Tag Archives: Large Hadron Collider (LHC)

It’s a golden world

I have a number of stories concerning gold where researchers seemed to have had an extraordinarily rich set of findings within the last month. One of these is especially interesting in light of what I published yesterday (August 11, 2025 “Turning lead into gold (for approximately a microsecond“) about an event in May 2025.

I will be providing my usual citations and links but will not be tagging all the researchers (there are far too many) other than those mentioned in the news releases.

Two from SLAC (SLAC National Accelerator Laboratory, originally named the Stanford Linear Accelerator Center in California)

While both projects took place at SLAC, there’s virtually no crossover between the team members and the findings are of an entirely different nature.

Defying the limits and surviving the entropy catastrophe

An August 11, 2025 news item on ScienceDaily announces that physics limits have been defied,

Scientists have simultaneously broken a temperature record, overturned a long-held theory and utilized a new laser spectroscopy method for dense plasmas in a groundbreaking article published on July 23 in the journal Nature.

In their research article, “Superheating gold beyond the predicted entropy catastrophe threshold,” physicists revealed they were able to heat gold to over 19,000 Kelvin (33,740 degrees Fahrenheit), over 14 times its melting point, without it losing its solid, crystalline structure.

A July 23, 2025 University of Nevada news release, which originated the news item, delves further into the topic,

“This is possibly the hottest crystalline material ever recorded,” Thomas White, lead author and Clemons-Magee Endowed Professor in Physics at the University of Nevada, Reno said.

This result overturns the long-held theoretical limit known as the entropy catastrophe. The entropy catastrophe theory states that solids cannot remain stable above approximately three times their melting temperature without spontaneously melting. The melting point of gold, 1,337 Kelvin (1,947 degrees Fahrenheit), was far more than tripled in this experiment utilizing an extremely powerful laser at Stanford University’s SLAC National Accelerator Laboratory.

“I was expecting the gold to heat quite significantly before melting, but I wasn’t expecting a fourteen-fold temperature increase,” White said.

To heat the gold, researchers at the University of Nevada, Reno, SLAC National Accelerator Laboratory, the University of Oxford, Queen’s University Belfast, the European XFEL and the University of Warwick designed an experiment to heat a thin gold foil using a laser fired for 50 quadrillionths of a second (one millionth of a billionth). The speed with which the gold was heated seems to be the reason the gold remained solid. The findings suggest that the limit of superheating solids may be far higher – or nonexistent – if heating occurs quickly enough. The new methods used in this study open the field of high energy density physics to more exploration, including in areas of planetary physics and fusion energy research.

White and his team expected that the gold would melt at its melting point, but to measure the temperature inside the gold foil, they would need a very special thermometer.

“We used the Linac Coherent Light Source, a 3-kilometer-long X-ray laser at SLAC, as essentially the world’s largest thermometer,” White said. “This allowed us to measure the temperature inside the dense plasma for the first time, something that hasn’t been possible before.”

“This development paves the way for temperature diagnostics across a broad range of high-energy-density environments,” Bob Nagler, staff scientist at SLAC and coauthor on the paper, said. “In particular, it offers the only direct method currently available for probing the temperature of warm dense states encountered during the implosion phase of inertial fusion energy experiments. As such, it is poised to make a transformative contribution to our understanding and control of fusion-relevant plasma conditions.”

Along with the experimental designers, the research article is the result of a decade of work and collaboration between Columbia University, Princeton University, the University of Padova and the University of California, Merced.

“It’s extremely exciting to have these results out in the world, and I’m really looking forward to seeing what strides we can make in the field with these new methods,” White said.

The research, funded by the National Nuclear Security Administration, will open new doors in studies of superheated materials.

“The National Nuclear Security Administrations’ Academics Program is a proud supporter of the groundbreaking innovation and continued learning that Dr. White and his team are leading for furthering future critical research areas beneficial to the Nuclear Security Enterprise,” Jahleel Hudson, director at the Techology and Partnerships Office of the NNSA said.

White and his colleagues returned to the Linac Coherent Light Source in July to measure the temperature inside hot compressed iron and are using those results to gain insights into the interiors of planets.

Several of White’s graduate students and one undergraduate student were coauthors on the study, including doctoral student Travis Griffin, undergraduate student Hunter Stramel, Daniel Haden, a former postdoctoral scholar in White’s lab, Jacob Molina, a former undergraduate student currently pursuing his doctoral degree at Princeton University and Landon Morrison, a former undergraduate student pursuing his master’s degree at the University of Oxford. Jeremy Iratcabal, research assistant professor in the Department of Physics, was also a coauthor on the paper.

“I’m incredibly grateful for the opportunity to contribute to such cutting-edge science using billion-dollar experimental platforms alongside world-class collaborators,” Griffin said. “This discovery highlights the power of this technique, and I’m excited by the possibilities it opens for the future of high-energy-density physics and fusion research. After graduation, I’ll be continuing this work as a staff scientist at the European XFEL.”

SLAC issued a July 23, 2025 news release (by Erin Woodward) of its own and UK’s University of Warwick also issued a July 23, 2025.

Here’s a link to and a citation for the paper,

Superheating gold beyond the predicted entropy catastrophe threshold by Thomas G. White, Travis D. Griffin, Daniel Haden, Hae Ja Lee, Eric Galtier, Eric Cunningham, Dimitri Khaghani, Adrien Descamps, Lennart Wollenweber, Ben Armentrout, Carson Convery, Karen Appel, Luke B. Fletcher, Sebastian Goede, J. B. Hastings, Jeremy Iratcabal, Emma E. McBride, Jacob Molina, Giulio Monaco, Landon Morrison, Hunter Stramel, Sameen Yunus, Ulf Zastrau, Siegfried H. Glenzer, Gianluca Gregori, Dirk O. Gericke & Bob Nagler. Nature volume 643, pages 950–954 (2025) DOI: https://doi.org/10.1038/s41586-025-09253-y Published: 23 July 2025 Issue Date: 24 July 2025

This paper is open access.

Gold’s secret chemistry

An August 11, 2025 news item on ScienceDaily announces how researchers at SLAC unexpectedly created gold hydride,

Scientists at SLAC unexpectedly created gold hydride, a compound of gold and hydrogen, while studying diamond formation under extreme pressure and heat. This discovery challenges gold’s reputation as a chemically unreactive metal and opens doors to studying dense hydrogen, which could help us understand planetary interiors and fusion processes. The results also suggest that extreme conditions can produce exotic, previously unknown compounds, offering exciting opportunities for future high-pressure chemistry research.

Serendipitously and for the first time, an international research team led by scientists at the U.S. Department of Energy’s SLAC National Accelerator Laboratory formed solid binary gold hydride, a compound made exclusively of gold and hydrogen atoms.

An August 4, 2025 SLAC news release by Chris Patrick, which originated the news release, provides more details, Note: Links have been removed,

The researchers were studying how long it takes hydrocarbons, compounds made of carbon and hydrogen, to form diamonds under extremely high pressure and heat. In their experiments at the European XFEL (X-ray Free-Electron Laser) in Germany, the team studied the effect of those extreme conditions in hydrocarbon samples with an embedded gold foil, which was meant to absorb the X-rays and heat the weakly absorbing hydrocarbons. To their surprise, they not only saw the formation of diamonds, but also discovered the formation of gold hydride. 

“It was unexpected because gold is typically chemically very boring and unreactive – that’s why we use it as an X-ray absorber in these experiments,” said Mungo Frost, staff scientist at SLAC who led the study. “These results suggest there’s potentially a lot of new chemistry to be discovered at extreme conditions where the effects of temperature and pressure start competing with conventional chemistry, and you can form these exotic compounds.”

The results, published in Angewandte Chemie International Edition, provide a glimpse of how the rules of chemistry change under extreme conditions like those found inside certain planets or hydrogen-fusing stars.

Studying dense hydrogen

In their experiment, the researchers first squeezed their hydrocarbon samples to pressures greater than those within Earth’s mantle using a diamond anvil cell. Then, they heated the samples to over 3,500 degrees Fahrenheit by hitting them repeatedly with X-ray pulses from the European XFEL. The team recorded and analyzed how the X-rays scattered off the samples, which allowed them to resolve the structural transformations within.

As expected, the recorded scattering patterns showed that the carbon atoms had formed a diamond structure. But the team also saw unexpected signals that were due to hydrogen atoms reacting with the gold foil to form gold hydride. 

Under the extreme conditions created in the study, the researchers found hydrogen to be in a dense, “superionic” state, where the hydrogen atoms flowed freely through the gold’s rigid atomic lattice, increasing the conductivity of the gold hydride. 

Hydrogen, which is the lightest element of the periodic table, is tricky to study with X-rays because it scatters X-rays only weakly. Here, however, the superionic hydrogen interacted with the much heavier gold atoms, and the team was able to observe hydrogen’s impact on how the gold lattice scattered X-rays. “We can use the gold lattice as a witness for what the hydrogen is doing,” Mungo said. 

The gold hydride offers a way to study dense atomic hydrogen under conditions that might also apply to other situations that are experimentally not directly accessible. For example, dense hydrogen makes up the interiors of certain planets, so studying it in the lab could teach us more about those foreign worlds. It could also provide new insights into nuclear fusion processes inside stars like our sun and help develop technology to harness fusion energy here on Earth.

Exploring new chemistry

In addition to paving the way for studies of dense hydrogen, the research also offers an avenue for exploring new chemistry. Gold, which is commonly regarded as an unreactive metal, was found to form a stable hydride at extremely high pressure and temperature. In fact, it appears to be only stable at those extreme conditions as when it cools down, the gold and hydrogen separate. The simulations also showed that more hydrogen could fit in the gold lattice at higher pressure.

The simulation framework could also be extended beyond gold hydride. “It’s important that we can experimentally produce and model these states under these extreme conditions,” said Siegfried Glenzer, High Energy Density Division director and professor for photon science at SLAC and the study’s principal investigator. “These simulation tools could be applied to model other exotic material properties in extreme conditions.” 

The team also included researchers from Rostock University, DESY, European XFEL, Helmholtz-Zentrum Dresden-Rossendorf, Frankfurt University and Bayreuth University, all in Germany; the University of Edinburgh, UK; the Carnegie Institution for Science, Stanford University and the Stanford Institute for Materials and Energy Sciences (SIMES). Parts of this work were supported by the DOE Office of Science.

Here’s a link to and a citation for the paper,

Synthesis of Gold Hydride at High Pressure and High Temperature by Mungo Frost, Kilian Abraham, Alexander F. Goncharov, R. Stewart McWilliams, Rachel J. Husband, Michal Andrzejewski, Karen Appel, Carsten Baehtz, Armin Bergermann, Danielle Brown, Elena Bykova, Anna Celeste, Eric Edmund, Nicholas J. Hartley, Konstantin Glazyrin, Heinz Graafsma, Nicolas Jaisle, Zuzana Konôpková, Torsten Laurus, Yu Lin, Bernhard Massani, Maximilian Schörner, Maximilian Schulze, Cornelius Strohm, Minxue Tang, Zena Younes, Gerd Steinle-Neumann, Ronald Redmer, Siegfried H. Glenzer. Angewandte Chemie International Edition DOI: https://doi.org/10.1002/anie.202505811 First published: 04 August 2025

This paper is behind a paywall.

Gold and a quantum revolution?

