Tag Archives: University of Arizona

Controlling neurons with light: no batteries or wires needed

Caption: Wireless and battery-free implant with advanced control over targeted neuron groups. Credit: Philipp Gutruf

This January 2, 2019 news item on ScienceDaily describes the object seen in the above and describes the problem it’s designed to solve,

University of Arizona biomedical engineering professor Philipp Gutruf is first author on the paper Fully implantable, optoelectronic systems for battery-free, multimodal operation in neuroscience research, published in Nature Electronics.

Optogenetics is a biological technique that uses light to turn specific neuron groups in the brain on or off. For example, researchers might use optogenetic stimulation to restore movement in case of paralysis or, in the future, to turn off the areas of the brain or spine that cause pain, eliminating the need for — and the increasing dependence on — opioids and other painkillers.

“We’re making these tools to understand how different parts of the brain work,” Gutruf said. “The advantage with optogenetics is that you have cell specificity: You can target specific groups of neurons and investigate their function and relation in the context of the whole brain.”

In optogenetics, researchers load specific neurons with proteins called opsins, which convert light to electrical potentials that make up the function of a neuron. When a researcher shines light on an area of the brain, it activates only the opsin-loaded neurons.

The first iterations of optogenetics involved sending light to the brain through optical fibers, which meant that test subjects were physically tethered to a control station. Researchers went on to develop a battery-free technique using wireless electronics, which meant subjects could move freely.

But these devices still came with their own limitations — they were bulky and often attached visibly outside the skull, they didn’t allow for precise control of the light’s frequency or intensity, and they could only stimulate one area of the brain at a time.

A Dec. 21, 2018 University of Azrizona news release (published Jan. 2, 2019 on EurekAlert), which originated the news item, discusses the work in more detail,

“With this research, we went two to three steps further,” Gutruf said. “We were able to implement digital control over intensity and frequency of the light being emitted, and the devices are very miniaturized, so they can be implanted under the scalp. We can also independently stimulate multiple places in the brain of the same subject, which also wasn’t possible before.”

The ability to control the light’s intensity is critical because it allows researchers to control exactly how much of the brain the light is affecting — the brighter the light, the farther it will reach. In addition, controlling the light’s intensity means controlling the heat generated by the light sources, and avoiding the accidental activation of neurons that are activated by heat.

The wireless, battery-free implants are powered by external oscillating magnetic fields, and, despite their advanced capabilities, are not significantly larger or heavier than past versions. In addition, a new antenna design has eliminated a problem faced by past versions of optogenetic devices, in which the strength of the signal being transmitted to the device varied depending on the angle of the brain: A subject would turn its head and the signal would weaken.

“This system has two antennas in one enclosure, which we switch the signal back and forth very rapidly so we can power the implant at any orientation,” Gutruf said. “In the future, this technique could provide battery-free implants that provide uninterrupted stimulation without the need to remove or replace the device, resulting in less invasive procedures than current pacemaker or stimulation techniques.”

Devices are implanted with a simple surgical procedure similar to surgeries in which humans are fitted with neurostimulators, or “brain pacemakers.” They cause no adverse effects to subjects, and their functionality doesn’t degrade in the body over time. This could have implications for medical devices like pacemakers, which currently need to be replaced every five to 15 years.

The paper also demonstrated that animals implanted with these devices can be safely imaged with computer tomography, or CT, and magnetic resonance imaging, or MRI, which allow for advanced insights into clinically relevant parameters such as the state of bone and tissue and the placement of the device.

This image of a combined MRI (magnetic resonance image) and CT (computer tomography) scan bookends, more or less, the picture of the device which headed this piece,

Combined image analysis with MRI and CT results superimposed on a 3D rendering of the animal implanted with the programmable bilateral multi µ-ILED device. Courtesy: University of Arizona

Here’s a link to and a citation for the paper,

Fully implantable optoelectronic systems for battery-free, multimodal operation in neuroscience research by Philipp Gutruf, Vaishnavi Krishnamurthi, Abraham Vázquez-Guardado, Zhaoqian Xie, Anthony Banks, Chun-Ju Su, Yeshou Xu, Chad R. Haney, Emily A. Waters, Irawati Kandela, Siddharth R. Krishnan, Tyler Ray, John P. Leshock, Yonggang Huang, Debashis Chanda, & John A. Rogers. Nature Electronics volume 1, pages652–660 (2018) DOI: https://doi.org/10.1038/s41928-018-0175-0 Published 13 December 2018

This paper is behind a paywall.

