the most exciting proof could be obtained by allowing two Majorana particles to exchange places, or ‘braid’ as it is scientifically known. “That’s the smoking gun,” suggests Erik Bakkers, one of the researchers from Eindhoven University of Technology. “The behavior we then see could be the most conclusive evidence yet of Majoranas.”

Crossroads

In the Nature paper that is published today [August 23, 2017], Bakkers and his colleagues present a new device that should be able to show this exchanging of Majoranas. In the original experiment in 2012 two Majorana particles were found in a single wire but they were not able to pass each other without immediately destroying the other. Thus the researchers quite literally had to create space. In the presented experiment they formed intersections using the same kinds of nanowire so that four of these intersections form a ‘hashtag’, #, and thus create a closed circuit along which Majoranas are able to move.

Etch and grow

The researchers built their hashtag device starting from scratch. The nanowires are grown from a specially etched substrate such that they form exactly the desired network which they then expose to a stream of aluminium particles, creating layers of aluminium, a superconductor, on specific spots on the wires – the contacts where the Majorana particles emerge. Places that lie ‘in the shadow’ of other wires stay uncovered.

Leap in quality

The entire process happens in a vacuum and at ultra-cold temperature (around -273 degree Celsius). “This ensures very clean, pure contacts,” says Bakkers, “and enables us to make a considerable leap in the quality of this kind of quantum device.” The measurements demonstrate for a number of electronic and magnetic properties that all the ingredients are present for the Majoranas to braid.

Quantum computers

If the researchers succeed in enabling the Majorana particles to braid, they will at once have killed two birds with one stone. Given their robustness, Majoranas are regarded as the ideal building block for future quantum computers that will be able to perform many calculations simultaneously and thus many times faster than current computers. The braiding of two Majorana particles could form the basis for a qubit, the calculation unit of these computers.

Travel around the world

An interesting detail is that the samples have traveled around the world during the fabrication, combining unique and synergetic activities of each research institution. It started in Delft with patterning and etching the substrate, then to Eindhoven for nanowire growth and to Santa Barbara for aluminium contact formation. Finally back to Delft via Eindhoven for the measurements.

Here’s a link to and a citation for the paper,

Epitaxy of advanced nanowire quantum devices by Sasa Gazibegovic, Diana Car, Hao Zhang, Stijn C. Balk, John A. Logan, Michiel W. A. de Moor, Maja C. Cassidy, Rudi Schmits, Di Xu, Guanzhong Wang, Peter Krogstrup, Roy L. M. Op het Veld, Kun Zuo, Yoram Vos, Jie Shen, Daniël Bouman, Borzoyeh Shojaei, Daniel Pennachio, Joon Sue Lee, Petrus J. van Veldhoven, Sebastian Koelling, Marcel A. Verheijen, Leo P. Kouwenhoven, Chris J. Palmstrøm, & Erik P. A. M. Bakkers. Nature 548, 434–438 (24 August 2017) doi:10.1038/nature23468 Published online 23 August 2017

This paper is behind a paywall.

Dexter Johnson has some additional insight (interview with one of the researchers) in an Aug. 29, 2017 posting on his Nanoclast blog (on the IEEE [institute of Electrical and Electronics Engineers] website).

Cosmopolitanism and the Local in Science and Nature (a three year Canadian project nearing its end date)

Working on a grant from Canada’s Social Sciences and Humanities Research Council (SSHRC), the  Cosmopolitanism and the Local in Science and Nature project has been establishing a ‘cosmopolitanism’ research network that critiques the eurocentric approach so beloved of Canadian academics and has set up nodes across Canada and in India and Southeast Asia.

I first wrote about the project in a Dec. 12, 2014 posting which also featured a job listing. It seems I was there for the beginning and now for the end. For one of the project’s blog postings in its final months, they’re profiling one of their researchers (Dr. Letitia Meynell, Sept. 6, 2017 posting),

1. What is your current place of research?

I am an associate professor in philosophy at Dalhousie University, cross appointed with gender and women studies.

2. Could you give us some details about your education background?

My 1st degree was in Theater, which I did at York University. I did, however, minor in Philosophy and I have always had a particular interest in philosophy of science. So, my minor was perhaps a little anomalous, comprising courses on philosophy of physics, philosophy of nature, and the philosophy of Karl Popper along with courses on aesthetics and existentialism. After taking a few more courses in philosophy at the University of Calgary, I enrolled there for a Master’s degree, writing a thesis on conceptualization, with a view to its role in aesthetics and epistemology. From there I moved to the University of Western Ontario where I brought these three interests together, writing a thesis on the epistemology of pictures in science. Throughout these studies I maintained a keen interest in feminist philosophy, especially the politics of knowledge, and I have always seen my work on pictures in science as fitting into broader feminist commitments.