An August 11, 2025 news item on ScienceDaily announces joint research from Pennsylvania State University (Penn State) and Colorado State University,

The efficiency of quantum computers, sensors and other applications often relies on the properties of electrons, including how they are spinning. One of the most accurate systems for high performance quantum applications relies on tapping into the spin properties of electrons of atoms trapped in a gas, but these systems are difficult to scale up for use in larger quantum devices like quantum computers. Now, a team of researchers from Penn State and Colorado State has demonstrated how a gold cluster can mimic these gaseous, trapped atoms, allowing scientists to take advantage of these spin properties in a system that can be easily scaled up.

A July 22, 2025 Penn State news release (also on EurekAlert) by Gail McCormick, which originated the news item, reveals more about the work which resulted in two published papers, Note: Links have been removed,

“For the first time, we show that gold nanoclusters have the same key spin properties as the current state-of-the-art methods for quantum information systems,” said Ken Knappenberger, department head and professor of chemistry in the Penn State Eberly College of Science and leader of the research team. “Excitingly, we can also manipulate an important property called spin polarization in these clusters, which is usually fixed in a material. These clusters can be easily synthesized in relatively large quantities, making this work a promising proof-of-concept that gold clusters could be used to support a variety of quantum applications.”

Two papers describing the gold clusters and confirming their spin properties appeared in ACS Central Science, ACS Central Science and The Journal of Physical Chemistry Letters.

“An electron’s spin not only influences important chemical reactions, but also quantum applications like computation and sensing,” said Nate Smith, graduate student in chemistry in the Penn State Eberly College of Science and first author of one of the papers. “The direction an electron spins and its alignment with respect to other electrons in the system can directly impact the accuracy and longevity of quantum information systems.”

Much like the Earth spins around its axis, which is tilted with respect to the sun, an electron can spin around its axis, which can be tilted with respect to its nucleus. But unlike Earth, an electron can spin clockwise or counterclockwise. When many electrons in a material are spinning in the same direction and their tilts are aligned, the electrons are considered correlated, and the material is said to have a high degree of spin polarization. 

“Materials with electrons that are highly correlated, with a high degree of spin polarization, can maintain this correlation for a much longer time, and thus remain accurate for much longer,” Smith said.

The current state-of-the-art system for high accuracy and low error in quantum information systems involve trapped atomic ions — atoms with an electric charge — in a gaseous state. This system allows electrons to be excited to different energy levels, called Rydberg states, which have very specific spin polarizations that can last for a long period of time. It also allows for the superposition of electrons, with electrons existing in multiple states simultaneously until they are measured, which is a key property for quantum systems. 

“These trapped gaseous ions are by nature dilute, which makes them very difficult to scale up,” Knappenberger said. “The condensed phase required for a solid material, by definition, packs atoms together, losing that dilute nature. So, scaling up provides all the right electronic ingredients, but these systems become very sensitive to interference from the environment. The environment basically scrambles all the information that you encoded into the system, so the rate of error becomes very high. In this study, we found that gold clusters can mimic all the best properties of the trapped gaseous ions with the benefit of scalability.”

Scientists have heavily studied gold nanostructures for their potential use in optical technology, sensing, therapeutics and to speed up chemical reactions, but less is known about their magnetic and spin-dependent properties. In the current studies, the researchers specifically explored monolayer-protected clusters, which have a core of gold and are surrounded by other molecules called ligands. The researchers can precisely control the construction of these clusters and can synthesize relatively large amounts at one time. 

“These clusters are referred to as super atoms, because their electronic character is like that of an atom, and now we know their spin properties are also similar,” Smith said. “We identified 19 distinguishable and unique Rydberg-like spin-polarized states that mimic the super-positions that we could do in the trapped, gas-phase dilute ions. This means the clusters have the key properties needed to carry out spin-based operations.”

The researchers determined the spin polarization of the gold clusters using a similar method used with traditional atoms. While one type of gold cluster had 7% spin polarization, a cluster with different a ligand approached 40% spin polarization, which Knappenberger said is competitive with some of the leading two-dimensional quantum materials.

“This tells us that the spin properties of the electron are intimately related to the vibrations of the ligands,” Knappenberger said. “Traditionally, quantum materials have a fixed value of spin polarization that cannot be significantly changed, but our results suggest we can modify the ligand of these gold clusters to tune this property widely.”

The research team plans to explore how different structures within the ligands impact spin polarization and how they could be manipulated to fine tune spin properties.

“The quantum field is generally dominated by researchers in physics and materials science, and here we see the opportunity for chemists to use our synthesis skills to design materials with tunable results,” Knappenberger said. “This is a new frontier in quantum information science.”

In addition to Smith and Knappenberger, the research team includes Juniper Foxley, graduate student in chemistry at Penn State; Patrick Herbert, who earned a doctoral degree in chemistry at Penn State in 2019; Jane Knappenberger, researcher in the Penn State Eberly College of Science; as well as Marcus Tofanelli and Christopher Ackerson at Colorado State

Funding from the Air Force Office of Scientific Research and the U.S. National Science Foundation supported this research.

At Penn State, researchers are solving real problems that impact the health, safety and quality of life of people across the commonwealth, the nation and around the world.

For decades, federal support for research has fueled innovation that makes our country safer, our industries more competitive and our economy stronger. Recent federal funding cuts threaten this progress.

Learn more about the implications of federal funding cuts to our future at Research or Regress. [Research or Regress can found here]

Here are links to and citation for the paper,

The Influence of Passivating Ligand Identity on Au25(SR)18 Spin-Polarized Emission by Nathanael L. Smith, Patrick J. Herbert, Marcus A. Tofanelli, Jane A. Knappenberger, Christopher J. Ackerson, Kenneth L. Knappenberger Jr. The Journal of Physical Chemistry Letters 2025, 16, 20, 5168–5172 DOI: https://doi.org/10.1021/acs.jpclett.5c00723 Published May 15, 2025 Copyright © 2025 American Chemical Society

This paper is behind a paywall.

Diverse Superatomic Magnetic and Spin Properties of Au144(SC8H9)60 Clusters by Juniper Foxley, Marcus Tofanelli, Jane A. Knappenberger, Christopher J. Ackerson, Kenneth L. Knappenberger Jr ACS Central Science 2025, XXXX, XXX, XXX-XXX DOI: https://doi.org/10.1021/acscentsci.5c00139
Published May 29, 2025 © 2025 The Authors. Published by American Chemical Society. This publication is licensed under CC-BY 4.0 .

This paper is open access.

Lead into gold, the second time around

There are reasons why news releases are issued twice and/or months after a research paper was published. Whoever is scanning for news may have missed it or it was a big news day and science was not top of mind or e.g., a number of teams are publishing research in your field and are generating a lot of interest and you hope your institution will benefit from it.

This August 11, 2025 news item on ScienceDaily resuscitates a story from May 2025,

Nuclear physicists working at the Large Hadron Collider recently made headlines by achieving the centuries-old dream of alchemists (and nightmare of precious-metals investors): They transformed lead into gold.

At least for a fraction of a second. The scientists reported their results in Physical Reviews.

The accomplishment at the Large Hadron Collider, the 17-mile particle accelerator buried under the French-Swiss border, happened within a sophisticated and sensitive detector called ALICE, a scientific instrument roughly the size of a McMansion.

A July 30, 2025 University of Kansas news release (also on EurekAlert), which originated the August 11, 2025 news item, adds new details about the work, Note: A link has been removed,

It was scientists from the University of Kansas, working on the ALICE experiment, who developed the technique that tracked “ultra-peripheral” collisions between protons and ions that made gold in the LHC.

“Usually in collider experiments, we make the particles crash into each other to produce lots of debris,” said Daniel Tapia Takaki, professor of physics and leader of KU’s group at ALICE. “But in ultra-peripheral collisions, we’re interested in what happens when the particles don’t hit each other. These are near misses. The ions pass close enough to interact — but without touching. There’s no physical overlap.”

The ions racing around the LHC tunnel are heavy nuclei with many protons, each generating powerful electric fields. When accelerated, these charged ions emit photons — they shine light.

“When you accelerate an electric charge to near light speeds, it starts shining,” Tapia Takaki said. “One ion can shine light that essentially takes a picture of the other. When that light is energetic enough, it can probe deep inside the other nucleus, like a high-energy flashbulb.”

The KU researcher said during these UPC “flashes” surprising interactions can occur, including the rate event that sparked worldwide attention.

“Sometimes, the photons from both ions interact with each other — what we call photon-photon collisions,” he said. “These events are incredibly clean, with almost nothing else produced. They contrast with typical collisions where we see sprays of particles flying everywhere.”

However, the ALICE detector and the LHC were designed to collect data on head-on collisions that result in messy sprays of particles.

“These clean interactions were hard to detect with earlier setups,” Tapia Takaki said. “Our group at KU pioneered new techniques to study them. We built up this expertise years ago when it was not a popular subject.”

These methods allowed for the news-making discovery that the LHC team transmuted lead into gold momentarily via ultra-peripheral collisions where lead ions lose three protons (turning the speck of lead into a gold speck) for a fraction of a second.

Tapia Takaki’s KU co-authors on the paper are graduate student Anna Binoy; graduate student Amrit Gautam; postdoctoral researcher Tommaso Isidori; postdoctoral research assistant Anisa Khatun; and research scientist Nicola Minafra.

The KU team at the LHC ALICE experiment plans to continue studying the ultra-peripheral collisions. Tapia Takaki said that while the creation of gold fascinated the public, the potential of understanding the interactions goes deeper.

“This light is so energetic, it can knock protons out of the nucleus,” he said. “Sometimes one, sometimes two, three or even four protons. We can see these ejected protons directly with our detectors.”

Each proton removed changes the elements: One gives thallium, two gives mercury, three gives gold.

“These new nuclei are very short-lived,” he said. “They decay quickly, but not always immediately. Sometimes they travel along the beamline and hit parts of the collider — triggering safety systems.”

That’s why this research matters beyond the headlines.

“With proposals for future colliders even larger than the LHC — some up to 100 kilometers in Europe and China — you need to understand these nuclear byproducts,” Tapia Takaki said. “This ‘alchemy’ may be crucial for designing the next generation of machines.”

This work was supported by the U.S. Department of Energy Office of Science, Office of Nuclear Physics.

