Tag Archives: Volkswagen

D-Wave’s new Advantage quantum computer

Thanks to Bob Yirka’s September 30, 2020 article for phys.org there’s an announcement about D-Wave Systems’ latest quantum computer and an explanation of how D-Wave’s quantum computer differs from other quantum computers. Here’s the explanation (Note: Links have been removed),

Over the past several years, several companies have dedicated resources to the development of a true quantum computer that can tackle problems conventional computers cannot handle. Progress on developing such computers has been slow, however, especially when compared with the early development of the conventional computer. As part of the research effort, companies have taken different approaches. Google and IBM, for example, are working on gate-model quantum computer technology, in which qubits are modified as an algorithm is executed. D-Wave, in sharp contrast, has been focused on developing so-called annealer technology, in which qubits are cooled during execution of an algorithm, which allows for passively changing their value.

Comparing the two is next to impossible because of their functional differences. Thus, using 5,000 qubits in the Advantage system does not necessarily mean that it is any more useful than the 100-qubit systems currently being tested by IBM or Google. Still, the announcement suggests that businesses are ready to start taking advantage of the increased capabilities of quantum systems. D-Wave notes that several customers are already using their system for a wide range of applications. Menten AI, for example, has used the system to design new proteins; grocery chain Save-On-Foods has been using it to optimize business operations; Accenture has been using it to develop business applications; Volkswagen has used the system to develop a more efficient car painting system.

Here’s the company’s Sept. 29, 2020 video announcement,

For those who might like some text, there’s a Sept. 29, 2020 D-Wave Systems press release (Note: Links have been removed; this is long),

D-Wave Systems Inc., the leader in quantum computing systems, software, and services, today [Sept. 29, 2020] announced the general availability of its next-generation quantum computing platform, incorporating new hardware, software, and tools to enable and accelerate the delivery of in-production quantum computing applications. Available today in the Leap™ quantum cloud service, the platform includes the Advantage™ quantum system, with more than 5000 qubits and 15-way qubit connectivity, in addition to an expanded hybrid solver service that can run problems with up to one million variables. The combination of the computing power of Advantage and the scale to address real-world problems with the hybrid solver service in Leap enables businesses to run performant, real-time, hybrid quantum applications for the first time.

As part of its commitment to enabling businesses to build in-production quantum applications, the company announced D-Wave Launch™, a jump-start program for businesses who want to get started building hybrid quantum applications today but may need additional support. Bringing together a team of applications experts and a robust partner community, the D-Wave Launch program provides support to help identify the best applications and to translate businesses’ problems into hybrid quantum applications. The extra support helps customers accelerate designing, building, and running their most important and complex applications, while delivering quantum acceleration and performance.

The company also announced a new hybrid solver. The discrete quadratic model (DQM) solver gives developers and businesses the ability to apply the benefits of hybrid quantum computing to new problem classes. Instead of accepting problems with only binary variables (0 or 1), the DQM solver uses other variable sets (e.g. integers from 1 to 500, or red, yellow, and blue), expanding the types of problems that can run on the quantum computer. The DQM solver will be generally available on October 8 [2020].

With support for new solvers and larger problem sizes backed by the Advantage system, customers and partners like Menten AI, Save-On-Foods, Accenture, and Volkswagen are building and running hybrid quantum applications that create solutions with business value today.

  • Protein design pioneer Menten AI has developed the first process using hybrid quantum programs to determine protein structure for de novo protein design with very encouraging results often outperforming classical solvers. Menten AI’s unique protein designs have been computationally validated, chemically synthesized, and are being advanced to live-virus testing against COVID-19.
  • Western Canadian grocery retailer Save-On-Foods is using hybrid quantum algorithms to bring grocery optimization solutions to their business, with pilot tests underway in-store. The company has been able to reduce the time an important optimization task takes from 25 hours to a mere 2 minutes of calculations each week. Even more important than the reduction in time is the ability to optimize performance across and between a significant number of business parameters in a way that is challenging using traditional methods.
  • Accenture, a leading global professional services company, is exploring quantum, quantum-inspired, and hybrid solutions to develop applications across industries. Accenture recently conducted a series of business experiments with a banking client to pilot quantum applications for currency arbitrage, credit scoring, and trading optimization, successfully mapping computationally challenging business problems to quantum formulations, enabling quantum readiness.
  • Volkswagen, an early adopter of D-Wave’s annealing quantum computer, has expanded its quantum use cases with the hybrid solver service to build a paint shop scheduling application. The algorithm is designed to optimize the order in which cars are being painted. By using the hybrid solver service, the number of color switches will be reduced significantly, leading to performance improvements.