2016 thoughts and 2017 hopes from FrogHeart

This is the 4900th post on this blog and as FrogHeart moves forward to 5000, I’m thinking there will be some changes although I’m not sure what they’ll be. In the meantime, here are some random thoughts on the year that was in Canadian science and on the FrogHeart blog.

Changeover to Liberal government: year one

Hopes were high after the Trudeau government was elected. Certainly, there seems to have been a loosening where science communication policies have been concerned although it may not have been quite the open and transparent process people dreamed of. On the plus side, it’s been easier to participate in public consultations but there has been no move (perceptible to me) towards open government science or better access to government-funded science papers.

Open Science in Québec

As far as I know, la crème de la crème of open science (internationally) is the Montreal Neurological Institute (Montreal Neuro; affiliated with McGill University. They bookended the year with two announcements. In January 2016, Montreal Neuro announced it was going to be an “Open Science institution (my Jan. 22, 2016 posting),

The Montreal Neurological Institute (MNI) in Québec, Canada, known informally and widely as Montreal Neuro, has ‘opened’ its science research to the world. David Bruggeman tells the story in a Jan. 21, 2016 posting on his Pasco Phronesis blog (Note: Links have been removed),

The Montreal Neurological Institute (MNI) at McGill University announced that it will be the first academic research institute to become what it calls ‘Open Science.’  As Science is reporting, the MNI will make available all research results and research data at the time of publication.  Additionally it will not seek patents on any of the discoveries made on research at the Institute.

Will this catch on?  I have no idea if this particular combination of open access research data and results with no patents will spread to other university research institutes.  But I do believe that those elements will continue to spread.  More universities and federal agencies are pursuing open access options for research they support.  Elon Musk has opted to not pursue patent litigation for any of Tesla Motors’ patents, and has not pursued patents for SpaceX technology (though it has pursued litigation over patents in rocket technology). …

Then, there’s my Dec. 19, 2016 posting about this Montreal Neuro announcement,

It’s one heck of a Christmas present. Canadian businessmen Larry Tannenbaum and his wife Judy have given the Montreal Neurological Institute (Montreal Neuro), which is affiliated with McGill University, a $20M donation. From a Dec. 16, 2016 McGill University news release,

The Prime Minister of Canada, Justin Trudeau, was present today at the Montreal Neurological Institute and Hospital (MNI) for the announcement of an important donation of $20 million by the Larry and Judy Tanenbaum family. This transformative gift will help to establish the Tanenbaum Open Science Institute, a bold initiative that will facilitate the sharing of neuroscience findings worldwide to accelerate the discovery of leading edge therapeutics to treat patients suffering from neurological diseases.

‟Today, we take an important step forward in opening up new horizons in neuroscience research and discovery,” said Mr. Larry Tanenbaum. ‟Our digital world provides for unprecedented opportunities to leverage advances in technology to the benefit of science.  That is what we are celebrating here today: the transformation of research, the removal of barriers, the breaking of silos and, most of all, the courage of researchers to put patients and progress ahead of all other considerations.”

Neuroscience has reached a new frontier, and advances in technology now allow scientists to better understand the brain and all its complexities in ways that were previously deemed impossible. The sharing of research findings amongst scientists is critical, not only due to the sheer scale of data involved, but also because diseases of the brain and the nervous system are amongst the most compelling unmet medical needs of our time.

Neurological diseases, mental illnesses, addictions, and brain and spinal cord injuries directly impact 1 in 3 Canadians, representing approximately 11 million people across the country.

“As internationally-recognized leaders in the field of brain research, we are uniquely placed to deliver on this ambitious initiative and reinforce our reputation as an institution that drives innovation, discovery and advanced patient care,” said Dr. Guy Rouleau, Director of the Montreal Neurological Institute and Hospital and Chair of McGill University’s Department of Neurology and Neurosurgery. “Part of the Tanenbaum family’s donation will be used to incentivize other Canadian researchers and institutions to adopt an Open Science model, thus strengthening the network of like-minded institutes working in this field.”

Chief Science Advisor

Getting back to the federal government, we’re still waiting for a Chief Science Advisor. Should you be interested in the job, apply here. The job search was launched in early Dec. 2016 (see my Dec. 7, 2016 posting for details) a little over a year after the Liberal government was elected. I’m not sure why the process is taking so long. It’s not like the Canadian government is inventing a position or trailblazing in this regard. Many, many countries and jurisdictions have chief science advisors. Heck the European Union managed to find their first chief science advisor in considerably less time than we’ve spent on the project. My guess, it just wasn’t a priority.