Here’s a new link and citation, which includes each team member’s name, for the paper,

Proton emission in ultraperipheral Pb-Pb collisions at sNN=5.02 TeV by S. Acharya, A. Agarwal, G. Aglieri Rinella, L. Aglietta, M. Agnello, N. Agrawal, Z. Ahammed, S. Ahmad, S. U. Ahn, I. Ahuja, A. Akindinov, V. Akishina, M. Al-Turany, D. Aleksandrov, B. Alessandro, H. M. Alfanda, R. Alfaro Molina, B. Ali, A. Alici, N. Alizadehvandchali, A. Alkin, J. Alme, G. Alocco, T. Alt, A. R. Altamura, I. Altsybeev, J. R. Alvarado, C. O. R. Alvarez, M. N. Anaam, C. Andrei, N. Andreou, A. Andronic, E. Andronov, V. Anguelov, F. Antinori, P. Antonioli, N. Apadula, L. Aphecetche, H. Appelshäuser, C. Arata, S. Arcelli, R. Arnaldi, J. G. M. C. A. Arneiro, I. C. Arsene, M. Arslandok, A. Augustinus, R. Averbeck, D. Averyanov, M. D. Azmi, H. Baba, A. Badalà, J. Bae, Y. Bae, Y. W. Baek, X. Bai, R. Bailhache, Y. Bailung, R. Bala, A. Baldisseri, B. Balis, Z. Banoo, V. Barbasova, F. Barile, L. Barioglio, M. Barlou, B. Barman, G. G. Barnaföldi, L. S. Barnby, E. Barreau, V. Barret, L. Barreto, C. Bartels, K. Barth, E. Bartsch, N. Bastid, S. Basu, G. Batigne, D. Battistini, B. Batyunya, D. Bauri, J. L. Bazo Alba, I. G. Bearden, C. Beattie, P. Becht, D. Behera, I. Belikov, A. D. C. Bell Hechavarria, F. Bellini, R. Bellwied, S. Belokurova, L. G. E. Beltran, Y. A. V. Beltran, G. Bencedi, A. Bensaoula, S. Beole, Y. Berdnikov, A. Berdnikova, L. Bergmann, M. G. Besoiu, L. Betev, P. P. Bhaduri, A. Bhasin, B. Bhattacharjee, L. Bianchi, J. Bielčík, J. Bielčíková, A. P. Bigot, A. Bilandzic, A. Binoy, G. Biro, S. Biswas, N. Bize, J. T. Blair, D. Blau, M. B. Blidaru, N. Bluhme, C. Blume, F. Bock, T. Bodova, J. Bok, L. Boldizsár, M. Bombara, P. M. Bond, G. Bonomi, H. Borel, A. Borissov, A. G. Borquez Carcamo, E. Botta, Y. E. M. Bouziani, D. C. Brandibur, L. Bratrud, P. Braun-Munzinger, M. Bregant, M. Broz, G. E. Bruno, V. D. Buchakchiev, M. D. Buckland, D. Budnikov, H. Buesching, S. Bufalino, P. Buhler, N. Burmasov, Z. Buthelezi, A. Bylinkin, S. A. Bysiak, J. C. Cabanillas Noris, M. F. T. Cabrera, H. Caines, A. Caliva, E. Calvo Villar, J. M. M. Camacho, P. Camerini, F. D. M. Canedo, S. L. Cantway, M. Carabas, A. A. Carballo, F. Carnesecchi, R. Caron, L. A. D. Carvalho, J. Castillo Castellanos, M. Castoldi, F. Catalano, S. Cattaruzzi, R. Cerri, I. Chakaberia, P. Chakraborty, S. Chandra, S. Chapeland, M. Chartier, S. Chattopadhay, M. Chen, T. Cheng, C. Cheshkov, D. Chiappara, V. Chibante Barroso, D. D. Chinellato, E. S. Chizzali, J. Cho, S. Cho, P. Chochula, Z. A. Chochulska, D. Choudhury, S. Choudhury, P. Christakoglou, C. H. Christensen, P. Christiansen, T. Chujo, M. Ciacco, C. Cicalo, F. Cindolo, M. R. Ciupek, G. Clai, F. Colamaria, J. S. Colburn, D. Colella, A. Colelli, M. Colocci, M. Concas, G. Conesa Balbastre, Z. Conesa del Valle, G. Contin, J. G. Contreras, M. L. Coquet, P. Cortese, M. R. Cosentino, F. Costa, S. Costanza, P. Crochet, M. M. Czarnynoga, A. Dainese, G. Dange, M. C. Danisch, A. Danu, P. Das, S. Das, A. R. Dash, S. Dash, A. De Caro, G. de Cataldo, J. de Cuveland, A. De Falco, D. De Gruttola, N. De Marco, C. De Martin, S. De Pasquale, R. Deb, R. Del Grande, L. Dello Stritto, W. Deng, K. C. Devereaux, G. G. A. de Souza, P. Dhankher, D. Di Bari, A. Di Mauro, B. Di Ruzza, B. Diab, R. A. Diaz, Y. Ding, J. Ditzel, R. Divià, Ø. Djuvsland, U. Dmitrieva, A. Dobrin, B. Dönigus, J. M. Dubinski, A. Dubla, P. Dupieux, N. Dzalaiova, T. M. Eder, R. J. Ehlers, F. Eisenhut, R. Ejima, D. Elia, B. Erazmus, F. Ercolessi, B. Espagnon, G. Eulisse, D. Evans, S. Evdokimov, L. Fabbietti, M. Faggin, J. Faivre, F. Fan, W. Fan, A. Fantoni, M. Fasel, G. Feofilov, A. Fernández Téllez, L. Ferrandi, M. B. Ferrer, A. Ferrero, C. Ferrero, A. Ferretti, V. J. G. Feuillard, V. Filova, D. Finogeev, F. M. Fionda, E. Flatland, F. Flor, A. N. Flores, S. Foertsch, I. Fokin, S. Fokin, U. Follo, E. Fragiacomo, E. Frajna, U. Fuchs, N. Funicello, C. Furget, A. Furs, T. Fusayasu, J. J. Gaardhøje, M. Gagliardi, A. M. Gago, T. Gahlaut, C. D. Galvan, S. Gami, D. R. Gangadharan, P. Ganoti, C. Garabatos, J. M. Garcia, T. García Chávez, E. Garcia-Solis, S. Garetti, C. Gargiulo, P. Gasik, H. M. Gaur, A. Gautam, M. B. Gay Ducati, M. Germain, R. A. Gernhaeuser, C. Ghosh, M. Giacalone, G. Gioachin, S. K. Giri, P. Giubellino, P. Giubilato, A. M. C. Glaenzer, P. Glässel, E. Glimos, D. J. Q. Goh, V. Gonzalez, P. Gordeev, M. Gorgon, K. Goswami, S. Gotovac, V. Grabski, L. K. Graczykowski, E. Grecka, A. Grelli, C. Grigoras, V. Grigoriev, S. Grigoryan, F. Grosa, J. F. Grosse-Oetringhaus, R. Grosso, D. Grund, N. A. Grunwald, G. G. Guardiano, R. Guernane, M. Guilbaud, K. Gulbrandsen, J. J. W. K. Gumprecht, T. Gündem, T. Gunji, W. Guo, A. Gupta, R. Gupta, R. Gupta, K. Gwizdziel, L. Gyulai, C. Hadjidakis, F. U. Haider, S. Haidlova, M. Haldar, H. Hamagaki, Y. Han, B. G. Hanley, R. Hannigan, J. Hansen, M. R. Haque, J. W. Harris, A. Harton, M. V. Hartung, H. Hassan, D. Hatzifotiadou, P. Hauer, L. B. Havener, E. Hellbär, H. Helstrup, M. Hemmer, T. Herman, S. G. Hernandez, G. Herrera Corral, S. Herrmann, K. F. Hetland, B. Heybeck, H. Hillemanns, B. Hippolyte, I. P. M. Hobus, F. W. Hoffmann, B. Hofman, M. Horst, A. Horzyk, Y. Hou, P. Hristov, P. Huhn, L. M. Huhta, T. J. Humanic, A. Hutson, D. Hutter, M. C. Hwang, R. Ilkaev, M. Inaba, G. M. Innocenti, M. Ippolitov, A. Isakov, T. Isidori, M. S. Islam, S. Iurchenko, M. Ivanov, M. Ivanov, V. Ivanov, K. E. Iversen, M. Jablonski, B. Jacak, N. Jacazio, P. M. Jacobs, S. Jadlovska, J. Jadlovsky, S. Jaelani, C. Jahnke, M. J. Jakubowska, M. A. Janik, T. Janson, S. Ji, S. Jia, T. Jiang, A. A. P. Jimenez, F. Jonas, D. M. Jones, J. M. Jowett, J. Jung, M. Jung, A. Junique, A. Jusko, J. Kaewjai, P. Kalinak, A. Kalweit, A. Karasu Uysal, D. Karatovic, N. Karatzenis, O. Karavichev, T. Karavicheva, E. Karpechev, M. J. Karwowska, U. Kebschull, M. Keil, B. Ketzer, J. Keul, S. S. Khade, A. M. Khan, S. Khan, A. Khanzadeev, Y. Kharlov, A. Khatun, A. Khuntia, Z. Khuranova, B. Kileng, B. Kim, C. Kim, D. J. Kim, D. Kim, E. J. Kim, J. Kim, J. Kim, J. Kim, M. Kim, S. Kim, T. Kim, K. Kimura, S. Kirsch, I. Kisel, S. Kiselev, A. Kisiel, J. L. Klay, J. Klein, S. Klein, C. Klein-Bösing, M. Kleiner, T. Klemenz, A. Kluge, C. Kobdaj, R. Kohara, T. Kollegger, A. Kondratyev, N. Kondratyeva, J. Konig, S. A. Konigstorfer, P. J. Konopka, G. Kornakov, M. Korwieser, S. D. Koryciak, C. Koster, A. Kotliarov, N. Kovacic, V. Kovalenko, M. Kowalski, V. Kozhuharov, G. Kozlov, I. Králik, A. Kravčáková, L. Krcal, M. Krivda, F. Krizek, K. Krizkova Gajdosova, C. Krug, M. Krüger, D. M. Krupova, E. Kryshen, V. Kučera, C. Kuhn, P. G. Kuijer, T. Kumaoka, D. Kumar, L. Kumar, N. Kumar, S. Kumar, S. Kundu, P. Kurashvili, A. B. Kurepin, A. Kuryakin, S. Kushpil, V. Kuskov, M. Kutyla, A. Kuznetsov, M. J. Kweon, Y. Kwon, S. L. La Pointe, P. La Rocca, A. Lakrathok, M. Lamanna, S. Lambert, A. R. Landou, R. Langoy, P. Larionov, E. Laudi, L. Lautner, R. A. N. Laveaga, R. Lavicka, R. Lea, H. Lee, I. Legrand, G. Legras, J. Lehrbach, A. M. Lejeune, T. M. Lelek, R. C. Lemmon, I. León Monzón, M. M. Lesch, P. Lévai, M. Li, P. Li, X. Li, B. E. Liang-Gilman, J. Lien, R. Lietava, I. Likmeta, B. Lim, H. Lim, S. H. Lim, V. Lindenstruth, C. Lippmann, D. Liskova, D. H. Liu, J. Liu, G. S. S. Liveraro, I. M. Lofnes, C. Loizides, S. Lokos, J. Lömker, X. Lopez, E. López Torres, C. Lotteau, P. Lu, Z. Lu, F. V. Lugo, J. R. Luhder, G. Luparello, Y. G. Ma, M. Mager, A. Maire, E. M. Majerz, M. V. Makariev, M. Malaev, G. Malfattore, N. M. Malik, S. K. Malik, D. Mallick, N. Mallick, G. Mandaglio, S. K. Mandal, A. Manea, V. Manko, F. Manso, G. Mantzaridis, V. Manzari, Y. Mao, R. W. Marcjan, G. V. Margagliotti, A. Margotti, A. Marín, C. Markert, C. F. B. Marquez, P. Martinengo, M. I. Martínez, G. Martínez García, M. P. P. Martins, S. Masciocchi, M. Masera, A. Masoni, L. Massacrier, O. Massen, A. Mastroserio, S. Mattiazzo, A. Matyja, F. Mazzaschi, M. Mazzilli, Y. Melikyan, M. Melo, A. Menchaca-Rocha, J. E. M. Mendez, E. Meninno, A. S. Menon, M. W. Menzel, M. Meres, L. Micheletti, D. Mihai, D. L. Mihaylov, K. Mikhaylov, N. Minafra, D. Miśkowiec, A. Modak, B. Mohanty, M. Mohisin Khan, M. A. Molander, M. M. Mondal, S. Monira, C. Mordasini, D. A. Moreira De Godoy, I. Morozov, A. Morsch, T. Mrnjavac, V. Muccifora, S. Muhuri, J. D. Mulligan, A. Mulliri, M. G. Munhoz, R. H. Munzer, H. Murakami, S. Murray, L. Musa, J. Musinsky, J. W. Myrcha, B. Naik, A. I. Nambrath, B. K. Nandi, R. Nania, E. Nappi, A. F. Nassirpour, V. Nastase, A. Nath, S. Nath, C. Nattrass, M. N. Naydenov, A. Neagu, A. Negru, E. Nekrasova, L. Nellen, R. Nepeivoda, S. Nese, N. Nicassio, B. S. Nielsen, E. G. Nielsen, S. Nikolaev, V. Nikulin, F. Noferini, S. Noh, P. Nomokonov, J. Norman, N. Novitzky, A. Nyanin, J. Nystrand, M. R. Ockleton, S. Oh, A. Ohlson, V. A. Okorokov, J. Oleniacz, A. Onnerstad, C. Oppedisano, A. Ortiz Velasquez, J. Otwinowski, M. Oya, K. Oyama, S. Padhan, D. Pagano, G. Paić, S. Paisano-Guzmán, A. Palasciano, I. Panasenko, S. Panebianco, C. Pantouvakis, H. Park, J. Park, S. Park, J. E. Parkkila, Y. Patley, R. N. Patra, B. Paul, H. Pei, T. Peitzmann, X. Peng, M. Pennisi, S. Perciballi, D. Peresunko, G. M. Perez, Y. Pestov, M. T. Petersen, V. Petrov, M. Petrovici, S. Piano, M. Pikna, P. Pillot, O. Pinazza, L. Pinsky, C. Pinto, S. Pisano, M. Płoskoń, M. Planinic, D. K. Plociennik, M. G. Poghosyan, B. Polichtchouk, S. Politano, N. Poljak, A. Pop, S. Porteboeuf-Houssais, V. Pozdniakov, I. Y. Pozos, K. K. Pradhan, S. K. Prasad, S. Prasad, R. Preghenella, F. Prino, C. A. Pruneau, I. Pshenichnov, M. Puccio, S. Pucillo, S. Qiu, L. Quaglia, A. M. K. Radhakrishnan, S. Ragoni, A. Rai, A. Rakotozafindrabe, L. Ramello, M. Rasa, S. S. Räsänen, R. Rath, M. P. Rauch, I. Ravasenga, K. F. Read, C. Reckziegel, A. R. Redelbach, K. Redlich, C. A. Reetz, H. D. Regules-Medel, A. Rehman, F. Reidt, H. A. Reme-Ness, K. Reygers, A. Riabov, V. Riabov, R. Ricci, M. Richter, A. A. Riedel, W. Riegler, A. G. Riffero, M. Rignanese, C. Ripoli, C. Ristea, M. V. Rodriguez, M. Rodríguez Cahuantzi, S. A. Rodríguez Ramírez, K. Røed, R. Rogalev, E. Rogochaya, T. S. Rogoschinski, D. Rohr, D. Röhrich, S. Rojas Torres, P. S. Rokita, G. Romanenko, F. Ronchetti, E. D. Rosas, K. Roslon, A. Rossi, A. Roy, S. Roy, N. Rubini, J. A. Rudolph, D. Ruggiano, R. Rui, P. G. Russek, R. Russo, A. Rustamov, E. Ryabinkin, Y. Ryabov, A. Rybicki, J. Ryu, W. Rzesa, B. Sabiu, S. Sadovsky, J. Saetre, S. Saha, B. Sahoo, R. Sahoo, D. Sahu, P. K. Sahu, J. Saini, K. Sajdakova, S. Sakai, M. P. Salvan, S. Sambyal, D. Samitz, I. Sanna, T. B. Saramela, D. Sarkar, P. Sarma, V. Sarritzu, V. M. Sarti, M. H. P. Sas, S. Sawan, E. Scapparone, J. Schambach, H. S. Scheid, C. Schiaua, R. Schicker, F. Schlepper, A. Schmah, C. Schmidt, M. O. Schmidt, M. Schmidt, N. V. Schmidt, A. R. Schmier, J. Schoengarth, R. Schotter, A. Schröter, J. Schukraft, K. Schweda, G. Scioli, E. Scomparin, J. E. Seger, Y. Sekiguchi, D. Sekihata, M. Selina, I. Selyuzhenkov, S. Senyukov, J. J. Seo, D. Serebryakov, L. Serkin, L. Šerkšnytė, A. Sevcenco, T. J. Shaba, A. Shabetai, R. Shahoyan, A. Shangaraev, B. Sharma, D. Sharma, H. Sharma, M. Sharma, S. Sharma, S. Sharma, U. Sharma, A. Shatat, O. Sheibani, K. Shigaki, M. Shimomura, J. Shin, S. Shirinkin, Q. Shou, Y. Sibiriak, S. Siddhanta, T. Siemiarczuk, T. F. Silva, D. Silvermyr, T. Simantathammakul, R. Simeonov, B. Singh, B. Singh, K. Singh, R. Singh, R. Singh, S. Singh, V. K. Singh, V. Singhal, T. Sinha, B. Sitar, M. Sitta, T. B. Skaali, G. Skorodumovs, N. Smirnov, R. J. M. Snellings, E. H. Solheim, C. Sonnabend, J. M. Sonneveld, F. Soramel, A. B. Soto-Hernandez, R. Spijkers, I. Sputowska, J. Staa, J. Stachel, I. Stan, P. J. Steffanic, T. Stellhorn, S. F. Stiefelmaier, D. Stocco, I. Storehaug, N. J. Strangmann, P. Stratmann, S. Strazzi, A. Sturniolo, C. P. Stylianidis, A. A. P. Suaide, C. Suire, A. Suiu, M. Sukhanov, M. Suljic, R. Sultanov, V. Sumberia, S. Sumowidagdo, L. H. Tabares, S. F. Taghavi, J. Takahashi, G. J. Tambave, S. Tang, Z. Tang, J. D. Tapia Takaki, N. Tapus, L. A. Tarasovicova, M. G. Tarzila, A. Tauro, A. Tavira García, G. Tejeda Muñoz, L. Terlizzi, C. Terrevoli, S. Thakur, M. Thogersen, D. Thomas, A. Tikhonov, N. Tiltmann, A. R. Timmins, M. Tkacik, T. Tkacik, A. Toia, R. Tokumoto, S. Tomassini, K. Tomohiro, N. Topilskaya, M. Toppi, V. V. Torres, A. G. Torres Ramos, A. Trifiró, T. Triloki, A. S. Triolo, S. Tripathy, T. Tripathy, S. Trogolo, V. Trubnikov, W. H. Trzaska, T. P. Trzcinski, C. Tsolanta, R. Tu, A. Tumkin, R. Turrisi, T. S. Tveter, K. Ullaland, B. Ulukutlu, S. Upadhyaya, A. Uras, G. L. Usai, M. Vala, N. Valle, L. V. R. van Doremalen, M. van Leeuwen, C. A. van Veen, R. J. G. van Weelden, P. Vande Vyvre, D. Varga, Z. Varga, P. Vargas Torres, M. Vasileiou, A. Vasiliev, O. Vázquez Doce, O. Vazquez Rueda, V. Vechernin, P. Veen, E. Vercellin, R. Verma, R. Vértesi, M. Verweij, L. Vickovic, Z. Vilakazi, O. Villalobos Baillie, A. Villani, A. Vinogradov, T. Virgili, M. M. O. Virta, A. Vodopyanov, B. Volkel, M. A. Völkl, S. A. Voloshin, G. Volpe, B. von Haller, I. Vorobyev, N. Vozniuk, J. Vrláková, J. Wan, C. Wang, D. Wang, Y. Wang, Y. Wang, Z. Wang, A. Wegrzynek, F. T. Weiglhofer, S. C. Wenzel, J. P. Wessels, P. K. Wiacek, J. Wiechula, J. Wikne, G. Wilk, J. Wilkinson, G. A. Willems, B. Windelband, M. Winn, J. R. Wright, W. Wu, Y. Wu, Z. Xiong, R. Xu, A. Yadav, A. K. Yadav, Y. Yamaguchi, S. Yang, S. Yano, E. R. Yeats, Z. Yin, I.-K. Yoo, J. H. Yoon, H. Yu, S. Yuan, A. Yuncu, V. Zaccolo, C. Zampolli, F. Zanone, N. Zardoshti, A. Zarochentsev, P. Závada, N. Zaviyalov, M. Zhalov, B. Zhang, C. Zhang, L. Zhang, M. Zhang, M. Zhang, S. Zhang, X. Zhang, Y. Zhang, Z. Zhang, M. Zhao, V. Zherebchevskii, Y. Zhi, D. Zhou, Y. Zhou, J. Zhu, S. Zhu, Y. Zhu, S. C. Zugravel, N. Zurlo. Physical Review C, 2025; 111 (5) DOI: 10.1103/PhysRevC.111.054906