The Advantage quantum computer and the Leap quantum cloud service include:

  • New Topology: The topology in Advantage makes it the most connected of any commercial quantum system in the world. In the D-Wave 2000Q™ system, qubits may connect to 6 other qubits. In the new Advantage system, each qubit may connect to 15 other qubits. With two-and-a-half times more connectivity, Advantage enables the embedding of larger problems with fewer physical qubits compared to using the D-Wave 2000Q system. The D-Wave Ocean™ software development kit (SDK) includes tools for using the new topology. Information on the topology in Advantage can be found in this white paper, and a getting started video on how to use the new topology can be found here.
  • Increased Qubit Count: With more than 5000 qubits, Advantage more than doubles the qubit count of the D-Wave 2000Q system. More qubits and richer connectivity provide quantum programmers access to a larger, denser, and more powerful graph for building commercial quantum applications.
  • Greater Performance & Problem Size: With up to one million variables, the hybrid solver service in Leap allows businesses to run large-scale, business-critical problems. This, coupled with the new topology and more than 5000 qubits in the Advantage system, expands the complexity and more than doubles the size of problems that can run directly on the quantum processing unit (QPU). In fact, the hybrid solver outperformed or matched the best of 27 classical optimization solvers on 87% of 45 application-relevant inputs tested in MQLib. Additionally, greater connectivity of the QPU allows for more compact embeddings of complex problems. Advantage can find optimal solutions 10 to 30 times faster in some cases, and can find better quality solutions up to 64% percent of the time, when compared to the D-Wave 2000Q LN QPU.
  • Expansion of Hybrid Software & Tools in Leap: Further investments in the hybrid solver service, new solver classes, ease-of-use, automation, and new tools provide an even more powerful hybrid rapid development environment in Python for business-scale problems.
  • Flexible Access: Advantage, the expanded hybrid solver service, and the upcoming DQM solver are available in the Leap quantum cloud service. All current Leap customers get immediate access with no additional charge, and new customers will benefit from all the new and existing capabilities in Leap. This means that developers and businesses can get started today building in-production hybrid quantum applications. Flexible purchase plans allow developers and forward-thinking businesses to access the D-Wave quantum system in the way that works for them and their business. 
  • Ongoing Releases: D-Wave continues to bring innovations to market with additional hybrid solvers, QPUs, and software updates through the cloud. Interested users and customers can get started today with Advantage and the hybrid solver service, and will benefit from new components of the platform through Leap as they become available.

“Today’s general availability of Advantage delivers the first quantum system built specifically for business, and marks the expansion into production scale commercial applications and new problem types with our hybrid solver services. In combination with our new jump-start program to get customers started, this launch continues what we’ve known at D-Wave for a long time: it’s not about hype, it’s about scaling, and delivering systems that provide real business value on real business applications,” said Alan Baratz, CEO, D-Wave. “We also continue to invest in the science of building quantum systems. Advantage was completely re-engineered from the ground up. We’ll take what we’ve learned about connectivity and scale and continue to push the limits of innovation for the next generations of our quantum computers. I’m incredibly proud of the team that has brought us here and the customers and partners who have collaborated with us to build hundreds of early applications and who now are putting applications into production.”

“We are using quantum to design proteins today. Using hybrid quantum applications, we’re able to solve astronomical protein design problems that help us create new protein structures,” said Hans Melo, Co-founder and CEO, Menten AI. “We’ve seen extremely encouraging results with hybrid quantum procedures often finding better solutions than competing classical solvers for de novo protein design. This means we can create better proteins and ultimately enable new drug discoveries.”