Prime Minister Trudeau, quantum, nano, and Canada’s 150th birthday

In April 2016, Prime Minister Justin Trudeau stunned many when he was able to answer, in an articulate and informed manner, a question about quantum physics during a press conference at the Perimeter Institute in Waterloo, Ontario (my April 18, 2016 post discussing that incident and the so called ‘quantum valley’ in Ontario).

In Sept. 2016, the University of Waterloo publicized the world’s smallest Canadian flag to celebrate the country’s upcoming 150th birthday and to announce its presence in QUANTUM: The Exhibition (a show which will tour across Canada). Here’s more from my Sept. 20, 2016 posting,

The record-setting flag was unveiled at IQC’s [Institute of Quantum Computing at the University of Waterloo] open house on September 17 [2016], which attracted nearly 1,000 visitors. It will also be on display in QUANTUM: The Exhibition, a Canada 150 Fund Signature Initiative, and part of Innovation150, a consortium of five leading Canadian science-outreach organizations. QUANTUM: The Exhibition is a 4,000-square-foot, interactive, travelling exhibit IQC developed highlighting Canada’s leadership in quantum information science and technology.

“I’m delighted that IQC is celebrating Canadian innovation through QUANTUM: The Exhibition and Innovation150,” said Raymond Laflamme, executive director of IQC. “It’s an opportunity to share the transformative technologies resulting from Canadian research and bring quantum computing to fellow Canadians from coast to coast to coast.”

The first of its kind, the exhibition will open at THEMUSEUM in downtown Kitchener on October 14 [2016], and then travel to science centres across the country throughout 2017.

You can find the English language version of QUANTUM: The Exhibition website here and the French language version of QUANTUM: The Exhibition website here.

There are currently four other venues for the show once finishes its run in Waterloo. From QUANTUM’S Join the Celebration webpage,


  • Science World at TELUS World of Science, Vancouver
  • TELUS Spark, Calgary
  • Discovery Centre, Halifax
  • Canada Science and Technology Museum, Ottawa

I gather they’re still looking for other venues to host the exhibition. If interested, there’s this: Contact us.

Other than the flag which is both nanoscale and microscale, they haven’t revealed what else will be included in their 4000 square foot exhibit but it will be “bilingual, accessible, and interactive.” Also, there will be stories.

Hmm. The exhibition is opening in roughly three weeks and they have no details. Strategy or disorganization? Only time will tell.

Calgary and quantum teleportation

This is one of my favourite stories of the year. Scientists at the University of Calgary teleported photons six kilometers from the university to city hall breaking the teleportation record. What I found particularly interesting was the support for science from Calgary City Hall. Here’s more from my Sept. 21, 2016 post,

Through a collaboration between the University of Calgary, The City of Calgary and researchers in the United States, a group of physicists led by Wolfgang Tittel, professor in the Department of Physics and Astronomy at the University of Calgary have successfully demonstrated teleportation of a photon (an elementary particle of light) over a straight-line distance of six kilometres using The City of Calgary’s fibre optic cable infrastructure. The project began with an Urban Alliance seed grant in 2014.

This accomplishment, which set a new record for distance of transferring a quantum state by teleportation, has landed the researchers a spot in the prestigious Nature Photonics scientific journal. The finding was published back-to-back with a similar demonstration by a group of Chinese researchers.

The research could not be possible without access to the proper technology. One of the critical pieces of infrastructure that support quantum networking is accessible dark fibre. Dark fibre, so named because of its composition — a single optical cable with no electronics or network equipment on the alignment — doesn’t interfere with quantum technology.

The City of Calgary is building and provisioning dark fibre to enable next-generation municipal services today and for the future.

“By opening The City’s dark fibre infrastructure to the private and public sector, non-profit companies, and academia, we help enable the development of projects like quantum encryption and create opportunities for further research, innovation and economic growth in Calgary,” said Tyler Andruschak, project manager with Innovation and Collaboration at The City of Calgary.

As for the science of it (also from my post),

A Sept. 20, 2016 article by Robson Fletcher for CBC (Canadian Broadcasting News) online provides a bit more insight from the lead researcher (Note: A link has been removed),

“What is remarkable about this is that this information transfer happens in what we call a disembodied manner,” said physics professor Wolfgang Tittel, whose team’s work was published this week in the journal Nature Photonics.

“Our transfer happens without any need for an object to move between these two particles.”

