Tag Archives: Canada Natural Sciences and Engineering Research Council (NSERC)

The University of British Columbia, ZEN, and graphene research

A company from Ontario (Canada) has signed a memorandum of unterstanding (MOU) for graphene research with the University of British Columbia (Canada, Okanagan Campus). From a June 20, 2019 news item on Azonano,

ZEN Graphene Solutions has announced the signing of a memorandum of understanding (“MOU”) with the University of British Columbia (UBC), Okanagan Campus, School of Engineering, where ZEN will contribute a minimum of $300,000 over three years in support of graphene research and application development.

A June 10, 2019 ZEN Graphene Solutions news release, which originated the news item, provides more detail about the MOU,

The main initial objectives defined in the MOU are:

(a) To formalize a collaborative research program utilizing expertise and capabilities from both ZEN and UBC and, where applicable, utilizing additional support and resources from government agencies such as the Natural Sciences and Engineering Research Council (NSERC), Mitacs and the National Research Council Industrial Research Assistance Program (NRC-IRAP); and,

(b) To structure an initial three-year research program with a committed minimum contribution by ZEN of $100,000 per year in support of UBC-based research projects.

ZEN has already supplied samples of its graphene and graphene oxide to UBC where it has undergone preliminary testing in the following applications:
In multiple battery technologies;
As an additive in cement-based composites;
As an additive to aluminum and aluminum alloys; and,
As a diesel and jet fuel additive.

“UBC has become a strong partner for ZEN over the last year bringing top quality researchers from multiple fields and connecting us with potential industrial partners. We wish to recognize the excellent research contributions made to date by Prof. Lukas Bichler and his team, and we look forward to formalizing our relationship with this agreement,” commented Dr. Francis Dubé.

“The three-year project, slated to begin this summer, challenges UBC engineering researchers to develop the next generation of stronger and lighter composite materials. The partnership with ZEN Graphene will allow for a transformational approach to composite materials development utilizing the unique properties of the Albany Graphite product. This will result in new composite materials with performance characteristics long beyond the reach of engineers and scientists using traditional material processing techniques. Linking to R&D activities at UBC will in turn enable ZEN to develop the Albany Graphite Deposit and get its graphene product to market more rapidly with a clear focus on high-impact real-world applications,” commented Dr. Bichler, associate professor of engineering at UBC’s Okanagan campus and research supervisor.
Click here for video

About ZEN Graphene Solutions Ltd

ZEN Graphene Solutions Ltd. is an emerging graphene technology company with a focus on development of the unique Albany Graphite Project. This precursor graphene material provides the company with a competitive advantage in the potential graphene market as independent labs in Japan, UK, Israel, USA and Canada have demonstrated that ZEN’s Albany Graphite/Naturally PureTM easily converts (exfoliates) to graphene, using a variety of simple mechanical and chemical methods.

For further information:
Francis Dubé, Chief Executive Officer
Tel: +1 (289) 821-2820
Email: drfdube@zengraphene.com

To find out more on ZEN Graphene Solutions Ltd., please visit our website at www.ZENGraphene.com. A copy of this news release and all material documents in respect of the Company may be obtained on ZEN’s SEDAR profile at www.sedar.ca

Forward Looking Statements

This news release includes certain “forward-looking statements”, which often, but not always, can be identified by the use of words such as “potential”, “believes”, “anticipates”, “expects”, “estimates”, “may”, “could”, “would”, “will”, or “plan”. These statements are based on information currently available to ZEN and ZEN provides no assurance that actual results will meet management’s expectations. Although the Company believes that the expectations reflected in these forward-looking statements are reasonable, undue reliance should not be placed on them because the Company can give no assurance that they will prove to be correct. Since forward-looking statements address future events and conditions, by their very nature they involve inherent risks and uncertainties. Although ZEN believes that the assumptions and factors used in preparing the forward-looking information in this news release are reasonable, undue reliance should not be placed on such information, which only applies as of the date of this news release, and no assurance can be given that such events will occur in the disclosed time frames or at all. ZEN disclaims any intention or obligation to update or revise any forward-looking information, whether as a result of new information, future events or otherwise, other than as required by law. Neither the TSX Venture Exchange nor its Regulation Services Provider (as that term is defined in the policies of the TSX Venture Exchange) accepts responsibility for the adequacy or accuracy of this release. The Company’s full disclosure can be found at https://zengraphene.com/disclaimer/

