Caption: Metallic replica of a honeybee’s (Apis mellifera) head, created at room temperature and pressure, using the same principles insects use to form their exoskeleton. Credit: SUTD
Humans have long turned to nature for solutions, from deciphering the mysteries of flight to creating stronger materials. For Javier Fernandez, Associate Professor at the Singapore University of Technology and Design (SUTD), nature is a blueprint for sustainability. “Unlike our society’s energy-intensive engineering, nature operates under a paradigm of scarcity and finds solutions without access to intense energy sources or transport of materials,” he observed.
Chitin, found everywhere in nature ranging from shrimp to seashells and mushrooms, is an organic material that deserves a closer look. In addition to being the second most abundant organic material on Earth, it is strong and lightweight, making it an ideal material for many engineering applications.
“Chitin also has a strong affinity for metals,” said Assoc Prof Fernandez. “We decided to evaluate whether this affinity, combined with the processes that shape the cuticle, could be used to produce functional metallic structures in a ‘biological’ way.”
In the natural world, metals, while rarely used, can be found in some chitinous structures, such as the cuticles and exoskeletons of insects and crustaceans. By digging deeper into the affinity that chitins and their derivatives have for metals, Fernandez and his team designed a new approach to metalworking, which they published in their paper, “A biological approach to metalworking based on chitinous colloids and composites”, in the journal Advanced Functional Materials.
Through the use of design and technology inspired by these chitinous compounds, the research team demonstrated a novel way of producing functional metallic structures without the usual energy costs.
In traditional metalworking, high temperatures and pressures are essential to melt and shape metals. This stands in stark contrast to how metals are incorporated into chitinous materials in nature, which happens under ambient conditions. Take the metallic compounds found in arthropod cuticles like crab shells for example. Typically, the metals only make their way into the crab shell at the later stages of chitin development—the chitin would first stiffen into a shell through tanning and dehydration before any metal from the environment gets added to it.
This is similar to how metal compounds might also be introduced to chitosan, a derivative of chitin, as the researchers discovered in their experiments. They were able to form solid metallic composites under standard temperature and pressure just by introducing very small amounts of chitosan and water between particles of different metals. When the water evaporates, the chitosan molecules replicate the consolidation process in the cuticles, pulling the particles together with such strength that they become a continuous solid of 99.5% metal. Fernandez likens the fabrication process to concrete formation, explaining, “By pouring metal particles into dissolved chitosan and letting them ‘dry’, we can form massive metallic parts without the constraints of melting.”
While these chitometallic composites were not physically strong, the researchers found that the material acquired good electrical conductivity and could be 3D-printed. At the same time, the material continued to show compatibility with other biomaterials despite only containing a small amount of chitosan. This opens up the possibility of introducing these chitometallic properties into other biomaterials, such as wood and cellulose.
Fernandez believes this technology creates a new paradigm of metalworking. Despite the lack of mechanical strength, the fabricated biomaterial is suitable for non-load-bearing metallic components, such as electrical components or battery electrodes. Metalwork for some components can now be performed without being resource-intensive. “This technology does not replace traditional methods but enables new complementary production methods,” he emphasised.
Since then, Fernandez’s team has successfully filed a patent for the innovative fabrication method and is now looking into designing a new technology to develop biodegradable 3D electronic components, which can pave the way for more efficient and sustainable methods of production.
Matthew Davidson, a Research Associate with the University of Colorado demonstrates a 3D printed biomaterials for use inside the body including bandages that could be put on a beating human heart in Jason Burdick’s lab. (Photo by Casey A. Cass/University of Colorado)
Soft, strong, and flexible, that’s what you need if you’re going to apply a bandage to a heart and according to an August 1, 2024 news item on phys.org, researchers have developed a promising new material,
In the quest to develop life-like materials to replace and repair human body parts, scientists face a formidable challenge: Real tissues are often both strong and stretchable and vary in shape and size.
A CU [Colorado University] Boulder-led team, in collaboration with researchers at the University of Pennsylvania, has taken a critical step toward cracking that code. They’ve developed a new way to 3D print material that is at once elastic enough to withstand a heart’s persistent beating, tough enough to endure the crushing load placed on joints, and easily shapable to fit a patient’s unique defects.
Better yet, it sticks easily to wet tissue.
Their breakthrough, described in the Aug. 2 [2024] edition of the journal Science, helps pave the way toward a new generation of biomaterials, from internal bandages that deliver drugs directly to the heart to cartilage patches and needle-free sutures.
“Cardiac and cartilage tissues are similar in that they have very limited capacity to repair themselves. When they’re damaged, there is no turning back,” said senior author Jason Burdick, a professor of chemical and biological engineering at CU Boulder’s BioFrontiers Institute. “By developing new, more resilient materials to enhance that repair process, we can have a big impact on patients.”
Worm ‘blobs’ as inspiration
Historically, biomedical devices have been created via molding or casting, techniques which work well for mass production of identical implants but aren’t practical when it comes to personalizing those implants for specific patients. In recent years, 3D printing has opened a world of new possibilities for medical applications by allowing researchers to make materials in many shapes and structures.
Unlike typical printers, which simply place ink on paper, 3D printers deposit layer after layer of plastics, metals or even living cells to create multidimensional objects.
One specific material, known as a hydrogel (the stuff that contact lenses are made of), has been a favorite prospect for fabricating artificial tissues, organs and implants.
But getting these from the lab to the clinic has been tough because traditional 3D-printed hydrogels tend to either break when stretched, crack under pressure or are too stiff to mold around tissues.
“Imagine if you had a rigid plastic adhered to your heart. It wouldn’t deform as your heart beats,” said Burdick. “It would just fracture.”
To achieve both strength and elasticity within 3D printed hydrogels, Burdick and his colleagues took a cue from worms, which repeatedly tangle and untangle themselves around one another in three-dimensional “worm blobs” that have both solid and liquid-like properties. Previous research has shown that incorporating similarly intertwined chains of molecules, known as “entanglements,” can make them tougher.