A Sept. 20, 2016 University of Calgary news release by Drew Scherban, which originated the news item, provides more insight into the research,

“Such a network will enable secure communication without having to worry about eavesdropping, and allow distant quantum computers to connect,” says Tittel.

Experiment draws on ‘spooky action at a distance’

The experiment is based on the entanglement property of quantum mechanics, also known as “spooky action at a distance” — a property so mysterious that not even Einstein could come to terms with it.

“Being entangled means that the two photons that form an entangled pair have properties that are linked regardless of how far the two are separated,” explains Tittel. “When one of the photons was sent over to City Hall, it remained entangled with the photon that stayed at the University of Calgary.”

Next, the photon whose state was teleported to the university was generated in a third location in Calgary and then also travelled to City Hall where it met the photon that was part of the entangled pair.

“What happened is the instantaneous and disembodied transfer of the photon’s quantum state onto the remaining photon of the entangled pair, which is the one that remained six kilometres away at the university,” says Tittel.

Council of Canadian Academies and The State of Science and Technology and Industrial Research and Development in Canada

Preliminary data was released by the CCA’s expert panel in mid-December 2016. I reviewed that material briefly in my Dec. 15, 2016 post but am eagerly awaiting the full report due late 2017 when, hopefully, I’ll have the time to critique the material, and which I hope will have more surprises and offer greater insights than the preliminary report did.


Thank you to my online colleagues. While we don’t interact much it’s impossible to estimate how encouraging it is to know that these people continually participate and help create the nano and/or science blogosphere.

David Bruggeman at his Pasco Phronesis blog keeps me up-to-date on science policy both in the US, Canada, and internationally, as well as, keeping me abreast of the performing arts/science scene. Also, kudos to David for raising my (and his audience’s) awareness of just how much science is discussed on late night US television. Also, I don’t know how he does it but he keeps scooping me on Canadian science policy matters. Thankfully, I’m not bitter and hope he continues to scoop me which will mean that I will get the information from somewhere since it won’t be from the Canadian government.

Tim Harper of Cientifica Research keeps me on my toes as he keeps shifting his focus. Most lately, it’s been on smart textiles and wearables. You can download his latest White Paper titled, Fashion, Smart Textiles, Wearables and Disappearables, from his website. Tim consults on nanotechnology and other emerging technologies at the international level.

Dexter Johnson of the Nanoclast blog on the IEEE (Institute of Electrical and Electronics Engineers) website consistently provides informed insight into how a particular piece of research fits into the nano scene and often provides historical details that you’re not likely to get from anyone else.

Dr. Andrew Maynard is currently the founding Director of the Risk Innovation Lab at the University of Arizona. I know him through his 2020 Science blog where he posts text and videos on many topics including emerging technologies, nanotechnologies, risk, science communication, and much more. Do check out 2020 Science as it is a treasure trove.

2017 hopes and dreams

I hope Canada’s Chief Science Advisor brings some fresh thinking to science in government and that the Council of Canadian Academies’ upcoming assessment on The State of Science and Technology and Industrial Research and Development in Canada is visionary. Also, let’s send up some collective prayers for the Canada Science and Technology Museum which has been closed since 2014 (?) due to black mold (?). It would be lovely to see it open in time for Canada’s 150th anniversary.

I’d like to see the nanotechnology promise come closer to a reality, which benefits as many people as possible.

As for me and FrogHeart, I’m not sure about the future. I do know there’s one more Steep project (I’m working with Raewyn Turner on a multiple project endeavour known as Steep; this project will involve sound and gold nanoparticles).

Should anything sparkling occur to me, I will add it at a future date.

In the meantime, Happy New Year and thank you from the bottom of my heart for reading this blog!

Short term exposure to engineered nanoparticles used for semiconductors not too risky?

Short term exposure means anywhere from 30 minutes to 48 hours according to the news release and the concentration is much higher than would be expected in current real life conditions. Still, this research from the University of Arizona and collaborators represents an addition to the data about engineered nanoparticles (ENP) and their possible impact on health and safety. From a Feb. 22, 2016 news item on phys.org,

Short-term exposure to engineered nanoparticles used in semiconductor manufacturing poses little risk to people or the environment, according to a widely read research paper from a University of Arizona-led research team.

Co-authored by 27 researchers from eight U.S. universities, the article, “Physical, chemical and in vitro toxicological characterization of nanoparticles in chemical mechanical planarization suspensions used in the semiconductor industry: towards environmental health and safety assessments,” was published in the Royal Society of Chemistry journal Environmental Science Nano in May 2015. The paper, which calls for further analysis of potential toxicity for longer exposure periods, was one of the journal’s 10 most downloaded papers in 2015.