This paper is open access. A PDF version is available here. h/t to ScienceDaily for the complete list of names

Turning lead into gold (for approximately a microsecond)

A team (ALICE or A Large Ion Collider Experiment [Wikipedia entry]) at CERN’s (European Organization for Nuclear Research) Large Hadron Collider (LHC) has achieved a dream of alchemists everywhere, it has turned lead into gold. From a May 8, 2025 CERN press release (also here on the CERN website), Note: Links have been removed,

Near-miss collisions between high-energy lead nuclei at the LHC generate intense electromagnetic fields that can knock out protons and transform lead into fleeting quantities of gold nuclei. In a paper published in Physical Review Journals, the ALICE collaboration reports measurements that quantify the transmutation of lead into gold in CERN’s Large Hadron Collider (LHC).

2025 alchemy

Illustration of an ultra-peripheral collision where the two lead (208Pb) ion beams at the LHC pass by close to each other without colliding. In the electromagnetic dissociation process, a photon interacting with a nucleus can excite oscillations of its internal structure and result in the ejection of small numbers of neutrons (two) and protons (three), leaving the gold (203Au) nucleus behind (Image: CERN).

Alchemy

Calculations of the trajectories of various beams of ions emerging to the right of the ALICE interaction point (IP). Besides the main circulating lead beam, selected gold isotopes are shown together with the most intense products of other ultraperipheral interactions. The proton and neutron fluxes intercepted by the ZDCs are also indicated. 

Transforming the base metal lead into the precious metal gold was a dream of medieval alchemists. This long-standing quest, known as chrysopoeia, may have been motivated by the observation that dull grey, relatively abundant lead is of a similar density to gold, which has long been coveted for its beautiful colour and rarity. It was only much later that it became clear that lead and gold are distinct chemical elements and that chemical methods are powerless to transmute one into the other.

With the dawn of nuclear physics in the 20th century, it was discovered that heavy elements could transform into others, either naturally, by radioactive decay, or in the laboratory, under a bombardment of neutrons or protons. Though gold has been artificially produced in this way before, the ALICE collaboration has now measured the transmutation of lead into gold by a new mechanism involving near-miss collisions between lead nuclei at the LHC.

