Tag Archives: University of the West of England (UWE)

Using comic books to explain forensic science in court

Caption: The cover of Understanding Forensic DNA analysis booklet. Credit: Comic credit: artist Mark Brown Funding credit: Leverhulme Trust and Arts Council England Courtesy: SISSA MediaLab

A February 5, 2025 news item on phys.org describes science communication intended for the courtroom,

Imagine being summoned as a juror in a murder trial. The expert responsible for analyzing DNA traces at the crime scene has just explained that they match the defendant’s profile. “Then the culprit must be them,” you think.

At this point, however, the expert adds, “The sample, however, is partially degraded.” What does this mean? How does this information affect your judgment? The scientist further explains that there is a one-in-a-billion probability that other people could match the identified genetic profile. How significant is this new information? Is this probability high or negligible? What is your verdict now?

“The decisions being taken by members of juries are just so vitally important and often they’re shaped by their understanding of the forensic evidence that’s being presented,” explains Dr. Andy Ridgway, Senior Lecturer in Science Communication at the University of the West of England, UWE Bristol, and one of the study’s authors of a study appearing in the Journal of Science Communication (JCOM).

“They often have little to no science background and frequently lack prior knowledge of the forensic techniques they are expected to assess in making their decision.” This is a widespread issue, and scientific literature on the subject suggests that understanding of science in courtrooms is often quite limited.

A February 5, 2025 SISSA MediaLab press release on EurekAlert, which originated the news item, provides a little more information,

The Evidence Chamber, the project within which the research described in JCOM was developed, was created precisely to explore how non-experts understand scientific evidence in judicial proceedings, combining forensic science, digital technology, and public engagement. The Evidence Chamber was developed by the Leverhulme Research Centre for Forensic Science at the University of Dundee (Scotland) in collaboration with Fast Familiar, a collective of digital artists specializing in interactive experiences. A team from UWE Bristol, including Izzy Baxter, a student studying for an MSc Science Communication at the time, was involved in analyzing the data collected during the research phase aimed at testing the use of comics as a tool for communicating forensic science.

The study involved about a hundred volunteers who participated as ‘jurors’ in mock trials. The participants participated in an interactive experience that involved different types of evidence; they listened to the expert witness testimony, which focused on DNA analysis and gait analysis (the study of a suspect’s walking pattern for identification). The jury discussion took place in two phases: “First, they received the expert witness testimony. They then discussed it and indicated whether they believed the defendant was guilty or not guilty at that point. After that, they were given access to the comics,” explains Heather Doran, researcher at the Leverhulme Research Centre for Forensic Science, University of Dundee, who was involved in the study. “This allowed us to see how the comics might influence their previous discussion and whether they provided any useful additional information.”

“We conducted an analysis of the discussions among jurors, one immediately after the expert testimony in court and another after they had read the comics,” explains Ridgway. To assess whether comics provided an advantage in comprehension, during the experimental phases, one group received only the traditional expert testimony, while the other had access to both the expert’s explanation and the comics.

The analysis confirmed the effectiveness of comics: participants who read the comics discussed the evidence in greater detail, showing increased confidence in their reasoning and conclusions. In the group that read the comics, jurors made more explicit references to scientific concepts and demonstrated a better ability to connect forensic science to their final decision. In contrast, in the groups that received only the oral explanation, more misinterpretations of the evidence emerged, with misunderstandings related to the meaning of probability and margins of error, whereas the comics helped clarify these concepts. Additionally, discussions in the groups with comics were more balanced and participatory, with greater interaction among jurors.

This experience demonstrates that comics can be a valuable tool for explaining forensic science in court, supporting jurors. It is important to emphasize that this type of material must be carefully designed. The scientific comics used in The Evidence Chamber were developed by specialists at the University of Dundee. “The University of Dundee has an historical link with comics, we worked with our Professor of Comics Studies and artists to create them” explains Doran. “Dundee, the city where the centre is located, has a history in comics. It’s the home of Beano the comic and Dennis the Menace. And the University of Dundee also offers comic courses, with which we have been collaborating for a long time.”

I’m not sure how SISSA MediaLab is involved (other than having issued the press release) but I do have a little more by SISSA (International School for Advanced Studies; [Italian: Scuola Internazionale Superiore di Studi Avanzati]), which owns the MediaLab. See the International School for Advanced Studies Wikipedia entry for more about the school.