About Zenyatta

Zenyatta’s Albany Graphite Project hosts a large and unique deposit of highly crystalline graphite. Independent labs in Japan, UK, Israel, USA and Canada have demonstrated that Zenyatta’s Albany Graphite/Naturally PureTM easily converts (exfoliates) to graphene, using a variety of simple mechanical and chemical methods. The deposit is located in Northern Ontario, just 30km north of the Trans-Canada Highway, near the communities of Constance Lake First Nation and Hearst. Important nearby infrastructure includes hydro-power, natural gas pipeline, a rail line 50 km away, and an all-weather road just 10 km from the deposit.

For more information on Zenyatta Ventures Ltd., please visit our website at www.zenyatta.ca. A copy of this press release and all material documents with respect of the Company are available on Zenyatta’s SEDAR profile at www.sedar.ca.

CAUTIONARY STATEMENT: Neither TSX Venture Exchange nor its Regulation Services Provider (as that term is defined in the policies of the TSX Venture Exchange) accepts responsibility for the adequacy or accuracy of this release. This news release may contain forward looking information and Zenyatta cautions readers that forward-looking information is based on certain assumptions and risk factors that could cause actual results to differ materially from the expectations of Zenyatta included in this news release. This news release includes certain “forward-looking statements”, which often, but not always, can be identified by the use of words such as “potential”, “believes”, “anticipates”, “expects”, “estimates”, “may”, “could”, “would”, “will”, or “plan”. These statements are based on information currently available to Zenyatta and Zenyatta provides no assurance that actual results will meet management’s expectations. Forward-looking statements include estimates and statements with respect to Zenyatta’s future plans, objectives or goals, to the effect that Zenyatta or management expects a stated condition or result to occur, including the expected uses for graphite or graphene in the future, and the future uses of the graphite from Zenyatta’s Albany deposit. Since forward-looking statements are based on assumptions and address future events and conditions, by their very nature they involve inherent risks and uncertainties. Actual results relating to, among other things, results of metallurgical processing, ongoing exploration, project development, reclamation and capital costs of Zenyatta’s mineral properties, and Zenyatta’s financial condition and prospects, could differ materially from those currently anticipated in such statements for many reasons such as, but are not limited to: failure to convert estimated mineral resources to reserves; the preliminary nature of metallurgical test results; the inability to identify target markets and satisfy the product criteria for such markets; the inability to complete a prefeasibility study; the inability to enter into offtake agreements with qualified purchasers; delays in obtaining or failures to obtain required governmental, environmental or other project approvals; political risks; uncertainties relating to the availability and costs of financing needed in the future; changes in equity markets, inflation, changes in exchange rates; fluctuations in commodity prices; delays in the development of projects; capital and operating costs varying significantly from estimates and the other risks involved in the mineral exploration and development industry; and those risks set out in Zenyatta’s public documents filed on SEDAR. This list is not exhaustive of the factors that may affect any of Zenyatta’s forward-looking statements. These and other factors should be considered carefully and readers should not place undue reliance on Zenyatta’s forward-looking statements. Although Zenyatta believes that the assumptions and factors used in preparing the forward-looking information in this news release are reasonable, undue reliance should not be placed on such information, which only applies as of the date of this news release, and no assurance can be given that such events will occur in the disclosed time frames or at all. Zenyatta disclaims any intention or obligation to update or revise any forward-looking information, whether as a result of new information, future events or otherwise, other than as required by law.