Extremely high-energy collisions between lead nuclei at the LHC can create quark–gluon plasma, a hot and dense state of matter that is thought to have filled the universe around a millionth of a second after the Big Bang, giving rise to the matter we now know. However, in the far more frequent interactions where the nuclei just miss each other without “touching”, the intense electromagnetic fields surrounding them can induce photon–photon and photon–nucleus interactions that open further avenues of exploration.

The electromagnetic field emanating from a lead nucleus is particularly strong because the nucleus contains 82 protons, each carrying one elementary charge. Moreover, the very high speed at which lead nuclei travel in the LHC (corresponding to 99.999993% of the speed of light) causes the electromagnetic field lines to be squashed into a thin pancake, transverse to the direction of motion, producing a short-lived pulse of photons. Often, this triggers a process called electromagnetic dissociation, whereby a photon interacting with a nucleus can excite oscillations of its internal structure, resulting in the ejection of small numbers of neutrons and protons. To create gold (a nucleus containing 79 protons), three protons must be removed from a lead nucleus in the LHC beams.

“It is impressive to see that our detectors can handle head-on collisions producing thousands of particles, while also being sensitive to collisions where only a few particles are produced at a time, enabling the study of rare electromagnetic ‘nuclear transmutation’ processes,” says Marco Van Leeuwen, ALICE spokesperson.

The ALICE team used the detector’s zero degree calorimeters (ZDC) to count the number of photon–nucleus interactions that resulted in the emission of zero, one, two and three protons accompanied by at least one neutron, which are associated with the production of lead, thallium, mercury and gold, respectively. While less frequent than the creation of thallium or mercury, the results show that the LHC currently produces gold at a maximum rate of about 89,000 nuclei per second from lead–lead collisions at the ALICE collision point. Gold nuclei emerge from the collision with very high energy and hit the LHC beam pipe or collimators at various points downstream, where they immediately fragment into single protons, neutrons, and other particles. The gold exists for just a tiny fraction of a second.

The ALICE analysis shows that, during Run 2 of the LHC (2015–2018), about 86 billion gold nuclei were created at the four major experiments. In terms of mass, this corresponds to just 29 picograms (2.9 ×10-11 g). Since the luminosity in the LHC is continually increasing thanks to regular upgrades to the machines, Run 3 has produced almost double the amount of gold that Run 2 did, but the total still amounts to trillions of times less than would be required to make a piece of jewellery. While the dream of medieval alchemists has technically come true, their hopes of riches have once again been dashed.

“Thanks to the unique capabilities of the ALICE ZDCs, the present analysis is the first to systematically detect and analyse the signature of gold production at the LHC experimentally,” says Uliana Dmitrieva of the ALICE collaboration.

“The results also test and improve theoretical models of electromagnetic dissociation which, beyond their intrinsic physics interest, are used to understand and predict beam losses that are a major limit on the performance of the LHC and future colliders,” adds John Jowett, also of the ALICE collaboration.

Richard Currie’s May 12, 2025 article for The Register (the link will take you to an excerpt on MSN) presents a practical perspective on the accomplishment,

CERN boffins turn lead into gold for about a microsecond at unimaginable cost

So alchemists had the right idea – they just lacked a 27 km particle accelerator

The dream of every medieval alchemist – turning lead into gold – has finally come true thanks to some impractical physics at CERN’s Large Hadron Collider.…

Physicists at the multibillion-euro atom smasher near Geneva managed to transmute lead into gold during high-speed ion collisions, proving that you can defy nature if you throw enough money, energy, and hardware at the problem. Sadly – if you’re an alchemist, and less so if you’re a physicist – their golden bounty lasted for about a microsecond and weighed less than a fart in a vacuum.

Ulrik Egede’s (professor of Physics, Monash University) May 12, 2025 essay for The Conversation about the accomplishment adds more information, Note: Links have been removed,

Physicists at the Large Hadron Collider turned lead into gold – by accident

Medieval alchemists dreamed of transmuting lead into gold. Today, we know that lead and gold are different elements, and no amount of chemistry can turn one into the other.

But our modern knowledge tells us the basic difference between an atom of lead and an atom of gold: the lead atom contains exactly three more protons. So can we create a gold atom by simply pulling three protons out of a lead atom?

As it turns out, we can. But it’s not easy.

While smashing lead atoms into each other at extremely high speeds in an effort to mimic the state of the universe just after the Big Bang, physicists working on the ALICE experiment at the Large Hadron Collider in Switzerland incidentally produced small amounts of gold. Extremely small amounts, in fact: a total of some 29 trillionths of a gram.

Here’s a link to and a citation for the paper,

Proton emission in ultraperipheral Pb-Pb collisions at √s NN = 5.02 TeV (journal or PDF) by S. Acharya, A. Agarwal, G. Aglieri Rinella, L. Aglietta, M. Agnello, N. Agrawal, Z. Ahammed, S. Ahmad, S. U. Ahn et al. (ALICE Collaboration). Phys. Rev. C 111, 054906 – Published 7 May, 2025 DOI: https://doi.org/10.1103/PhysRevC.111.054906

This paper is open access. There were pages of authors for this paper; this is one big collaboration. I apologize for not tagging all of the authors as I usually do.

You can find out more about the ALICE mission/collaboration here.

I do have another ‘lead into gold’ story in my March 23, 2017 posting “Making lead look like gold (so to speak).”

Canadian quantum companies chase US DARPA’s (Defense Advanced Research Projects Agency) $$$ and RIP Raymond Laflamme

Canada’s quantum community, i.e., three companies, are currently ‘competing’ for US science funding. It seems like an odd choice given all of the news about science funding cuts and funding freezes along with the Trump administration’s chaotic and, increasingly, untrustworthy government management.

On April 3, 2025 the US Defense Advanced Research Projects Agency (DARPA) announced that approximately 20 companies were embarked on what they describe as Stage A of the Quantum Benchmarking Initiative (QBI) ‘challenge’,

Here’s more from that April 3, 2025 DARPA notice,

Nearly 20 quantum computing companies have been chosen to enter the initial stage of DARPA’s Quantum Benchmarking Initiative (QBI), in which they will characterize their unique concepts for creating a useful, fault-tolerant quantum computer within a decade.

QBI, which kicked off in July 2024, aims to determine whether it’s possible to build such a computer much faster than conventional predictions. Specifically, QBI is designed to rigorously verify and validate whether any quantum computing approach can achieve utility-scale operation — meaning its computational value exceeds its cost — by the year 2033.

“We selected these companies for Stage A following a review of their written abstracts and daylong oral presentations before a team of U.S. quantum experts to determine whether their proposed concepts might be able to reach industrial utility,” said Joe Altepeter, DARPA QBI program manager. “For the chosen companies, now the real work begins. Stage A is a six-month sprint in which they’ll provide comprehensive technical details of their concepts to show that they hold water and could plausibly lead to a transformative, fault-tolerant quantum computer in under 10 years.”

The following companies* are pursuing a variety of technologies for creating quantum bits (qubits) — the building block for quantum computers — including superconducting qubits, trapped ion qubits, neutral atom qubits, photonic qubits, semiconductor spin qubits, and other novel approaches listed below:

  • Alice & Bob — Cambridge, Massachusetts, and Paris, France (superconducting cat qubits)
  • Atlantic Quantum — Cambridge, Massachusetts (fluxonium qubits with co-located cryogenic controls)
  • Atom Computing — Boulder, Colorado (scalable arrays of neutral atoms)
  • Diraq — Sydney, Australia, with operations in Palo Alto, California, and Boston, Massachusetts (silicon CMOS spin qubits)
  • Hewlett Packard Enterprise — Houston, Texas (superconducting qubits with advanced fabrication)
  • IBM — Yorktown Heights, NY (quantum computing with modular superconducting processors)
  • IonQ — College Park, Maryland (trapped-ion quantum computing)
  • Nord Quantique — Sherbrooke, Quebec, Canada (superconducting qubits with bosonic error correction)
  • Oxford Ionics — Oxford, UK and Boulder, Colorado (trapped-ions)
  • Photonic Inc. — Vancouver, British Columbia, Canada (optically-linked silicon spin qubits)
  • Quantinuum — Broomfield, Colorado (trapped-ion quantum charged coupled device (QCCD) architecture)
  • Quantum Motion — London, UK (MOS-based silicon spin qubits)
  • QuEra Computing — Boston, Massachusetts (neutral atom qubits)
  • Rigetti Computing — Berkeley, California (superconducting tunable transmon qubits)
  • Silicon Quantum Computing Pty. Ltd. — Sydney, Australia (precision atom qubits in silicon)
  • Xanadu — Toronto, Canada (photonic quantum computing)

Companies that successfully complete Stage A will move to a yearlong Stage B, during which DARPA will rigorously examine their research and development approach, followed by a final Stage C where the QBI independent verification and validation (IV&V) team will test the companies’ computer hardware.

“During Stage B we’ll thoroughly review all aspects of their R&D plans to see if they can go the distance — not just meet next year’s milestones — and stand the test of trying to build a transformative technology on this kind of a timeline,” Altepeter explained. “Those who make it through Stages A and B will enter the final portion of the program, Stage C, where a full-size IV&V team will conduct real-time, rigorous evaluation of the components, subsystems, and algorithms – everything that goes into building a fault-tolerant quantum computer for real. And we’ll do all these evaluations without slowing the companies down.”

QBI is not a competition between companies [emphasis mine]; rather, it aims to scan the landscape of commercial quantum computing efforts to spot every company on a plausible path to a useful quantum computer.

DARPA recently announced that Microsoft and PsiQuantum are entering the third and final phase of the Underexplored Systems for Utility-Scale Quantum Computing (US2QC) program, a pilot effort that was expanded to become QBI. Both companies were participating in the second phase of US2QC when the QBI expansion was announced. The final Phase of US2QC has the same technical goals as Stage C of QBI – verification and validation of an industrially useful quantum computer.

“We’ve built and are expanding our world-class IV&V team of U.S. quantum experts, leveraging federal and state test facilities to separate hype from reality in quantum computing,” Altepeter said. “Our team is eager to scrutinize the commercial concepts, designs, R&D plans, and prototype hardware — all with the goal of helping the U.S. government identify and support efforts that are genuinely advancing toward transformative, fault-tolerant quantum computing.”

For more information on QBI visit: www.darpa.mil/QBI.

*16 of the 18 companies are being announced; two are still in negotiations. DARPA will update this announcement once their agreements are signed.

Editor’s Note: This update was edited on April 29, 2025 to add QuEra Computing to the list of companies selected for Stage A.

This sounds like DARPA will pick and choose which bits of technology it may want to develop. Also, who owns the technology? An April 5, 2025 article by Sean Silcoff and Ivan Semeniuk for the Globe and Mail raises the question and answers it (more or less), Note: I have the paper version of the article,

Three Canadian quantum computer companies are in the running for up to US$316-million apiece in funding from the US government if they can prove within eight years that their machines will work at scale.

The companies – Xanadu Quantum Technologies Inc. of Toronto , Vancouver-based Photonics Inc. and Nord Quantique from Sherbrooke, Que. – are among 18 groups from Canada, the US, Britain, and Australia that have qualified for the first stage (Stage A) of the Quantum Benchmarking Initiative (QBI).

QBI is not meant to choose a winner and fund your research and development plan, [emphasis mine]” said Dr. Joe Altpeter, the QBI’s program manager. Rather, the program is structured to reward only those that can quickly execute against their roadmaps and deliver something useful.

