Tag Archives: Alphabet

Toronto, Sidewalk Labs, smart cities, and timber

The ‘smart city’ initiatives continue to fascinate. During the summer, Toronto’s efforts were described in a June 24, 2019 article by Katharine Schwab for Fast Company (Note: Links have been removed),

Today, Google sister company Sidewalk Labs released a draft of its master plan to transform 12 acres on the Toronto waterfront into a smart city. The document details the neighborhood’s buildings, street design, transportation, and digital infrastructure—as well as how the company plans to construct it.

When a leaked copy of the plan popped up online earlier this year, we learned that Sidewalk Labs plans to build the entire development, called Quayside, out of mass timber. But today’s release of the official plan reveals the key to doing so: Sidewalk proposes investing $80 million to build a timber factory and supply chain that would support its fully timber neighborhood. The company says the factory, which would be focused on manufacturing prefabricated building pieces that could then be assembled into fully modular buildings on site, could reduce building time by 35% compared to more traditional building methods.

“We would fund the creation of [a factory] somewhere in the greater Toronto area that we think could play a role in catalyzing a new industry around mass timber,” says Sidewalk Labs CEO and chairman Dan Doctoroff.

However, the funding of the factory is dependent on Sidewalk Labs being able to expand its development plan to the entire riverfront district. .. [emphasis mine].

Here’s where I think it gets very interesting,

Sidewalk proposes sourcing spruce and fir trees from the forests in Ontario, Quebec, and British Columbia. While Canada has 40% of the world’s sustainable forests, Sidewalk claims, the country has few factories that can turn these trees into the building material. That’s why the company proposes starting a factory to process two kinds of mass timber: Cross-laminated timber (CLT) and glulam beams. The latter is meant specifically to bear the weight of the 30-story buildings Sidewalk hopes to build. While Sidewalk says that 84% of the larger district would be handed over for development by local companies, the plan requires that these companies uphold the same sustainability standards when it comes to performance

Sidewalk says companies wouldn’t be required to build with CLT and glulam, but since the company’s reason for building the mass timber factory is that there aren’t many existing manufacturers to meet the needs for a full-scale development, the company’s plan might ultimately push any third-party developers toward using its [Google] factory to source materials. … [emphasis mine]

If I understand this rightly, Google wants to expand its plan to Toronto’s entire waterfront to make building a factory to produce the type of wood products Google wants to use in its Quayside development financially feasible (profitable). And somehow, local developers will not be forced to build the sames kinds of structures although Google will be managing the entire waterfront development. Hmmm.

Let’s take a look at one of Google’s other ‘city ventures’.

Louisville, Kentucky

First, Alphabet is the name of Google’s parent company and it was Alphabet that offered the city of Louisville an opportunity for cheap, abundant internet service known as Google Fiber. From a May 6, 2019 article by Alex Correa for the The Edge (Note: Links have been removed),

In 2015, Alphabet chose several cities in Kentucky to host its Google Fiber project. Google Fiber is a service providing broadband internet and IPTV directly to a number of locations, and the initiative in Kentucky … . The tech giant dug up city streets to bury fibre optic cables of their own, touting a new technique that would only require the cables to be a few inches beneath the surface. However, after two years of delays and negotiations after the announcement, Google abandoned the project in Louisville, Kentucky.

Like an unwanted pest in a garden, sign of Google’s presence can be seen and felt in the city streets. Metro Councilman Brandon Coan criticized the state of the city’s infrastructure, pointing out that strands of errant, tar-like sealant, used to cover up the cables, are “everywhere.” Speaking outside of a Louisville coffee shop that ran Google Fiber lines before the departure, he said, “I’m confident that Google and the city are going to negotiate a deal… to restore the roads to as good a condition as they were when they got here. Frankly, I think they owe us more than that.”

Google’s disappearance did more than just damage roads [emphasis mine] in Louisville. Plans for promising projects were abandoned, including transformative economic development that could have provided the population with new jobs and vastly different career opportunities than what was available. Add to that the fact that media coverage of the aborted initiative cast Louisville as the site of a failed experiment, creating an impression of the city as an embarrassment. (Google has since announced plans to reimburse the city $3.84 million over 20 months to help repair the damage to the city’s streets and infrastructure.)

