Tag Archives: Perena Gouma

Nanotechnology in the Security Systems; NATO Science for Peace and Security workshops

An Aug. 19, 2014 news item on Nanowerk features a new publication from NATO (North Atlantic Treaty Organization) which seems to be the outcome of a 2013 workshop, Note: A link has been removed,

The topics discussed at the NATO Advanced Research Workshop “Nanotechnology in the Security Systems” included nanophysics, nanotechnology, nanomaterials, sensors, biosensors security systems, explosive detection.

A new book in the NATO Science for Peace and Security Series C: Environmental Security covers the findings from this workshop: Nanotechnology in the Security Systems.

The 2013 workshop (information about the upcoming 2014 workshop after this) took place in the Ukraine, which seems strangely ironic given the current situation where Russia has ‘intervened’ in the Crimea and where one group or another shot down an Air Malaysia flight over Ukraine airspace,

NATO ADVANCED RESEARCH WORKSHOP
29 September – 3 October 2013 ,
YALTA , UKRAINE

NANOTECHNOLOGY IN THE SECURITY SYSTEMS (NSS-2013)

(http://www.natonano.com)

CO-DIRECTORS:
Bonca Janez (J.Stefan Institute, Ljublyana, Slovenia)
Kruchinin Sergei (Bogolyubov Institute for Theoretical Physics, Ukraine)

INTERNATIONAL COMMITTEE :
Balatsky Alexandr (Los Alamos National laboratory,USA )
Logan David (Oxford University,UK)

ARW is supported by NATO.

Co-sponsor is Ministry of Ukraine for Education and Science.

The main objective of this Advanced Research Workshop is to bring together leading experts on key current topics in nanotechnology ,security systems and sensor and biosensor in order to review recent developments and to outline new directions for nanotechnology research. Topids will include physics of graphene, nanomaterials, CRBN agents.

Time and Location

The ARW will be held from 29 September – 3 October 2013 at the “Yalta” Hotel (three star) in Yalta (Crimea, Ukraine). Yalta is a world-famous health resort and the centre of a large resort area stretchening for more than 70 km along the southern coast of the Crimea. [emphasis mine]

All partipants of the ARW will be accommodated in the hotel. There is auditorium seating 100, which is fitted with modern acoustic equipment. Breakfast, lunch and dinner will be served for all participants. At the hotel there is an indoor swimming pool with heated sea water.

Participants may travel to the ARW from Kiev international airport. You can use the regular flight (Boeing) Kiev – Simferopol(Yalta) – Kiev, leaving Kiev on September 29 at 18:45 and leaving Simferopol on October 3 at 21:10. The price of tickets Kiev-Simferopol-Kiev is 160 EURO. There are direct flights from many Cities to Simferopol.

This year’s workshop will be held in Turkey, From the Worcester Polytechnic Institute (US) website’s NATO Advanced Research Workshop in Nanotechnology (2014) webpage,

NATO Advanced Research Workshop in Nanotechnology to Aid Chemical and Biological Defence

September 22-26, 2014

Rixos Downtown Hotel

Antalya, Turkey

The NATO Science for Peace and Security Program has identified Defense against CBRN Agents and Environmental Security as key priority areas.  Nanomaterials and nanotechnology can play a vital role in the detection and decontamination of chemical and biological threat agents. They also can be used in protective technologies. The ability to control matter on an atomic and/or molecular scale provides new opportunities to use materials. The area of sensing is a particularly relevant example in which nanotechnology can be useful, by exploiting the unique properties and phenomena exerted by matter at the nano-scale. Rather than just thinking in terms of miniaturization of sensors and devices, it is possible to imagine entirely new technologies that are developed to exploit novel nano-scale phenomena. Combining nanotechnology with biomolecular systems, we have the power of nanobiotechnology to achieve improved detection, decontamination and protection against chemical and bio-agents.

The purpose of this ARW will be to bring together a diverse group of international civilian researchers focused on nanoscience and nanotechnology problems that are relevant to chemical and biological defence needs, in order to share the state-of-the-art in the field, identify accomplishments, and to discuss the challenges and opportunities present in the field. The work discussed here will form a blueprint for researchers in the area of nanotechnology for chemical and biological defense, especially for future research in detection, decontamination and protection.