Looking at the June 10, 2019 news release, it seems that they’ve split the company in two with Zenyatta being the corporate name for the mining interests and ZEN Graphene for applications.

Oddly, UBC has not issued its own news release with this happy announcement.

Robots in Vancouver and in Canada (two of two)

This is the second of a two-part posting about robots in Vancouver and Canada. The first part included a definition, a brief mention a robot ethics quandary, and sexbots. This part is all about the future. (Part one is here.)

Canadian Robotics Strategy

Meetings were held Sept. 28 – 29, 2017 in, surprisingly, Vancouver. (For those who don’t know, this is surprising because most of the robotics and AI research seems to be concentrated in eastern Canada. if you don’t believe me take a look at the speaker list for Day 2 or the ‘Canadian Stakeholder’ meeting day.) From the NSERC (Natural Sciences and Engineering Research Council) events page of the Canadian Robotics Network,

Join us as we gather robotics stakeholders from across the country to initiate the development of a national robotics strategy for Canada. Sponsored by the Natural Sciences and Engineering Research Council of Canada (NSERC), this two-day event coincides with the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2017) in order to leverage the experience of international experts as we explore Canada’s need for a national robotics strategy.

Where
Vancouver, BC, Canada

When
Thursday September 28 & Friday September 29, 2017 — Save the date!

Download the full agenda and speakers’ list here.

Objectives

The purpose of this two-day event is to gather members of the robotics ecosystem from across Canada to initiate the development of a national robotics strategy that builds on our strengths and capacities in robotics, and is uniquely tailored to address Canada’s economic needs and social values.

This event has been sponsored by the Natural Sciences and Engineering Research Council of Canada (NSERC) and is supported in kind by the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2017) as an official Workshop of the conference.  The first of two days coincides with IROS 2017 – one of the premiere robotics conferences globally – in order to leverage the experience of international robotics experts as we explore Canada’s need for a national robotics strategy here at home.

Who should attend

Representatives from industry, research, government, startups, investment, education, policy, law, and ethics who are passionate about building a robust and world-class ecosystem for robotics in Canada.

Program Overview

Download the full agenda and speakers’ list here.

DAY ONE: IROS Workshop 

“Best practices in designing effective roadmaps for robotics innovation”

Thursday September 28, 2017 | 8:30am – 5:00pm | Vancouver Convention Centre

Morning Program:“Developing robotics innovation policy and establishing key performance indicators that are relevant to your region” Leading international experts share their experience designing robotics strategies and policy frameworks in their regions and explore international best practices. Opening Remarks by Prof. Hong Zhang, IROS 2017 Conference Chair.

Afternoon Program: “Understanding the Canadian robotics ecosystem” Canadian stakeholders from research, industry, investment, ethics and law provide a collective overview of the Canadian robotics ecosystem. Opening Remarks by Ryan Gariepy, CTO of Clearpath Robotics.

Thursday Evening Program: Sponsored by Clearpath Robotics  Workshop participants gather at a nearby restaurant to network and socialize.

Learn more about the IROS Workshop.

DAY TWO: NSERC-Sponsored Canadian Robotics Stakeholder Meeting
“Towards a national robotics strategy for Canada”

Friday September 29, 2017 | 8:30am – 5:00pm | University of British Columbia (UBC)

On the second day of the program, robotics stakeholders from across the country gather at UBC for a full day brainstorming session to identify Canada’s unique strengths and opportunities relative to the global competition, and to align on a strategic vision for robotics in Canada.

Friday Evening Program: Sponsored by NSERC Meeting participants gather at a nearby restaurant for the event’s closing dinner reception.

Learn more about the Canadian Robotics Stakeholder Meeting.

I was glad to see in the agenda that some of the international speakers represented research efforts from outside the usual Europe/US axis.

I have been in touch with one of the organizers (also mentioned in part one with regard to robot ethics), Ajung Moon (her website is here), who says that there will be a white paper available on the Canadian Robotics Network website at some point in the future. I’ll keep looking for it and, in the meantime, I wonder what the 2018 Canadian federal budget will offer robotics.

