Tag Archives: Qiang Zhang

Colo(u)ring your carbon nanotubes

Finnish research is highlighted in an August 28, 2018 news item on phys.org,

A method developed at Aalto University, Finland, can produce large quantities of pristine single-walled carbon nanotubes in select shades of the rainbow. The secret is a fine-tuned fabrication process—and a small dose of carbon dioxide. The films could find applications in touch screen technologies or as coating agents for new types of solar cells.

An August 28, 2018 Aalto University press release (also on EurekAlert), which originated the news item, provides more detail,

Samples of the colourful carbon nanotube thin films, as produced in the fabrication reactor. Image: Aalto University.

Single-walled carbon nanotubes, or sheets of one atom-thick layers of graphene rolled up into different sizes and shapes, have found many uses in electronics and new touch screen devices. By nature, carbon nanotubes are typically black or a dark grey.

In their new study published in the Journal of the American Chemical Society (JACS), Aalto University researchers present a way to control the fabrication of carbon nanotube thin films so that they display a variety of different colours—for instance, green, brown, or a silvery grey.

The researchers believe this is the first time that coloured carbon nanotubes have been produced by direct synthesis. Using their invention, the colour is induced straight away in the fabrication process, not by employing a range of purifying techniques on finished, synthesized tubes.

With direct synthesis, large quantities of clean sample materials can be produced while also avoiding damage to the product in the purifying process—which makes it the most attractive approach for applications.

‘In theory, these coloured thin films could be used to make touch screens with many different colours, or solar cells that display completely new types of optical properties,’ says Esko Kauppinen, Professor at Aalto University.

To get carbon structures to display colours is a feat in itself. The underlying techniques needed to enable the colouration also imply finely detailed control of the structure of the nanotube structures. Kauppinen and his team’s unique method, which uses aerosols of metal and carbon, allows them to carefully manipulate and control the nanotube structure directly from the fabrication process.

‘Growing carbon nanotubes is, in a way, like planting trees: we need seeds, feeds, and solar heat. For us, aerosol nanoparticles of iron work as a catalyst or seed, carbon monoxide as the source for carbon, so feed, and a reactor gives heat at a temperature more than 850 degrees Celsius,’ says Dr. Hua Jiang, Senior Scientist at Aalto University.

Professor Kauppinen’s group has a long history of using these very resources in their singular production method. To add to their repertoire, they have recently experimented with administering small doses of carbon dioxide into the fabrication process.

‘Carbon dioxide acts as a kind of graft material that we can use to tune the growth of carbon nanotubes of various colors,’ explains Jiang.

With an advanced electron diffraction technique, the researchers were able to find out the precise atomic scale structure of their thin films. They found that they have very narrow chirality distributions, meaning that the orientation of the honeycomb-lattice of the tubes’ walls is almost uniform throughout the sample. The chirality more or less dictates the electrical properties carbon nanotubes can have, as well as their colour.

The method developed at Aalto University promises a simple and highly scalable way to fabricate carbon nanotube thin films in high yields.

‘Usually you have to choose between mass production or having good control over the structure of carbon nanotubes. With our breakthrough, we can do both,’ trusts Dr. Qiang Zhang, a postdoctoral researcher in the group.

Follow-up work is already underway.

‘We want to understand the science of how the addition of carbon dioxide tunes the structure of the nanotubes and creates colours. Our aim is to achieve full control of the growing process so that single-walled carbon nanotubes could be used as building blocks for the next generation of nanoelectronics devices,’ says professor Kauppinen.

Here’s a link to and a citation for the paper,

Direct Synthesis of Colorful Single-Walled Carbon Nanotube Thin Films by Yongping Liao, Hua Jiang, Nan Wei, Patrik Laiho, Qiang Zhang, Sabbir A. Khan, and Esko I. Kauppinen. J. Am. Chem. Soc., 2018, 140 (31), pp 9797–9800 DOI: 10.1021/jacs.8b05151 Publication Date (Web): July 26, 2018

Copyright © 2018 American Chemical Society

This paper appears to be open access.