Confirmed Invited Speakers:
Professor Terri Camesano     Worcester Polytechnic Institute     USA
Dr. N. Chanisvili     IBMV Tbilisi     Georgia [Country]
Dr. Ario DeMarco     University of Nova Gorica     Slovenia
Dr. Mario Boehme     TU Darmstadt     Germany
Dr. Audrey Beaussart     Université Catholique de Louvain     Belgium
Dr. Jêrôme Duval     Ecole Nationales Supérieure de Géologie     France
Dr. Mladen Franko     University of Nova Gorica     Slovenia
Professor Perena Gouma     SUNY Stony Brook     USA
Dr. Roland Grunow     Robert Koch Institut     Germany
Professor Giorgi Kvesitadze   Tbilisi State University and Georgia Technical University    Georgia
Professor Raj Mutharasan     Drexel University     USA
Dr. Michele Penza     ENEA, Brindisi     Italy
Dr. Irena Ciglenecki-Jusic     Institut Ruđer Bošković     Croatia
Professor Sadunishvili Tinatin     Durmishidze Institute of Biochemistry and Biotechnology, Agrarian University of Georgia     Georgia
Dr. Polonca Trebse     University of Nova Gorica     Slovenia
Professor Monique van Hoek     George Mason University     USA
Professor David Wright     Vanderbilt University     USA
Dr Ahmet Ozgur Yazaydin     University College London     UK

*******This workshop is supported by the NATO Science for Peace and Security Programme

*******Please note that all scholarships for financial support for the conference are full.

Contact Professor Terri A. Camesano, terric@wpi.edu. for information* about the scholarships.

As for the book produced from the 2013 (?) workshop, here’s a link for purchasing,

Nanotechnology in the Security Systems (NATO Science for Peace and Security Series C: Environmental Security) Paperback – September 14, 2014 by Janez Bonca (Editor), Sergei Kruchinin (Editor)

ISBN-13: 978-9401790529 ISBN-10: 9401790523 Edition: 2015th

If you are applying for a scholarship to the 2014 workshop, good luck!

* ‘informatio’ corrected to ‘information’ on Nov. 21,2014.

A breath-based and handheld diagnostic device

Researcher Perena Gouma and her team at Stony Brook University (New York, US) are hoping that eventually their device will be available over the counter so anyone will be able to perform a preliminary diagnostic test as casually as you take a breath. From the May 7, 2012 news item on Nanowerk,

You blow into a small valve attached to a box that is about half the size of your typical shoebox and weighs less than one pound. Once you blow into it, the lights on top of the box will give you an instant readout. A green light means you pass (and your bad breath is not indicative of an underlying disease; perhaps it’s just a result of the raw onions you ingested recently); however, a red light means you might need to take a trip to the doctor’s office to check if something more serious is an issue.

Here’s a bit more about the device and the researchers’ hopes in a video from the US National Science Foundation (NSF) featuring the NSF’s Miles O’Brien as the reporter,

O’Brien in his May 7, 2012 article for the NSF’s Science Nation online magazine describes the technology,

With support from the National Science Foundation (NSF), Professor Perena Gouma and her team at Stony Brook University in New York developed a sensor chip that you might say is the “brain” of the breathalyzer. It’s coated with tiny nanowires that look like microscopic spaghetti and are able to detect minute amounts of chemical compounds in the breath. “These nanowires enable the sensor to detect just a few molecules of the disease marker gas in a ‘sea’ of billions of molecules of other compounds that the breath consists of,” Gouma explains. This is what nanotechnology is all about.

The manufacturing process that creates the single crystal nanowires is called “electrospinning.” It starts with a liquid compound being shot from a syringe into an electrical field. The electric field crystallizes the inserted liquid into a tiny thread or “wire” that collects onto an aluminum backing. Gouma says enough nanowire can be produced in one syringe to stretch from her lab in Stony Brook, N.Y. to the moon and still be a single grain (monocrystal).

“There can be different types of nanowires, each with a tailored arrangement of metal and oxygen atoms along their configuration, so as to capture a particular compound,” explains Gouma. “For example, some nanowires might be able to capture ammonia molecules, while others capture just acetone and others just the nitric oxide. Each of these biomarkers signal a specific disease or metabolic malfunction so a distinct diagnostic breathalyzer can be designed.”

Gouma also says the nanowires can be rigged to detect infectious viruses and microbes like Salmonella, E. coli or even anthrax. “There will be so many other applications we haven’t envisioned. It’s very exciting; it’s a whole new world,” she says.

I think most (if not all) of the handheld diagnostic projects I’ve covered have been fluids-based, i.e., they need a sample of saliva, blood, urine, etc. to perform their diagnostic function. I believe this is the first breath-based project I’ve seen.