Their new printing method, known as CLEAR (for Continuous-curing after Light Exposure Aided by Redox initiation), follows a series of steps to entangle long molecules inside 3D-printed materials much like those intertwined worms.
When the team stretched and weight-loaded those materials in the lab (one researcher even ran over a sample with her bike) they found them to be exponentially tougher than materials printed with a standard method of 3D printing known as Digital Light Processing (DLP). Better yet: They also conformed and stuck to animal tissues and organs.
“We can now 3D print adhesive materials that are strong enough to mechanically support tissue,” said co-first author Matt Davidson, a research associate in the Burdick Lab. “We have never been able to do that before.”
Revolutionizing care
Burdick imagines a day when such 3D-printed materials could be used to repair defects in hearts, deliver tissue-regenerating drugs directly to organs or cartilage, restrain bulging discs or even stitch people up in the operating room without inflicting tissue damage like a needle and suture can.
His lab has filed for a provisional patent and plans to launch more studies soon to better understand how tissues react to the presence of such materials.
But the team stresses that their new method could have impacts far beyond medicine—in research and manufacturing too. For instance, their method eliminates the need for additional energy to cure, or harden, parts, making the 3D printing process more environmentally friendly.
“This is a simple 3D processing method that people could ultimately use in their own academic labs as well as in industry to improve the mechanical properties of materials for a wide variety of applications,” said first author Abhishek Dhand, a researcher in the Burdick Lab and doctoral candidate in the Department of Bioengineering at the University of Pennsylvania. “It solves a big problem for 3D printing.”
Here’s a link to and a citation for the paper,
Additive manufacturing of highly entangled polymer networks by Abhishek P. Dhand, Matthew D. Davidson, Hannah M. Zlotnick, Thomas J. Kolibaba, Jason P. Killgore, and Jason A. Burdick. Science 1 Aug 2024 Vol 385, Issue 6708 pp. 566-572 DOI: 10.1126/science.adn692
A February 23, 2021 news item on ScienceDaily announces work which may lead to healing brain injuries and diseases,
Imagine if surgeons could transplant healthy neurons into patients living with neurodegenerative diseases or brain and spinal cord injuries. And imagine if they could “grow” these neurons in the laboratory from a patient’s own cells using a synthetic, highly bioactive material that is suitable for 3D printing.
By discovering a new printable biomaterial that can mimic properties of brain tissue, Northwestern University researchers are now closer to developing a platform capable of treating these conditions using regenerative medicine.
…
A February 22, 2021 Northwestern University news release (also received by email and available on EurekAlert) by Lila Reynolds, which originated the news item, delves further into self-assembling ‘walking’ molecules and the nanofibers resulting in a new material designed to promote the growth of healthy neurons,
A key ingredient to the discovery is the ability to control the self-assembly processes of molecules within the material, enabling the researchers to modify the structure and functions of the systems from the nanoscale to the scale of visible features. The laboratory of Samuel I. Stupp published a 2018 paper in the journal Science which showed that materials can be designed with highly dynamic molecules programmed to migrate over long distances and self-organize to form larger, “superstructured” bundles of nanofibers.
Now, a research group led by Stupp has demonstrated that these superstructures can enhance neuron growth, an important finding that could have implications for cell transplantation strategies for neurodegenerative diseases such as Parkinson’s and Alzheimer’s disease, as well as spinal cord injury.
“This is the first example where we’ve been able to take the phenomenon of molecular reshuffling we reported in 2018 and harness it for an application in regenerative medicine,” said Stupp, the lead author on the study and the director of Northwestern’s Simpson Querrey Institute. “We can also use constructs of the new biomaterial to help discover therapies and understand pathologies.
…
Walking molecules and 3D printing
The new material is created by mixing two liquids that quickly become rigid as a result of interactions known in chemistry as host-guest complexes that mimic key-lock interactions among proteins, and also as the result of the concentration of these interactions in micron-scale regions through a long scale migration of “walking molecules.”
The agile molecules cover a distance thousands of times larger than themselves in order to band together into large superstructures. At the microscopic scale, this migration causes a transformation in structure from what looks like an uncooked chunk of ramen noodles into ropelike bundles.
“Typical biomaterials used in medicine like polymer hydrogels don’t have the capabilities to allow molecules to self-assemble and move around within these assemblies,” said Tristan Clemons, a research associate in the Stupp lab and co-first author of the paper with Alexandra Edelbrock, a former graduate student in the group. “This phenomenon is unique to the systems we have developed here.”
Furthermore, as the dynamic molecules move to form superstructures, large pores open that allow cells to penetrate and interact with bioactive signals that can be integrated into the biomaterials.
Interestingly, the mechanical forces of 3D printing disrupt the host-guest interactions in the superstructures and cause the material to flow, but it can rapidly solidify into any macroscopic shape because the interactions are restored spontaneously by self-assembly. This also enables the 3D printing of structures with distinct layers that harbor different types of neural cells in order to study their interactions.
Signaling neuronal growth
The superstructure and bioactive properties of the material could have vast implications for tissue regeneration. Neurons are stimulated by a protein in the central nervous system known as brain-derived neurotrophic factor (BDNF), which helps neurons survive by promoting synaptic connections and allowing neurons to be more plastic. BDNF could be a valuable therapy for patients with neurodegenerative diseases and injuries in the spinal cord but these proteins degrade quickly in the body and are expensive to produce.
One of the molecules in the new material integrates a mimic of this protein that activates its receptor known as Trkb, and the team found that neurons actively penetrate the large pores and populate the new biomaterial when the mimetic signal is present. This could also create an environment in which neurons differentiated from patient-derived stem cells mature before transplantation.
Now that the team has applied a proof of concept to neurons, Stupp believes he could now break into other areas of regenerative medicine by applying different chemical sequences to the material. Simple chemical changes in the biomaterials would allow them to provide signals for a wide range of tissues.