For the curious, here’s a peek at the coloured carbon nanotube films,


Caption: Samples of the colorful carbon nanotube thin films, as produced in the fabrication reactor. Credit: Authors / Aalto University

Unbreakable encrypted message with key that’s shorter than the message

A Sept. 5, 2016 University of Rochester (NY state, US) news release (also on EurekAlert), makes an intriguing announcement,

Researchers at the University of Rochester have moved beyond the theoretical in demonstrating that an unbreakable encrypted message can be sent with a key that’s far shorter than the message—the first time that has ever been done.

Until now, unbreakable encrypted messages were transmitted via a system envisioned by American mathematician Claude Shannon, considered the “father of information theory.” Shannon combined his knowledge of algebra and electrical circuitry to come up with a binary system of transmitting messages that are secure, under three conditions: the key is random, used only once, and is at least as long as the message itself.

The findings by Daniel Lum, a graduate student in physics, and John Howell, a professor of physics, have been published in the journal Physical Review A.

“Daniel’s research amounts to an important step forward, not just for encryption, but for the field of quantum data locking,” said Howell.

Quantum data locking is a method of encryption advanced by Seth Lloyd, a professor of quantum information at Massachusetts Institute of Technology, that uses photons—the smallest particles associated with light—to carry a message. Quantum data locking was thought to have limitations for securely encrypting messages, but Lloyd figured out how to make additional assumptions—namely those involving the boundary between light and matter—to make it a more secure method of sending data.  While a binary system allows for only an on or off position with each bit of information, photon waves can be altered in many more ways: the angle of tilt can be changed, the wavelength can be made longer or shorter, and the size of the amplitude can be modified. Since a photon has more variables—and there are fundamental uncertainties when it comes to quantum measurements—the quantum key for encrypting and deciphering a message can be shorter that the message itself.

Lloyd’s system remained theoretical until this year, when Lum and his team developed a device—a quantum enigma machine—that would put the theory into practice. The device takes its name from the encryption machine used by Germany during World War II, which employed a coding method that the British and Polish intelligence agencies were secretly able to crack.

Let’s assume that Alice wants to send an encrypted message to Bob. She uses the machine to generate photons that travel through free space and into a spatial light modulator (SLM) that alters the properties of the individual photons (e.g. amplitude, tilt) to properly encode the message into flat but tilted wavefronts that can be focused to unique points dictated by the tilt. But the SLM does one more thing: it distorts the shapes of the photons into random patterns, such that the wavefront is no longer flat which means it no longer has a well-defined focus. Alice and Bob both know the keys which identify the implemented scrambling operations, so Bob is able to use his own SLM to flatten the wavefront, re-focus the photons, and translate the altered properties into the distinct elements of the message.

Along with modifying the shape of the photons, Lum and the team made use of the uncertainty principle, which states that the more we know about one property of a particle, the less we know about another of its properties. Because of that, the researchers were able to securely lock in six bits of classical information using only one bit of an encryption key—an operation called data locking.

“While our device is not 100 percent secure, due to photon loss,” said Lum, “it does show that data locking in message encryption is far more than a theory.”

The ultimate goal of the quantum enigma machine is to prevent a third party—for example, someone named Eve—from intercepting and deciphering the message. A crucial principle of quantum theory is that the mere act of measuring a quantum system changes the system. As a result, Eve has only one shot at obtaining and translating the encrypted message—something that is virtually impossible, given the nearly limitless number of patterns that exist for each photon.

The paper by Lum and Howell was one of two papers published simultaneously on the same topic. The other paper, “Quantum data locking,” was from a team led by Chinese physicist Jian-Wei Pan.

“It’s highly unlikely that our free-space implementation will be useful through atmospheric conditions,” said Lum. “Instead, we have identified the use of optic fiber as a more practical route for data locking, a path Pan’s group actually started with. Regardless, the field is still in its infancy with a great deal more research needed.”

Here’s a link to and a citation for the paper,

Quantum enigma machine: Experimentally demonstrating quantum data locking by Daniel J. Lum, John C. Howell, M. S. Allman, Thomas Gerrits, Varun B. Verma, Sae Woo Nam, Cosmo Lupo, and Seth Lloyd. Phys. Rev. A, Vol. 94, Iss. 2 — August 2016 DOI: http://dx.doi.org/10.1103/PhysRevA.94.022315

©2016 American Physical Society

This paper is behind a paywall.