Robots and popular culture

For anyone living in Canada or the US, Westworld (television series) is probably the most recent and well known ‘robot’ drama to premiere in the last year.As for movies, I think Ex Machina from 2014 probably qualifies in that category. Interestingly, both Westworld and Ex Machina seem quite concerned with sex with Westworld adding significant doses of violence as another  concern.

I am going to focus on another robot story, the 2012 movie, Robot & Frank, which features a care robot and an older man,

Frank (played by Frank Langella), a former jewel thief, teaches a robot the skills necessary to rob some neighbours of their valuables. The ethical issue broached in the film isn’t whether or not the robot should learn the skills and assist Frank in his thieving ways although that’s touched on when Frank keeps pointing out that planning his heist requires he live more healthily. No, the problem arises afterward when the neighbour accuses Frank of the robbery and Frank removes what he believes is all the evidence. He believes he’s going successfully evade arrest until the robot notes that Frank will have to erase its memory in order to remove all of the evidence. The film ends without the robot’s fate being made explicit.

In a way, I find the ethics query (was the robot Frank’s friend or just a machine?) posed in the film more interesting than the one in Vikander’s story, an issue which does have a history. For example, care aides, nurses, and/or servants would have dealt with requests to give an alcoholic patient a drink. Wouldn’t there  already be established guidelines and practices which could be adapted for robots? Or, is this question made anew by something intrinsically different about robots?

To be clear, Vikander’s story is a good introduction and starting point for these kinds of discussions as is Moon’s ethical question. But they are starting points and I hope one day there’ll be a more extended discussion of the questions raised by Moon and noted in Vikander’s article (a two- or three-part series of articles? public discussions?).

How will humans react to robots?

Earlier there was the contention that intimate interactions with robots and sexbots would decrease empathy and the ability of human beings to interact with each other in caring ways. This sounds a bit like the argument about smartphones/cell phones and teenagers who don’t relate well to others in real life because most of their interactions are mediated through a screen, which many seem to prefer. It may be partially true but, arguably,, books too are an antisocial technology as noted in Walter J. Ong’s  influential 1982 book, ‘Orality and Literacy’,  (from the Walter J. Ong Wikipedia entry),

A major concern of Ong’s works is the impact that the shift from orality to literacy has had on culture and education. Writing is a technology like other technologies (fire, the steam engine, etc.) that, when introduced to a “primary oral culture” (which has never known writing) has extremely wide-ranging impacts in all areas of life. These include culture, economics, politics, art, and more. Furthermore, even a small amount of education in writing transforms people’s mentality from the holistic immersion of orality to interiorization and individuation. [emphases mine]

So, robotics and artificial intelligence would not be the first technologies to affect our brains and our social interactions.

There’s another area where human-robot interaction may have unintended personal consequences according to April Glaser’s Sept. 14, 2017 article on Slate.com (Note: Links have been removed),

The customer service industry is teeming with robots. From automated phone trees to touchscreens, software and machines answer customer questions, complete orders, send friendly reminders, and even handle money. For an industry that is, at its core, about human interaction, it’s increasingly being driven to a large extent by nonhuman automation.

But despite the dreams of science-fiction writers, few people enter a customer-service encounter hoping to talk to a robot. And when the robot malfunctions, as they so often do, it’s a human who is left to calm angry customers. It’s understandable that after navigating a string of automated phone menus and being put on hold for 20 minutes, a customer might take her frustration out on a customer service representative. Even if you know it’s not the customer service agent’s fault, there’s really no one else to get mad at. It’s not like a robot cares if you’re angry.