3. What projects are you currently working on and what are some projects you’ve worked on in the past?

4. What’s one thing you particularly enjoy about working in your field?

5. How do you relate your work to the broader topic of ‘cosmopolitanism and the local’?

As feminist philosophers have long realized, having perspectives on a topic that are quite different to your own is incredibly powerful for critically assessing both your own views and those of others. So, for instance, if you want to address the exploitation of nonhuman animals in our society it is incredibly powerful to consider how people from, say, South Asian traditions have thought about the differences, similarities, and relationships between humans and other animals. Keeping non-western perspectives in mind, even as one works in a western philosophical tradition, helps one to be both more rigorous in one’s analyses and less dogmatic. Rigor and critical openness are, in my opinion, central virtues of philosophy and, indeed, science.

Dr. Maynell will be speaking at the ‘Bridging the Gap: Scientific Imagination Meets Aesthetic Imagination‘ conference Oct. 5-6, 2017 at the London School of Economics,

On 5–6 October, this 2-day conference aims to connect work on artistic and scientific imagination, and to advance our understanding of the epistemic and heuristic roles that imagination can play.

Why, how, and when do scientists imagine, and what epistemological roles does the imagination play in scientific progress? Over the past few years, many philosophical accounts have emerged that are relevant to these questions. Roman Frigg, Arnon Levy, and Adam Toon have developed theories of scientific models that place imagination at the heart of modelling practice. And James R. Brown, Tamar Gendler, James McAllister, Letitia Meynell, and Nancy Nersessian have developed theories that recognize the indispensable role of the imagination in the performance of thought experiments. On the other hand, philosophers like Michael Weisberg dismiss imagination-based views of scientific modelling as mere “folk ontology”, and John D. Norton seems to claim that thought experiments are arguments whose imaginary components are epistemologically irrelevant.

In this conference we turn to aesthetics for help in addressing issues concerning scientific imagination-use. Aesthetics is said to have begun in 1717 with an essay called “The Pleasures of the Imagination” by Joseph Addison, and ever since imagination has been what Michael Polyani called “the cornerstone of aesthetic theory”. In recent years Kendall Walton has fruitfully explored the fundamental relevance of imagination for understanding literary, visual and auditory fictions. And many others have been inspired to do the same, including Greg Currie, David Davies, Peter Lamarque, Stein Olsen, and Kathleen Stock.

This conference aims to connect work on artistic and scientific imagination, and to advance our understanding of the epistemic and heuristic roles that imagination can play. Specific topics may include:

  • What kinds of imagination are involved in science?
  • What is the relation between scientific imagination and aesthetic imagination?
  • What are the structure and limits of knowledge and understanding acquired through imagination?
  • From a methodological point of view, how can aesthetic considerations about imagination play a role in philosophical accounts of scientific reasoning?
  • What can considerations about scientific imagination contribute to our understanding of aesthetic imagination?

The conference will include eight invited talks and four contributed papers. Two of the four slots for contributed papers are being reserved for graduate students, each of whom will receive a travel bursary of £100.

Invited speakers

Margherita Arcangeli (Humboldt University, Berlin)

Andrej Bicanski (Institute of Cognitive Neuroscience, University College London)

Gregory Currie (University of York)

Jim Faeder (University of Pittsburgh School of Medicine)

Tim de Mey (Erasmus University of Rotterdam)

Laetitia Meynell (Dalhousie University, Canada)

Adam Toon (University of Exeter)

Margot Strohminger (Humboldt University, Berlin)

This event is organised by LSE’s Centre for Philosophy of Natural and Social Science and it is co-sponsored by the British Society of Aesthetics, the Mind Association, the Aristotelian Society and the Marie Skłodowska-Curie grant agreement No 654034.

I wonder if they’ll be rubbing shoulders with Angelina Jolie? She is slated to be teaching there in Fall 2017 according to a May 23, 2016 news item in the Guardian (Note: Links have been removed),

The Hollywood actor and director has been appointed a visiting professor at the London School of Economics, teaching a course on the impact of war on women.

From 2017, Jolie will join the former foreign secretary William Hague as a “professor in practice”, the university announced on Monday, as part of a new MSc course on women, peace and security, which LSE says is the first of its kind in the world.

The course, it says, is intended to “[develop] strategies to promote gender equality and enhance women’s economic, social and political participation and security”, with visiting professors playing an active part in giving lectures, participating in workshops and undertaking their own research.