A February 22, 2019 article on CBC (Canadian Broadcasting Corporation) Radio news online offers images of the damaged roadways and a particle transcript of a Day 6 radio show hosted by Brent Bambury,

Shortly after it was installed, the sealant on the trenches Google Fiber cut into Louisville roads popped out. (WDRB Louisville) Courtesy: CBC Radio Day 6

Google’s Sidewalk Labs is facing increased pushback to its proposal to build a futuristic neighbourhood in Toronto, after leaked documents revealed the company’s plans are more ambitious than the public had realized.

One particular proposal — which would see Sidewalk Labs taking a cut of property taxes in exchange for building a light rail transit line along Toronto’s waterfront — is especially controversial.

The company has developed an impressive list of promises for its proposed neighbourhood, including mobile pre-built buildings and office towers that tailor themselves to occupants’ behaviour.

But Louisville, Kentucky-based business reporter Chris Otts says that when Google companies come to town, it doesn’t always end well.

What was the promise Google Fiber made to Louisville back in 2015?

Well, it was just to be included as one of their Fiber cities, which was a pretty serious deal for Louisville at the time. A big coup for the mayor, and his administration had been working for years to get Google to consider adding Louisville to that list.

So if the city was eager, what sorts of accommodations were made for Google to entice them to come to Louisville?

Basically, the city did everything it could from a streamlining red tape perspective to get Google here … in terms of, you know, awarding them a franchise, and allowing them to be in the rights of way with this innovative technique they had for burying their cables here.
And then also, they [the city] passed a policy, which, to be sure, they say is just good policy regardless of Google’s support for it. But it had to do with how new Internet companies like Google can access utility poles to install their networks.

And Louisville ended up spending hundreds of thousands of dollars to defend that new policy in court in lawsuits by AT&T and by the traditional cable company here.

When Google Fiber starts doing business, they’re offering cheaper high speed Internet access, and they start burying these cables in the ground.

When did things start to go sideways for this project?

I don’t know if I would say ‘almost immediately,’ but certainly the problems were evident fairly quickly.

So they started their work in 2017. If you picture it, [in] the streets you can see on either side there are these seams. They look like little strings … near the end of the streets on both sides. And there are cuts in the street where they buried the cable and they topped it off with this sealant

And fairly early on — within months, I would say, of them doing that — you could see the sealant popping out. The conduit in there [was] visible or exposed. And so it was fairly evident that there were problems with it pretty quickly

Was this the first time that they had used this system and the sealant that you’re describing?

It was the first time, according to them, that they had used such shallow trenches in the streets.

So these are as shallow as two inches below the pavement surface that they’d bury these cables. It’s the ultra-shallow version of this technique.

And what explanation did Google Fiber offer for their decision to leave Louisville?

That it was basically a business decision; that they were trying this construction method to see if it was sustainable and they just had too many problems with it.

And as they said directly in their … written statement about this, they decided that instead of doing things right and starting over, which they would have to do essentially to keep providing service in Louisville, that it was the better business decision for them to just pick up and leave.

Toronto’s Sidewalk Labs isn’t Google Fiber — but they’re both owned by Google’s parent company, Alphabet.

If Louisville could give Toronto a piece of advice about welcoming a Google infrastructure project to town, what do you think that advice would be?

The biggest lesson from this is that one day they can be next to you at the press conference saying what a great city you are and how happy they are to … provide new service in your market, and then the next day, with almost no notice, they can say, “You know what? This doesn’t make sense for us anymore. And by the way, see ya. Thanks for having us. Sorry it didn’t work out.”

Google’s promises to Toronto

Getting back to Katharine Schwab’s June 24, 2019 fast Company article,

The factory is also key to another of Sidewalk’s promises: Jobs. According to Sidewalk, the factory itself would create 2,500 jobs [emphasis mine] along the entire supply chain over a 20-year period. But even if the Canadian government approves Sidewalk’s plan and commits to building out the entire waterfront district to take advantage of the mass timber factory’s economies of scale, there are other regulatory hurdles to overcome. Right now, the building code in Toronto doesn’t allow for timber buildings over six stories tall. All of Sidewalk’s proposed buildings are over six stories, and many of them go up to 30 stories. Doctoroff said he was optimistic that the company will be able to get regulations changed if the city decides to adopt the plan. There are several examples of timber buildings that are already under construction, with a planned skyscraper in Japan that will be 70 stories.