“Cartilage and heart tissue are very difficult to regenerate after injury or heart attacks, and the platform could be used to prepare these tissues in vitro from patient-derived cells,” Stupp said. “These tissues could then be transplanted to help restore lost functions. Beyond these interventions, the materials could be used to build organoids to discover therapies or even directly implanted into tissues for regeneration since they are biodegradable.”
This is the first time I’ve seen wearable tech based on biological material, in this case, fungi. In diving further into this material (wordplay intended), I discovered some previous work on using fungi for building materials, which you’ll find later in this posting.
Fungi are among the world’s oldest and most tenacious organisms. They are now showing great promise to become one of the most useful materials for producing textiles, gadgets and other construction materials. The joint research venture undertaken by the University of the West of England, Bristol, the U.K. (UWE Bristol) and collaborators from Mogu S.r.l., Italy, Istituto Italiano di Tecnologia, Torino, Italy and the Faculty of Computer Science, Multimedia and Telecommunications of the Universitat Oberta de Catalunya (UOC) has demonstrated that fungi possess incredible properties that allow them to sense and process a range of external stimuli, such as light, stretching, temperature, the presence of chemical substances and even electrical signals. [emphasis mine]
This could help pave the way for the emergence of new fungal materials with a host of interesting traits, including sustainability, durability, repairability and adaptability. Through exploring the potential of fungi as components in wearable devices, the study has verified the possibility of using these biomaterials as efficient sensors with endless possible applications.
People are unlikely to think of fungi as a suitable material for producing gadgets, especially smart devices such as pedometers or mobile phones. Wearable devices require sophisticated circuits that connect to sensors and have at least some computing power, which is accomplished through complex procedures and special materials. This, roughly speaking, is what makes them “smart”. The collaboration of Prof. Andrew Adamatzky and Dr. Anna Nikolaidou from UWE Bristol’s Unconventional Computing Laboratory, Antoni Gandia, Chief Technology Officer at Mogu S.r.l., Prof. Alessandro Chiolerio from Istituto Italiano di Tecnologia, Torino, Italy and Dr. Mohammad Mahdi Dehshibi, researcher with the UOC’s Scene Understanding and Artificial Intelligence Lab (SUNAI) have demonstrated that fungi can be added to the list of these materials.
Indeed, the recent study, entitled “Reactive fungal wearable” and featured in Biosystems, analyses the ability of oyster fungus Pleurotus ostreatus to sense environmental stimuli that could come, for example, from the human body. In order to test the fungus’s response capabilities as a biomaterial, the study analyses and describes its role as a biosensor with the ability to discern between chemical, mechanical and electrical stimuli.
“Fungi make up the largest, most widely distributed and oldest group of living organisms on the planet,” said Dehshibi, who added, “They grow extremely fast and bind to the substrate you combine them with”. According to the UOC researcher, fungi are even able to process information in a way that resembles computers.
“We can reprogramme a geometry and graph-theoretical structure of the mycelium networks and then use the fungi’s electrical activity to realize computing circuits,” said Dehshibi, adding that, “Fungi do not only respond to stimuli and trigger signals accordingly, but also allow us to manipulate them to carry out computational tasks, in other words, to process information”. As a result, the possibility of creating real computer components with fungal material is no longer pure science fiction. In fact, these components would be capable of capturing and reacting to external signals in a way that has never been seen before.
Why use fungi?
These fungi have less to do with diseases and other issues caused by their kin when grown indoors. What’s more, according to Dehshibi, mycelium-based products are already used commercially in construction. He said: “You can mould them into different shapes like you would with cement, but to develop a geometric space you only need between five days and two weeks. They also have a small ecological footprint. In fact, given that they feed on waste to grow, they can be considered environmentally friendly”.
The world is no stranger to so-called “fungal architectures” [emphasis mine], built using biomaterials made from fungi. Existing strategies in this field involve growing the organism into the desired shape using small modules such as bricks, blocks or sheets. These are then dried to kill off the organism, leaving behind a sustainable and odourless compound.
But this can be taken one step further, said the expert, if the mycelia are kept alive and integrated into nanoparticles and polymers to develop electronic components. He said: “This computer substrate is grown in a textile mould to give it shape and provide additional structure. Over the last decade, Professor Adamatzky has produced several prototypes of sensing and computing devices using the slime mould Physarum polycephalum, including various computational geometry processors and hybrid electronic devices.”
The upcoming stretch
Although Professor Adamatzky found that this slime mould is a convenient substrate for unconventional computing, the fact that it is continuously changing prevents the manufacture of long-living devices, and slime mould computing devices are thus confined to experimental laboratory set-ups.
However, according to Dehshibi, thanks to their development and behaviour, basidiomycetes are more readily available, less susceptible to infections, larger in size and more convenient to manipulate than slime mould. In addition, Pleurotus ostreatus, as verified in their most recent paper, can be easily experimented on outdoors, thus opening up the possibility for new applications. This makes fungi an ideal target for the creation of future living computer devices.
The UOC researcher said: “In my opinion, we still have to address two major challenges. The first consists in really implementing [fungal system] computation with a purpose; in other words, computation that makes sense. The second would be to characterize the properties of the fungal substrates via Boolean mapping, in order to uncover the true computing potential of the mycelium networks.” To word it another way, although we know that there is potential for this type of application, we still have to figure out how far this potential goes and how we can tap into it for practical purposes.
We may not have to wait too long for the answers, though. The initial prototype developed by the team, which forms part of the study, will streamline the future design and construction of buildings with unique capabilities, thanks to their fungal biomaterials. The researcher said: “This innovative approach promotes the use of a living organism as a building material that is also fashioned to compute.” When the project wraps up in December 2022, the FUNGAR project will construct a large-scale fungal building in Denmark and Italy, as well as a smaller version on UWE Bristol’s Frenchay Campus.