Getting back to ‘Cosmopolitanism’, some of the principals organized a summer 2017 event (from a Sept. 6, 2017 posting titled: Summer Events – 25th International Congress of History of Science and Technology),

CosmoLocal partners Lesley Cormack (University of Alberta, Canada), Gordon McOuat (University of King’s College, Halifax, Canada), and Dhruv Raina (Jawaharlal Nehru University, India) organized a symposium “Cosmopolitanism and the Local in Science and Nature” as part of the 25th International Congress of History of Science and Technology.  The conference was held July 23-29, 2017, in Rio de Janeiro, Brazil.  The abstract of the CosmoLocal symposium is below, and a pdf version can be found here.

Science, and its associated technologies, is typically viewed as “universal”. At the same time we were also assured that science can trace its genealogy to Europe in a period of rising European intellectual and imperial global force, ‘going outwards’ towards the periphery. As such, it is strikingly parochial. In a kind of sad irony, the ‘subaltern’ was left to retell that tale as one of centre-universalism dominating a traditionalist periphery. Self-described ‘modernity’ and ‘the west’ (two intertwined concepts of recent and mutually self-supporting origin) have erased much of the local engagement and as such represent science as emerging sui generis, moving in one direction. This story is now being challenged within sociology, political theory and history.

… Significantly, scholars who study the history of science in Asia and India have been examining different trajectories for the origin and meaning of science. It is now time for a dialogue between these approaches. Grounding the dialogue is the notion of a “cosmopolitical” science. “Cosmopolitics” is a term borrowed from Kant’s notion of perpetual peace and modern civil society, imagining shared political, moral and economic spaces within which trade, politics and reason get conducted.  …

The abstract is a little ‘high falutin’ but I’m glad to see more efforts being made in  Canada to understand science and its history as a global affair.

Art masterpieces are turning into soap

This piece of research has made a winding trek through the online science world. First it was featured in an April 20, 2017 American Chemical Society news release on EurekAlert,

A good art dealer can really clean up in today’s market, but not when some weird chemistry wreaks havoc on masterpieces. Art conservators started to notice microscopic pockmarks forming on the surfaces of treasured oil paintings that cause the images to look hazy. It turns out the marks are eruptions of paint caused, weirdly, by soap that forms via chemical reactions. Since you have no time to watch paint dry, we explain how paintings from Rembrandts to O’Keefes are threatened by their own compositions — and we don’t mean the imagery.

Here’s the video,

Interestingly, this seems to be based on a May 23, 2016 article by Sarah Everts for Chemical and Engineering News (an American Society publication) Note: Links have been removed,

When conservator Petria Noble first peered at Rembrandt’s “Anatomy Lesson of Dr. Nicolaes Tulp” under a microscope back in 1996, she was surprised to find pockmarks across the nearly 400-year-old painting’s surface.

Each tiny crater was just a few hundred micrometers in diameter, no wider than the period at the end of this sentence. The painting’s surface was entirely riddled with these curious structures, giving it “a dull, rather hazy, gritty surface,” Noble says.

A structure of lead nonanoate.

The crystal structures of metal soaps vary: Shown here is lead nonanoate, based on a structure solved by Cecil Dybowski at the University of Delaware and colleagues at the Metropolitan Museum of Art. Dashed lines are nearest oxygen neighbors.

This concerned Noble, who was tasked with cleaning the masterpiece with her then-colleague Jørgen Wadum at the Mauritshuis museum, the painting’s home in The Hague.

When Noble called physicist Jaap Boon, then at the Foundation for Fundamental Research on Matter in Amsterdam, to help figure out what was going on, the researchers unsuspectingly embarked on an investigation that would transform the art world’s understanding of aging paint.

More recently this ‘metal soaps in paintings’ story has made its way into a May 16, 2017 news item on phys.org,

An oil painting is not a permanent and unchangeable object, but undergoes a very slow change in the outer and inner structure. Metal soap formation is of great importance. Joen Hermans has managed to recreate the molecular structure of old oil paints: a big step towards better preservation of works of art. He graduated cum laude on Tuesday 9 May [2017] at the University of Amsterdam with NWO funding from the Science4Arts program.

A May 15, 2017 Netherlands Organization for Scientific Research (NWO) press release, which originated the phys.org news item, provides more information about Hermans’ work (albeit some of this is repetitive),

Johannes Vermeer, View of Delft, c. 1660 - 1661 (Mauritshuis, The Hague)Johannes Vermeer, View of Delft, c. 1660 – 1661 (Mauritshuis, The Hague)

Paint can fade, varnish can discolour and paintings can collect dust and dirt. Joen Hermans has examined the chemical processes behind ageing processes in paints. ‘While restorers do their best to repair any damages that have occurred, the fact remains that at present we do not know enough about the molecular structure of ageing oil paint and the chemical processes they undergo’, says Hermans. ‘This makes it difficult to predict with confidence how paints will react to restoration treatments or to changes in a painting’s environment.’