Sidewalk’s proposal is the result of 18 months of planning, which involved getting feedback from community members and prototyping elements like a building raincoat that the company hopes to include in the final development. It has come under fire from privacy advocates in particular, and the Canadian government is currently facing a lawsuit from a civil liberties group over its decision to allow a corporation to propose public privacy governance standards.

Now that the company has released the plan, it will be up to the Canadian government to decide whether to move forward. And the mass timber factory, in particular, will be dependent on the government adopting Sidewalk’s plan wholesale, far beyond the Quayside development—a reminder that Sidewalk is a corporation that’s here to make money, dangling investment dollars in front of the government to incentivize it to embrace Sidewalk as the developer for the entire area.

A few thoughts

Those folks in Louisville made a lot of accommodations for Google only to have the company abandon them. They will get some money in compensation, finally, but it doesn’t make up for the lost jobs and the national, if not international, loss of face.

I would think that should things go wrong, Google would do exactly the same thing to Toronto. As for the $80M promise, here’s exactly how it’s phrased in the June 24, 2019 Sidewalk Labs news release,

… Together with local partners, Sidewalk proposes to invest up to $80 million in a mass timber factory in Ontario to jumpstart this emerging industry.

So, Alphabet/Google/Sidewalk has proposed up to an $80M investment—with local partners. I wonder how much this factory is supposed to cost and what kinds of accommodations Alphabet/Google/Sidewalk will demand. Possibilities include policy changes, changes in municipal bylaws, and government money. In other words, Canadian taxpayers could end up footing part of the bill and/or local developers could be required to cover and outsize percentage of the costs for the factory as they jockey for the opportunity to develop part of Toronto’s waterfront.

Other than Louisville, what’s the company’s track record with regard to its partnerships with cities and municipalities? I Haven’t found any success stories in my admittedly brief search. Unusually, the company doesn’t seem to be promoting any of its successful city partnerships.

Smart city

While my focus has been on the company’s failure with Louisville and the possible dangers inherent to Toronto in a partnership with this company, it shouldn’t be forgotten that all of this development is in the name of a ‘smart’ city and that means data-driven. My March 28, 2018 posting features some of the issues with the technology, 5G, that will be needed to make cities ‘smart’. There’s also my March 20, 2018 posting (scroll down about 30% of the way) which looks at ‘smart’ cities in Canada with a special emphasis on Vancouver.

You may want to check out David Skok’s February 15, 2019 Maclean’s article (Cracks in the Sidewalk) for a Torontonian’s perspective.

Should you wish to do some delving yourself, there’s Sidewalk Labs website here and a June 24, 2019 article by Matt McFarland for CNN detailing some of the latest news about the backlash in Toronto concerning Sidewalk Labs.

A September 2019 update

Waterfront Toronto’s Digital Strategy Advisory Panel (DSAP) submitted a report to Google in August 2019 which was subsequently published as of September 10, 2019. To sum it up, the panel was not impressed with Google’s June 2019 draft master plan. From a September 11, 2019 news item on the Guardian (Note: Links have been removed),

A controversial smart city development in Canada has hit another roadblock after an oversight panel called key aspects of the proposal “irrelevant”, “unnecessary” and “frustratingly abstract” in a new report.

The project on Toronto’s waterfront, dubbed Quayside, is a partnership between the city and Google’s sister company Sidewalk Labs. It promises “raincoats” for buildings, autonomous vehicles and cutting-edge wood-frame towers, but has faced numerous criticisms in recent months.

A September 11, 2019 article by Ian Bick of Canadian Press published on the CBC (Canadian Broadcasting Corporation) website offers more detail,

Preliminary commentary from Waterfront Toronto’s digital strategy advisory panel (DSAP) released Tuesday said the plan from Google’s sister company Sidewalk is “frustratingly abstract” and that some of the innovations proposed were “irrelevant or unnecessary.”