Dehshibi said: “To date, only small modules such as bricks and sheets have been manufactured. However, NASA [US National Aeronautics Space Administration] is also interested in the idea and is looking for ways to build bases on the Moon and Mars to send inactive spores to other planets.” To conclude, he said: “Living inside a fungus may strike you as odd, but why is it so strange to think that we could live inside something living? It would mark a very interesting ecological shift that would allow us to do away with concrete, glass and wood. Just imagine schools, offices and hospitals that continuously grow, regenerate and die; it’s the pinnacle of sustainable life.”
For the Authors of the paper, the point of fungal computers is not to replace silicon chips. Fungal reactions are too slow for that. Rather, they think humans could use mycelium growing in an ecosystem as a “large-scale environmental sensor.” Fungal networks, they reason, are monitoring a large number of data streams as part of their everyday existence. If we could plug into mycelial networks and interpret the signals, they use to process information, we could learn more about what was happening in an ecosystem.
Here’s a link to and a citation for the paper,
Reactive fungal wearable by Andrew Adamatzky, Anna Nikolaidou, Antoni Gandia, Alessandro Chiolerio, Mohammad Mahdi Dehshibi. Biosystems Volume 199, January 2021, 104304 DOI: https://doi.org/10.1016/j.biosystems.2020.104304
This paper is behind a paywall.
Fungal architecture and building materials
Here’s a video, which shows the work which inspired the fungal architecture that Dr. Dehshibi mentioned in the press release about wearable tech,
The video shows a 2014 Hy-Fi installation by The Living for MoMA (Museum of Modern Art) PS1 in New York City. Here’s more about HyFi and what it inspired from a January 15, 2021 article by Caleb Davies for the EU (European Union) Research and Innovation Magazine and republished on phys.org (Note: Links have been removed),
In the summer of 2014 a strange building began to take shape just outside MoMA PS1, a contemporary art centre in New York City. It looked like someone had started building an igloo and then got carried away, so that the ice-white bricks rose into huge towers. It was a captivating sight, but the truly impressive thing about this building was not so much its looks but the fact that it had been grown.
The installation, called Hy-Fi, was designed and created by The Living, an architectural design studio in New York. Each of the 10,000 bricks had been made by packing agricultural waste and mycelium, the fungus that makes mushrooms, into a mould and letting them grow into a solid mass.
This mushroom monument gave architectural researcher Phil Ayres an idea. “It was impressive,” said Ayres, who is based at the Centre for Information Technology and Architecture in Copenhagen, Denmark. But this project and others like it were using fungus as a component in buildings such as bricks without necessarily thinking about what new types of building we could make from fungi.
That’s why he and three colleagues have begun the FUNGAR project—to explore what kinds of new buildings we might construct out of mushrooms.
For the record, this is spider mite silk (I have many posts about spider silk and its possible applications on this blog; just search ‘spider silk’)..
The international collaborative team includes a Canadian university in combination with a Spanish university and a Serbian university. The composition of the team is one I haven’t seen here before. From a December 17, 2020 news item on phys.org (Note: A link has been removed),
An international team of researchers has developed a new nanomaterial from the silk produced by the Tetranychus lintearius mite. This nanomaterial has the ability to penetrate human cells without damaging them and, therefore, has “promising biomedical properties”.
The Nature Scientific Reports journal has published an article by an international scientific team led by Miodrag Grbiç, a researcher from the universities of La Rioja (Spain), Western Ontario (Canada) and Belgrade (Serbia), in its latest issue entitled “The silk of gorse spider mite Tetranychus lintearius represents a novel natural source of nanoparticles and biomaterials.”
In it, researchers from the Murcian Institute for Agricultural and Food Research and Development (IMIDA), the Barcelona Institute of Photonic Sciences, the University of Western Ontario (Canada), the University of Belgrade (Serbia) and the University of La Rioja describe the discovery and characterisation of this mite silk. They also demonstrate its great potential as a source of nanoparticles and biomaterials for medical and technological uses.
The interest of this new material, which is more resistant than steel, ultra flexible, nano-sized, biodegradable, biocompatible and has an excellent ability to penetrate human cells without damaging them, lies in its natural character and its size (a thousand times smaller than human hair), which facilitates cell penetration.
These characteristics are ideal for use in pharmacology and biomedicine since it is biocompatible with organic tissues (stimulates cell proliferation without producing toxicity) and, in principle, biodegradable due to its protein structure (it does not produce residues).
Researcher Miodrag Grbi?, who heads the international group that has researched this mite silk, highlights “its enormous potential for biomedical applications, as thanks to its size it is able to easily penetrate both healthy and cancerous human cells”, which makes it ideal for transporting drugs in cancer therapies, as well as for the development of biosensors to detect pathogens and viruses.
THE ‘RIOJANO BUG’
Tetranychus lintearius is an endemic mite from the European Atlantic coast that feeds exclusively on gorse (Ulex europaeus). It is around 0.3 mm in size, making it smaller than the comma on a keyboard, while the strength of its silk is twice as high as standard spider silk.
It is a very rare species that has only been found so far in the municipality of Valgañón (La Rioja, Spain), in Sierra de la Demanda. It was located thanks to the collaboration of Rosario García, a botanist and former dean of the Faculty of Science and Technology at the University of La Rioja, which is why researchers call it “the Rioja bug” (“El Bicho Riojano”).
The resistance of the silk produced by Tetranychus lintearius is twice that of spider silk, a standard material used for this type of research, and stronger than steel. It also has advantages over the fibres secreted by the silkworm due to its higher Young’s modulus, its electrical charge and its smaller size. These characteristics, along with its lightness, make it a promising natural nanomaterial for technological uses.
This finding is the result of work carried out by the international group of researchers led by Miodrag Grbi?, who sequenced the genome of the red spider Tetranychus urticae in 2011, publishing the results in Nature:https://www.nature.com/articles/nature10640.
