Tag Archives: Georgia Tech

An artificial synapse tuned by light, a ferromagnetic memristor, and a transparent, flexible artificial synapse

Down the memristor rabbit hole one more time.* I started out with news about two new papers and inadvertently found two more. In a bid to keep this posting to a manageable size, I’m stopping at four.

UK

In a June 19, 2019 Nanowerk Spotlight article, Dr. Neil Kemp discusses memristors and some of his latest work (Note: A link has been removed),

Memristor (or memory resistors) devices are non-volatile electronic memory devices that were first theorized by Leon Chua in the 1970’s. However, it was some thirty years later that the first practical device was fabricated. This was in 2008 when a group led by Stanley Williams at HP Research Labs realized that switching of the resistance between a conducting and less conducting state in metal-oxide thin-film devices was showing Leon Chua’s memristor behaviour.

The high interest in memristor devices also stems from the fact that these devices emulate the memory and learning properties of biological synapses. i.e. the electrical resistance value of the device is dependent on the history of the current flowing through it.

There is a huge effort underway to use memristor devices in neuromorphic computing applications and it is now reasonable to imagine the development of a new generation of artificial intelligent devices with very low power consumption (non-volatile), ultra-fast performance and high-density integration.

These discoveries come at an important juncture in microelectronics, since there is increasing disparity between computational needs of Big Data, Artificial Intelligence (A.I.) and the Internet of Things (IoT), and the capabilities of existing computers. The increases in speed, efficiency and performance of computer technology cannot continue in the same manner as it has done since the 1960s.

To date, most memristor research has focussed on the electronic switching properties of the device. However, for many applications it is useful to have an additional handle (or degree of freedom) on the device to control its resistive state. For example memory and processing in the brain also involves numerous chemical and bio-chemical reactions that control the brain structure and its evolution through development.

To emulate this in a simple solid-state system composed of just switches alone is not possible. In our research, we are interested in using light to mediate this essential control.

We have demonstrated that light can be used to make short and long-term memory and we have shown how light can modulate a special type of learning, called spike timing dependent plasticity (STDP). STDP involves two neuronal spikes incident across a synapse at the same time. Depending on the relative timing of the spikes and their overlap across the synaptic cleft, the connection strength is other strengthened or weakened.

In our earlier work, we were only able to achieve to small switching effects in memristors using light. In our latest work (Advanced Electronic Materials, “Percolation Threshold Enables Optical Resistive-Memory Switching and Light-Tuneable Synaptic Learning in Segregated Nanocomposites”), we take advantage of a percolating-like nanoparticle morphology to vastly increase the magnitude of the switching between electronic resistance states when light is incident on the device.

We have used an inhomogeneous percolating network consisting of metallic nanoparticles distributed in filamentary-like conduction paths. Electronic conduction and the resistance of the device is very sensitive to any disruption of the conduction path(s).

By embedding the nanoparticles in a polymer that can expand or contract with light the conduction pathways are broken or re-connected causing very large changes in the electrical resistance and memristance of the device.

Our devices could lead to the development of new memristor-based artificial intelligence systems that are adaptive and reconfigurable using a combination of optical and electronic signalling. Furthermore, they have the potential for the development of very fast optical cameras for artificial intelligence recognition systems.

Our work provides a nice proof-of-concept but the materials used means the optical switching is slow. The materials are also not well suited to industry fabrication. In our on-going work we are addressing these switching speed issues whilst also focussing on industry compatible materials.

Currently we are working on a new type of optical memristor device that should give us orders of magnitude improvement in the optical switching speeds whilst also retaining a large difference between the resistance on and off states. We hope to be able to achieve nanosecond switching speeds. The materials used are also compatible with industry standard methods of fabrication.

The new devices should also have applications in optical communications, interfacing and photonic computing. We are currently looking for commercial investors to help fund the research on these devices so that we can bring the device specifications to a level of commercial interest.

If you’re interested in memristors, Kemp’s article is well written and quite informative for nonexperts, assuming of course you can tolerate not understanding everything perfectly.

Here are links and citations for two papers. The first is the latest referred to in the article, a May 2019 paper and the second is a paper appearing in July 2019.

Percolation Threshold Enables Optical Resistive‐Memory Switching and Light‐Tuneable Synaptic Learning in Segregated Nanocomposites by Ayoub H. Jaafar, Mary O’Neill, Stephen M. Kelly, Emanuele Verrelli, Neil T. Kemp. Advanced Electronic Materials DOI: https://doi.org/10.1002/aelm.201900197 First published: 28 May 2019

Wavelength dependent light tunable resistive switching graphene oxide nonvolatile memory devices by Ayoub H.Jaafar, N.T.Kemp. DOI: https://doi.org/10.1016/j.carbon.2019.07.007 Carbon Available online 3 July 2019

The first paper (May 2019) is definitely behind a paywall and the second paper (July 2019) appears to be behind a paywall.

Dr. Kemp’s work has been featured here previously in a January 3, 2018 posting in the subsection titled, Shining a light on the memristor.

China

This work from China was announced in a June 20, 2019 news item on Nanowerk,

Memristors, demonstrated by solid-state devices with continuously tunable resistance, have emerged as a new paradigm for self-adaptive networks that require synapse-like functions. Spin-based memristors offer advantages over other types of memristors because of their significant endurance and high energy effciency.

However, it remains a challenge to build dense and functional spintronic memristors with structures and materials that are compatible with existing ferromagnetic devices. Ta/CoFeB/MgO heterostructures are commonly used in interfacial PMA-based [perpendicular magnetic anisotropy] magnetic tunnel junctions, which exhibit large tunnel magnetoresistance and are implemented in commercial MRAM [magnetic random access memory] products.

“To achieve the memristive function, DW is driven back and forth in a continuous manner in the CoFeB layer by applying in-plane positive or negative current pulses along the Ta layer, utilizing SOT that the current exerts on the CoFeB magnetization,” said Shuai Zhang, a coauthor in the paper. “Slowly propagating domain wall generates a creep in the detection area of the device, which yields a broad range of intermediate resistive states in the AHE [anomalous Hall effect] measurements. Consequently, AHE resistance is modulated in an analog manner, being controlled by the pulsed current characteristics including amplitude, duration, and repetition number.”

“For a follow-up study, we are working on more neuromorphic operations, such as spike-timing-dependent plasticity and paired pulsed facilitation,” concludes You. …

Here’s are links to and citations for the paper (Note: It’s a little confusing but I believe that one of the links will take you to the online version, as for the ‘open access’ link, keep reading),

A Spin–Orbit‐Torque Memristive Device by Shuai Zhang, Shijiang Luo, Nuo Xu, Qiming Zou, Min Song, Jijun Yun, Qiang Luo, Zhe Guo, Ruofan Li, Weicheng Tian, Xin Li, Hengan Zhou, Huiming Chen, Yue Zhang, Xiaofei Yang, Wanjun Jiang, Ka Shen, Jeongmin Hong, Zhe Yuan, Li Xi, Ke Xia, Sayeef Salahuddin, Bernard Dieny, Long You. Advanced Electronic Materials Volume 5, Issue 4 April 2019 (print version) 1800782 DOI: https://doi.org/10.1002/aelm.201800782 First published [online]: 30 January 2019 Note: there is another DOI, https://doi.org/10.1002/aelm.201970022 where you can have open access to Memristors: A Spin–Orbit‐Torque Memristive Device (Adv. Electron. Mater. 4/2019)

The paper published online in January 2019 is behind a paywall and the paper (almost the same title) published in April 2019 has a new DOI and is open access. Final note: I tried accessing the ‘free’ paper and opened up a free file for the artwork featuring the work from China on the back cover of the April 2019 of Advanced Electronic Materials.