“The document is somewhat unwieldy and repetitive, spreads discussions of topics across multiple volumes, and is overly focused on the ‘what’ rather than the ‘how,’ ” said the report on the panel’s comments.

Some on the 15-member panel, an arm’s-length body that gives expert advice to Waterfront Toronto, have also found the scope of the proposal to be unclear or “concerning.”

The report says that some members also felt the official Sidewalk plan did not appear to put the citizen at the centre of the design process for digital innovations, and raised issues with the way Sidewalk has proposed to manage data that is generated from the neighbourhood.

The panel’s early report is not official commentary from Waterfront Toronto, the multi-government body that is overseeing the Quayside development, but is meant to indicate areas that needs improvement.

The panel, chaired by University of Ottawa law professor Michael Geist, includes executives, professors, and other experts on technology, privacy, and innovation.

Sidewalk Labs spokeswoman Keerthana Rang said the company appreciates the feedback and already intends to release more details in October on the digital innovations it hopes to implement at Quayside.

I haven’t been able to find the response to DSAP’s September 2019 critique but I did find this Toronto Sidewalk Labs report, Responsible Data Use Assessment Summary :Overview of Collab dated October 16, 2019. Of course, there’s still another 10 days before October 2019 is past.

Alberta adds a newish quantum nanotechnology research hub to the Canada’s quantum computing research scene

One of the winners in Canada’s 2017 federal budget announcement of the Pan-Canadian Artificial Intelligence Strategy was Edmonton, Alberta. It’s a fact which sometimes goes unnoticed while Canadians marvel at the wonderfulness found in Toronto and Montréal where it seems new initiatives and monies are being announced on a weekly basis (I exaggerate) for their AI (artificial intelligence) efforts.

Alberta’s quantum nanotechnology hub (graduate programme)

Intriguingly, it seems that Edmonton has higher aims than (an almost unnoticed) leadership in AI. Physicists at the University of Alberta have announced hopes to be just as successful as their AI brethren in a Nov. 27, 2017 article by Juris Graney for the Edmonton Journal,

Physicists at the University of Alberta [U of A] are hoping to emulate the success of their artificial intelligence studying counterparts in establishing the city and the province as the nucleus of quantum nanotechnology research in Canada and North America.

Google’s artificial intelligence research division DeepMind announced in July [2017] it had chosen Edmonton as its first international AI research lab, based on a long-running partnership with the U of A’s 10-person AI lab.

Retaining the brightest minds in the AI and machine-learning fields while enticing a global tech leader to Alberta was heralded as a coup for the province and the university.

It is something U of A physics professor John Davis believes the university’s new graduate program, Quanta, can help achieve in the world of quantum nanotechnology.

The field of quantum mechanics had long been a realm of theoretical science based on the theory that atomic and subatomic material like photons or electrons behave both as particles and waves.

“When you get right down to it, everything has both behaviours (particle and wave) and we can pick and choose certain scenarios which one of those properties we want to use,” he said.

But, Davis said, physicists and scientists are “now at the point where we understand quantum physics and are developing quantum technology to take to the marketplace.”

“Quantum computing used to be realm of science fiction, but now we’ve figured it out, it’s now a matter of engineering,” he said.

Quantum computing labs are being bought by large tech companies such as Google, IBM and Microsoft because they realize they are only a few years away from having this power, he said.

Those making the groundbreaking developments may want to commercialize their finds and take the technology to market and that is where Quanta comes in.

East vs. West—Again?

Ivan Semeniuk in his article, Quantum Supremacy, ignores any quantum research effort not located in either Waterloo, Ontario or metro Vancouver, British Columbia to describe a struggle between the East and the West (a standard Canadian trope). From Semeniuk’s Oct. 17, 2017 quantum article [link follows the excerpts] for the Globe and Mail’s October 2017 issue of the Report on Business (ROB),

 Lazaridis [Mike], of course, has experienced lost advantage first-hand. As co-founder and former co-CEO of Research in Motion (RIM, now called Blackberry), he made the smartphone an indispensable feature of the modern world, only to watch rivals such as Apple and Samsung wrest away Blackberry’s dominance. Now, at 56, he is engaged in a high-stakes race that will determine who will lead the next technology revolution. In the rolling heartland of southwestern Ontario, he is laying the foundation for what he envisions as a new Silicon Valley—a commercial hub based on the promise of quantum technology.