Unlike the red spider (Tetranychus urticae), the gorse mite (Tetranychus lintearius) produces a large amount of silk. It has been reared in the laboratories of the Department of Agriculture and Food of the University of La Rioja, under the care of Professor Ignacio Pérez Moreno, allowing research to continue. Red spider silk is difficult to handle and has a lower production rate.
Here’s a link to and a citation for the 2020 paper,
Northwestern Medicine scientists and engineers have invented a range of bioactive “tissue papers” made of materials derived from organs that are thin and flexible enough to even fold into an origami bird. The new biomaterials can potentially be used to support natural hormone production in young cancer patients and aid wound healing.
The tissue papers are made from structural proteins excreted by cells that give organs their form and structure. The proteins are combined with a polymer to make the material pliable.
In the study, individual types of tissue papers were made from ovarian, uterine, kidney, liver, muscle or heart proteins obtained by processing pig and cow organs. Each tissue paper had specific cellular properties of the organ from which it was made.
The article describing the tissue paper and its function will be published Aug. 7 in the journal Advanced Functional Materials.
“This new class of biomaterials has potential for tissue engineering and regenerative medicine as well as drug discovery and therapeutics,” corresponding author Ramille Shah said. “It’s versatile and surgically friendly.”
Shah is an assistant professor of surgery at the Feinberg School of Medicine and an assistant professor of materials science and engineering at McCormick School of Engineering. She also is a member of the Simpson Querrey Institute for BioNanotechnology.
For wound healing, Shah thinks the tissue paper could provide support and the cell signaling needed to help regenerate tissue to prevent scarring and accelerate healing.
The tissue papers are made from natural organs or tissues. The cells are removed, leaving the natural structural proteins – known as the extracellular matrix – that then are dried into a powder and processed into the tissue papers. Each type of paper contains residual biochemicals and protein architecture from its original organ that can stimulate cells to behave in a certain way.
In the lab of reproductive scientist Teresa Woodruff, the tissue paper made from a bovine ovary was used to grow ovarian follicles when they were cultured in vitro. The follicles (eggs and hormone-producing cells) grown on the tissue paper produced hormones necessary for proper function and maturation.
“This could provide another option to restore normal hormone function to young cancer patients who often lose their hormone function as a result of chemotherapy and radiation,” Woodruff, a study coauthor, said.
A strip of the ovarian paper with the follicles could be implanted under the arm to restore hormone production for cancer patients or even women in menopause.
Woodruff is the director of the Oncofertility Consortium and the Thomas J. Watkins Memorial Professor of Obstetrics and Gynecology at Feinberg.
In addition, the tissue paper made from various organs separately supported the growth of adult human stem cells. Scientists placed human bone marrow stem cells on the tissue paper, and all the stem cells attached and multiplied over four weeks.
“That’s a good sign that the paper supports human stem cell growth,” said first author Adam Jakus, who developed the tissue papers. “It’s an indicator that once we start using tissue paper in animal models it will be biocompatible.”
The tissue papers feel and behave much like standard office paper when they are dry, Jakus said. Jakus simply stacks them in a refrigerator or a freezer. He even playfully folded them into an origami bird.
“Even when wet, the tissue papers maintain their mechanical properties and can be rolled, folded, cut and sutured to tissue,” he said.
Jakus was a Hartwell postdoctoral fellow in Shah’s lab for the study and is now chief technology officer and cofounder of the startup company Dimension Inx, LLC, which was also cofounded by Shah. The company will develop, produce and sell 3-D printable materials primarily for medical applications. The Intellectual Property is owned by Northwestern University and will be licensed to Dimension Inx.
An Accidental Spill Sparked Invention
An accidental spill of 3-D printing ink in Shah’s lab by Jakus sparked the invention of the tissue paper. Jakus was attempting to make a 3-D printable ovary ink similar to the other 3-D printable materials he previously developed to repair and regenerate bone, muscle and nerve tissue. When he went to wipe up the spill, the ovary ink had already formed a dry sheet.
“When I tried to pick it up, it felt strong,” Jakus said. “I knew right then I could make large amounts of bioactive materials from other organs. The light bulb went on in my head. I could do this with other organs.”
“It is really amazing that meat and animal by-products like a kidney, liver, heart and uterus can be transformed into paper-like biomaterials that can potentially regenerate and restore function to tissues and organs,” Jakus said. “I’ll never look at a steak or pork tenderloin the same way again.”
For those who like their news in a video,
As someone who once made baklava, that does not look like filo pastry, where an individual sheet is quite thin and rips easily. Enough said.
Here’s a link to and a citation for the paper,
“Tissue Papers” from Organ-Specific Decellularized Extracellular Matrices by Adam E. Jakus, Monica M. Laronda, Alexandra S. Rashedi, Christina M. Robinson, Chris Lee, Sumanas W. Jordan, Kyle E. Orwig, Teresa K. Woodruff, and Ramille N. Shah. Advnaced Functional Materials DOI: 10.1002/adfm.201700992 Version of Record online: 7 AUG 2017
Virginia Commonwealth University (VCU) researchers have announced a new technique for tissue engineering that utilizes silk proteins. From a May 13, 2014 news item on Nanowerk,
When most people think of silk, the idea of a shimmering, silk scarf, or luxurious gown comes to mind.
But few realize, in its raw form, this seemingly delicate fiber is actually one of the strongest natural materials around – often compared to steel.
Silk, made up of the proteins fibroin and sericin, comes from the silkworm, and has been used in textiles and medical applications for thousands of years. The [US] Food and Drug Administration has classified silk as an approved biomaterial because it is nontoxic, biodegradable and biocompatible.
Those very properties make it an attractive candidate for use in widespread applications in tissue engineering. One day, silk could be an exciting route to create environmentally sound devices called “green devices,” instead of using plastics. However, forming complex architectures at the microscale or smaller, using silk proteins and other biomaterials has been a challenge for materials experts.
Now, a team of researchers from the Virginia Commonwealth University School of Engineering has found a way to fabricate precise, biocompatible architectures of silk proteins at the microscale.