However, making it through will likely anoint a winner or winners in the global race to develop a working quantum computer. [emphasis mine]

“I can’t think of any other program that has generated this much excitement and interest from startups and big companies – and a lot of investors know about it,” said Christian Weedbrook, Xanadu’s founder and chief executive officer [CEO].

Quantum computer developers have collectively raised and spend billions of dollars so far, and QBI will likely influence financiers in determining who to continue backing.

Conversely, “groups that don’t get in will be challenged to raise venture capital,” said Ray [Raymond] Laflamme, co-chair of the federal Quantum Advisory Council. The council has recommended the Canadian government provide matching funds [emphasis mine] to any domestic company that makes it through QBI.

Council co-chair Stephanie Simmons, who is also the founder and chief quantum officer [CQO] of Photonic, said the US government will gain access to “deep knowledge that other governments won’t have” [emphasis mine] through QBI.

That will give them geopolitical and other advantages [emphasis mine] that are important in the upcoming economy.” Creating a matching program here would mean “This information would also be owned by the Canadian government.”

“I would love to be proved surprised if companies make it through the gauntlet, you’re really will to advocate for them inside the US government in rooms that they can’t go to and say, ‘Look, we did our best to show this doesn’t work, these guys made it, they can really build this thing,'” he [Dr. Joe Altpeter] said adding that the program was designed to a “simple, cheap way” to determine that.

Mr. Laflamme agreed that QBI “is a very smart way for the US to keep at the front. By tis, the US will who has the lead in the world and people are, everywhere.” [p. B11 paper version]

Clearly, the US has much to gain from this ‘non-competition’. It’s not clear to me what Canada will gain.

One quick note. D-Wave Systems is mentioned in Silcoff’s and Semeniuk’s April 5, 2025 article and described as a Canadian company. That is questionable. It was headquartered in the Vancouver area, British Columbia, Canada for a number of years but is now, according to its Wikipedia entry, headquartered in Palo Alto, California, US (see the sidebar). The company retains laboratories and offices in British Columbia.

It would seem that Silcoff’s and Semeniuk’s April 5, 2025 article hosted one of M. Laflamme’s last interviews.

RIP Raymond Laflamme, July 19, 1960 – June 19, 2025

I’ve had to interview more than one ‘horse’s behind’ (two members of the forestry faculty at the University of British Columbia spring to mind); M. Laflamme was most assuredly not one of them. It was a privilege to interview him for a May 11, 2015 posting about Research2Reality, a Canadian social media engagement project (scroll down to the subhead with his name),

Who convinces a genius that he’s gotten an important cosmological concept wrong or ignored it? Alongside Don Page, Laflamme accomplished that feat as one of Stephen Hawking’s PhD students at the University of Cambridge. Today (May 11, 2015), Laflamme is (from his Wikipedia entry)

… co-founder and current director of the Institute for Quantum Computing at the University of Waterloo. He is also a professor in the Department of Physics and Astronomy at the University of Waterloo and an associate faculty member at Perimeter Institute for Theoretical Physics. Laflamme is currently a Canada Research Chair in Quantum Information.

The Council of Canadian Academies’ (CCA) July 22, 2025 The Advance newsletter (received via email) held this notice, Note: A link has been removed,

And Ray Laflamme, the theoretical physicist and Canada Research Chair in Quantum Information, died on June 19 [2025] following a lengthy battle with cancer. Laflamme, founding director of the Institute for Quantum Computing at the University of Waterloo, served as chair of our Expert Panel on the Responsible Adoption of Quantum Technologies. …

I have a commentary on the CCA report issued by Laflamme and his expert panel. The report was published in November 2023 and my commentary published in two parts about 15 months later,

To wildly paraphrase John Donne (For Whom the Bell Tolls), M. Laflamme’s death diminishes us but more importantly his life enhanced us all in ways both small and large. Thank you.

And the quantum goes on

Members of the Canadian quantum community that M. Laflamme helped build have recently announced a breakthrough. From a July 10, 2025 TRIUMF news release (also on Quantum Wire), Note: A link has been removed,

A cross-Canada team of researchers have brought quantum and generative AI together to prepare for the Large Hadron Collider’s next upgrade.

In the world of collider physics, simulations play a key role in analyzing data from particle accelerators. Now, a cross-Canada effort is combining quantum with generative AI to create novel simulation models for the next big upgrade of the Large Hadron Collider (LHC) – the world’s largest particle accelerator [located at the European particle physics laboratory CERN, in Switzerland].

In a paper published in npj Quantum Information, a team that includes researchers from TRIUMF, Perimeter Institute, and the National Research Council of Canada (NRC) are the first to use annealing quantum computing and deep generative AI to create simulations that are fast, accurate, and computationally efficient. If the models continue to improve, they could represent a new way to create synthetic data to help with analysis in particle collisions

Why simulations are essential for collider physics

Simulations broadly assist collider physics researchers in two ways. First, researchers use them to statistically match observed data to theoretical models. Second, scientists use simulated data to help optimize the design of the data analysis, for instance by isolating the signal they are studying from irrelevant background events.

“To do the data analysis at the LHC, you need to create copious amounts of simulations of collision events,” explains Wojciech Fedorko, one of the principal investigators on the paper and Deputy Department Head, Scientific Computing at TRIUMF, Canada’s particle accelerator centre in Vancouver. “Basically, you take your hypothesis, and you simulate it under multiple scenarios. One of those scenarios will statistically best match the real data that has been produced in the real experiment.”

Currently, the LHC is preparing for a major shutdown in anticipation of its high luminosity upgrade. When it comes back online, it will require more complex simulations that are reliably accurate, fast to produce, and computationally efficient. Those requirements have the potential to create a bottleneck, as the computational power required to create these simulations will no longer be feasible.

“Simulations are projected to cost millions of CPU years annually when the high luminosity LHC turns on,” says Javier Toledo-Marín, a researcher scientist jointly appointed at Perimeter Institute and TRIUMF. “It’s financially and environmentally unsustainable to keep doing business as usual.”

When quantum and generative AI collide 

Particle physicists use specialized detectors called calorimeters to measure the energy released by the showers of particles that result from collisions. Scientists combine the readings from these and other detectors to piece together what happened at the initial collision. It’s through this process of comparing simulations to experimental data that researchers discovered the Higgs boson at the Large Hadron Collider in 2012. Compared to the other sub-detector systems within the LHC experiments, calorimeters and the data they produce are the most computationally intensive to simulate, and as such they represent a major opportunity for efficiency gains.

In 2022, a scientific “challenge” was issued by researchers seeking to spur rapid advances in calorimeter computations, in an attempt to address the coming computational bottleneck at the LHC. Named the “CaloChallenge,” the challenge provided datasets based on LHC experiments for teams to develop and benchmark simulations of calorimeter readings. Fedorko and the team are the only ones so far to take a full-scale quantum approach, thanks to an assist from D-Wave Quantum Inc.’s annealing quantum computing technology.

Annealing quantum computing is a process that is usually used to find the lowest-energy state for a system or a state near to the lowest energy one, which is useful for problems involving optimization.

After discussing with D-Wave, Fedorko, Toledo-Marín, and the rest of the team determined that D-Wave’s annealing quantum computers could be used for simulation generation. You just need to use annealing to manipulate qubits (the smallest bits of quantum information) in an unconventional way.

“In the D-Wave quantum processor, there is a mechanism that ensures the ratio between the ‘bias’ on a given qubit and the ‘weight’ linking it to another qubit is the same throughout the annealing process. With the help of D-Wave, the team realized that they could use this mechanism to instead guarantee outcomes for a subset of the qubits on a device. “We basically hijacked that mechanism to fix in place some of the spins,” says Fedorko. “This mechanism can be used to ‘condition’ the processor – for example, generate showers with specific desired properties – like the energy of a particle impinging on the calorimeter.”

The end result: an unconventional way to use annealing quantum computing to generate high-quality synthetic data for analyzing particle collisions.

The next phase of collider physics simulations

The published result is important because of its performance in three metrics: the speed to generate the simulations, their accuracy, and how much computational resources they require. “For speed, we are in the top bound of results published by other teams and our accuracy is above average,” Toledo-Marín says. “What makes our framework competitive is really the unique combination of several factors – speed, accuracy, and energy consumption.”

Essentially, many types of quantum processing units (QPU) must be kept at an extremely low temperature. But giving it multiple tasks doesn’t significantly impact its energy requirements. A standard graphics processing unit (GPU), by contrast, will increase its energy use for each job it receives. As advanced GPUs become more and more power-hungry, QPUs by contrast can potentially scale up without leading to increasing computational energy requirements.

Looking forward, the team is excited to test their models on new incoming data so they can finetune their models, increasing both speed and accuracy. If all goes well, annealing quantum computing could become an essential aspect of generating simulations.

“It’s a good example of being able to scale something in the field of quantum machine learning to something practical that can potentially be deployed,” says Toledo-Marín.

The authors are grateful for the support of their many funders and contributors, which include the University of British Columbia, the University of Virginia, the NRC, D-Wave, and MITACS [originally funded as: Mathematics of Information Technology and Complex Systems; now a nonprofit research organization].

A joint July 10, 2025 Perimeter Institute for Theoretical Physics and TRIUMF news release on Newswise (also on the Quantum Insider but published July 11, 2025) is markedly shorter more ‘boosterish’ than what appears to be the TRIUMF news release,

In a landmark achievement for Canadian science, a team of scientists led by TRIUMF and the Perimeter Institute for Theoretical Physics have unveiled transformative research that – for the first time – merges quantum computing techniques with advanced AI to model complex simulations in a fast, accurate and energy-efficient way.

“This is a uniquely Canadian success story,” said Wojciech Fedorko, Deputy Department Head, Scientific Computing at TRIUMF. “Uniting the expertise from our country’s research institutions and industry leaders has not only advanced our ability to carry out fundamental research, but also demonstrated Canada’s ability to lead the world in quantum and AI innovation.”

In any event, here’s a link to and a citation for the paper,

Conditioned quantum-assisted deep generative surrogate for particle-calorimeter interactions by J. Quetzalcóatl Toledo-Marín, Sebastian Gonzalez, Hao Jia, Ian Lu, Deniz Sogutlu, Abhishek Abhishek, Colin Gay, Eric Paquet, Roger G. Melko, Geoffrey C. Fox, Maximilian Swiatlowski & Wojciech Fedorko. npj Quantum Information volume 11, Article number: 114 (2025) DOI: https://doi.org/10.1038/s41534-025-01040-x Published: 07 July 2025

This paper is open access.

Raymond Julien Joseph Laflamme (July 19, 1960 – June 19, 2025))

[image downloaded from https://uwaterloo.ca/news/global-impact/opinion-canadas-stake-quantum-race]

News and events at the Perimeter Institute for Theoretical Physics (Waterloo, Ontario, Canada)

I believe this is an April (?) 2024 newsletter and it’s definitely from Canada’s Perimeter Institute for Theoretical Physics (PI). Received via email, I was able to find this online copy (Note: I’m not sure how long this copy will remain online) and am excerpting a few items for inclusion here,

The current state of theoretical physics

Join the latest episode of Conversations at Perimeter as Neil Turok [director of the Perimeter Institute, 2008 – 2019] delves into the intriguing topic of the simplicity of nature.