Semeniuk skips over the story of how Blackberry lost its advantage. I came onto that story late in the game when Blackberry was already in serious trouble due to a failure to recognize that the field they helped to create was moving in a new direction. If memory serves, they were trying to keep their technology wholly proprietary which meant that developers couldn’t easily create apps to extend the phone’s features. Blackberry also fought a legal battle in the US with a patent troll draining company resources and energy in proved to be a futile effort.

Since then Lazaridis has invested heavily in quantum research. He gave the University of Waterloo a serious chunk of money as they named their Quantum Nano Centre (QNC) after him and his wife, Ophelia (you can read all about it in my Sept. 25, 2012 posting about the then new centre). The best details for Lazaridis’ investments in Canada’s quantum technology are to be found on the Quantum Valley Investments, About QVI, History webpage,

History-bannerHistory has repeatedly demonstrated the power of research in physics to transform society.  As a student of history and a believer in the power of physics, Mike Lazaridis set out in 2000 to make real his bold vision to establish the Region of Waterloo as a world leading centre for physics research.  That is, a place where the best researchers in the world would come to do cutting-edge research and to collaborate with each other and in so doing, achieve transformative discoveries that would lead to the commercialization of breakthrough  technologies.

Establishing a World Class Centre in Quantum Research:

The first step in this regard was the establishment of the Perimeter Institute for Theoretical Physics.  Perimeter was established in 2000 as an independent theoretical physics research institute.  Mike started Perimeter with an initial pledge of $100 million (which at the time was approximately one third of his net worth).  Since that time, Mike and his family have donated a total of more than $170 million to the Perimeter Institute.  In addition to this unprecedented monetary support, Mike also devotes his time and influence to help lead and support the organization in everything from the raising of funds with government and private donors to helping to attract the top researchers from around the globe to it.  Mike’s efforts helped Perimeter achieve and grow its position as one of a handful of leading centres globally for theoretical research in fundamental physics.

Stephen HawkingPerimeter is located in a Governor-General award winning designed building in Waterloo.  Success in recruiting and resulting space requirements led to an expansion of the Perimeter facility.  A uniquely designed addition, which has been described as space-ship-like, was opened in 2011 as the Stephen Hawking Centre in recognition of one of the most famous physicists alive today who holds the position of Distinguished Visiting Research Chair at Perimeter and is a strong friend and supporter of the organization.

Recognizing the need for collaboration between theorists and experimentalists, in 2002, Mike applied his passion and his financial resources toward the establishment of The Institute for Quantum Computing at the University of Waterloo.  IQC was established as an experimental research institute focusing on quantum information.  Mike established IQC with an initial donation of $33.3 million.  Since that time, Mike and his family have donated a total of more than $120 million to the University of Waterloo for IQC and other related science initiatives.  As in the case of the Perimeter Institute, Mike devotes considerable time and influence to help lead and support IQC in fundraising and recruiting efforts.  Mike’s efforts have helped IQC become one of the top experimental physics research institutes in the world.

Quantum ComputingMike and Doug Fregin have been close friends since grade 5.  They are also co-founders of BlackBerry (formerly Research In Motion Limited).  Doug shares Mike’s passion for physics and supported Mike’s efforts at the Perimeter Institute with an initial gift of $10 million.  Since that time Doug has donated a total of $30 million to Perimeter Institute.  Separately, Doug helped establish the Waterloo Institute for Nanotechnology at the University of Waterloo with total gifts for $29 million.  As suggested by its name, WIN is devoted to research in the area of nanotechnology.  It has established as an area of primary focus the intersection of nanotechnology and quantum physics.