“At Save-On-Foods, we have been committed to bringing innovation to our customers for more than 105 years. To that end, we are always looking for new and creative ways to solve problems, especially in an environment that has gotten increasingly complex,” said Andrew Donaher, Vice President, Digital & Analytics at Save-On-Foods. “We’re new to quantum computing, and in a short period of time, we have seen excellent early results. In fact, the early results we see with Advantage and the hybrid solver service from D-Wave are encouraging enough that our goal is to turn our pilot into an in-production business application. Quantum is emerging as a potential competitive edge for our business.“

“Accenture is committed to helping our clients prepare for the arrival of mainstream quantum computing by exploring relevant use cases and conducting business experiments now,” said Marc Carrel-Billiard, Senior Managing Director and Technology Innovation Lead at Accenture. “We’ve been collaborating with D-Wave for several years and with early access to the Advantage system and hybrid solver service we’ve seen performance improvements and advancements in the platform that are important steps for helping to make quantum a reality for clients across industries, creating new sources of competitive advantage.”

“Embracing quantum computing is nothing new for Volkswagen. We were the first to run a hybrid quantum application in production in Lisbon last November with our bus routing application,” said Florian Neukart, Director of Advanced Technologies at Volkswagen Group of America. “At Volkswagen, we are focusing on building up a deep understanding of meaningful applications of quantum computing in a corporate context. The D-Wave system gives us the opportunity to address optimization tasks with a large number of variables at an impressive speed. With this we are taking a step further towards quantum applications that will be suitable for everyday business use.”

I found the description of D-Wave’s customers and how they’re using quantum computing to be quite interesting. For anyone curious about D-Wave Systems, you can find out more here. BTW, the company is located in metro Vancouver (Canada).

Alberta adds a newish quantum nanotechnology research hub to the Canada’s quantum computing research scene

One of the winners in Canada’s 2017 federal budget announcement of the Pan-Canadian Artificial Intelligence Strategy was Edmonton, Alberta. It’s a fact which sometimes goes unnoticed while Canadians marvel at the wonderfulness found in Toronto and Montréal where it seems new initiatives and monies are being announced on a weekly basis (I exaggerate) for their AI (artificial intelligence) efforts.

Alberta’s quantum nanotechnology hub (graduate programme)

Intriguingly, it seems that Edmonton has higher aims than (an almost unnoticed) leadership in AI. Physicists at the University of Alberta have announced hopes to be just as successful as their AI brethren in a Nov. 27, 2017 article by Juris Graney for the Edmonton Journal,

Physicists at the University of Alberta [U of A] are hoping to emulate the success of their artificial intelligence studying counterparts in establishing the city and the province as the nucleus of quantum nanotechnology research in Canada and North America.

Google’s artificial intelligence research division DeepMind announced in July [2017] it had chosen Edmonton as its first international AI research lab, based on a long-running partnership with the U of A’s 10-person AI lab.

Retaining the brightest minds in the AI and machine-learning fields while enticing a global tech leader to Alberta was heralded as a coup for the province and the university.

It is something U of A physics professor John Davis believes the university’s new graduate program, Quanta, can help achieve in the world of quantum nanotechnology.

The field of quantum mechanics had long been a realm of theoretical science based on the theory that atomic and subatomic material like photons or electrons behave both as particles and waves.

“When you get right down to it, everything has both behaviours (particle and wave) and we can pick and choose certain scenarios which one of those properties we want to use,” he said.

But, Davis said, physicists and scientists are “now at the point where we understand quantum physics and are developing quantum technology to take to the marketplace.”

“Quantum computing used to be realm of science fiction, but now we’ve figured it out, it’s now a matter of engineering,” he said.

Quantum computing labs are being bought by large tech companies such as Google, IBM and Microsoft because they realize they are only a few years away from having this power, he said.

Those making the groundbreaking developments may want to commercialize their finds and take the technology to market and that is where Quanta comes in.

East vs. West—Again?