Korea

Usually when I see the words transparency and flexibility, I expect to see graphene is one of the materials. That’s not the case for this paper (link to and citation for),

Transparent and flexible photonic artificial synapse with piezo-phototronic modulator: Versatile memory capability and higher order learning algorithm by Mohit Kumar, Joondong Kim, Ching-Ping Wong. Nano Energy Volume 63, September 2019, 103843 DOI: https://doi.org/10.1016/j.nanoen.2019.06.039 Available online 22 June 2019

Here’s the abstract for the paper where you’ll see that the material is made up of zinc oxide silver nanowires,

An artificial photonic synapse having tunable manifold synaptic response can be an essential step forward for the advancement of novel neuromorphic computing. In this work, we reported the development of highly transparent and flexible two-terminal ZnO/Ag-nanowires/PET photonic artificial synapse [emphasis mine]. The device shows purely photo-triggered all essential synaptic functions such as transition from short-to long-term plasticity, paired-pulse facilitation, and spike-timing-dependent plasticity, including in the versatile memory capability. Importantly, strain-induced piezo-phototronic effect within ZnO provides an additional degree of regulation to modulate all of the synaptic functions in multi-levels. The observed effect is quantitatively explained as a dynamic of photo-induced electron-hole trapping/detraining via the defect states such as oxygen vacancies. We revealed that the synaptic functions can be consolidated and converted by applied strain, which is not previously applied any of the reported synaptic devices. This study will open a new avenue to the scientific community to control and design highly transparent wearable neuromorphic computing.

This paper is behind a paywall.

Frugal science: ancient toys for state-of-the-art science

A toy that’s been a plaything for 5,000 years and known as a whirligig (in English, anyway) has inspired a scientific tool for use by field biologists and students interested in creating state-of-the-art experiments. Exciting stuff, eh?

A May 23, 2019 Georgia Tech (Georgia Institute of Technology) news release (also on EurekAlert but published on May 22, 2019) announces this development in ‘frugal science’,

A 5,000-year-old toy still enjoyed by kids today has inspired an inexpensive, hand-powered scientific tool that could not only impact how field biologists conduct their research but also allow high-school students and others with limited resources to realize their own state-of-the-art experiments.

The device, a portable centrifuge for preparing scientific samples including DNA, is reported May 21 [2019] in the journal PLOS Biology. The co-first author of the paper is Gaurav Byagathvalli, a senior at Lambert High School in Georgia. His colleagues are M. Saad Bhamla, an assistant professor at the Georgia Institute of Technology; Soham Sinha, a Georgia Tech undergraduate; Janet Standeven, Byagathvalli’s biology teacher at Lambert; and Aaron F. Pomerantz, a graduate student at the University of California, Berkeley.

“I am exceptionally proud of this paper and will remember it 10, 20, 30 years from now because of the uniquely diverse team we put together,” said Bhamla, who is an assistant professor in Georgia Tech’s School of Chemical and Biomolecular Engineering.

From a Rainforest to a High School

Together the team demonstrated the device, dubbed the 3D-Fuge because it is created through 3D printing, in two separate applications. In a rainforest in Peru the 3D-Fuge was an integral part of a “lab in a backpack” used to identify four previously-unknown plants and insects by sequencing their DNA [deoxyribonucleic acid]. Back in the United States, a slightly different design enabled a new approach to creating living bacterial sensors for the potential detection of disease. That work was conducted at Lambert High School for a synthetic biology competition.

Thanks to social media and a preprint of the PLOS Biology paper on BioRxiv, the 3D-Fuge has already generated interest from around the world, including emails from high-school teachers in Zambia and Kenya. “It’s awesome to see research not just remain isolated to one location but see it spread,” said Byagathvalli. “Through this, we’ve realized how much of an impact simple yet effective tools can have, and hope this technology motivates others to continue along the same path and innovate new solutions to global issues.”

To better share the work, the team has posted the 3D-Fuge designs, videos, and photos online available to anyone.

Frugal Science

One focus of Bhamla’s lab at Georgia Tech is the development of tools for frugal science, or real research that just about anyone can afford. The tools behind state-of-the-art science often cost thousands of dollars that make them inaccessible to those without serious resources.

Centrifuges are a good example.  A small benchtop unit costs between $3,000 and $5,000; larger units cost many times that. Yet the devices are necessary to produce concentrated amounts of, say, genomic materials like DNA. By rapidly spinning samples, they separate materials of interest from biological debris.

The Bhamla team found that the 3D-Fuge works as well as its more expensive cousins, but costs less than $1.

An Ancient Toy

The 3D-Fuge is based on earlier work by Bhamla and colleagues at Stanford University on a simple centrifuge made of paper. The “paperfuge,” in turn, was inspired by a toy composed of string and a button that Bhamla played with as a child. He later discovered that these toys, known as whirligigs, have existed for some 5,000 years.

They consist of a disk – like a button – with two holes, through which is threaded a length of flexible cord whose ends are knotted to create a single loop with the disk in the middle. That simple contraption is then swung with two hands until the button is spinning and whirring at very fast speeds.

The earlier paperfuge uses a disk of paper. To that disk Bhamla glued small plastic tubes filled with a sample. He and colleagues reported that the device did indeed create high-quality samples.

In late 2017 Bhamla was separately approached by the Lambert High team and Pomerantz to see if the paperfuge could be adapted for the larger samples they needed (the paperfuge is limited to small samples of ~1 microliter—or one drop of blood).

Together they came up with the 3D-Fuge, which includes cavities for tubes that can hold some 100 times more of a sample than the paperfuge. The team developed two equally effective designs: one for field biology (led by Pomerantz) and the other for the high-school’s synthetic biology project (led by Byagathvalli).

Bhamla notes that the 3D-Fuge has some limitations. For example, it can only process a few samples at a time (some applications require thousands of samples). Further, because it’s 10 times heavier than the paperfuge, it can’t reach the same speeds or produce the same forces of that device. That said, it still weighs only 20 grams, slightly less than a AA battery.

“But it works,” said Bhamla. “All you need is an [appropriate] application and some creativity.”

Here are a couple of images showing the 3D-Fuge in action,

Using the 3D-Fuge Courtesy: Georgia Tech
Sample vial in 3D-Fuge Courtesy: Georgia Tech

Here’s a link to and a citation for the paper,

A 3D-printed hand-powered centrifuge for molecular biology by Gaurav Byagathvalli, Aaron Pomerantz, Soham Sinha, Janet Standeven, M. Saad Bhamla. PLOS Biology DOI: https://doi.org/10.1371/journal.pbio.3000251 Published: May 21, 2019

As always with a Public Library of Science (PLOS) publication, this paper is open access.

The mystifying physics of paint-on semiconductors

I was not expecting a Canadian connection but it seems we are heavily invested in this research at the Georgia Institute of Technology (Georgia Tech), from a March 19, 2018 news item on ScienceDaily,

Some novel materials that sound too good to be true turn out to be true and good. An emergent class of semiconductors, which could affordably light up our future with nuanced colors emanating from lasers, lamps, and even window glass, could be the latest example.