A Feb. 17, 2016 University of Arizona news release (also on EurekAlert), which originated the news item, provides more detail,

“This study is extremely relevant both for industry and for the public,” said Reyes Sierra, lead researcher of the study and professor of chemical and environmental engineering at the University of Arizona.

Small Wonder

Engineered nanoparticles are used to make semiconductors, solar panels, satellites, food packaging, food additives, batteries, baseball bats, cosmetics, sunscreen and countless other products. They also hold great promise for biomedical applications, such as cancer drug delivery systems.

Designing and studying nano-scale materials is no small feat. Most university researchers produce them in the laboratory to approximate those used in industry. But for this study, Cabot Microelectronics provided slurries of engineered nanoparticles to the researchers.

“Minus a few proprietary ingredients, our slurries were exactly the same as those used by companies like Intel and IBM,” Sierra said. Both companies collaborated on the study.

The engineers analyzed the physical, chemical and biological attributes of four metal oxide nanomaterials — ceria, alumina, and two forms of silica — commonly used in chemical mechanical planarization slurries for making semiconductors.

Clean Manufacturing

Chemical mechanical planarization is the process used to etch and polish silicon wafers to be smooth and flat so the hundreds of silicon chips attached to their surfaces will produce properly functioning circuits. Even the most infinitesimal scratch on a wafer can wreak havoc on the circuitry.

When their work is done, engineered nanoparticles are released to wastewater treatment facilities. Engineered nanoparticles are not regulated, and their prevalence in the environment is poorly understood [emphasis mine].

Researchers at the UA and around the world are studying the potential effects of these tiny and complex materials on human health and the environment.

“One of the few things we know for sure about engineered nanoparticles is that they behave very differently than other materials,” Sierra said. “For example, they have much greater surface area relative to their volume, which can make them more reactive. We don’t know whether this greater reactivity translates to enhanced toxicity.”

The researchers exposed the four nanoparticles, suspended in separate slurries, to adenocarcinoma human alveolar basal epithelial cells at doses up to 2,000 milligrams per liter for 24 to 38 hours, and to marine bacteria cells, Aliivibrio fischeri, up to 1,300 milligrams per liter for approximately 30 minutes.

These concentrations are much higher than would be expected in the environment, Sierra said.

Using a variety of techniques, including toxicity bioassays, electron microscopy, mass spectrometry and laser scattering, to measure such factors as particle size, surface area and particle composition, the researchers determined that all four nanoparticles posed low risk to the human and bacterial cells.

“These nanoparticles showed no adverse effects on the human cells or the bacteria, even at very high concentrations,” Sierra said. “The cells showed the very same behavior as cells that were not exposed to nanoparticles.”

The authors recommended further studies to characterize potential adverse effects at longer exposures and higher concentrations.

“Think of a fish in a stream where wastewater containing nanoparticles is discharged,” Sierra said. “Exposure to the nanoparticles could be for much longer.”

Here’s a link to and a citation for the paper,

Physical, chemical, and in vitro toxicological characterization of nanoparticles in chemical mechanical planarization suspensions used in the semiconductor industry: towards environmental health and safety assessments by David Speed, Paul Westerhoff, Reyes Sierra-Alvarez, Rockford Draper, Paul Pantano, Shyam Aravamudhan, Kai Loon Chen, Kiril Hristovski, Pierre Herckes, Xiangyu Bi, Yu Yang, Chao Zeng, Lila Otero-Gonzalez, Carole Mikoryak, Blake A. Wilson, Karshak Kosaraju, Mubin Tarannum, Steven Crawford, Peng Yi, Xitong Liu, S. V. Babu, Mansour Moinpour, James Ranville, Manuel Montano, Charlie Corredor, Jonathan Posner, and Farhang Shadman. Environ. Sci.: Nano, 2015,2, 227-244 DOI: 10.1039/C5EN00046G First published online 14 May 2015

This is open access but you may need to register before reading the paper.

The bit about nanoparticles’ “… prevalence in the environment is poorly understood …”and the focus of this research reminded me of an April 2014 announcement (my April 8, 2014 posting; scroll down about 40% of the way) regarding a new research network being hosted by Arizona State University, the LCnano network, which is part of the Life Cycle of Nanomaterials project being funded by the US National Science Foundation. The network’s (LCnano) director is Paul Westerhoff who is also one of this report’s authors.