Watch podcast here

Public Lecture – May 8 [2024]

Free tickets to attend the event in person will be available on Monday, April 22, at 9:00 AM EDT. Live-stream will also be available on the PI YouTube channel. 

Check details here

Quantum Lectures playlist

Explore quantum physics with our YouTube Quantum Lectures playlist. Discover the universe’s secrets from basics to advanced topics

Start watching now!

I found this poster for the free May 8, 2024 PI event,

[downloaded from https://www.eventbrite.ca/e/hydrogen-to-higgs-boson-particle-physics-at-the-large-hadron-collider-tickets-877493876807]

It (the May 8, 2024 PI hybrid [live or streaming] event) may be of more interest than usual as Peter Higgs of the Higgs Boson died on April 8, 2024, from the Hydrogen to Higgs Boson: Particle Physics at the Large Hadron Collider eventbrite webpage,

Hydrogen to Higgs Boson: Particle Physics at the Large Hadron Collider

Explore particle physics with Dr. Clara Nellist at the Perimeter Institute on May 8, as she discusses CERN’s groundbreaking research.

Date and time

Starts on Wednesday, May 8 [2024] · 6pm EDT

Location

Perimeter Institute for Theoretical Physics
31 Caroline Street North Waterloo, ON N2L 2Y5

Agenda

6:00 p.m.

Doors Open

Perimeter’s main floor will be open for ticket holders, with scientists available to answer science questions until the show begins.

7:00 p.m. – 8:00 p.m.

Public Lecture

The public lecture will begin at 7:00pm, including a live stream for virtual attendees. This will include a full presentation as well as a Q&A session.

8:00 p.m. – 8:30 p.m.

Post-Event Discussion

Following the lecture, discussion will continue in the atrium, where you can ask questions to the presenter as well as other researchers in the crowd.

About this event

About the Speaker:

Dr Clara Nellist – Particle Physicist and Science Communicator, is currently working at CERN [European Organization for Nuclear Research] on the ATLAS experiment, with research focusing on top quarks and searching for dark matter with machine learning. Learn more about her work on her Instagram here.

About the Event:

Registration to attend the event in person will be available on Monday, April 22 at 9:00 AM EDT.

Tickets for this event are 100% free. [emphasis mine] As always, our public lectures are live-streamed in real-time on our YouTube channel – available here: https://www.youtube.com/@PIOutreach

The existence of the Higgs boson was confirmed (or as close to confirmed as scientists will get) in 2012 (see my July 4, 2012 posting “Tears of joy as physicists announce they’re pretty sure they found the Higgs Boson” for an account of the event. Peter Higgs and and François Englert were awarded the 2013 Nobel Prize in Physics.

If you are planning to attend the lecture in person, free tickets will be made available on Monday, April 22, at 9:00 AM EDT. Go here and, remember, these tickets go quickly.

The sense of beauty: an art/science film about CERN, the European Particle Physics Laboratory, in Vancouver, Canada; art/sci September in Toronto (Canada), a science at the bar night in Vancouver (Canada), and a festival in Calgary (Canada)

Compared to five or more years ago, there’s a lollapalooza of art/sci (or sciart) events coming up in September 2018. Of course, it’s helpful if you live in or are visiting Toronto or Vancouver or Calgary at the right time.  All of these events occur from mid September (roughly) to the end of September. In no particular date order:

Sense of beauty in Vancouver

The September 10, 2018 Dante Alighieri Society of British Columbia invitation (received via email) offered more tease than information. Happily, the evite webpage for “The Sense of Beauty: Art and Science at CERN” (2017) by Valerio Jalongo filled in the details,

The Dante Alighieri Society of British Columbia

Invites you to the screening of the documentary

“The Sense of Beauty: Art and Science at CERN” (2017) by Valerio Jalongo

TUESDAY, SEPTEMBER 25, 2018 at 6:30 pm

The CINEMATHEQUE – 1131 Howe Street, Vancouver

Duration of film: 75’. Director in attendance; Q&A with the film director to follow the screening

Free Admission

RSVP: info@dantesocietybc.ca

Director Jalongo will discuss the making of his documentary in a seminar open to the public on September 24 (1:00-2:30 pm) at UBC  [University of British Columbia] (Buchanan Penthouse, *1866 Main Maill, Block C, 5th floor*, Vancouver).

The Sense of Beauty is the story of an unprecedented experiment that involves scientists from throughout the world collaborating around the largest machine ever constructed by human beings: the LHC (Large Hadron Collider). As the new experiment at CERN proceeds in its exploration of the mysterious energy that animates the universe, scientists and artists guide us towards the shadow line where science and art, in different ways, pursue truth and beauty.

Some of these men and women believe in God, while others believe only in experiment and doubt. But in their search for truth they are all alert to an elusive sixth – or seventh – sense: the sense of beauty. An unmissable opportunity for lovers of science, of beauty, or of both.

Rome-born Valerio Jalongo is a teacher, screenwriter and director who works in cinema and TV, for which he created works of fiction and award-winning documentaries. Among them: Sulla mia pelle (On My Skin, 2003) and La scuola è finita (2010), starring Valeria Golino, on the difficulties facing public schools in Italy.

This event is presented by the Dante Alighieri Society of BC in collaboration with the Consulate General of Italy in Vancouver and in association with ARPICO (www.arpico.ca), the Society of Italian Researchers and Professionals in Western Canada.

RSVP: info@dantesocietybc.ca

I searched for more information both about the film and about the seminar at UBC. I had no luck with the UBC seminar but I did find more about the film. There’s an April (?) 2017 synopsis by Luciano Barisone on the Vision du Réel website,

From one cave to another. In prehistoric times, human beings would leave paintings in caves to show their amazement and admiration for the complexity of the world. These reproductions of natural forms were the results of an act of creation and also of mystical gestures which appropriated the soul of things. In another gigantic and modern den, the immense CERN laboratory, the same thing is happening today, a combination of enthralled exploration of the cosmos and an attempt to control it. Valerio Jalongo’s film tackles the big questions that have fascinated poets, artists and philosophers since the dawn of time. Who are we? Where do we come from? Where are we going? The scientists at CERN attempt to answer them through machines that explore matter and search for the origins of life. In their conversations or their words to camera, the meaning of existence thus seems to become a pure question of the laws of physics and mathematical formulae. If only for solving the mystery of the universe a sixth sense is necessary. That of beauty…

There’s also a February 5, 2018 essay by Stefano Caggiano for Interni, which uses a description of the film to launch into a paean to Italian design,

The success of the documentary The Sense of Beauty by Valerio Jalongo, which narrates the ‘aesthetic’ side of the physicists at CERN when faced with the fundamental laws of nature, proves that the yearning for beauty is not just an aspect of art, but something shared by all human efforts to interpret reality.

It is no coincidence that the scientists themselves define the LHC particle accelerator (27 km) as a grand machine for beauty, conceived to investigate the meaning of things, not to perform some practical function. In fact, just as matter can be perceived only through form, and form only if supported by matter (Aristotle already understood this), so the laws of physics can be glimpsed only when they are applied to reality.

This is why in the Large Hadron Collider particles are accelerated to speeds close to that of light, reconstructing the matter-energy conditions just a few instants after the Big Bang. Only in this way is it possible to glimpse the hidden fundamental laws of the universe. It is precisely this evanescence that constitutes ‘beauty.’

The quivering of the form that reveals itself in the matter that conceals it, and which – given the fact that everything originates in the Big Bang – is found everywhere, in the most faraway stars and the closest objects: you just have to know how to prove it, grasp it, how to wait. Because this is the only way to establish relations with beauty: not perceiving it but awaiting it. Respecting its way of offering itself, which consists in denying itself.

Charging the form of an object with this sensation of awaiting, then, means catalyzing the ultimate and primary sense of beauty. And it is what is held in common by the work of the five Italian designers nominated for the Rising Talent Awards of Maison & Object 2018 (with Kensaku Oshiro as the only non-Italian designer, though he does live and work in Milan).

There’s a trailer (published by CERN on November 7, 2017,

It’s in both Italian and English with subtitles throughout, should you need them.

*The address for the Buchanan Penthouse was corrected from: 2329 West Mall to 1866 Main Maill, Block C, 5th floor on Sept. 17, 2018.

Toronto’s ArtSci Salon at Nuit Blanche, Mycology, Wild Bees and Art+Tech!

From a Tuesday, September 11, 2018 Art/Sci Salon announcement (received via email),

Baba Yaga Collective and ArtSci Salon Present:
Chaos Fungorum

In 1747, Carl Linnaeus, known as the “father of taxonomy”, observed
that the seeds of fungus moved in water like fish until “..by a law of
nature thus far unheard of and surpassing all human understanding..,”
they changed back to plant in their adult life.

He proceeded to include fungi in the new genus of “Chaos”. But why
delimiting fungi within categories and boundaries when it is exactly
their fluidity that make them so interesting?

Chaos Fungorum draws on the particular position occupied by fungi and
other hybrid organisms: neither plant nor animal, fungi extend across,
and can entertain, communications and collaborations between animal,
human and industrial realms.

Mixing different artistic practices and media, the artists featured in
this exhibition seek to move beyond rigid comprehensions of the living
by working with, rather than merely shaping, sculpting and manipulating
plants, microorganisms and fungi. Letting the non-human speak is to move
away from an anthropocentric approach to the world: it not only opens to
new rewarding artistic practices, but it also fosters new ideas of
sustainable coexistence, new unusual life collaborations and
adaptations, and new forms of communications and languages.

THE EXHIBITION
September 26 – October 7, 2018

Baba Yaga Collective 906 Queen Street West @Crawford, Toronto

info@babayagacollective.ca

FEATURING

BIO.CHROME COLLECTIVE
Robyn Crouch • Mellissa Fisher • Shavon Madden
Tracy Maurice • Tosca Teran • Alexis Williams

SPECIAL GUEST
Whitefeather Hunter

SPECIAL NUIT BLANCHE OPENING RECEPTION
September 29
6:00 – 9:00 pm

6:30pm: Artsci Salon introduction with Roberta Buiani and Stephen Morris
rethinking categories and the “non-human” in art and science

Followed by artist remarks.
Scientists from the University of Toronto will act as respondent.

9:30pm onward: Tosca Teran & Andrei Gravelle of Nanotopia [emphasis mine]

BIO-SONIFICATIONS: NON-HUMAN COLLABORATIONS Mycelium to MIDI •

Midnight Mushroom music live performance

This Special program is co-presented by The Baba Yaga Collective and
ArtSci Salon. For more information contact artscisalon@gmail.com
https://www.facebook.com/events/1763778620414561/

 All the Buzz on Wild Bee Club!
Summer Speaker Series

Wed Sept 19 at 7pm
High Park Nature Centre,
All the Buzz on Wild Bee Club! – Summer Speaker Series

The speaker series will feature the club’s biologist/leader SUSAN FRYE.
A major component of this club will use the SONIC SOLITARIES AUDIO BEE
CABINET  – an observable nest site for bees in OURSpace – to encompass a
sensory experience with stem nesting bees and wasps, and to record
weekly activity at the cabinet. Pairing magnified views in tandem with
amplified sound via headphones, the cabinet facilitates an enhanced
perception of its tiny inhabitants: solitary bees and wasps and other
nest biota in action, up close. As citizen scientists, we can gather and
record observations to compile them into a database that will contribute
to our growing understanding of native bees, the native (and non-native)
plants they use for food and nest material sources, their co-evolution,
and how pollination in a park and restored habitat setting is
facilitated by native bees.