A May 12, 2014 VCU news release by Sathya Achia Abraham, which originated the news item, describes the research underlying two recently published papers by the research team
Kurland [Nicholas Kurland, Ph.D.] and Yadavalli [Vamsi Yadavalli, Ph.D., associate professor of chemical and life science engineering] successfully combined silk proteins with the technique of photolithography in a process they term “silk protein lithography” (SPL). Photolithography, or “writing using light,” is the method used to form circuits used in computers and smartphones, Yadavalli said.
According to Yadavalli, SPL begins by extracting the two main proteins from silk cocoons. These proteins are chemically modified to render them photoactive, and coated on glass or silicon surfaces as a thin film. As ultraviolet light passes through a stencil-like patterned mask, it crosslinks light-exposed proteins, turning them from liquid to solid.
The protein in unexposed areas is washed away, leaving behind patterns controllable to 1 micrometer. In comparison, a single human hair is 80-100 micrometers in diameter.
“These protein structures are high strength and excellent at guiding cell adhesion, providing precise spatial control of cells,” Yadavalli said.
“One day, we can envision implantable bioelectronic devices or tissue scaffolds that can safely disappear once they perform their intended function,” he said.
The team’s current research focuses on combining the photoreactive material with techniques such as rapid prototyping, and developing flexible bioelectronic scaffolds.
Study collaborators included S.C. Kundu, Ph.D., professor of biotechnology at the Indian Institute of Technology Kharagpur in India, and Tuli Dey, Ph.D., postdoctoral associate, at the Indian Institute of Technology Kharagpur in India, who provided the silk cocoons used in the study and assisted with cell culture experiments. VCU has recently filed a patent on this work.
Precise Patterning of Silk Microstructures Using Photolithography by Nicholas E. Kurland, Tuli Dey, Subhas C. Kundu, and Vamsi K. Yadavalli. Advanced Materials Volume 25, Issue 43, pages 6207–6212, November 20, 2013 Article first published online: 20 AUG 2013 DOI: 10.1002/adma.201302823
I have written about silk proteins in a Nov. 28, 2012 post (Producing stronger silk musically) that briefly mentioned tissue engineering with regard to a new technique for biosynthesising materials.
Alberta’s Ingenuity Lab and its biomining efforts are being featured in a Feb. 3, 2014 Nanowerk Spotlight article which was supplied by Ingenuity Lab (Note: A link has been removed),
Scientists at Ingenuity Lab in Edmonton, Alberta are taking cues from nature, as they focus on nanotechnology gains in the area of biomining. Using microorganisms and biomolecules, the group is making significant advances in the recovery of rare earth and precious metals from industrial processes and the environment thanks to superior molecular recognition techniques.
In recent decades, the utility of protein/peptide molecules and their inorganic material recognition and binding abilities has come to light. Combinatorial biology tools have enabled researchers to select peptides for various materials such as ceramics, metal oxides, alloys and pure metals. Even though the binding mechanism of peptides hasn’t yet been fully resolved, studies are ongoing and these peptides continue to be used in many nanotechnology applications.
The Spotlight article further describes the approach being undertaken,
… researchers at Alberta’s first nanotechnology accelerator laboratory (Ingenuity Lab) are looking to take advantage of inorganic binding peptides for mining valuable and rare earth elements/metals that exist in nature or synthetic materials.
…
Rare earth elements (REE) are sought after materials that facilitate the production of electrical car batteries, high power magnets, lasers, fiber optic technology, MRI contrast agents, fluorescent lightening and much more. Despite increasing demand, mining and processing yields are not enough to satisfy the growing need. This is mainly due to the great loss during mining (25-50%) and beneficiation (10-30%).
Since REEs exist as a mixture in mineral ores, their beneficiation and separation into individual metals requires unique processes. Depending on the chemical form of the metal, different compounds are necessary during beneficiation steps to convert minerals into metal nitrates, oxides, chlorides and fluorides, which would be further extracted individually. Furthermore, this process must be followed with solvent separation to obtain individual metals. These excessive steps not only increase the production cost and energy consumption but also decrease the yield and generate environmental pollution due to the use of various chemicals and organic solvents.
…
… Ingenuity Lab is working on generating smart biomaterials composed of inorganic binding peptides coated on the core of magnetic nanoparticles. These smart materials will expose two functions; first they will recognize and bind to a specific REE through the peptide region and they will migrate to magnetic field by the help of Iron Oxide core.
You can find more detail and illustrations in the Spotlight article.
There is biomining research being performed in at least one other lab (in China) as I noted in a Nov. 1, 2013 posting about some work to remove REEs from wastewater and where I noted that China had announced a cap on its exports of REEs.
Tim Harper’s Cientifica emerging technologies and business consultancy offers a white paper (free), Simply No Substitute? [2013?], which contextualizes and provides insight into the situation with REEs and other other critical materials. From Cientifica’s Simply No Substitute? webpage,
There is increasing concern that restricted supplies of certain metals and other critical minerals could hinder the deployment of future technologies. This new white paper by Cientifica and Material Value, Simply No Substitute? takes a critical look at the current technology and policy landscape in this vital area, and in particular, the attempts to develop substitutes for critical materials.
A huge amount of research and development is currently taking place in academic and industrial research laboratories, with the aim of developing novel, innovative material substitutes or simply to ‘engineer-out’ critical materials with new designs. As an example, our analysis shows the number of patents related to substitutes for rare earth elements has doubled in the last two years. However, the necessity and effectiveness of this research activity is still unclear and requires greater insight. Certainly, as this white paper details, there is no universal agreement between Governments and other stakeholders on what materials are at risk of future supply disruptions.
In an effort to ensure the interests of end-users are represented across this increasingly complex and rapidly developing issue, the publication proposes the creation of a new industry body. This will benefit not just end-users, but also primary and secondary producers of critical materials, for who it is currently only feasible to have sporadic and inconsistent interaction with the diverse range of industries that use their materials.