When human beings need help with something, says Madeleine Elish, an anthropologist and researcher at the Data and Society Institute who studies how humans interact with machines, they’re not only looking for the most efficient solution to a problem. They’re often looking for a kind of validation that a robot can’t give. “Usually you don’t just want the answer,” Elish explained. “You want sympathy, understanding, and to be heard”—none of which are things robots are particularly good at delivering. In a 2015 survey of over 1,300 people conducted by researchers at Boston University, over 90 percent of respondents said they start their customer service interaction hoping to speak to a real person, and 83 percent admitted that in their last customer service call they trotted through phone menus only to make their way to a human on the line at the end.

“People can get so angry that they have to go through all those automated messages,” said Brian Gnerer, a call center representative with AT&T in Bloomington, Minnesota. “They’ve been misrouted or been on hold forever or they pressed one, then two, then zero to speak to somebody, and they are not getting where they want.” And when people do finally get a human on the phone, “they just sigh and are like, ‘Thank God, finally there’s somebody I can speak to.’ ”

Even if robots don’t always make customers happy, more and more companies are making the leap to bring in machines to take over jobs that used to specifically necessitate human interaction. McDonald’s and Wendy’s both reportedly plan to add touchscreen self-ordering machines to restaurants this year. Facebook is saturated with thousands of customer service chatbots that can do anything from hail an Uber, retrieve movie times, to order flowers for loved ones. And of course, corporations prefer automated labor. As Andy Puzder, CEO of the fast-food chains Carl’s Jr. and Hardee’s and former Trump pick for labor secretary, bluntly put it in an interview with Business Insider last year, robots are “always polite, they always upsell, they never take a vacation, they never show up late, there’s never a slip-and-fall, or an age, sex, or race discrimination case.”

But those robots are backstopped by human beings. How does interacting with more automated technology affect the way we treat each other? …

“We know that people treat artificial entities like they’re alive, even when they’re aware of their inanimacy,” writes Kate Darling, a researcher at MIT who studies ethical relationships between humans and robots, in a recent paper on anthropomorphism in human-robot interaction. Sure, robots don’t have feelings and don’t feel pain (not yet, anyway). But as more robots rely on interaction that resembles human interaction, like voice assistants, the way we treat those machines will increasingly bleed into the way we treat each other.

It took me a while to realize that what Glaser is talking about are AI systems and not robots as such. (sigh) It’s so easy to conflate the concepts.

AI ethics (Toby Walsh and Suzanne Gildert)

Jack Stilgoe of the Guardian published a brief Oct. 9, 2017 introduction to his more substantive (30 mins.?) podcast interview with Dr. Toby Walsh where they discuss stupid AI amongst other topics (Note: A link has been removed),

Professor Toby Walsh has recently published a book – Android Dreams – giving a researcher’s perspective on the uncertainties and opportunities of artificial intelligence. Here, he explains to Jack Stilgoe that we should worry more about the short-term risks of stupid AI in self-driving cars and smartphones than the speculative risks of super-intelligence.

Professor Walsh discusses the effects that AI could have on our jobs, the shapes of our cities and our understandings of ourselves. As someone developing AI, he questions the hype surrounding the technology. He is scared by some drivers’ real-world experimentation with their not-quite-self-driving Teslas. And he thinks that Siri needs to start owning up to being a computer.

I found this discussion to cast a decidedly different light on the future of robotics and AI. Walsh is much more interested in discussing immediate issues like the problems posed by ‘self-driving’ cars. (Aside: Should we be calling them robot cars?)

One ethical issue Walsh raises is with data regarding accidents. He compares what’s happening with accident data from self-driving (robot) cars to how the aviation industry handles accidents. Hint: accident data involving air planes is shared. Would you like to guess who does not share their data?

Sharing and analyzing data and developing new safety techniques based on that data has made flying a remarkably safe transportation technology.. Walsh argues the same could be done for self-driving cars if companies like Tesla took the attitude that safety is in everyone’s best interests and shared their accident data in a scheme similar to the aviation industry’s.