With a donation of $50 million from Mike which was matched by both the Government of Canada and the province of Ontario as well as a donation of $10 million from Doug, the University of Waterloo built the Mike & Ophelia Lazaridis Quantum-Nano Centre, a state of the art laboratory located on the main campus of the University of Waterloo that rivals the best facilities in the world.  QNC was opened in September 2012 and houses researchers from both IQC and WIN.

Leading the Establishment of Commercialization Culture for Quantum Technologies in Canada:

In the Research LabFor many years, theorists have been able to demonstrate the transformative powers of quantum mechanics on paper.  That said, converting these theories to experimentally demonstrable discoveries has, putting it mildly, been a challenge.  Many naysayers have suggested that achieving these discoveries was not possible and even the believers suggested that it could likely take decades to achieve these discoveries.  Recently, a buzz has been developing globally as experimentalists have been able to achieve demonstrable success with respect to Quantum Information based discoveries.  Local experimentalists are very much playing a leading role in this regard.  It is believed by many that breakthrough discoveries that will lead to commercialization opportunities may be achieved in the next few years and certainly within the next decade.

Recognizing the unique challenges for the commercialization of quantum technologies (including risk associated with uncertainty of success, complexity of the underlying science and high capital / equipment costs) Mike and Doug have chosen to once again lead by example.  The Quantum Valley Investment Fund will provide commercialization funding, expertise and support for researchers that develop breakthroughs in Quantum Information Science that can reasonably lead to new commercializable technologies and applications.  Their goal in establishing this Fund is to lead in the development of a commercialization infrastructure and culture for Quantum discoveries in Canada and thereby enable such discoveries to remain here.

Semeniuk goes on to set the stage for Waterloo/Lazaridis vs. Vancouver (from Semeniuk’s 2017 ROB article),

… as happened with Blackberry, the world is once again catching up. While Canada’s funding of quantum technology ranks among the top five in the world, the European Union, China, and the US are all accelerating their investments in the field. Tech giants such as Google [also known as Alphabet], Microsoft and IBM are ramping up programs to develop companies and other technologies based on quantum principles. Meanwhile, even as Lazaridis works to establish Waterloo as the country’s quantum hub, a Vancouver-area company has emerged to challenge that claim. The two camps—one methodically focused on the long game, the other keen to stake an early commercial lead—have sparked an East-West rivalry that many observers of the Canadian quantum scene are at a loss to explain.

Is it possible that some of the rivalry might be due to an influential individual who has invested heavily in a ‘quantum valley’ and has a history of trying to ‘own’ a technology?

Getting back to D-Wave Systems, the Vancouver company, I have written about them a number of times (particularly in 2015; for the full list: input D-Wave into the blog search engine). This June 26, 2015 posting includes a reference to an article in The Economist magazine about D-Wave’s commercial opportunities while the bulk of the posting is focused on a technical breakthrough.

Semeniuk offers an overview of the D-Wave Systems story,

D-Wave was born in 1999, the same year Lazaridis began to fund quantum science in Waterloo. From the start, D-Wave had a more immediate goal: to develop a new computer technology to bring to market. “We didn’t have money or facilities,” says Geordie Rose, a physics PhD who co0founded the company and served in various executive roles. …

The group soon concluded that the kind of machine most scientists were pursing based on so-called gate-model architecture was decades away from being realized—if ever. …

Instead, D-Wave pursued another idea, based on a principle dubbed “quantum annealing.” This approach seemed more likely to produce a working system, even if the application that would run on it were more limited. “The only thing we cared about was building the machine,” says Rose. “Nobody else was trying to solve the same problem.”

D-Wave debuted its first prototype at an event in California in February 2007 running it through a few basic problems such as solving a Sudoku puzzle and finding the optimal seating plan for a wedding reception. … “They just assumed we were hucksters,” says Hilton [Jeremy Hilton, D.Wave senior vice-president of systems]. Federico Spedalieri, a computer scientist at the University of Southern California’s [USC} Information Sciences Institute who has worked with D-Wave’s system, says the limited information the company provided about the machine’s operation provoked outright hostility. “I think that played against them a lot in the following years,” he says.

It seems Lazaridis is not the only one who likes to hold company information tightly.