These materials are very radiant, easy to process from solution, and energy-efficient. The nagging question of whether hybrid organic-inorganic perovskites (HOIPs) could really work just received a very affirmative answer in a new international study led by physical chemists at the Georgia Institute of Technology.

A March 19,. 2018 Georgia Tech news release (also on EurekAlert), which originated the news item, provides more detail,

The researchers observed in an HOIP a “richness” of semiconducting physics created by what could be described as electrons dancing on chemical underpinnings that wobble like a funhouse floor in an earthquake. That bucks conventional wisdom because established semiconductors rely upon rigidly stable chemical foundations, that is to say, quieter molecular frameworks, to produce the desired quantum properties.

“We don’t know yet how it works to have these stable quantum properties in this intense molecular motion,” said first author Felix Thouin, a graduate research assistant at Georgia Tech. “It defies physics models we have to try to explain it. It’s like we need some new physics.”

Quantum properties surprise

Their gyrating jumbles have made HOIPs challenging to examine, but the team of researchers from a total of five research institutes in four countries succeeded in measuring a prototypical HOIP and found its quantum properties on par with those of established, molecularly rigid semiconductors, many of which are graphene-based.

“The properties were at least as good as in those materials and may be even better,” said Carlos Silva, a professor in Georgia Tech’s School of Chemistry and Biochemistry. Not all semiconductors also absorb and emit light well, but HOIPs do, making them optoelectronic and thus potentially useful in lasers, LEDs, other lighting applications, and also in photovoltaics.

The lack of molecular-level rigidity in HOIPs also plays into them being more flexibly produced and applied.

Silva co-led the study with physicist Ajay Ram Srimath Kandada. Their team published the results of their study on two-dimensional HOIPs on March 8, 2018, in the journal Physical Review Materials. Their research was funded by EU Horizon 2020, the Natural Sciences and Engineering Research Council of Canada, the Fond Québécois pour la Recherche, the [National] Research Council of Canada, and the National Research Foundation of Singapore. [emphases mine]

The ‘solution solution’

Commonly, semiconducting properties arise from static crystalline lattices of neatly interconnected atoms. In silicon, for example, which is used in most commercial solar cells, they are interconnected silicon atoms. The same principle applies to graphene-like semiconductors.

“These lattices are structurally not very complex,” Silva said. “They’re only one atom thin, and they have strict two-dimensional properties, so they’re much more rigid.”

“You forcefully limit these systems to two dimensions,” said Srimath Kandada, who is a Marie Curie International Fellow at Georgia Tech and the Italian Institute of Technology. “The atoms are arranged in infinitely expansive, flat sheets, and then these very interesting and desirable optoelectronic properties emerge.”

These proven materials impress. So, why pursue HOIPs, except to explore their baffling physics? Because they may be more practical in important ways.

“One of the compelling advantages is that they’re all made using low-temperature processing from solutions,” Silva said. “It takes much less energy to make them.”

By contrast, graphene-based materials are produced at high temperatures in small amounts that can be tedious to work with. “With this stuff (HOIPs), you can make big batches in solution and coat a whole window with it if you want to,” Silva said.

Funhouse in an earthquake

For all an HOIP’s wobbling, it’s also a very ordered lattice with its own kind of rigidity, though less limiting than in the customary two-dimensional materials.

“It’s not just a single layer,” Srimath Kandada said. “There is a very specific perovskite-like geometry.” Perovskite refers to the shape of an HOIPs crystal lattice, which is a layered scaffolding.

“The lattice self-assembles,” Srimath Kandada said, “and it does so in a three-dimensional stack made of layers of two-dimensional sheets. But HOIPs still preserve those desirable 2D quantum properties.”

Those sheets are held together by interspersed layers of another molecular structure that is a bit like a sheet of rubber bands. That makes the scaffolding wiggle like a funhouse floor.

“At room temperature, the molecules wiggle all over the place. That disrupts the lattice, which is where the electrons live. It’s really intense,” Silva said. “But surprisingly, the quantum properties are still really stable.”

Having quantum properties work at room temperature without requiring ultra-cooling is important for practical use as a semiconductor.

Going back to what HOIP stands for — hybrid organic-inorganic perovskites – this is how the experimental material fit into the HOIP chemical class: It was a hybrid of inorganic layers of a lead iodide (the rigid part) separated by organic layers (the rubber band-like parts) of phenylethylammonium (chemical formula (PEA)2PbI4).

The lead in this prototypical material could be swapped out for a metal safer for humans to handle before the development of an applicable material.

Electron choreography

HOIPs are great semiconductors because their electrons do an acrobatic square dance.

Usually, electrons live in an orbit around the nucleus of an atom or are shared by atoms in a chemical bond. But HOIP chemical lattices, like all semiconductors, are configured to share electrons more broadly.

Energy levels in a system can free the electrons to run around and participate in things like the flow of electricity and heat. The orbits, which are then empty, are called electron holes, and they want the electrons back.

“The hole is thought of as a positive charge, and of course, the electron has a negative charge,” Silva said. “So, hole and electron attract each other.”

The electrons and holes race around each other like dance partners pairing up to what physicists call an “exciton.” Excitons act and look a lot like particles themselves, though they’re not really particles.

Hopping biexciton light

In semiconductors, millions of excitons are correlated, or choreographed, with each other, which makes for desirable properties, when an energy source like electricity or laser light is applied. Additionally, excitons can pair up to form biexcitons, boosting the semiconductor’s energetic properties.

“In this material, we found that the biexciton binding energies were high,” Silva said. “That’s why we want to put this into lasers because the energy you input ends up to 80 or 90 percent as biexcitons.”

Biexcitons bump up energetically to absorb input energy. Then they contract energetically and pump out light. That would work not only in lasers but also in LEDs or other surfaces using the optoelectronic material.

“You can adjust the chemistry (of HOIPs) to control the width between biexciton states, and that controls the wavelength of the light given off,” Silva said. “And the adjustment can be very fine to give you any wavelength of light.”

That translates into any color of light the heart desires.

###

Coauthors of this paper were Stefanie Neutzner and Annamaria Petrozza from the Italian Institute of Technology (IIT); Daniele Cortecchia from IIT and Nanyang Technological University (NTU), Singapore; Cesare Soci from the Centre for Disruptive Photonic Technologies, Singapore; Teddy Salim and Yeng Ming Lam from NTU; and Vlad Dragomir and Richard Leonelli from the University of Montreal. …

Three Canadian science funding agencies plus European and Singaporean science funding agencies but not one from the US ? That’s a bit unusual for research undertaken at a US educational institution.

In any event, here’s a link to and a citation for the paper,

Stable biexcitons in two-dimensional metal-halide perovskites with strong dynamic lattice disorder by Félix Thouin, Stefanie Neutzner, Daniele Cortecchia, Vlad Alexandru Dragomir, Cesare Soci, Teddy Salim, Yeng Ming Lam, Richard Leonelli, Annamaria Petrozza, Ajay Ram Srimath Kandada, and Carlos Silva. Phys. Rev. Materials 2, 034001 – Published 8 March 2018

This paper is behind a paywall.

A question of consciousness: Facebotlish (a new language); a July 5, 2017 rap guide performance in Vancouver, Canada; Tom Stoppard’s play; and a little more

This would usually be a simple event announcement but with the advent of a new, related (in my mind if no one else’s) development on Facebook, this has become a roundup of sorts.