‘Sand grains’ In the red tiles of 'View of Delft' by Johannes Vermeer shows 'lead soap spheres' (Annelies van Loon, UvA/Mauritshuis)‘Sand grains’ In the red tiles of ‘View of Delft’ by Johannes Vermeer shows ‘lead soap spheres’ (Annelies van Loon, UvA/Mauritshuis)

Visible to the naked eye

Hermans explains that in its simplest form, oil paint is a mixture of pigment and drying oil, which forms the binding element. Colour pigments are often metal salts. ‘When the pigment and the drying oil are combined, an incredibly complicated chemical process begins’, says Hermans, ‘which continues for centuries’. The fatty acids in the oil form a polymer network when exposed to oxygen in the air. Meanwhile, metal ions react with the oil on the surface of the grains of pigment.

‘A common problem when conserving oil paintings is the formation of what are known as metal soaps’, Hermans continues. These are compounds of metal ions and fatty acids. The formation of metal soaps is linked to various ways in which paint deteriorates, as when it becomes increasingly brittle, transparent or forms a crust on the paint surface. Hermans: ‘You can see clumps of metal soap with the naked eye on some paintings, like Rembrandt’s Anatomy Lesson of Dr Nicolaes Tulp or Vermeer’s View of Delft’. Around 70 per cent of all oil paintings show signs of metal soap formation.’

Conserving valuable paintings

Hermans has studied in detail how metal soaps form. He began by defining the structure of metal soaps. One of the things he discovered was that the process that causes metal ions to move in the painting is crucial to the speed at which the painting ages. Hermans also managed to recreate the molecular structure of old oil paints, making it possible to simulate and study the behaviour of old paints without actually having to remove samples from Rembrandt’s Night Watch. Hermans hopes this knowledge will contribute towards a solid foundation for the conservation of valuable works of art.

I imagine this will make anyone who owns an oil painting or appreciates paintings in general pause for thought and the inclination to utter a short prayer for conservators to find a solution.

Explaining the link between air pollution and heart disease?

An April 26, 2017 news item on Nanowerk announces research that may explain the link between heart disease and air pollution (Note: A link has been removed),

Tiny particles in air pollution have been associated with cardiovascular disease, which can lead to premature death. But how particles inhaled into the lungs can affect blood vessels and the heart has remained a mystery.

Now, scientists have found evidence in human and animal studies that inhaled nanoparticles can travel from the lungs into the bloodstream, potentially explaining the link between air pollution and cardiovascular disease. Their results appear in the journal ACS Nano (“Inhaled Nanoparticles Accumulate at Sites of Vascular Disease”).

An April 26, 2017 American Chemical Society news release on EurekAlert, which originated the news item,  expands on the theme,

The World Health Organization estimates that in 2012, about 72 percent of premature deaths related to outdoor air pollution were due to ischemic heart disease and strokes. Pulmonary disease, respiratory infections and lung cancer were linked to the other 28 percent. Many scientists have suspected that fine particles travel from the lungs into the bloodstream, but evidence supporting this assumption in humans has been challenging to collect. So Mark Miller and colleagues at the University of Edinburgh in the United Kingdom and the National Institute for Public Health and the Environment in the Netherlands used a selection of specialized techniques to track the fate of inhaled gold nanoparticles.

In the new study, 14 healthy volunteers, 12 surgical patients and several mouse models inhaled gold nanoparticles, which have been safely used in medical imaging and drug delivery. Soon after exposure, the nanoparticles were detected in blood and urine. Importantly, the nanoparticles appeared to preferentially accumulate at inflamed vascular sites, including carotid plaques in patients at risk of a stroke. The findings suggest that nanoparticles can travel from the lungs into the bloodstream and reach susceptible areas of the cardiovascular system where they could possibly increase the likelihood of a heart attack or stroke, the researchers say.

Here’s a link to and a citation for the paper,

Inhaled Nanoparticles Accumulate at Sites of Vascular Disease by Mark R. Miller, Jennifer B. Raftis, Jeremy P. Langrish, Steven G. McLean, Pawitrabhorn Samutrtai, Shea P. Connell, Simon Wilson, Alex T. Vesey, Paul H. B. Fokkens, A. John F. Boere, Petra Krystek, Colin J. Campbell, Patrick W. F. Hadoke, Ken Donaldson, Flemming R. Cassee, David E. Newby, Rodger Duffin, and Nicholas L. Mills. ACS Nano, Article ASAP DOI: 10.1021/acsnano.6b08551 Publication Date (Web): April 26, 2017

Copyright © 2017 American Chemical Society

This paper is behind a paywall.