Here’s a link to and a citation for the paper mentioned in the press release,

Can science comics aid lay audiences’ comprehension of forensic science? by Isabelle Baxter, Andy Ridgway, Heather Doran, Niamh Nic Daeid, Rachel Briscoe, Joe McAlister, Daniel Barnard. JCOM: Journal of Science Communication Volume 24 Issue number 1 DOI: https://doi.org/10.22323/2.24010201 Published – 4 Feb 2025

This paper is open access and it can also be found here on the University of Dundee (Scotland) publications webpage for “Can science comics aid lay audiences’ comprehension of forensic science?

You can find the DNA forensics comic book and others on the University of Dundee Understanding Forensic Science Comics project webspace. As for the University of Dundee’s Evidence Chamber, look here.

‘SWEET’ (smart, wearable, and eco-friendly electronic textiles)

I always appreciate a good acronym and this one is pretty good. (From my perspective, a good acronym is memorable and doesn’t involve tortured terminology such as CRISPR-Cas9, which stands for clustered regularly interspaced short palindromic repeats-CRISPR-associated protein 9).

On to ‘SWEET’ and a January 2, 2025 news item on ScienceDaily announcing a new UK study on wearable e-textiles,

A research team led by the University of Southampton and UWE Bristol [University of the West of England Bristol] has shown wearable electronic textiles (e-textiles) can be both sustainable and biodegradable.

A new study, which also involved the universities of Exeter, Cambridge, Leeds and Bath, describes and tests a new sustainable approach for fully inkjet-printed, eco-friendly e-textiles named ‘Smart, Wearable, and Eco-friendly Electronic Textiles’, or ‘SWEET’.

A January 2, 2025 University of Southampton press release (also on EurekAlert), which originated the news item, describes e-textiles and how this latest work represents a step forward in making them environmentally friendly,

E-textiles are those with embedded electrical components, such as sensors, batteries or lights. They might be used in fashion, for performance sportwear, or for medical purposes as garments that monitor people’s vital signs.

Such textiles need to be durable, safe to wear and comfortable, but also, in an industry which is increasingly concerned with clothing waste, they need to be kind to the environment when no longer required.

Professor Nazmul Karim at the University of Southampton’s Winchester School of Art, who led the study, explains: “Integrating electrical components into conventional textiles complicates the recycling of the material because it often contains metals, such as silver, that don’t easily biodegrade. Our potential ecofriendly approach for selecting sustainable materials and manufacturing overcomes this, enabling the fabric to decompose when it is disposed of.”

The team’s design has three layers, a sensing layer, a layer to interface with the sensors and a base fabric. It uses a textile called Tencel for the base, which is made from renewable wood and is biodegradable. The active electronics in the design are made from graphene, along with a polymer called PEDOT: PSS. These conductive materials are precision inkjet-printed onto the fabric.

The researchers tested samples of the material for continuous monitoring of human physiology using five volunteers. Swatches of the fabric, connected to monitoring equipment, were attached to gloves worn by the participants. Results confirmed the material can effectively and reliably measure both heart rate and temperature at the industry standard level.

Dr Shaila Afroj, an Associate Professor of Sustainable Materials from the University of Exeter and a co-author of the study, highlighted the importance of this performance: “Achieving reliable, industry-standard monitoring with eco-friendly materials is a significant milestone. It demonstrates that sustainability doesn’t have to come at the cost of functionality, especially in critical applications like healthcare.”

The project team then buried the e-textiles in soil to measure its biodegradable properties. After four months, the fabric had lost 48 percent of its weight and 98 percent of its strength, suggesting relatively rapid and also effective decomposition. Furthermore, a life cycle assessment revealed the graphene-based electrodes had up to 40 times less impact on the environment than standard electrodes.

Marzia Dulal from UWE Bristol, a Commonwealth PhD Scholar and the first author of the study, highlighted the environmental impact: “Our life cycle analysis shows that graphene-based e-textiles have a fraction of the environmental footprint compared to traditional electronics. This makes them a more responsible choice for industries looking to reduce their ecological impact.”

The ink-jet printing process is also a more sustainable approach for e-textile fabrications, depositing exact numbers of functional materials on textiles as needed, with almost no material waste and less use of water and energy than conventional screen printing.

Professor Karim concludes: “ Amid rising pollution from landfill sites, our study helps to address a lack of research in the area of biodegradation of e-textiles. These materials will become increasingly more important in our lives, particularly in the area of healthcare, so it’s really important we consider how to make them more eco-friendly, both in their manufacturing and disposal.”

The researchers hope they can now move forward with designing wearable garments made from SWEET for potential use in the healthcare sector, particularly in the area of early detection and prevention of heart-related diseases that 640 million people (source: BHF [British Heart Foundation]) suffer from worldwide.