Ivan Semeniuk in his article, Quantum Supremacy, ignores any quantum research effort not located in either Waterloo, Ontario or metro Vancouver, British Columbia to describe a struggle between the East and the West (a standard Canadian trope). From Semeniuk’s Oct. 17, 2017 quantum article [link follows the excerpts] for the Globe and Mail’s October 2017 issue of the Report on Business (ROB),

 Lazaridis [Mike], of course, has experienced lost advantage first-hand. As co-founder and former co-CEO of Research in Motion (RIM, now called Blackberry), he made the smartphone an indispensable feature of the modern world, only to watch rivals such as Apple and Samsung wrest away Blackberry’s dominance. Now, at 56, he is engaged in a high-stakes race that will determine who will lead the next technology revolution. In the rolling heartland of southwestern Ontario, he is laying the foundation for what he envisions as a new Silicon Valley—a commercial hub based on the promise of quantum technology.

Semeniuk skips over the story of how Blackberry lost its advantage. I came onto that story late in the game when Blackberry was already in serious trouble due to a failure to recognize that the field they helped to create was moving in a new direction. If memory serves, they were trying to keep their technology wholly proprietary which meant that developers couldn’t easily create apps to extend the phone’s features. Blackberry also fought a legal battle in the US with a patent troll draining company resources and energy in proved to be a futile effort.

Since then Lazaridis has invested heavily in quantum research. He gave the University of Waterloo a serious chunk of money as they named their Quantum Nano Centre (QNC) after him and his wife, Ophelia (you can read all about it in my Sept. 25, 2012 posting about the then new centre). The best details for Lazaridis’ investments in Canada’s quantum technology are to be found on the Quantum Valley Investments, About QVI, History webpage,

History-bannerHistory has repeatedly demonstrated the power of research in physics to transform society.  As a student of history and a believer in the power of physics, Mike Lazaridis set out in 2000 to make real his bold vision to establish the Region of Waterloo as a world leading centre for physics research.  That is, a place where the best researchers in the world would come to do cutting-edge research and to collaborate with each other and in so doing, achieve transformative discoveries that would lead to the commercialization of breakthrough  technologies.

Establishing a World Class Centre in Quantum Research:

The first step in this regard was the establishment of the Perimeter Institute for Theoretical Physics.  Perimeter was established in 2000 as an independent theoretical physics research institute.  Mike started Perimeter with an initial pledge of $100 million (which at the time was approximately one third of his net worth).  Since that time, Mike and his family have donated a total of more than $170 million to the Perimeter Institute.  In addition to this unprecedented monetary support, Mike also devotes his time and influence to help lead and support the organization in everything from the raising of funds with government and private donors to helping to attract the top researchers from around the globe to it.  Mike’s efforts helped Perimeter achieve and grow its position as one of a handful of leading centres globally for theoretical research in fundamental physics.

Stephen HawkingPerimeter is located in a Governor-General award winning designed building in Waterloo.  Success in recruiting and resulting space requirements led to an expansion of the Perimeter facility.  A uniquely designed addition, which has been described as space-ship-like, was opened in 2011 as the Stephen Hawking Centre in recognition of one of the most famous physicists alive today who holds the position of Distinguished Visiting Research Chair at Perimeter and is a strong friend and supporter of the organization.

Recognizing the need for collaboration between theorists and experimentalists, in 2002, Mike applied his passion and his financial resources toward the establishment of The Institute for Quantum Computing at the University of Waterloo.  IQC was established as an experimental research institute focusing on quantum information.  Mike established IQC with an initial donation of $33.3 million.  Since that time, Mike and his family have donated a total of more than $120 million to the University of Waterloo for IQC and other related science initiatives.  As in the case of the Perimeter Institute, Mike devotes considerable time and influence to help lead and support IQC in fundraising and recruiting efforts.  Mike’s efforts have helped IQC become one of the top experimental physics research institutes in the world.

Quantum ComputingMike and Doug Fregin have been close friends since grade 5.  They are also co-founders of BlackBerry (formerly Research In Motion Limited).  Doug shares Mike’s passion for physics and supported Mike’s efforts at the Perimeter Institute with an initial gift of $10 million.  Since that time Doug has donated a total of $30 million to Perimeter Institute.  Separately, Doug helped establish the Waterloo Institute for Nanotechnology at the University of Waterloo with total gifts for $29 million.  As suggested by its name, WIN is devoted to research in the area of nanotechnology.  It has established as an area of primary focus the intersection of nanotechnology and quantum physics.