FOE, nano, and food: part two of three (the problem with research)

The first part of this roughly six week food and nano ‘debate’ started off with the May 22, 2014 news item on Nanowerk announcing the Friends of the Earth (FOE) report ‘Way too little: Our Government’s failure to regulate nanomaterials in food and agriculture‘. Adding energy to FOE’s volley was a Mother Jones article written by Tom Philpott which had Dr. Andrew Maynard (Director of the University of Michigan’s Risk Science Center) replying decisively in an article published both on Nanowerk and on the Conversation.

Coincidentally or not, there were a couple of news items about ‘nano and food’ research efforts during the ‘debate’. A June 11, 2014 news item on Nanowerk highlights a Franco-German research project into the effects that nanomaterials have on the liver and the intestines while noting the scope of the task researchers face,

What mode of action do nanomaterials ingested via food have in liver and intestine? Which factors determine their toxicity? Due to the large number of different nanomaterials, it is hardly possible to test every one for its toxic properties. [emphasis mine] For this reason, specific properties for the classification of nanomaterials are to be examined within the scope of the Franco-German research project “SolNanoTox”, which began on 1 March 2014. The [German] Federal Institute for Risk Assessment (BfR) requires data on bioavailability for its assessment work, in particular on whether the solubility of nanomaterials has an influence on uptake and accumulation in certain organs, such as liver and intestine. “We want to find out in our tests whether the criterion ‘soluble or insoluble’ is a determining factor for uptake and toxicity of nanomaterials,” says BfR President Professor Dr. Andreas Hensel.

A June 13, 2014 German Federal Institute for Risk Assessment (BfR) press release, which originated the news item, details the research and the participating agencies,

A risk assessment of nanomaterials is hardly possible at the moment and involves a very high degree of uncertainty, as important toxicological data on their behaviour in tissue and cells are still missing. [emphasis mine] The German-French SolNanoTox research project examines which role the solubility of nanomaterials plays with regard to their accumulation and potential toxic properties. The project is to run for three and a half years during which the BfR will work closely with its French sister organisation ANSES. Other partners are the Institut des Sciences Chimiques de Rennes and Universität Leipzig. The German Research Foundation and French Agence Nationale de la Recherche (ANR) are funding the project.

The tasks of the BfR include in vitro tests (e.g. the investigation of the influence of the human gastrointestinal system) and analysis of biological samples with regard to the possible accumulation of nanomaterials. In addition to this, the BfR uses modern methods of mass spectrometry imaging to find out whether nanoparticles alter the structure of biomolecules, e.g. the structure of the lipids of the cellular membrane. So far, these important tests, which are necessary for assessing possible changes in DNA or cellular structures caused by nanomaterials in food, have not been conducted.

Metallic nanoparticles are to be studied (from the press release),

In the project, two fundamentally different types of nanoparticles are examined as representatives for others of their type: titanium dioxide as representative of water insoluble nanoparticles and aluminium as an example of nanomaterials which show a certain degree of water solubility after oxidation. [emphases mine] It is examined whether the degree of solubility influences the distribution of the nanomaterials in the body and whether soluble materials may possibly accumulate more in other organs than insoluble ones. The object is to establish whether there is a direct toxic effect of insoluble nanomaterials in general after oral uptake due to their small size.

Different innovative analytical methods are combined in the project with the aim to elucidate the behaviour of nanomaterials in tissue and their uptake into the cell. The main focus is on effects which can trigger genotoxic damage and inflammation. At first, the effects of both materials are examined in human cultures of intestinal and liver cells in an artificial environment (in vitro). In the following, it has to be verified by animal experimentation whether the observed effects can also occur in humans. This modus operandi allows to draw conclusions on effects and mode of action of orally ingested nanomaterials with different properties. The goal is to group nanomaterials on the basis of specific properties and to allocate the corresponding toxicological properties to these groups. Motivation for the project is the enormous number of nanomaterials with large differences in physicochemical properties. Toxicological tests cannot be conducted for all materials.

In the meantime, a June 19, 2014 news item on Azonano (also on EurekAlert but dated June 18, 2014) features some research into metallic nanoparticles in dietary supplement drinks,

Robert Reed [University of Arizona] and colleagues note that food and drink manufacturers use nanoparticles in and on their products for many reasons. In packaging, they can provide strength, control how much air gets in and out, and keep unwanted microbes at bay. As additives to food and drinks, they can prevent caking, deliver nutrients and prevent bacterial growth. But as nanoparticles increase in use, so do concerns over their health and environmental effects. Consumers might absorb some of these materials through their skin, and inhale and ingest them. What doesn’t get digested is passed in urine and feces to the sewage system. A handful of initial studies on nanomaterials suggest that they could be harmful, but Reed’s team wanted to take a closer look.