Here’s a link to and a citation for the paper,

Sustainable, Wearable, and Eco-Friendly Electronic Textiles by Marzia Dulal, Harsh Rajesh Mansukhlal Modha, Jingqi Liu, Md Rashedul Islam, Chris Carr, Tawfique Hasan, Robin Michael Statham Thorn, Shaila Afroj, Nazmul Karim. Energy & Enviornmental Materials DOI: https://doi.org/10.1002/eem2.12854 First published: 18 December 2024

This paper is open access.

Fungal wearable tech and building materials

This is the first time I’ve seen wearable tech based on biological material, in this case, fungi. In diving further into this material (wordplay intended), I discovered some previous work on using fungi for building materials, which you’ll find later in this posting.

Wearable tech and more

A January 18, 2021 news item on phys.org provides some illumination on the matter,

Fungi are among the world’s oldest and most tenacious organisms. They are now showing great promise to become one of the most useful materials for producing textiles, gadgets and other construction materials. The joint research venture undertaken by the University of the West of England, Bristol, the U.K. (UWE Bristol) and collaborators from Mogu S.r.l., Italy, Istituto Italiano di Tecnologia, Torino, Italy and the Faculty of Computer Science, Multimedia and Telecommunications of the Universitat Oberta de Catalunya (UOC) has demonstrated that fungi possess incredible properties that allow them to sense and process a range of external stimuli, such as light, stretching, temperature, the presence of chemical substances and even electrical signals. [emphasis mine]

This could help pave the way for the emergence of new fungal materials with a host of interesting traits, including sustainability, durability, repairability and adaptability. Through exploring the potential of fungi as components in wearable devices, the study has verified the possibility of using these biomaterials as efficient sensors with endless possible applications.

A January 18, 2021 Universitat Oberta de Catalunya (UOC) press release (also on EurekAlert), which originated the news item, describes this vision for future wearable tech based on fungi,

Fungi to make smart wearables even smarter

People are unlikely to think of fungi as a suitable material for producing gadgets, especially smart devices such as pedometers or mobile phones. Wearable devices require sophisticated circuits that connect to sensors and have at least some computing power, which is accomplished through complex procedures and special materials. This, roughly speaking, is what makes them “smart”. The collaboration of Prof. Andrew Adamatzky and Dr. Anna Nikolaidou from UWE Bristol’s Unconventional Computing Laboratory, Antoni Gandia, Chief Technology Officer at Mogu S.r.l., Prof. Alessandro Chiolerio from Istituto Italiano di Tecnologia, Torino, Italy and Dr. Mohammad Mahdi Dehshibi, researcher with the UOC’s Scene Understanding and Artificial Intelligence Lab (SUNAI) have demonstrated that fungi can be added to the list of these materials.

Indeed, the recent study, entitled “Reactive fungal wearable” and featured in Biosystems, analyses the ability of oyster fungus Pleurotus ostreatus to sense environmental stimuli that could come, for example, from the human body. In order to test the fungus’s response capabilities as a biomaterial, the study analyses and describes its role as a biosensor with the ability to discern between chemical, mechanical and electrical stimuli.

“Fungi make up the largest, most widely distributed and oldest group of living organisms on the planet,” said Dehshibi, who added, “They grow extremely fast and bind to the substrate you combine them with”. According to the UOC researcher, fungi are even able to process information in a way that resembles computers.

“We can reprogramme a geometry and graph-theoretical structure of the mycelium networks and then use the fungi’s electrical activity to realize computing circuits,” said Dehshibi, adding that, “Fungi do not only respond to stimuli and trigger signals accordingly, but also allow us to manipulate them to carry out computational tasks, in other words, to process information”. As a result, the possibility of creating real computer components with fungal material is no longer pure science fiction. In fact, these components would be capable of capturing and reacting to external signals in a way that has never been seen before.

Why use fungi?

These fungi have less to do with diseases and other issues caused by their kin when grown indoors. What’s more, according to Dehshibi, mycelium-based products are already used commercially in construction. He said: “You can mould them into different shapes like you would with cement, but to develop a geometric space you only need between five days and two weeks. They also have a small ecological footprint. In fact, given that they feed on waste to grow, they can be considered environmentally friendly”.

The world is no stranger to so-called “fungal architectures” [emphasis mine], built using biomaterials made from fungi. Existing strategies in this field involve growing the organism into the desired shape using small modules such as bricks, blocks or sheets. These are then dried to kill off the organism, leaving behind a sustainable and odourless compound.