Back to Semeniuk and D-Wave,

Today [October 2017], the Los Alamos National Laboratory owns a D-Wave machine, which costs about $15million. Others pay to access D-Wave systems remotely. This year , for example, Volkswagen fed data from thousands of Beijing taxis into a machine located in Burnaby [one of the municipalities that make up metro Vancouver] to study ways to optimize traffic flow.

But the application for which D-Wave has the hights hope is artificial intelligence. Any AI program hings on the on the “training” through which a computer acquires automated competence, and the 2000Q [a D-Wave computer] appears well suited to this task. …

Yet, for all the buzz D-Wave has generated, with several research teams outside Canada investigating its quantum annealing approach, the company has elicited little interest from the Waterloo hub. As a result, what might seem like a natural development—the Institute for Quantum Computing acquiring access to a D-Wave machine to explore and potentially improve its value—has not occurred. …

I am particularly interested in this comment as it concerns public funding (from Semeniuk’s article),

Vern Brownell, a former Goldman Sachs executive who became CEO of D-Wave in 2009, calls the lack of collaboration with Waterloo’s research community “ridiculous,” adding that his company’s efforts to establish closer ties have proven futile, “I’ll be blunt: I don’t think our relationship is good enough,” he says. Brownell also point out that, while  hundreds of millions in public funds have flowed into Waterloo’s ecosystem, little funding is available for  Canadian scientists wishing to make the most of D-Wave’s hardware—despite the fact that it remains unclear which core quantum technology will prove the most profitable.

There’s a lot more to Semeniuk’s article but this is the last excerpt,

The world isn’t waiting for Canada’s quantum rivals to forge a united front. Google, Microsoft, IBM, and Intel are racing to develop a gate-model quantum computer—the sector’s ultimate goal. (Google’s researchers have said they will unveil a significant development early next year.) With the U.K., Australia and Japan pouring money into quantum, Canada, an early leader, is under pressure to keep up. The federal government is currently developing  a strategy for supporting the country’s evolving quantum sector and, ultimately, getting a return on its approximately $1-billion investment over the past decade [emphasis mine].

I wonder where the “approximately $1-billion … ” figure came from. I ask because some years ago MP Peter Julian asked the government for information about how much Canadian federal money had been invested in nanotechnology. The government replied with sheets of paper (a pile approximately 2 inches high) that had funding disbursements from various ministries. Each ministry had its own method with different categories for listing disbursements and the titles for the research projects were not necessarily informative for anyone outside a narrow specialty. (Peter Julian’s assistant had kindly sent me a copy of the response they had received.) The bottom line is that it would have been close to impossible to determine the amount of federal funding devoted to nanotechnology using that data. So, where did the $1-billion figure come from?

In any event, it will be interesting to see how the Council of Canadian Academies assesses the ‘quantum’ situation in its more academically inclined, “The State of Science and Technology and Industrial Research and Development in Canada,” when it’s released later this year (2018).

Finally, you can find Semeniuk’s October 2017 article here but be aware it’s behind a paywall.

Whither we goest?

Despite any doubts one might have about Lazaridis’ approach to research and technology, his tremendous investment and support cannot be denied. Without him, Canada’s quantum research efforts would be substantially less significant. As for the ‘cowboys’ in Vancouver, it takes a certain temperament to found a start-up company and it seems the D-Wave folks have more in common with Lazaridis than they might like to admit. As for the Quanta graduate  programme, it’s early days yet and no one should ever count out Alberta.

Meanwhile, one can continue to hope that a more thoughtful approach to regional collaboration will be adopted so Canada can continue to blaze trails in the field of quantum research.

Using melanin in bioelectronic devices

Brazilian researchers are working with melanin to make biosensors and other bioelectronic devices according to a Dec. 20, 2016 news item on phys.org,

Bioelectronics, sometimes called the next medical frontier, is a research field that combines electronics and biology to develop miniaturized implantable devices capable of altering and controlling electrical signals in the human body. Large corporations are increasingly interested: a joint venture in the field has recently been announced by Alphabet, Google’s parent company, and pharmaceutical giant GlaxoSmithKline (GSK).

One of the challenges that scientists face in developing bioelectronic devices is identifying and finding ways to use materials that conduct not only electrons but also ions, as most communication and other processes in the human organism use ionic biosignals (e.g., neurotransmitters). In addition, the materials must be biocompatible.