They tested the effects of eight commercial drinks containing nano-size metal or metal-like particles on human intestinal cells in the lab. The drinks changed the normal organization and decreased the number of microvilli, finger-like projections on the cells that help digest food. In humans, if such an effect occurs as the drinks pass through the gastrointestinal tract, these materials could lead to poor digestion or diarrhea, they say. The researchers’ analysis of sewage waste containing these particles suggests that much of the nanomaterials from these products are likely making their way back into surface water, where they could potentially cause health problems for aquatic life.

This piece is interesting for two reasons. First, the researchers don’t claim that metallic nanoparticles cause digestion or diarrhea due to any action in the gastrointestinal tract. They studied the impact that metallic nanoparticles in supplementary drinks had on cells (in vitro testing) from the gastrointestinal tract. Based on what they observed in the laboratory, “… these materials could lead to poor digestion or diarrhea… .” The researchers also suggest a problem could occur as these materials enter surface water in increasing quantities.

Here’s a link to and a citation for the paper,

Supplement Drinks and Assessment of Their Potential Interactions after Ingestion by Robert B. Reed, James J. Faust, Yu Yang, Kyle Doudrick, David G. Capco, Kiril Hristovski, and Paul Westerhoff. ACS Sustainable Chem. Eng., 2014, 2 (7), pp 1616–1624 DOI: 10.1021/sc500108m Publication Date (Web): June 2, 2014

Copyright © 2014 American Chemical Society

With Paul Westerhoff as one of the authors and the reference to metallic nanoparticles entering water supplies, I’m guessing that this research is associated with the LCnano (lifecycle nano) project headquartered at Arizona State university (April 8, 2014 posting).

Getting back to the Franco-German SolNanoTox project, scientists do not know what happens when the cells in your intestines, liver, etc. encounter metallic or other nanoparticles, some of which may be naturally occurring. It should also be noted that we have likely been ingesting metallic nanoparticles for quite some time. After all, anyone who has used silver cutlery has ingested some silver nanoparticles.

There are many, many questions to be asked and answered with regard to nanomaterials in our foods.  Here are a few of mine:

  • How many metallic and other nanoparticles did we ingest before the advent of ‘nanomaterials in food’?
  • What is the biopersistence of naturally occurring and engineered metallic and other nanoparticles in the body?
  • Is there an acceptable dose versus a fatal dose? (Note: There’s naturally occurring formaldehyde in pears as per my May 19, 2014 post about doses, poisons, and the Sense about Science group’s campaign/book, Making Sense of Chemical Stories.)
  • What happens as the metallic and other engineered nanoparticles are added to food and drink and eventually enter our water, air, and soil?

Returning to the ‘debate’, a July 11, 2014 article by Sarah Shemkus for a sponsored section in the UK’s Guardian newspaper highlights an initiative taken by an environmental organization, As You Sow, concerning titanium dioxide in Dunkin’ Donuts’ products (Note: A link has been removed),

The activists at environmental nonprofit As You Sow want you to take another look at your breakfast doughnut. The organization recently filed a shareholder resolution asking Dunkin’ Brands, the parent company of Dunkin’ Donuts, to identify products that may contain nanomaterials and to prepare a report assessing the risks of using these substances in foods.

Their resolution received a fair amount of support: at the company’s annual general meeting in May, 18.7% of shareholders, representing $547m in investment, voted for it. Danielle Fugere, As You Sow’s president, claims that it was the first such resolution to ever receive a vote. Though it did not pass, she says that she is encouraged by the support it received.

“That’s a substantial number of votes in favor, especially for a first-time resolution,” she says.

The measure was driven by recent testing sponsored by As You Sow, which found nanoparticles of titanium dioxide in the powdered sugar that coats some of the donut chain’s products. [emphasis mine] An additive widely used to boost whiteness in products from toothpaste to plastic, microscopic titanium dioxide has not been conclusively proven unsafe for human consumption. Then again, As You Sow contends, there also isn’t proof that it is harmless.

“Until a company can demonstrate the use of nanomaterials is safe, we’re asking companies either to not use them or to provide labels,” says Fugere. “It would make more sense to understand these materials before putting them in our food.”