But this can be taken one step further, said the expert, if the mycelia are kept alive and integrated into nanoparticles and polymers to develop electronic components. He said: “This computer substrate is grown in a textile mould to give it shape and provide additional structure. Over the last decade, Professor Adamatzky has produced several prototypes of sensing and computing devices using the slime mould Physarum polycephalum, including various computational geometry processors and hybrid electronic devices.”

The upcoming stretch

Although Professor Adamatzky found that this slime mould is a convenient substrate for unconventional computing, the fact that it is continuously changing prevents the manufacture of long-living devices, and slime mould computing devices are thus confined to experimental laboratory set-ups.

However, according to Dehshibi, thanks to their development and behaviour, basidiomycetes are more readily available, less susceptible to infections, larger in size and more convenient to manipulate than slime mould. In addition, Pleurotus ostreatus, as verified in their most recent paper, can be easily experimented on outdoors, thus opening up the possibility for new applications. This makes fungi an ideal target for the creation of future living computer devices.

The UOC researcher said: “In my opinion, we still have to address two major challenges. The first consists in really implementing [fungal system] computation with a purpose; in other words, computation that makes sense. The second would be to characterize the properties of the fungal substrates via Boolean mapping, in order to uncover the true computing potential of the mycelium networks.” To word it another way, although we know that there is potential for this type of application, we still have to figure out how far this potential goes and how we can tap into it for practical purposes.

We may not have to wait too long for the answers, though. The initial prototype developed by the team, which forms part of the study, will streamline the future design and construction of buildings with unique capabilities, thanks to their fungal biomaterials. The researcher said: “This innovative approach promotes the use of a living organism as a building material that is also fashioned to compute.” When the project wraps up in December 2022, the FUNGAR project will construct a large-scale fungal building in Denmark and Italy, as well as a smaller version on UWE Bristol’s Frenchay Campus.

Dehshibi said: “To date, only small modules such as bricks and sheets have been manufactured. However, NASA [US National Aeronautics Space Administration] is also interested in the idea and is looking for ways to build bases on the Moon and Mars to send inactive spores to other planets.” To conclude, he said: “Living inside a fungus may strike you as odd, but why is it so strange to think that we could live inside something living? It would mark a very interesting ecological shift that would allow us to do away with concrete, glass and wood. Just imagine schools, offices and hospitals that continuously grow, regenerate and die; it’s the pinnacle of sustainable life.”

For the Authors of the paper, the point of fungal computers is not to replace silicon chips. Fungal reactions are too slow for that. Rather, they think humans could use mycelium growing in an ecosystem as a “large-scale environmental sensor.” Fungal networks, they reason, are monitoring a large number of data streams as part of their everyday existence. If we could plug into mycelial networks and interpret the signals, they use to process information, we could learn more about what was happening in an ecosystem.

Here’s a link to and a citation for the paper,

Reactive fungal wearable by Andrew Adamatzky, Anna Nikolaidou, Antoni Gandia, Alessandro Chiolerio, Mohammad Mahdi Dehshibi. Biosystems Volume 199, January 2021, 104304 DOI: https://doi.org/10.1016/j.biosystems.2020.104304

This paper is behind a paywall.

Fungal architecture and building materials

Here’s a video, which shows the work which inspired the fungal architecture that Dr. Dehshibi mentioned in the press release about wearable tech,

The video shows a 2014 Hy-Fi installation by The Living for MoMA (Museum of Modern Art) PS1 in New York City. Here’s more about HyFi and what it inspired from a January 15, 2021 article by Caleb Davies for the EU (European Union) Research and Innovation Magazine and republished on phys.org (Note: Links have been removed),

In the summer of 2014 a strange building began to take shape just outside MoMA PS1, a contemporary art centre in New York City. It looked like someone had started building an igloo and then got carried away, so that the ice-white bricks rose into huge towers. It was a captivating sight, but the truly impressive thing about this building was not so much its looks but the fact that it had been grown.

The installation, called Hy-Fi, was designed and created by The Living, an architectural design studio in New York. Each of the 10,000 bricks had been made by packing agricultural waste and mycelium, the fungus that makes mushrooms, into a mould and letting them grow into a solid mass.

This mushroom monument gave architectural researcher Phil Ayres an idea. “It was impressive,” said Ayres, who is based at the Centre for Information Technology and Architecture in Copenhagen, Denmark. But this project and others like it were using fungus as a component in buildings such as bricks without necessarily thinking about what new types of building we could make from fungi.

That’s why he and three colleagues have begun the FUNGAR project—to explore what kinds of new buildings we might construct out of mushrooms.

FUNGAR (Fungal Architectures) can be found here, Mogu can be found here, and The Living can be found here.