Facebotlish (Facebook’s chatbots create their own language)

The language created by Facebook’s chatbots, Facebotlish, was an unintended consequence—that’s right Facebook’s developers did not design a language for the chatbots or anticipate its independent development, apparently.  Adrienne LaFrance’s June 20, 2017 article for theatlantic.com explores the development and the question further,

Something unexpected happened recently at the Facebook Artificial Intelligence Research lab. Researchers who had been training bots to negotiate with one another realized that the bots, left to their own devices, started communicating in a non-human language.

In order to actually follow what the bots were saying, the researchers had to tweak their model, limiting the machines to a conversation humans could understand. (They want bots to stick to human languages because eventually they want those bots to be able to converse with human Facebook users.) …

Here’s what the language looks like (from LaFrance article),

Here’s an example of one of the bot negotiations that Facebook observed:Bob: i can i i everything else . . . . . . . . . . . . . .
Alice: balls have zero to me to me to me to me to me to me to me to me to
Bob: you i everything else . . . . . . . . . . . . . .
Alice: balls have a ball to me to me to me to me to me to me to me
Bob: i i can i i i everything else . . . . . . . . . . . . . .
Alice: balls have a ball to me to me to me to me to me to me to me
Bob: i . . . . . . . . . . . . . . . . . . .
Alice: balls have zero to me to me to me to me to me to me to me to me to
Bob: you i i i i i everything else . . . . . . . . . . . . . .
Alice: balls have 0 to me to me to me to me to me to me to me to me to
Bob: you i i i everything else . . . . . . . . . . . . . .
Alice: balls have zero to me to me to me to me to me to me to me to me to

It is incomprehensible to humans even after being tweaked, even so, some successful negotiations can ensue.

Facebook’s researchers aren’t the only one to come across the phenomenon (from LaFrance’s article; Note: Links have been removed),

Other AI researchers, too, say they’ve observed machines that can develop their own languages, including languages with a coherent structure, and defined vocabulary and syntax—though not always actual meaningful, by human standards.

In one preprint paper added earlier this year [2017] to the research repository arXiv, a pair of computer scientists from the non-profit AI research firm OpenAI wrote about how bots learned to communicate in an abstract language—and how those bots turned to non-verbal communication, the equivalent of human gesturing or pointing, when language communication was unavailable. (Bots don’t need to have corporeal form to engage in non-verbal communication; they just engage with what’s called a visual sensory modality.) Another recent preprint paper, from researchers at the Georgia Institute of Technology, Carnegie Mellon, and Virginia Tech, describes an experiment in which two bots invent their own communication protocol by discussing and assigning values to colors and shapes—in other words, the researchers write, they witnessed the “automatic emergence of grounded language and communication … no human supervision!”

The implications of this kind of work are dizzying. Not only are researchers beginning to see how bots could communicate with one another, they may be scratching the surface of how syntax and compositional structure emerged among humans in the first place.

LaFrance’s article is well worth reading in its entirety especially since the speculation is focused on whether or not the chatbots’ creation is in fact language. There is no mention of consciousness and perhaps this is just a crazy idea but is it possible that these chatbots have consciousness? The question is particularly intriguing in light of some of philosopher David Chalmers’ work (see his 2014 TED talk in Vancouver, Canada: https://www.ted.com/talks/david_chalmers_how_do_you_explain_consciousness/transcript?language=en runs roughly 18 mins.); a text transcript is also featured. There’s a condensed version of Chalmers’ TED talk offered in a roughly 9 minute NPR (US National Public Radio) interview by Gus Raz. Here are some highlights from the text transcript,

So we’ve been hearing from brain scientists who are asking how a bunch of neurons and synaptic connections in the brain add up to us, to who we are. But it’s consciousness, the subjective experience of the mind, that allows us to ask the question in the first place. And where consciousness comes from – that is an entirely separate question.

DAVID CHALMERS: Well, I like to distinguish between the easy problems of consciousness and the hard problem.

RAZ: This is David Chalmers. He’s a philosopher who coined this term, the hard problem of consciousness.

CHALMERS: Well, the easy problems are ultimately a matter of explaining behavior – things we do. And I think brain science is great at problems like that. It can isolate a neural circuit and show how it enables you to see a red object, to respondent and say, that’s red. But the hard problem of consciousness is subjective experience. Why, when all that happens in this circuit, does it feel like something? How does a bunch of – 86 billion neurons interacting inside the brain, coming together – how does that produce the subjective experience of a mind and of the world?

RAZ: Here’s how David Chalmers begins his TED Talk.

(SOUNDBITE OF TED TALK)

CHALMERS: Right now, you have a movie playing inside your head. It has 3-D vision and surround sound for what you’re seeing and hearing right now. Your movie has smell and taste and touch. It has a sense of your body, pain, hunger, orgasms. It has emotions, anger and happiness. It has memories, like scenes from your childhood, playing before you. This movie is your stream of consciousness. If we weren’t conscious, nothing in our lives would have meaning or value. But at the same time, it’s the most mysterious phenomenon in the universe. Why are we conscious?

RAZ: Why is consciousness more than just the sum of the brain’s parts?

CHALMERS: Well, the question is, you know, what is the brain? It’s this giant complex computer, a bunch of interacting parts with great complexity. What does all that explain? That explains objective mechanism. Consciousness is subjective by its nature. It’s a matter of subjective experience. And it seems that we can imagine all of that stuff going on in the brain without consciousness. And the question is, where is the consciousness from there? It’s like, if someone could do that, they’d get a Nobel Prize, you know?

RAZ: Right.

CHALMERS: So here’s the mapping from this circuit to this state of consciousness. But underneath that is always going be the question, why and how does the brain give you consciousness in the first place?

(SOUNDBITE OF TED TALK)

CHALMERS: Right now, nobody knows the answers to those questions. So we may need one or two ideas that initially seem crazy before we can come to grips with consciousness, scientifically. The first crazy idea is that consciousness is fundamental. Physicists sometimes take some aspects of the universe as fundamental building blocks – space and time and mass – and you build up the world from there. Well, I think that’s the situation we’re in. If you can’t explain consciousness in terms of the existing fundamentals – space, time – the natural thing to do is to postulate consciousness itself as something fundamental – a fundamental building block of nature. The second crazy idea is that consciousness might be universal. This view is sometimes called panpsychism – pan, for all – psych, for mind. Every system is conscious. Not just humans, dogs, mice, flies, but even microbes. Even a photon has some degree of consciousness. The idea is not that photons are intelligent or thinking. You know, it’s not that a photon is wracked with angst because it’s thinking, oh, I’m always buzzing around near the speed of light. I never get to slow down and smell the roses. No, not like that. But the thought is, maybe photons might have some element of raw subjective feeling, some primitive precursor to consciousness.

RAZ: So this is a pretty big idea – right? – like, that not just flies, but microbes or photons all have consciousness. And I mean we, like, as humans, we want to believe that our consciousness is what makes us special, right – like, different from anything else.

CHALMERS: Well, I would say yes and no. I’d say the fact of consciousness does not make us special. But maybe we’ve a special type of consciousness ’cause you know, consciousness is not on and off. It comes in all these rich and amazing varieties. There’s vision. There’s hearing. There’s thinking. There’s emotion and so on. So our consciousness is far richer, I think, than the consciousness, say, of a mouse or a fly. But if you want to look for what makes us distinct, don’t look for just our being conscious, look for the kind of consciousness we have. …

Intriguing, non?