There is an earlier open access version of the paper by the Chinese researchers on arXiv.org,

Experimental quantum data locking by Yang Liu, Zhu Cao, Cheng Wu, Daiji Fukuda, Lixing You, Jiaqiang Zhong, Takayuki Numata, Sijing Chen, Weijun Zhang, Sheng-Cai Shi, Chao-Yang Lu, Zhen Wang, Xiongfeng Ma, Jingyun Fan, Qiang Zhang, Jian-Wei Pan. arXiv.org > quant-ph > arXiv:1605.04030

The Chinese team’s later version of the paper is available here,

Experimental quantum data locking by Yang Liu, Zhu Cao, Cheng Wu, Daiji Fukuda, Lixing You, Jiaqiang Zhong, Takayuki Numata, Sijing Chen, Weijun Zhang, Sheng-Cai Shi, Chao-Yang Lu, Zhen Wang, Xiongfeng Ma, Jingyun Fan, Qiang Zhang, and Jian-Wei Pan. Phys. Rev. A, Vol. 94, Iss. 2 — August 2016 DOI: http://dx.doi.org/10.1103/PhysRevA.94.020301

©2016 American Physical Society

This version is behind a paywall.

Getting back to the folks at the University of Rochester, they have provided this image to illustrate their work,

The quantum enigma machine developed by researchers at the University of Rochester, MIT, and the National Institute of Standards and Technology. (Image by Daniel Lum/University of Rochester)

The quantum enigma machine developed by researchers at the University of Rochester, MIT, and the National Institute of Standards and Technology. (Image by Daniel Lum/University of Rochester)

DNA as a sensor

McMaster University (Ontario, Canada) researchers have developed a technique for using DNA (deoxyribonucleic acid) as a sensor according to a July 7, 2016 news item on ScienceDaily,

Researchers at McMaster University have established a way to harness DNA as the engine of a microscopic “machine” they can turn on to detect trace amounts of substances that range from viruses and bacteria to cocaine and metals.

“It’s a completely new platform that can be adapted to many kinds of uses,” says John Brennan, director of McMaster’s Biointerfaces Insitute and co-author of a paper in the journal Nature Communications that describes the technology. “These DNA nano-architectures are adaptable, so that any target should be detectable.”

A July 7, 2016 McMaster University news release (also on EurekAlert), which originated the news item, expands on the theme,

DNA is best known as a genetic material, but is also a very programmable molecule that lends itself to engineering for synthetic applications.

The new method shapes separately programmed pieces of DNA material into pairs of interlocking circles.

The first remains inactive until it is released by the second, like a bicycle wheel in a lock. When the second circle, acting as the lock, is exposed to even a trace of the target substance, it opens, freeing the first circle of DNA, which replicates quickly and creates a signal, such as a colour change.

“The key is that it’s selectively triggered by whatever we want to detect,” says Brennan, who holds the Canada Research Chair in Bioanalytical Chemistry and Biointerfaces. “We have essentially taken a piece of DNA and forced it to do something it was never designed to do. We can design the lock to be specific to a certain key. All the parts are made of DNA, and ultimately that key is defined by how we build it.”

The idea for the “DNA nanomachine” comes from nature itself, explains co-author Yingfu Li, who holds the Canada Research Chair in Nucleic Acids Research.

“Biology uses all kinds of nanoscale molecular machines to achieve important functions in cells,” Li says. “For the first time, we have designed a DNA-based nano-machine that is capable of achieving ultra-sensitive detection of a bacterial pathogen.”

The DNA-based nanomachine is being further developed into a user-friendly detection kit that will enable rapid testing of a variety of substances, and could move to clinical testing within a year.

Here’s a link to and a citation for the paper,

Programming a topologically constrained DNA nanostructure into a sensor by Meng Liu, Qiang Zhang, Zhongping Li, Jimmy Gu, John D. Brennan, & Yingfu Li. Nature Communications 7, Article number: 12074  doi:10.1038/ncomms12074 Published 23 June 2016

This paper is open access.