Getting back to Ingenuity Lab, there is no research paper mentioned in the Spotlight article. Their website does offer this on the Mining page,
The extraction of oil and gas is key to the economic prosperity of Alberta and Canada. We have the third largest oil reserves in the world behind Saudi Arabia and Venezuela. Not only is our oil and gas sector expected to generate $2.1 trillion in economic activity across Canada over the next 25 years, Canadian employment is expected to grow from 75,000 jobs in 2010 to 905,000 in 2035. However, it’s not without its impacts to the environment. This, we know. There are great strides being made in technology and innovation in this sector, but what if we could do more?
Using a process called biomining, the research team at Ingenuity Lab is engineering new nano particles that have the capability to detect, extract or even bind to rare earth and precious metals that exist in nature or found in man-made materials.
Leveraging off of the incredible advances in targeted medical therapies, active nanoparticle and membrane technologies offer the opportunity to recover valuable resources from mining operations while leading to the remediation of environmentally contaminated soil and water.
Biomining technology offers the opportunity to maximize the utility of our natural resources, establish a new path forward to restore the pristine land and water of our forefathers and redefine Canada’s legacy of societal environmental, and economic prosperity.
Finally, there’s this page (Ingenuity Attracts Attention with Biomining Advances) which seems to have originated the Spotlight article and is the source of the images in the Spotlight article. I am curious as to whose attention they’ve attracted although I can certainly understand why various groups and individuals might be,
… Ingenuity’s system will also be able to work in a continuous flow process. There will be a constant input of metal mixture, which could be mine acid drain, tailing ponds or polluted water sources, and smart biomaterial. Biomaterial will be recovered from the end point of the chamber together with the targeted metal. Since the interaction between the peptide and the metal of interest is not covalent bonding, metal will be removed from the material without the need for harsh chemicals. This means valuable materials, currently discarded as waste, will be accessible and the reuse of the smart biomaterial will be an option, lowering the purification cost even more.
These exciting discoveries are welcome news for the mining industry and the environment, but also for communities around the world and generations to come. Thanks to ingenuity, we will soon be able to maximize the utility of our precious resources as we restore damaged lands and water.
In any event I hope to hear more about this promising work with more details (such as: At what stage is this work?, Is it scalable?) and the other research being performed at Ingenuity Lab.
Located in Mississauga, Ontario (Canada), Nanostruck’s Dec. 20, 2013 news release seems to be functioning as an announcement of its presence rather than any specific company developments,
NanoStruck has a suite of technologies that remove molecular sized particles using patented absorptive organic polymers. The company is sitting on some very incredible and environmently friendly technology.
Organic polymers are nature’s very own sponges. These versatile biomaterials are derived from crustacean shells or plant fibers, depending on requirements of their usage. Acting as molecular sponges, the nanometer-sized polymers are custom programmed toabsorb specific particles for remediation or retrieval purposes. These could be to clean out acids, hydrocarbons, pathogens, oils and toxins in water via its NanoPure solutions. Or to recover precious metal particles in mine tailings, such as gold, silver, platinum, palladium and rhodium using the Company’s NanoMet solutions.
By using patented modifications to conventional technologies and adding polymer-based nano-filtration, the Company’s offers environmentally safe NanoPure solutions for water purification. The Company uses Environmental Protection Agency (EPA) and World Health Organization (WHO) guidelines as a benchmark for water quality and safety to conform to acceptable agricultural or drinking water standards in jurisdictions where the technology is used. The worldwide shortage of cleanwater is highlighted on sites such as http://water.org/water-crisis/water-facts/water/.
The company’s NanoPure technology was first deployed to treat wastewater from a landfill site in January 2012 in Mexico. It has since been successfully treating and producing clean water there that’s certified by Conagua, the federal water commission of Mexico. The company has also created water treatment plants in Canada
Additionally, the Company’s technology can be used to recover precious and base metals from mine tailings, which are the residual material from earlier mining activities. By retrieving valuable metals from old tailing dumps, the Company’s NanoMet solutions boosts the value of existing mining assets and reduces the need for new, costly and potentially environmentally harmful exploration and mining.
There is an estimated $1 trillion worth of precious metals already extracted from the ground sitting in old mining sites that form our target market. We are in the process of deploying precious metal recovery plants in South Africa, Mexico and Canada.
The company is also developing new plant-based organic polymers to remove contaminants specific to the oil industry, such as naphthenic acids, which is a growing problem.
Company information is available at www.nanostruck.ca and some description of the companies polymers are below
General Description of Nano Filtration Materials
Chitosan is a polysaccharide-based biomaterial derived from renewable feedstock such as the shells of crustaceans. Chitosan displays limited adsorbent properties toward various types of contaminants (i.e. petrochemicals, pharmaceuticals, & agrochemicals). By comparison, synthetically engineered biomaterials that utilize chitosan building blocks display remarkable sorption properties that are tunable toward various types of water borne contaminants. Recent advances in materials science have enabled the development of Nano Filtration media with relative ease, low toxicity, and tunable molecular properties for a wide range of environmental remediation applications. …
From what I can tell, the company has technology that can be used to remediate water (NanoPure) and, in the case of remediating mine tailings (NanoMet), allows for reclamation of the metals. It’s the kind of technology that can make you feel virtuous (reclaiming water) with the potential of paying you handsomely (reclaiming gold, etc.).
As I like to do from time to time, I followed the link to the water organization listed in the news release and found this on Water.org’s About Us page,
The water and sanitation problem in the developing world is far too big for charity alone. We are driving the water sector for new solutions, new financing models, greater transparency, and real partnerships to create lasting change. Our vision: Safe water and the dignity of a toilet for all, in our lifetime.
Co-founded by Matt Damon and Gary White, Water.org is a nonprofit organization that has transformed hundreds of communities in Africa, South Asia, and Central America by providing access to safe water and sanitation.