Vancouver premiere of Baba Brinkman’s Rap Guide to Consciousness

Baba Brinkman, former Vancouverite and current denizen of New York City, is back in town offering a new performance at the Rio Theatre (1680 E. Broadway, near Commercial Drive). From a July 5, 2017 Rio Theatre event page and ticket portal,

Baba Brinkman’s Rap Guide to Consciousness

Wednesday, July 5 [2017] at 6:30pm PDT

Baba Brinkman’s new hip-hop theatre show “Rap Guide to Consciousness” is all about the neuroscience of consciousness. See it in Vancouver at the Rio Theatre before it goes to the Edinburgh Fringe Festival in August [2017].

This event also features a performance of “Off the Top” with Dr. Heather Berlin (cognitive neuroscientist, TV host, and Baba’s wife), which is also going to Edinburgh.

Wednesday, July 5
Doors 6:00 pm | Show 6:30 pm

Advance tickets $12 | $15 at the door

*All ages welcome!
*Sorry, Groupons and passes not accepted for this event.

“Utterly unique… both brilliantly entertaining and hugely informative” ★ ★ ★ ★ ★ – Broadway Baby

“An education, inspiring, and wonderfully entertaining show from beginning to end” ★ ★ ★ ★ ★ – Mumble Comedy

There’s quite the poster for this rap guide performance,

In addition to  the Vancouver and Edinburgh performance (the show was premiered at the Brighton Fringe Festival in May 2017; see Simon Topping’s very brief review in this May 10, 2017 posting on the reviewshub.com), Brinkman is raising money (goal is $12,000US; he has raised a little over $3,000 with approximately one month before the deadline) to produce a CD. Here’s more from the Rap Guide to Consciousness campaign page on Indiegogo,

Brinkman has been working with neuroscientists, Dr. Anil Seth (professor and co-director of Sackler Centre for Consciousness Science) and Dr. Heather Berlin (Brinkman’s wife as noted earlier; see her Wikipedia entry or her website).

There’s a bit more information about the rap project and Anil Seth in a May 3, 2017 news item by James Hakner for the University of Sussex,

The research frontiers of consciousness science find an unusual outlet in an exciting new Rap Guide to Consciousness, premiering at this year’s Brighton Fringe Festival.

Professor Anil Seth, Co-Director of the Sackler Centre for Consciousness Science at the University of Sussex, has teamed up with New York-based ‘peer-reviewed rapper’ Baba Brinkman, to explore the latest findings from the neuroscience and cognitive psychology of subjective experience.

What is it like to be a baby? We might have to take LSD to find out. What is it like to be an octopus? Imagine most of your brain was actually built into your fingertips. What is it like to be a rapper kicking some of the world’s most complex lyrics for amused fringe audiences? Surreal.

In this new production, Baba brings his signature mix of rap comedy storytelling to the how and why behind your thoughts and perceptions. Mixing cutting-edge research with lyrical performance and projected visuals, Baba takes you through the twists and turns of the only organ it’s better to donate than receive: the human brain. Discover how the various subsystems of your brain come together to create your own rich experience of the world, including the sights and sounds of a scientifically peer-reviewed rapper dropping knowledge.

The result is a truly mind-blowing multimedia hip-hop theatre performance – the perfect meta-medium through which to communicate the dazzling science of consciousness.

Baba comments: “This topic is endlessly fascinating because it underlies everything we do pretty much all the time, which is probably why it remains one of the toughest ideas to get your head around. The first challenge with this show is just to get people to accept the (scientifically uncontroversial) idea that their brains and minds are actually the same thing viewed from different angles. But that’s just the starting point, after that the details get truly amazing.”

Baba Brinkman is a Canadian rap artist and award-winning playwright, best known for his “Rap Guide” series of plays and albums. Baba has toured the world and enjoyed successful runs at the Edinburgh Fringe Festival and off-Broadway in New York. The Rap Guide to Religion was nominated for a 2015 Drama Desk Award for “Unique Theatrical Experience” and The Rap Guide to Evolution (“Astonishing and brilliant” NY Times), won a Scotsman Fringe First Award and a Drama Desk Award nomination for “Outstanding Solo Performance”. The Rap Guide to Climate Chaos premiered in Edinburgh in 2015, followed by a six-month off-Broadway run in 2016.

Baba is also a pioneer in the genre of “lit-hop” or literary hip-hop, known for his adaptations of The Canterbury Tales, Beowulf, and Gilgamesh. He is a recent recipient of the National Center for Science Education’s “Friend of Darwin Award” for his efforts to improve the public understanding of evolutionary biology.

Anil Seth is an internationally renowned researcher into the biological basis of consciousness, with more than 100 (peer-reviewed!) academic journal papers on the subject. Alongside science he is equally committed to innovative public communication. A Wellcome Trust Engagement Fellow (from 2016) and the 2017 British Science Association President (Psychology), Professor Seth has co-conceived and consulted on many science-art projects including drama (Donmar Warehouse), dance (Siobhan Davies dance company), and the visual arts (with artist Lindsay Seers). He has also given popular public talks on consciousness at the Royal Institution (Friday Discourse) and at the main TED conference in Vancouver. He is a regular presence in print and on the radio and is the recipient of awards including the BBC Audio Award for Best Single Drama (for ‘The Sky is Wider’) and the Royal Society Young People’s Book Prize (for EyeBenders). This is his first venture into rap.

Professor Seth said: “There is nothing more familiar, and at the same time more mysterious than consciousness, but research is finally starting to shed light on this most central aspect of human existence. Modern neuroscience can be incredibly arcane and complex, posing challenges to us as public communicators.

“It’s been a real pleasure and privilege to work with Baba on this project over the last year. I never thought I’d get involved with a rap artist – but hearing Baba perform his ‘peer reviewed’ breakdowns of other scientific topics I realized here was an opportunity not to be missed.”

Interestingly, Seth has another Canadian connection; he’s a Senior Fellow of the Azrieli Program in Brain, Mind & Consciousness at the Canadian Institute for Advanced Research (CIFAR; Wikipedia entry). By the way, the institute  was promised $93.7M in the 2017 Canadian federal government budget for the establishment of a Pan-Canadian Artificial Intelligence Strategy (see my March 24, 2017 posting; scroll down about 25% of the way and look for the highlighted dollar amount). You can find out more about the Azrieli programme here and about CIFAR on its website.

The Hard Problem (a Tom Stoppard play)

Brinkman isn’t the only performance-based artist to be querying the concept of consciousness, Tom Stoppard has written a play about consciousness titled ‘The Hard Problem’, which debuted at the National Theatre (UK) in January 2015 (see BBC [British Broadcasting Corporation] news online’s Jan. 29, 2015 roundup of reviews). A May 25, 2017 commentary by Andrew Brown for the Guardian offers some insight into the play and the issues (Note: Links have been removed),

There is a lovely exchange in Tom Stoppard’s play about consciousness, The Hard Problem, when an atheist has been sneering at his girlfriend for praying. It is, he says, an utterly meaningless activity. Right, she says, then do one thing for me: pray! I can’t do that, he replies. It would betray all I believe in.

So prayer can have meanings, and enormously important ones, even for people who are certain that it doesn’t have the meaning it is meant to have. In that sense, your really convinced atheist is much more religious than someone who goes along with all the prayers just because that’s what everyone does, without for a moment supposing the action means anything more than asking about the weather.