With a donation of $50 million from Mike which was matched by both the Government of Canada and the province of Ontario as well as a donation of $10 million from Doug, the University of Waterloo built the Mike & Ophelia Lazaridis Quantum-Nano Centre, a state of the art laboratory located on the main campus of the University of Waterloo that rivals the best facilities in the world.  QNC was opened in September 2012 and houses researchers from both IQC and WIN.

Leading the Establishment of Commercialization Culture for Quantum Technologies in Canada:

In the Research LabFor many years, theorists have been able to demonstrate the transformative powers of quantum mechanics on paper.  That said, converting these theories to experimentally demonstrable discoveries has, putting it mildly, been a challenge.  Many naysayers have suggested that achieving these discoveries was not possible and even the believers suggested that it could likely take decades to achieve these discoveries.  Recently, a buzz has been developing globally as experimentalists have been able to achieve demonstrable success with respect to Quantum Information based discoveries.  Local experimentalists are very much playing a leading role in this regard.  It is believed by many that breakthrough discoveries that will lead to commercialization opportunities may be achieved in the next few years and certainly within the next decade.

Recognizing the unique challenges for the commercialization of quantum technologies (including risk associated with uncertainty of success, complexity of the underlying science and high capital / equipment costs) Mike and Doug have chosen to once again lead by example.  The Quantum Valley Investment Fund will provide commercialization funding, expertise and support for researchers that develop breakthroughs in Quantum Information Science that can reasonably lead to new commercializable technologies and applications.  Their goal in establishing this Fund is to lead in the development of a commercialization infrastructure and culture for Quantum discoveries in Canada and thereby enable such discoveries to remain here.

Semeniuk goes on to set the stage for Waterloo/Lazaridis vs. Vancouver (from Semeniuk’s 2017 ROB article),

… as happened with Blackberry, the world is once again catching up. While Canada’s funding of quantum technology ranks among the top five in the world, the European Union, China, and the US are all accelerating their investments in the field. Tech giants such as Google [also known as Alphabet], Microsoft and IBM are ramping up programs to develop companies and other technologies based on quantum principles. Meanwhile, even as Lazaridis works to establish Waterloo as the country’s quantum hub, a Vancouver-area company has emerged to challenge that claim. The two camps—one methodically focused on the long game, the other keen to stake an early commercial lead—have sparked an East-West rivalry that many observers of the Canadian quantum scene are at a loss to explain.

Is it possible that some of the rivalry might be due to an influential individual who has invested heavily in a ‘quantum valley’ and has a history of trying to ‘own’ a technology?

Getting back to D-Wave Systems, the Vancouver company, I have written about them a number of times (particularly in 2015; for the full list: input D-Wave into the blog search engine). This June 26, 2015 posting includes a reference to an article in The Economist magazine about D-Wave’s commercial opportunities while the bulk of the posting is focused on a technical breakthrough.

Semeniuk offers an overview of the D-Wave Systems story,

D-Wave was born in 1999, the same year Lazaridis began to fund quantum science in Waterloo. From the start, D-Wave had a more immediate goal: to develop a new computer technology to bring to market. “We didn’t have money or facilities,” says Geordie Rose, a physics PhD who co0founded the company and served in various executive roles. …

The group soon concluded that the kind of machine most scientists were pursing based on so-called gate-model architecture was decades away from being realized—if ever. …

Instead, D-Wave pursued another idea, based on a principle dubbed “quantum annealing.” This approach seemed more likely to produce a working system, even if the application that would run on it were more limited. “The only thing we cared about was building the machine,” says Rose. “Nobody else was trying to solve the same problem.”

D-Wave debuted its first prototype at an event in California in February 2007 running it through a few basic problems such as solving a Sudoku puzzle and finding the optimal seating plan for a wedding reception. … “They just assumed we were hucksters,” says Hilton [Jeremy Hilton, D.Wave senior vice-president of systems]. Federico Spedalieri, a computer scientist at the University of Southern California’s [USC} Information Sciences Institute who has worked with D-Wave’s system, says the limited information the company provided about the machine’s operation provoked outright hostility. “I think that played against them a lot in the following years,” he says.