As You Sow is currently having 16 more foods tested. The result should be available later this summer, Fugere says.

I wonder if As You Sow will address the question of whether the nanoscale titanium dioxide they find indicates that nanoscale particles are being deliberately added or whether the particles are the inadvertent consequence of the production process. That said, I find it hard to believe no one in the food industry is using engineered nanoscale additives as they claim  (the other strategy is to offer a nonanswer) in Shemkus’ article (Note: Links have been removed).,

In a statement, Dunkin’ Donuts argues that the titanium dioxide identified by As You Sow does not qualify as a nanomaterial according to European Union rules or draft US Food and Drug Administration regulations. The company also points out that there is no agreed-upon standard method for identifying nanoparticles in food.

In 2008, As You Sow filed nanomaterial labeling resolutions with McDonald’s and Kraft Foods. In response, McDonald’s released a statement declaring that it does not support the use of nanomaterials in its food, packaging or toys. Kraft responded that it would make sure to address health and safety concerns before ever using nanomaterials in its products.

While Shemkus’ article appears in the Guardian’s Food Hub which is sponsored by the Irish Food Board, this article manages to avoid the pitfalls found in Philpott’s nonsponsored article.

Coming next: the US Food and Drug Administration Guidance issued five weeks after the FOE kicks off the ‘nano and food’ debate in May 2014 with its ‘Way too little: Our Government’s failure to regulate nanomaterials in food and agriculture‘ report.

Part one (an FOE report is published)

Part three (final guidance)

Making cardiac implants stickier

It’s not often you read about an agricultural and biosystems engineer collaborating with a cardiac and biomedical engineer but that’s exactly what happened according to this Nov. 26, 2013 news item in phys.org,

Jeong-Yeol Yoon, associate professor of agricultural and biosystems engineering, and Dr. Marvin Slepian, professor of cardiology and biomedical engineering, collaborated to test how nanotechnology-based techniques can be used to better facilitate adhesion between tissue and implanted devices.

The Nov. 25, 2013 University of Arizona news release by Eric Swedlund, which originated the news item, describes the pairing (Note Links have been removed),

The connection between Yoon, [Jeong-Yeol Yoon, associate professor of agricultural and biosystems engineering] a specialist in biosensors and nanotechnology from the College of Agriculture and Life Sciences, and Slepian [Dr. Marvin Slepian, professor of cardiology and biomedical engineering], co-founder and chief scientific officer of artificial-heart manufacturer SynCardia, came about by chance. A graduate student in Yoon’s lab met Slepian through their shared interest in bicycling.

“It’s very rare for the agriculture people to work with the cardiovascular people in the medical school,” Yoon says.

Here’s what the researchers did (from the news release),

“When we created the nanotexture surface, we thought it could be used as a sticky surface for the implants,” Yoon says.

Cell-substrate adhesion involves the interplay of mechanical properties, surface topographic features, electrostatic charge and biochemical mechanisms. By working at the nanoscale level, Yoon was able to maximize the physical properties of the underlying substrate in promoting adhesion.

[The adhesive properties derive from optimized surface texturing, electrostatic charge and cell adhesive ligands (molecular binding substances) that {sic} are uniquely assembled on the substrata surface as an ensemble of nanoparticles trapped in nanowells.]

But beyond simply creating a sticky surface, the researchers’ goal was to create a selectively sticky surface, favoring endothelial cell attachment, without favoring platelet attachment, Slepian says.

This particular approach has an important advantage (from the news release),

One particular challenge to overcome in cardiovascular implants is the potential for devices – such as stents placed inside coronary arteries – to become detached as a result of blood flow, Yoon says.

“We’re particularly focused on the cardiovascular applications because there’s a blood flow involved and our system is very good when there’s a flow situation,” Yoon says.

i have searched but am unable to find anything more recent than a July 2013 study by these researchers for Advanced Health Materials,

Biomaterials: Nanowell-Trapped Charged Ligand-Bearing Nanoparticle Surfaces: A Novel Method of Enhancing Flow-Resistant Cell Adhesion by Phat L. Tran, Jessica R. Gamboa, Katherine E. McCracken, Mark R. Riley, Marvin J. Slepian, and Jeong-Yeol Yoon.
Advanced Healthcare Materials Volume 2, Issue 7, page 1064, July, 2013 Article first published online: 10 JUL 2013 DOI: 10.1002/adhm.201370037

Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This article (assuming it’s the right one) is behind a paywall, should you wish to pursue this work further.