In an Oct. 12, 2017 article by Matthew Braga for Canadian Broadcasting Corporation (CBC) news online another ethical issue is raised by Suzanne Gildert (a participant in the Canadian Robotics Roadmap/Strategy meetings mentioned earlier here), Note: Links have been removed,

… Suzanne Gildert, the co-founder and chief science officer of Vancouver-based robotics company Kindred. Since 2014, her company has been developing intelligent robots [emphasis mine] that can be taught by humans to perform automated tasks — for example, handling and sorting products in a warehouse.

The idea is that when one of Kindred’s robots encounters a scenario it can’t handle, a human pilot can take control. The human can see, feel and hear the same things the robot does, and the robot can learn from how the human pilot handles the problematic task.

This process, called teleoperation, is one way to fast-track learning by manually showing the robot examples of what its trainers want it to do. But it also poses a potential moral and ethical quandary that will only grow more serious as robots become more intelligent.

“That AI is also learning my values,” Gildert explained during a talk on robot ethics at the Singularity University Canada Summit in Toronto on Wednesday [Oct. 11, 2017]. “Everything — my mannerisms, my behaviours — is all going into the AI.”

At its worst, everything from algorithms used in the U.S. to sentence criminals to image-recognition software has been found to inherit the racist and sexist biases of the data on which it was trained.

But just as bad habits can be learned, good habits can be learned too. The question is, if you’re building a warehouse robot like Kindred is, is it more effective to train those robots’ algorithms to reflect the personalities and behaviours of the humans who will be working alongside it? Or do you try to blend all the data from all the humans who might eventually train Kindred robots around the world into something that reflects the best strengths of all?

I notice Gildert distinguishes her robots as “intelligent robots” and then focuses on AI and issues with bias which have already arisen with regard to algorithms (see my May 24, 2017 posting about bias in machine learning, AI, and .Note: if you’re in Vancouver on Oct. 26, 2017 and interested in algorithms and bias), there’s a talk being given by Dr. Cathy O’Neil, author the Weapons of Math Destruction, on the topic of Gender and Bias in Algorithms. It’s not free but  tickets are here.)

Final comments

There is one more aspect I want to mention. Even as someone who usually deals with nanobots, it’s easy to start discussing robots as if the humanoid ones are the only ones that exist. To recapitulate, there are humanoid robots, utilitarian robots, intelligent robots, AI, nanobots, ‘microscopic bots, and more all of which raise questions about ethics and social impacts.

However, there is one more category I want to add to this list: cyborgs. They live amongst us now. Anyone who’s had a hip or knee replacement or a pacemaker or a deep brain stimulator or other such implanted device qualifies as a cyborg. Increasingly too, prosthetics are being introduced and made part of the body. My April 24, 2017 posting features this story,

This Case Western Reserve University (CRWU) video accompanies a March 28, 2017 CRWU news release, (h/t ScienceDaily March 28, 2017 news item)

Bill Kochevar grabbed a mug of water, drew it to his lips and drank through the straw.

His motions were slow and deliberate, but then Kochevar hadn’t moved his right arm or hand for eight years.

And it took some practice to reach and grasp just by thinking about it.

Kochevar, who was paralyzed below his shoulders in a bicycling accident, is believed to be the first person with quadriplegia in the world to have arm and hand movements restored with the help of two temporarily implanted technologies. [emphasis mine]

A brain-computer interface with recording electrodes under his skull, and a functional electrical stimulation (FES) system* activating his arm and hand, reconnect his brain to paralyzed muscles.

Does a brain-computer interface have an effect on human brain and, if so, what might that be?

In any discussion (assuming there is funding for it) about ethics and social impact, we might want to invite the broadest range of people possible at an ‘earlyish’ stage (although we’re already pretty far down the ‘automation road’) stage or as Jack Stilgoe and Toby Walsh note, technological determinism holds sway.

Once again here are links for the articles and information mentioned in this double posting,

That’s it!

ETA Oct. 16, 2017: Well, I guess that wasn’t quite ‘it’. BBC’s (British Broadcasting Corporation) Magazine published a thoughtful Oct. 15, 2017 piece titled: Can we teach robots ethics?