The Hard Problem of the play’s title is a phrase coined by the Australian philosopher David Chalmers to describe the way in which consciousness arises from a physical world. What makes it hard is that we don’t understand it. What makes it a problem is slightly different. It isn’t the fact of consciousness, but our representations of consciousness, that give rise to most of the difficulties. We don’t know how to fit the first-person perspective into the third-person world that science describes and explores. But this isn’t because they don’t fit: it’s because we don’t understand how they fit. For some people, this becomes a question of consuming interest.

There are also a couple of video of Tom Stoppard, the playwright, discussing his play with various interested parties, the first being the director at the National Theatre who tackled the debut run, Nicolas Hytner: https://www.youtube.com/watch?v=s7J8rWu6HJg (it runs approximately 40 mins.). Then, there’s the chat Stoppard has with previously mentioned philosopher, David Chalmers: https://www.youtube.com/watch?v=4BPY2c_CiwA (this runs approximately 1 hr. 32 mins.).

I gather ‘consciousness’ is a hot topic these days and, in the venacular of the 1960s, I guess you could describe all of this as ‘expanding our consciousness’. Have a nice weekend!

4D printing, what is that?

According to an April 12, 2017 news item on ScienceDaily, shapeshifting in response to environmental stimuli is the fourth dimension (I have a link to a posting about 4D printing with another fourth dimension),

A team of researchers from Georgia Institute of Technology and two other institutions has developed a new 3-D printing method to create objects that can permanently transform into a range of different shapes in response to heat.

The team, which included researchers from the Singapore University of Technology and Design (SUTD) and Xi’an Jiaotong University in China, created the objects by printing layers of shape memory polymers with each layer designed to respond differently when exposed to heat.

“This new approach significantly simplifies and increases the potential of 4-D printing by incorporating the mechanical programming post-processing step directly into the 3-D printing process,” said Jerry Qi, a professor in the George W. Woodruff School of Mechanical Engineering at Georgia Tech. “This allows high-resolution 3-D printed components to be designed by computer simulation, 3-D printed, and then directly and rapidly transformed into new permanent configurations by simply heating.”

The research was reported April 12 [2017] in the journal Science Advances, a publication of the American Association for the Advancement of Science. The work is funded by the U.S. Air Force Office of Scientific Research, the U.S. National Science Foundation and the Singapore National Research Foundation through the SUTD DManD Centre.

An April 12, 2017 Singapore University of Technology and Design (SUTD) press release on EurekAlert provides more detail,

4D printing is an emerging technology that allows a 3D-printed component to transform its structure by exposing it to heat, light, humidity, or other environmental stimuli. This technology extends the shape creation process beyond 3D printing, resulting in additional design flexibility that can lead to new types of products which can adjust its functionality in response to the environment, in a pre-programmed manner. However, 4D printing generally involves complex and time-consuming post-processing steps to mechanically programme the component. Furthermore, the materials are often limited to soft polymers, which limit their applicability in structural scenarios.

A group of researchers from the SUTD, Georgia Institute of Technology, Xi’an Jiaotong University and Zhejiang University has introduced an approach that significantly simplifies and increases the potential of 4D printing by incorporating the mechanical programming post-processing step directly into the 3D printing process. This allows high-resolution 3D-printed components to be designed by computer simulation, 3D printed, and then directly and rapidly transformed into new permanent configurations by using heat. This approach can help save printing time and materials used by up to 90%, while completely eliminating the time-consuming mechanical programming process from the design and manufacturing workflow.

“Our approach involves printing composite materials where at room temperature one material is soft but can be programmed to contain internal stress, and the other material is stiff,” said Dr. Zhen Ding of SUTD. “We use computational simulations to design composite components where the stiff material has a shape and size that prevents the release of the programmed internal stress from the soft material after 3D printing. Upon heating, the stiff material softens and allows the soft material to release its stress. This results in a change – often dramatic – in the product shape.” This new shape is fixed when the product is cooled, with good mechanical stiffness. The research demonstrated many interesting shape changing parts, including a lattice that can expand by almost 8 times when heated.

This new shape becomes permanent and the composite material will not return to its original 3D-printed shape, upon further heating or cooling. “This is because of the shape memory effect,” said Prof. H. Jerry Qi of Georgia Tech. “In the two-material composite design, the stiff material exhibits shape memory, which helps lock the transformed shape into a permanent one. Additionally, the printed structure also exhibits the shape memory effect, i.e. it can then be programmed into further arbitrary shapes that can always be recovered to its new permanent shape, but not its 3D-printed shape.”

Said SUTD’s Prof. Martin Dunn, “The key advance of this work, is a 4D printing method that is dramatically simplified and allows the creation of high-resolution complex 3D reprogrammable products; it promises to enable myriad applications across biomedical devices, 3D electronics, and consumer products. It even opens the door to a new paradigm in product design, where components are designed from the onset to inhabit multiple configurations during service.”

Here’s a video,


Uploaded on Apr 17, 2017

A research team led by the Singapore University of Technology and Design’s (SUTD) Associate Provost of Research, Professor Martin Dunn, has come up with a new and simplified 4D printing method that uses a 3D printer to rapidly create 3D objects, which can permanently transform into a range of different shapes in response to heat.

Here’s a link to and a citation for the paper,

Direct 4D printing via active composite materials by Zhen Ding, Chao Yuan, Xirui Peng, Tiejun Wang, H. Jerry Qi, and Martin L. Dunn. Science Advances  12 Apr 2017: Vol. 3, no. 4, e1602890 DOI: 10.1126/sciadv.1602890

This paper is open access.

Here is a link to a post about another 4th dimension, time,

4D printing: a hydrogel orchid (Jan. 28, 2016)

Council of Canadian Academies and science policy for Alberta

The Council of Canadian Academies (CCA) has expanded its approach from assembling expert panels to report on questions posed by various Canadian government agencies (assessments) to special reports from a three-member panel and, now, to a workshop on the province of Alberta’s science policy ideas. From an Oct. 27, 2016 CCA news release (received via email),

The Council of Canadian Academies (CCA) is pleased to announce that it is undertaking an expert panel workshop on science policy ideas under development in Alberta. The workshop will engage national and international experts to explore various dimensions of sub-national science systems and the role of sub-national science policy.

“We are pleased to undertake this project,” said Eric M. Meslin, PhD, FCAHS, President and CEO of the CCA. “It is an assessment that could discuss strategies that have applications in Alberta, across Canada, and elsewhere.”

A two-day workshop, to be undertaken in November 2016, will bring together a multidisciplinary and multi-sectoral group of leading Canadian and international experts to review, validate, and advance work being done on science policy in Alberta. The workshop will explore the necessary considerations when creating science policy at the sub-national level. Specifically it will:

  • Debate and validate the main outcomes of a sub-national science enterprise, particularly in relation to knowledge, human, and social capital.
  • Identify the key elements and characteristics of a successful science enterprise (e.g., funding, trust, capacity, science culture, supporting interconnections and relationships) with a particular focus at a sub-national level.
  • Explore potential intents of a sub-national science policy, important features of such a policy, and the role of the policy in informing investment decisions.