Water.org traces its roots back to the founding of WaterPartners International in 1990. In July 2009, WaterPartners merged with H2O Africa, resulting in the launch of Water.org. Water.org works with local partners to deliver innovative solutions for long-term success. Its microfinance-based WaterCredit Initiative is pioneering sustainable giving in the sector.
NanoStruck Technologies Inc. is a Canadian Company with a suite of technologies that remove molecular sized particles using patented absorptive organic polymers. These versatile biomaterials are derived from crustacean shells or plant fibers, depending on requirements of their usage. Acting as molecular sponges, the nanometer-sized polymers are custom programmed toabsorb specific particles for remediation or retrieval purposes. These could be to clean out acids, hydrocarbons, pathogens, oils and toxins in water via its NanoPure solutions. Or to recover precious metal particles in mine tailings, such as gold, silver, platinum, palladium and rhodium using the Company’s NanoMet solutions.
By using patented modifications to conventional technologies and adding polymer-based nano-filtration, the Company’s offers environmentally safe NanoPure solutions for water purification. The Company uses Environmental Protection Agency (EPA) and World Health Organization (WHO) guidelines as a benchmark for water quality and safety to conform to acceptable agricultural or drinking water standards in jurisdictions where the technology is used.
…
The Company’s current business model is based on either selling water remediation plants or leasing out units and charging customers on a price per liter basis with a negotiated minimum payment per annum. For processing mine tailings, the value of precious metal recovered is shared with tailing site owners on a pre-agreed basis.
I wonder if there are any research papers about the January 2012 work in Mexico. I find there is a dearth of technical information on the company’s website, which is somewhat unusual for a startup company (my experience is that they give you too much technical information in a fashion that is incomprehensible to anyone other than en expert). As well, I’m not familiar with any members of the company’s management team (Our Team webpage) but, surprisingly, there isn’t a Chief Science Officer or someone on the team from the science community. In fact, the entire team seems to have emerged from the business community. If I have time, I’ll see about getting an interview for publication here in 2014. In the meantime, it looks like a company with some interesting potential and I wish it well.
(Note: This is not endorsement or anti-endorsement of the company or its business. This is not my area of expertise.)
It’s been a while since I’ve featured any research from Iran partly due to the fact that I find the information disappointingly scant. While the Dec. 22, 2013 news item on Nanowerk doesn’t provide quite as much detail as I’d like it does shine a light on an aspect of Iranian nanotechnology research that I haven’t previously encountered, green chemistry (Note: A link has been removed),
Researchers used a simple and eco-friendly method to produce homogenous zinc oxide (ZnO) nanoparticles with various applications in medical industries due to their photocatalytic and antibacterial properties (“Sol–gel synthesis, characterization, and neurotoxicity effect of zinc oxide nanoparticles using gum tragacanth”).
Zinc oxide nanoparticles have numerous applications, among which mention can be made of photocatalytic issues, piezoelectric devices, synthesis of pigments, chemical sensors, drug carriers in targeted drug delivery, and the production of cosmetics such as sunscreen lotions.
By using natural materials found in the geography of Iran and through sol-gel technique, the researchers synthesized zinc oxide nanoparticles in various sizes. To this end, they used zinc nitrate hexahydrate and gum tragacanth obtained from the Northern parts of Khorassan Razavi Province as the zinc-providing source and the agent to control the size of particles in aqueous solution, respectively.
Among the most important characteristics of the synthesis method, mention can be made of its simplicity, the use of cost-effective materials, conservation of green chemistry principals to prevent the use of hazardous materials to human safety and environment, production of nanoparticles in homogeneous size and with high efficiency, and most important of all, the use of native materials that are only found in Iran and its introduction to the world.
There’s a bit more technical information in the paper’s abstract,
The use of plant extract in the synthesis of nanomaterials can be a cost effective and eco-friendly approach. In this work we report the “green” and biosynthesis of zinc oxide nanoparticles (ZnO-NPs) using gum tragacanth. Spherical ZnO-NPs were synthesized at different calcination temperatures. Transmission electron microscopy (TEM) imaging showed the formation most of nanoparticles in the size range of below 50 nm. The powder X-ray diffraction (PXRD) analysis revealed wurtzite hexagonal ZnO with preferential orientation in (101) reflection plane. In vitro cytotoxicity studies on neuro2A cells showed a dose dependent toxicity with non-toxic effect of concentration below 2 µg/mL. The synthesized ZnO-NPs using gum tragacanth were found to be comparable to those obtained from conventional reduction methods using hazardous polymers or surfactants and this method can be an excellent alternative for the synthesis of ZnO-NPs using biomaterials.
I was not able to find the DOI (digital object identifier) and this paper is behind a paywall.
Elsevier and access
On a final note, Elsevier, the company that publishes Ceramics International and many other journals, is arousing some ire with what appears to be its latest policies concerning access according to a Dec. 20, 2013 posting by Mike Masnick for Techdirt Note: Links have been removed),
We just recently wrote about the terrible anti-science/anti-knowledge/anti-learning decision by publishing giant Elsevier to demand that Academia.edu take down copies of journal articles that were submitted directly by the authors, as Elsevier wished to lock all that knowledge (much of it taxpayer funded) in its ridiculously expensive journals. Mike Taylor now alerts us that Elsevier is actually going even further in its war on access to knowledge. Some might argue that Elsevier was okay in going after a “central repository” like Academia.edu, but at least it wasn’t going directly after academics who were posting pdfs of their own research on their own websites. While some more enlightened publishers explicitly allow this, many (including Elsevier) technically do not allow it, but have always looked the other way when authors post their own papers.
That’s now changed. As Taylor highlights, the University of Calgary sent a letter to its staff saying that a company “representing” Elsevier, was demanding that they take down all such articles on the University’s network.
While I do feature the topic of open access and other issues with intellectual property from time to time, you’ll find Masnick’s insights and those of his colleagues are those of people who are more intimately familiar (albeit firmly committed to open access) with the issues should you choose to read his Dec. 20, 2013 posting in its entirely.