It seems Lazaridis is not the only one who likes to hold company information tightly.

Back to Semeniuk and D-Wave,

Today [October 2017], the Los Alamos National Laboratory owns a D-Wave machine, which costs about $15million. Others pay to access D-Wave systems remotely. This year , for example, Volkswagen fed data from thousands of Beijing taxis into a machine located in Burnaby [one of the municipalities that make up metro Vancouver] to study ways to optimize traffic flow.

But the application for which D-Wave has the hights hope is artificial intelligence. Any AI program hings on the on the “training” through which a computer acquires automated competence, and the 2000Q [a D-Wave computer] appears well suited to this task. …

Yet, for all the buzz D-Wave has generated, with several research teams outside Canada investigating its quantum annealing approach, the company has elicited little interest from the Waterloo hub. As a result, what might seem like a natural development—the Institute for Quantum Computing acquiring access to a D-Wave machine to explore and potentially improve its value—has not occurred. …

I am particularly interested in this comment as it concerns public funding (from Semeniuk’s article),

Vern Brownell, a former Goldman Sachs executive who became CEO of D-Wave in 2009, calls the lack of collaboration with Waterloo’s research community “ridiculous,” adding that his company’s efforts to establish closer ties have proven futile, “I’ll be blunt: I don’t think our relationship is good enough,” he says. Brownell also point out that, while  hundreds of millions in public funds have flowed into Waterloo’s ecosystem, little funding is available for  Canadian scientists wishing to make the most of D-Wave’s hardware—despite the fact that it remains unclear which core quantum technology will prove the most profitable.

There’s a lot more to Semeniuk’s article but this is the last excerpt,

The world isn’t waiting for Canada’s quantum rivals to forge a united front. Google, Microsoft, IBM, and Intel are racing to develop a gate-model quantum computer—the sector’s ultimate goal. (Google’s researchers have said they will unveil a significant development early next year.) With the U.K., Australia and Japan pouring money into quantum, Canada, an early leader, is under pressure to keep up. The federal government is currently developing  a strategy for supporting the country’s evolving quantum sector and, ultimately, getting a return on its approximately $1-billion investment over the past decade [emphasis mine].

I wonder where the “approximately $1-billion … ” figure came from. I ask because some years ago MP Peter Julian asked the government for information about how much Canadian federal money had been invested in nanotechnology. The government replied with sheets of paper (a pile approximately 2 inches high) that had funding disbursements from various ministries. Each ministry had its own method with different categories for listing disbursements and the titles for the research projects were not necessarily informative for anyone outside a narrow specialty. (Peter Julian’s assistant had kindly sent me a copy of the response they had received.) The bottom line is that it would have been close to impossible to determine the amount of federal funding devoted to nanotechnology using that data. So, where did the $1-billion figure come from?

In any event, it will be interesting to see how the Council of Canadian Academies assesses the ‘quantum’ situation in its more academically inclined, “The State of Science and Technology and Industrial Research and Development in Canada,” when it’s released later this year (2018).

Finally, you can find Semeniuk’s October 2017 article here but be aware it’s behind a paywall.

Whither we goest?

Despite any doubts one might have about Lazaridis’ approach to research and technology, his tremendous investment and support cannot be denied. Without him, Canada’s quantum research efforts would be substantially less significant. As for the ‘cowboys’ in Vancouver, it takes a certain temperament to found a start-up company and it seems the D-Wave folks have more in common with Lazaridis than they might like to admit. As for the Quanta graduate  programme, it’s early days yet and no one should ever count out Alberta.

Meanwhile, one can continue to hope that a more thoughtful approach to regional collaboration will be adopted so Canada can continue to blaze trails in the field of quantum research.