To lead the design of the workshop, complete the necessary background research, and develop the workshop summary report, the CCA has appointed a five member Workshop Steering Committee, chaired by Joy Johnson, FCAHS, Vice President, Research, Simon Fraser University. The other Steering Committee members are: Paul Dufour, Adjunct Professor, Institute for Science, Society and Policy; University of Ottawa, Principal, Paulicy Works; Janet Halliwell, Principal, J.E. Halliwell Associates, Inc.; Kaye Husbands Fealing, Chair and Professor, School of Public Policy, Georgia Tech; and Marc LePage, President and CEO, Genome Canada.

The CCA, under the guidance of its Scientific Advisory Committee, and in collaboration with the Workshop Steering Committee, is now assembling a multidisciplinary, multi-sectoral, group of experts to participate in the two-day workshop. The CCA’s Member Academies – the Royal Society of Canada, the Canadian Academy of Engineering, and the Canadian Academy of Health Sciences – are a key source of membership for expert panels. Many experts are also Fellows of the Academies.

The workshop results will be published in a final summary report in spring 2017. This workshop assessment is supported by a grant from the Government of Alberta.

By comparison with the CCA’s last assessment mentioned here in a July 1, 2016 posting (The State of Science and Technology and Industrial Research and Development in Canada), this workshop has a better balance. The expert panel is being chaired by a woman (the first time I’ve seen that in a few years) and enough female members to add up to 60% representation. No representation from Québec (perhaps not a surprise given this is Alberta) but there is 40% from the western provinces given there is representation from both BC and Alberta. Business can boast 30% (?) with Paul Dufour doing double duty as both academic and business owner. It’s good to see international representation and one day I hope to see it from somewhere other than the US, the UK, and/or the Europe Union. Maybe Asia?

You can find contact information on the CCA’s Towards a Science Policy in Alberta webpage.

One comment, I find the lack of a specific date for the workshop interesting. It suggests either they were having difficulty scheduling or they wanted to keep the ‘unwashed’ away.

Achieving ultra-low friction without oil

Oiled gears as small parts of large mechanism Courtesy: Georgia Institute of Technology

Oiled gears as small parts of large mechanism Courtesy: Georgia Institute of Technology

Those gears are gorgeous, especially in full size; I will be giving a link to a full size version in a bit. Meanwhile, an Oct. 11, 2016 news item on Nanowerk makes an announcement about ultra-low friction without oil,

Researchers at Georgia Institute of Technology [Georgia Tech; US] have developed a new process for treating metal surfaces that has the potential to improve efficiency in piston engines and a range of other equipment.

The method improves the ability of metal surfaces to bond with oil, significantly reducing friction without special oil additives.

“About 50 percent of the mechanical energy losses in an internal combustion engine result from piston assembly friction. So if we can reduce the friction, we can save energy and reduce fuel and oil consumption,” said Michael Varenberg, an assistant professor in Georgia Tech’s George W. Woodruff School of Mechanical Engineering.

An Oct. 5, 2016 Georgia Tech news release (also on EurekAlert but dated Oct. 11, 2016), which originated the news item, describes the research in more detail,

In the study, which was published Oct. 5 [2016] in the journal Tribology Letters, the researchers at Georgia Tech and Technion – Israel Institute of Technology tested treating the surface of cast iron blocks by blasting it with mixture of copper sulfide and aluminum oxide. The shot peening modified the surface chemically that changed how oil molecules bonded with the metal and led to a superior surface lubricity.

“We want oil molecules to be connected strongly to the surface. Traditionally this connection is created by putting additives in the oil,” Varenberg said. “In this specific case, we shot peen the surface with a blend of alumina and copper sulfide particles.  Making the surface more active chemically by deforming it allows for replacement reaction to form iron sulfide on top of the iron. And iron sulfides are known for very strong bonds with oil molecules.”

Oil is the primary tool used to reduce the friction that occurs when two surfaces slide in contact. The new surface treatment results in an ultra-low friction coefficient of about 0.01 in a base oil environment, which is about 10 times less than a friction coefficient obtained on a reference untreated surface, the researchers reported.

“The reported result surpasses the performance of the best current commercial oils and is similar to the performance of lubricants formulated with tungsten disulfide-based nanoparticles, but critically, our process does not use any expensive nanostructured media,” Varenberg said.

The method for reducing surface friction is flexible and similar results can be achieved using a variety of processes other than shot peening, such as lapping, honing, burnishing, laser shock peening, the researchers suggest. That would make the process even easier to adapt to a range of uses and industries. The researchers plan to continue to examine that fundamental functional principles and physicochemical mechanisms that caused the treatment to be so successful.

“This straightforward, scalable pathway to ultra-low friction opens new horizons for surface engineering, and it could significantly reduce energy losses on an industrial scale,” Varenberg said. “Moreover, our finding may result in a paradigm shift in the art of lubrication and initiate a whole new direction in surface science and engineering due to the generality of the idea and a broad range of potential applications.”

Here’s a link to and a citation for the paper,

Mechano-Chemical Surface Modification with Cu2S: Inducing Superior Lubricity by Michael Varenberg, Grigory Ryk, Alexander Yakhnis, Yuri Kligerman, Neha Kondekar, & Matthew T. McDowell. Tribol Lett (2016) 64: 28. doi:10.1007/s11249-016-0758-8 First online: Oct. 5, 2016

This paper is behind a paywall.

A human user manual—for robots

Researchers from the Georgia Institute of Technology (Georgia Tech), funded by the US Office of Naval Research (ONR), have developed a program that teaches robots to read stories and more in an effort to educate them about humans. From a June 16, 2016 ONR news release by Warren Duffie Jr. (also on EurekAlert),

With support from the Office of Naval Research (ONR), researchers at the Georgia Institute of Technology have created an artificial intelligence software program named Quixote to teach robots to read stories, learn acceptable behavior and understand successful ways to conduct themselves in diverse social situations.

“For years, researchers have debated how to teach robots to act in ways that are appropriate, non-intrusive and trustworthy,” said Marc Steinberg, an ONR program manager who oversees the research. “One important question is how to explain complex concepts such as policies, values or ethics to robots. Humans are really good at using narrative stories to make sense of the world and communicate to other people. This could one day be an effective way to interact with robots.”

The rapid pace of artificial intelligence has stirred fears by some that robots could act unethically or harm humans. Dr. Mark Riedl, an associate professor and director of Georgia Tech’s Entertainment Intelligence Lab, hopes to ease concerns by having Quixote serve as a “human user manual” by teaching robots values through simple stories. After all, stories inform, educate and entertain–reflecting shared cultural knowledge, social mores and protocols.

For example, if a robot is tasked with picking up a pharmacy prescription for a human as quickly as possible, it could: a) take the medicine and leave, b) interact politely with pharmacists, c) or wait in line. Without value alignment and positive reinforcement, the robot might logically deduce robbery is the fastest, cheapest way to accomplish its task. However, with value alignment from Quixote, it would be rewarded for waiting patiently in line and paying for the prescription.

For their research, Riedl and his team crowdsourced stories from the Internet. Each tale needed to highlight daily social interactions–going to a pharmacy or restaurant, for example–as well as socially appropriate behaviors (e.g., paying for meals or medicine) within each setting.

The team plugged the data into Quixote to create a virtual agent–in this case, a video game character placed into various game-like scenarios mirroring the stories. As the virtual agent completed a game, it earned points and positive reinforcement for emulating the actions of protagonists in the stories.

Riedl’s team ran the agent through 500,000 simulations, and it displayed proper social interactions more than 90 percent of the time.