Resolving this challenge is one of the motivations for researchers at São Paulo State University’s School of Sciences (FC-UNESP) at Bauru in Brazil. They have succeeded in developing a novel route to more rapidly synthesize and to enable the use of melanin, a polymeric compound that pigments the skin, eyes and hair of mammals and is considered one of the most promising materials for use in miniaturized implantable devices such as biosensors.

A Dec. 14, 2016 FAPESP (São Paulo Research Foundation) press release, which originated the news item, further describes both the research and a recent meeting where the research was shared (Note: A link has been removed),

Some of the group’s research findings were presented at FAPESP Week Montevideo during a round-table session on materials science and engineering.

The symposium was organized by the Montevideo Group Association of Universities (AUGM), Uruguay’s University of the Republic (UdelaR) and FAPESP and took place on November 17-18 at UdelaR’s campus in Montevideo. Its purpose was to strengthen existing collaborations and establish new partnerships among South American scientists in a range of knowledge areas. Researchers and leaders of institutions in Uruguay, Brazil, Argentina, Chile and Paraguay attended the meeting.

“All the materials that have been tested to date for applications in bioelectronics are entirely synthetic,” said Carlos Frederico de Oliveira Graeff, a professor at UNESP Bauru and principal investigator for the project, in an interview given to Agência FAPESP.

“One of the great advantages of melanin is that it’s a totally natural compound and biocompatible with the human body: hence its potential use in electronic devices that interface with brain neurons, for example.”

Application challenges

According to Graeff, the challenges of using melanin as a material for the development of bioelectronic devices include the fact that like other carbon-based materials, such as graphene, melanin is not easily dispersible in an aqueous medium, a characteristic that hinders its application in thin-film production.

Furthermore, the conventional process for synthesizing melanin is complex: several steps are hard to control, it can last up to 56 days, and it can result in disorderly structures.

In a series of studies performed in recent years at the Center for Research and Development of Functional Materials (CDFM), where Graeff is a leading researcher and which is one of the Research, Innovation and Dissemination Centers (RIDCs) funded by FAPESP, he and his collaborators managed to obtain biosynthetic melanin with good dispersion in water and a strong resemblance to natural melanin using a novel synthesis route.

The process developed by the group at CDMF takes only a few hours and is based on changes in parameters such as temperature and the application of oxygen pressure to promote oxidation of the material.

By applying oxygen pressure, the researchers were able to increase the density of carboxyl groups, which are organic functional groups consisting of a carbon atom double bonded to an oxygen atom and single bonded to a hydroxyl group (oxygen + hydrogen). This enhances solubility and facilitates the suspension of biosynthetic melanin in water.

“The production of thin films of melanin with high homogeneity and quality is made far easier by these characteristics,” Graeff said.

By increasing the density of carboxyl groups, the researchers were also able to make biosynthetic melanin more similar to the biological compound.

In living organisms, an enzyme that participates in the synthesis of melanin facilitates the production of carboxylic acids. The new melanin synthesis route enabled the researchers to mimic the role of this enzyme chemically while increasing carboxyl group density.

“We’ve succeeded in obtaining a material that’s very close to biological melanin by chemical synthesis and in producing high-quality film for use in bioelectronic devices,” Graeff said.

Through collaboration with colleagues at research institutions in Canada [emphasis mine], the Brazilian researchers have begun using the material in a series of applications, including electrical contacts, pH sensors and photovoltaic cells.

More recently, they have embarked on an attempt to develop a transistor, a semiconductor device used to amplify or switch electronic signals and electrical power.

“Above all, we aim to produce transistors precisely in order to enhance this coupling of electronics with biological systems,” Graeff said.

I’m glad to have gotten some information about the work in South America. It’s one of FrogHeart’s shortcomings that I have so little about the research in that area of the world. I believe this is largely due to my lack of Spanish language skills. Perhaps one day there’ll be a universal translator that works well. In the meantime, it was a surprise to see Canada mentioned in this piece. I wonder which Canadian research institutions are involved with this research in South America.