Nano outreach and education conferences in Mexico

(Sigh) I really wish for fluency in more languages. Today, it’s Spanish. Miguel Aznar, Director of Education at the Foresight Institute, noted in his April 6, 2012 posting on the Foresight Institute blog that he will be speaking at a symposium (NanoDYF 2012) which is part of a set of nano conferences running from June 11-15, 2012 in Puebla, Mexico (from the posting),

NanoDYF promotes nanoscience / nanotechnology outreach and education in Latin America. The NanoDYF 2012 conference in Puebla, Mexico 2012 June 11 – 13, will draw together leaders in research, education, business, and politics to share discoveries and discuss objectives for this outreach. I will present on critical thinking about nanotechnology.

Here’s a little more about the joint conference set from their homepage (thanks to translate.google.com),

Mexico has very important groups working in N[anoscience] & N[anotechnology] in its leading universities and research centers. The work is of very high quality and results of these studies are published in leading journals in the world. During this week we gather in the city of Puebla to scientists and students from the various areas of nanoscience and Nanotecnogía to have a discussion about real progress, promises and implications of nanotechnology. In this direction there will be three events that traditionally take place on different dates:

First Latin American Symposium Outreach and Education in Nanotechnology, NANODYF’2012.
Second Coordination Meeting of the Network NANODYF – CYTED.
Nanomex’2012, Fifth International Meeting and Interdisciplinary Nanoscience and Nanotechnology.
Second Meeting of the Network of Nanoscience and Nanotechnology Conacyt.

You can find out more about NanoDYF and its 2012 symposium here or you can go directly to the symposium page here.

The NanoMex 2012 conference runs from June 13-15, 2012 in Puebla, from the NanoMex 2012 homepage (thanks again to translate.google.com),

NanoMex’12 is the 5th. International Meeting and Interdisciplinary Nanoscience and Nanotechnology organized by the National Autonomous University of Mexico (UNAM). Group is an initiative of nano-UNAM, formed initially by the Center for Interdisciplinary Research in Sciences and Humanities, the Center for Nanoscience and Nanotechnology Center and Applied Science and Technological Development. Since 2009, 11 nano-structured UNAM university entities. On this occasion, is done in partnership and with support from the Institute of Physics, Autonomous University of Puebla. It is also done in conjunction with the Second Meeting of the Network of Nanoscience and Nanotechnology Conacyt.

As in previous years, seeks to promote high-quality interdisciplinary dialogue on the progress, promise and implications of nanoscience and nanotechnology in order to enrich the national decision-making concerning the distribution of profit maximization and the definition of responsibilities and minimizing unnecessary costs or unwanted.
Be held in the city of Puebla, Puebla 13 to June 15, 2012.

The main themes are:

Preparation and characterization of nanostructured systems.
Specific applications in nanomaterials.
Modeling of nanostructures and molecular systems.
Toxicity, Ecotoxicity and regulation.
International cooperation and national and industrialization.
Ethical, economic, social and legal aspects of nanotechnology.

The stream education, outreach and media in nanoscience and nanotechnology, will be treated in the First Symposium on Dissemination and Training of Nanotechnology [NanoDIY 2012], organized in collaboration with the Network “José Roberto Leite” outreach and training in nanotechnology and to be held in the city of Puebla on 11-13 June. It extends the invitation to our colleagues to discuss, analyze and propose alternatives in a broad context, open and interdisciplinary which includes a whole range of specialists from the exact sciences, natural sciences, social sciences and humanities, the business sector and the political sphere, among others.

Language:
The official languages ​​of the event are the SPANISH and ENGLISH. There will be no simultaneous translation.

For anyone who’s not familiar with Puebla, Puebla, where this set of conferences is being held (from the Wikipedia essay [links and footnotes have been removed]),

The city of Puebla(Spanish pronunciation: [ˈpweβla]) is the seat of the Municipality of Puebla, the capital of the state of Puebla, and one of the five most important Spanish colonial cities in Mexico. Being a colonial era planned city, it is located to the east of Mexico City and west of Mexico’s main Atlantic port, Veracruz, on the main route between the two in Central Mexico.

Being both the fourth largest city in Mexico and the fourth largest Metropolitan area in Mexico, the city serves as one of the main hubs for eastern Central Mexico. Many students come from all over the country. The city is also important because of its industry, with one of the world’s largest Volkswagen factories outside of Germany located in the Municipality of Cuautlancingo. As a result, a many suppliers factories have opened in the city of Puebla.