“These games are still fairly simple,” said Riedl, “more like ‘Pac-Man’ instead of ‘Halo.’ However, Quixote enables these artificial intelligence agents to immerse themselves in a story, learn the proper sequence of events and be encoded with acceptable behavior patterns. This type of artificial intelligence can be adapted to robots, offering a variety of applications.”

Within the next six months, Riedl’s team hopes to upgrade Quixote’s games from “old-school” to more modern and complex styles like those found in Minecraft–in which players use blocks to build elaborate structures and societies.

Riedl believes Quixote could one day make it easier for humans to train robots to perform diverse tasks. Steinberg notes that robotic and artificial intelligence systems may one day be a much larger part of military life. This could involve mine detection and deactivation, equipment transport and humanitarian and rescue operations.

“Within a decade, there will be more robots in society, rubbing elbows with us,” said Riedl. “Social conventions grease the wheels of society, and robots will need to understand the nuances of how humans do things. That’s where Quixote can serve as a valuable tool. We’re already seeing it with virtual agents like Siri and Cortana, which are programmed not to say hurtful or insulting things to users.”

This story brought to mind two other projects: RoboEarth (an internet for robots only) mentioned in my Jan. 14, 2014 which was an update on the project featuring its use in hospitals and RoboBrain, a robot learning project (sourcing the internet, YouTube, and more for information to teach robots) was mentioned in my Sept. 2, 2014 posting.

Titanium dioxide nanoparticles have subtle effects on oxidative stress genes?

There’s research from the Georgia Institute of Technology (Georgia Tech; US) suggesting that titanium dioxide nanoparticles may have long term side effects. From a May 10, 2016 news item on ScienceDaily,

A nanoparticle commonly used in food, cosmetics, sunscreen and other products can have subtle effects on the activity of genes expressing enzymes that address oxidative stress inside two types of cells. While the titanium dioxide (TiO2) nanoparticles are considered non-toxic because they don’t kill cells at low concentrations, these cellular effects could add to concerns about long-term exposure to the nanomaterial.

A May 9, 2016 Georgia Tech news release on Newswire (also on EurekAlert), which originated the news item, describes the research in more detail,

Researchers at the Georgia Institute of Technology used high-throughput screening techniques to study the effects of titanium dioxide nanoparticles on the expression of 84 genes related to cellular oxidative stress. Their work found that six genes, four of them from a single gene family, were affected by a 24-hour exposure to the nanoparticles.

The effect was seen in two different kinds of cells exposed to the nanoparticles: human HeLa* cancer cells commonly used in research, and a line of monkey kidney cells. Polystyrene nanoparticles similar in size and surface electrical charge to the titanium dioxide nanoparticles did not produce a similar effect on gene expression.

“This is important because every standard measure of cell health shows that cells are not affected by these titanium dioxide nanoparticles,” said Christine Payne, an associate professor in Georgia Tech’s School of Chemistry and Biochemistry. “Our results show that there is a more subtle change in oxidative stress that could be damaging to cells or lead to long-term changes. This suggests that other nanoparticles should be screened for similar low-level effects.”

The research was reported online May 6 in the Journal of Physical Chemistry C. The work was supported by the National Institutes of Health (NIH) through the HERCULES Center at Emory University, and by a Vasser Woolley Fellowship.

Titanium dioxide nanoparticles help make powdered donuts white, protect skin from the sun’s rays and reflect light in painted surfaces. In concentrations commonly used, they are considered non-toxic, though several other studies have raised concern about potential effects on gene expression that may not directly impact the short-term health of cells.

To determine whether the nanoparticles could affect genes involved in managing oxidative stress in cells, Payne and colleague Melissa Kemp – an associate professor in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University – designed a study to broadly evaluate the nanoparticle’s impact on the two cell lines.

Working with graduate students Sabiha Runa and Dipesh Khanal, they separately incubated HeLa cells and monkey kidney cells with titanium oxide at levels 100 times less than the minimum concentration known to initiate effects on cell health. After incubating the cells for 24 hours with the TiO2, the cells were lysed and their contents analyzed using both PCR and Western Blot techniques to study the expression of 84 genes associated with the cells’ ability to address oxidative processes.

Payne and Kemp were surprised to find changes in the expression of six genes, including four from the peroxiredoxin family of enzymes that helps cells degrade hydrogen peroxide, a byproduct of cellular oxidation processes. Too much hydrogen peroxide can create oxidative stress which can damage DNA and other molecules.

The effect measured was significant – changes of about 50 percent in enzyme expression compared to cells that had not been incubated with nanoparticles. The tests were conducted in triplicate and produced similar results each time.

“One thing that was really surprising was that this whole family of proteins was affected, though some were up-regulated and some were down-regulated,” Kemp said. “These were all related proteins, so the question is why they would respond differently to the presence of the nanoparticles.”

The researchers aren’t sure how the nanoparticles bind with the cells, but they suspect it may involve the protein corona that surrounds the particles. The corona is made up of serum proteins that normally serve as food for the cells, but adsorb to the nanoparticles in the culture medium. The corona proteins have a protective effect on the cells, but may also serve as a way for the nanoparticles to bind to cell receptors.

Titanium dioxide is well known for its photo-catalytic effects under ultraviolet light, but the researchers don’t think that’s in play here because their culturing was done in ambient light – or in the dark. The individual nanoparticles had diameters of about 21 nanometers, but in cell culture formed much larger aggregates.

In future work, Payne and Kemp hope to learn more about the interaction, including where the enzyme-producing proteins are located in the cells. For that, they may use HyPer-Tau, a reporter protein they developed to track the location of hydrogen peroxide within cells.

The research suggests a re-evaluation may be necessary for other nanoparticles that could create subtle effects even though they’ve been deemed safe.

“Earlier work had suggested that nanoparticles can lead to oxidative stress, but nobody had really looked at this level and at so many different proteins at the same time,” Payne said. “Our research looked at such low concentrations that it does raise questions about what else might be affected. We looked specifically at oxidative stress, but there may be other genes that are affected, too.”

Those subtle differences may matter when they’re added to other factors.

“Oxidative stress is implicated in all kinds of inflammatory and immune responses,” Kemp noted. “While the titanium dioxide alone may just be modulating the expression levels of this family of proteins, if that is happening at the same time you have other types of oxidative stress for different reasons, then you may have a cumulative effect.”

*HeLa cells are named for Henrietta Lacks who unknowingly donated her immortal cell line to medical research. You can find more about the  story on the Oprah Winfrey website, which features an excerpt from the Rebecca Skloot book “The Immortal Life of Henrietta Lacks.” By the way, on May 2, 2016 it was announced that Oprah Winfrey would star in a movie for HBO as Henrietta Lacks’ daughter in an adaptation of the Rebecca Skloot book. You can read more about the proposed production in a May 3, 2016 article by Benjamin Lee for the Guardian.

Getting back to titanium dioxide nanoparticles and their possible long term effects, here’s a link to and a citation for the Georgia Tech team’s paper,

TiO2 Nanoparticles Alter the Expression of Peroxiredoxin Antioxidant Genes by Sabiha Runa, Dipesh Khanal, Melissa L. Kemp‡, and Christine K. Payne. J. Phys. Chem. C, Article ASAP DOI: 10.1021/acs.jpcc.6b01939 Publication Date (Web): April 21, 2016

Copyright © 2016 American Chemical Society

This paper is behind a paywall.