Fri, Sept 21, 8pm
Music Gallery, 918 Bathurst (their new location) –
Trio Wow & Flutter
with Bea Labikova, fujara, saxophones,
Kayla Milmine-Abbott, soprano saxophone,
Sarah Peebles, shō, cracklebox, amplifiers.

Call for Participants: Art+Tech Jam

ChangeUp’s Art+Tech Jam
September 21-23

This three days event will unite a diverse group of artists and
technologists in an intensive, collaborative three-day creation period
and culminating showcase (public exhibition and interdisciplinary rave).

ChangeUo is currently accepting applicants from tech and arts/culture
spaces of all ages, backgrounds, and experience levels.
Limited spots available.
For more information and to apply
https://tinyurl.com/changeup-artsorg

I looked up Nanotopia and found it on SoundCloud. Happy listening!

Et Al III (the ultimate science bar night in Vancouver) and more

A September 12, 2018 Curiosity Collider announcement (received via email) reveals details about the latest cooperative event/bar night put on by three sciencish groups,

Curiosity Collider is bringing art + science to Vancouver’s Ultimate Bar Science Night with Nerd Nite & Science Slam

Do you enjoy learning about science in a casual environment? This is the third year that Curiosity Collider is part of Et al, the Ultimate Bar Science Night where we bring together awesome speakers and activities. Come and enjoy Curiosity Collider’s segment on quantum physics with Spoken Word Poet Angelica Poversky, Physicist James Day, and CC’s own Creative Director Char Hoyt.

When: Drinks and mingling start at 6:30pm. Presentations start at 7:30pm.
Where: Rio Theatre, 1660 E Broadway, Vancouver, BC V5N 1W1
Cost: $15-20 via Eventbrite and at the door. Proceeds will be used to cover the cost of running this event, and to fund future science bar events.

Special Guest talk by Dr. Carin Bondar – Biologist with a Twist!

Dr. Carin Bondar is a biologist, author and philosopher. Bondar is author of the books Wild Sex and Wild Moms (Pegasus). She is the writer and host of an online series based on her books which have garnered over 100,000,000 views. Her TED talk on the subject has nearly 3 million views. She is host of several TV series including Worlds Oddest Animal Couples (Animal Planet, Netflix), Stephen Hawking’s Brave New World (Discovery World HD, National Geographic) and Outrageous Acts of Science (The Science Channel). Bondar is an adventurer and explorer, having discovered 11 new species of beetles and snails in the remote jungles of Borneo. Bondar is also a mom of 4 kids, two boys and two girls.

Follow updates on twitter via @ccollider or #ColliderCafe. This event is part of the Science Literacy Week celebration across Canada.

Head to the Facebook event page – let us know you are coming and share this event with others!

Looking for more Art+Science in Vancouver?
For more Vancouver art+science events, visit the Curiosity Collider events calendar.

Devoted readers 🙂 will note that the Vancouver Biennale’s Curious Imaginings show was featured here in a June 18, 2018 post and mentioned more recently in the context of a September 11, 2018 post on xenotransplantation.

Finally for this section, special mention to whomever wrote up the ‘bar night’ description on Eventbrite,

Et Al III: The Ultimate Bar Science Night Curiosity Collider + Nerd Nite Vancouver + Science Slam Canada

POSTER BY: Armin Mortazavi IG:@Armin.Scientoonist

Et Al III: The Ultimate Bar Science Night

Curiosity Collider + Nerd Nite Vancouver + Science Slam Canada

Special Guest talk by Dr. Carin Bondar – Biologist with a Twist!

6:30pm – Doors open
6:30-7:30 Drinks, Socializing, Nerding
7:30pm-945pm Stage Show with two intermissions

You like science? You like drinking while sciencing? In Vancouver there are many options to get educated and inspired through science, art, and culture in a casual bar setting outside of universities. There’s Nerd Nite which focuses on nerdy lectures in the Fox Cabaret, Curiosity Collider which creates events that bring together artists and scientists, and Science Slam, a poetry-slam inspired science communication competition!

In this third installment of Et Al, we’re making the show bigger than ever. We want people to know all about the bar science nights in Vancouver, but we also want to connect all you nerds together as we build this community. We encourage you to COME DRESSED AS YOUR FAVOURITE SCIENTIST. We will give away prizes to the best costumes, plus it’s a great ice breaker. We’re also encouraging science based organizations to get involved in the show by promoting your institution. Contact Kaylee or Michael at vancouver@nerdnite.com if your science organization would like to contribute to the show with some giveaways, you will get a free ticket, if you don’t have anything to give away, contact us anyway, we want this to be a celebration of science nights in Vancouver!

BIOS

CARIN BONDAR
Dr. Carin Bondar is a biologist, author and philosopher. Bondar is author of the books Wild Sex and Wild Moms (Pegasus). She is writer and host of online series based on her books (Wild Sex and Wild Moms) which have garnered over 100,000,000 views. Her TED talk on the subject has nearly 3 million views. She is host of several TV series including Worlds Oddest Animal Couples (Animal Planet, Netflix), Stephen Hawking’s Brave New World (Discovery World HD, National Geographic) and Outrageous Acts of Science (The Science Channel). Bondar is an adventurer and explorer, having discovered 11 new species of beetles and snails in the remote jungles of Borneo. Bondar is also a mom of 4 kids, two boys and two girls.

Curiosity Collider Art Science Foundation promotes interdisciplinary collaborations that capture natural human curiosity. At the intersection of art, culture, technology, and humanity are innovative ways to communicate the daily relevance of science. Though exhibitions, performance events and our quarterly speaker event, the Collider Cafe we help create new ways to experience science.

NERD NITE
In our opinion, there has never been a better time to be a Nerd! Nerd Nite is an event which is currently held in over 60 cities worldwide! The formula for each Nerd Nite is pretty standard – 20 minute presentations from three presenters each night, in a laid-back environment with lots to learn, and lots to drink!

SCIENCE SLAM
Science Slam YVR is a community outreach organization committed to supporting and promoting science communication in Vancouver. Our Science Slams are informal competitions that bring together researchers, students, educators, and communicators to share interesting science in creative ways. Every event is different, with talks, poems, songs, dances, and unexpected surprises. Our only two rules? Each slammer has 5 minutes, and no slideshows are allowed! Slammers come to share their science, and the judges and audience decide their fate. Who will take away the title of Science Slam champion?

That’s a pretty lively description. You can get tickets here.

Calgary’s Beakerhead

An art, science, and engineering festival in Calgary, Alberta, Beakerhead opens on September 19, 2018 and runs until September 23, 2018. Here’s more from the 2018 online programme announcement made in late July (?) 2018,

Giant Dung Beetle, Zorb Ball Racers, Heart Powered Art and More Set to Explode on Calgary Streets!

Quirky, fun adventures result when art, science and engineering collide at Beakerhead September 19 – 23, 2018.

In just seven weeks, enormous electric bolts will light up the sky in downtown Calgary when a crazy cacophony of exhibits and events takes over the city. The Beakerhead crew is announcing the official program lineup with tickets now available online for all ticketed events. This year’s extravaganza will include remarkable spectacles of art and science, unique activities, and more than 50 distinct events – many of which are free, but still require registration to get tickets.

The Calgary-born smash up of art, science and engineering is in its sixth year. Last year, more than 145,000 people participated in Beakerhead and organizers are planning to top that number in 2018.

“Expect conversations that start with “wow!” says Mary Anne Moser, President and Co-founder of Beakerhead. “This year’s lineup includes a lot of original concepts, special culinary events, dozens of workshops, shows and and tours.”

Beakerhead events take place indoors and out. Beakernight is science’s biggest ticketed street party and tickets are now on sale.

Highlights of Beakerhead 2018:

  • Light up the Night: Giant electric bolts will light up the night sky thanks to two 10-metre Tesla Coils built by a team of artists and engineers.
  • Lunch Without Light: This special Dark Table dining experience is led by a famous broadcaster and an esteemed neuroscientist.
  • Beakereats and Beakerbar: Dining is a whole new experience when chef and bartender become scientist! Creative Calgary chefs and mixologists experiment with a new theme in 2018: canola.
  • Four to Six on Fourth: Blocks of open-air experimentation including a human-sized hamster wheel, artists, performers, and hands-on or feet-on experiences like walking on liquid.
  • Beacons: This series of free neighbourhood installations is completely wild! There’s everything from a giant dung beetle to a 3.5 metre lotus that lights up with your heart beat.
  • Workshops: Learn the art of animation, understand cryptocurrency, meet famous scientists and broadcasters, make organic facial oil or a vegan carrot cake and much more.
  • Zorbathon: Get inside a zorb and cavort with family and friends in an oversized playground. Participate in rolling races, bump-a-thons, obstacle courses. Make a day of it.

Beakerhead takes place September 19 – 23, 2018 with the ticketed Beakernight on Saturday, September 22 at Fort Calgary.

Here’s a special shout out to Shaskatchewan`s Jean-Sébastien Gauthier and Brian F. Eames (featured here in a February 16, 2018 posting) and their free ‘Within Measure’ Sept. 19 – 23, 2018 event at Beakerhead.

That’s all folks! For now, that is.

Help find some siblings for the Higgs boson

This is the Higgs Hunters’ (or HiggsHunters) second call for volunteers; the first was described in my Dec. 2, 2014 posting. Some 18 months after the first call, over 20,000 volunteers have been viewing images from the Large Hadron Collider in a bid to assist physicists at CERN (European Organization for Nuclear Research).

These images show how particles appear in the ATLAS detector. The lines show the paths of charged particles travelling away from a collision at the centre. Volunteers are looking for tracks appearing 'out of thin air' away from the centre. (Image: CERN)

These images show how particles appear in the ATLAS detector. The lines show the paths of charged particles travelling away from a collision at the centre. Volunteers are looking for tracks appearing ‘out of thin air’ away from the centre. (Image: CERN)

A July 6, 2016 news item on phys.org announces the call for more volunteers (Note: Links have been removed),

A citizen science project, called HiggsHunters gives everyone the chance to help search for the Higgs boson’s relatives.

Volunteers are searching through thousands of images from the ATLAS experiment on the HiggsHunters.org website, which makes use of the Zooniverse  citizen science platform.

They are looking for ‘baby Higgs bosons’, which leave a characteristic trace in the ATLAS detector.

This is the first time that images from the Large Hadron Collider have been examined on such a scale – 60,000 of the most interesting events were selected from collisions recorded throughout 2012 – the year of the Higgs boson discovery. About 20,000 of those collisions have been scanned so far, revealing interesting features.

A July 4, 2016 posting by Harriet Kim Jarlett on Will Kalderon’s CERN blog, which originated the news item, provides more details,

“There are tasks – even in this high-tech world – where the human eye and the human brain simply win out,” says Professor Alan Barr of the University of Oxford, who is leading the project.

Over the past two years, more than twenty thousand amateur scientists, from 179 countries, have been scouring images of LHC collisions,  looking for as-yet unobserved particles.

Dr Will Kalderon, who has been working on the project says “We’ve been astounded both by the number of responses and ability of people to do this so well, I’m really excited to see what we might find”.

July 4, 2016 was the fourth anniversary of the  confirmation that the Higgs Boson almost certainly exists (from the CERN blog),

Today, July 4 2016, is the fourth birthday of the Higgs boson discovery. Here, a toy Higgs is sat on top of a birthday cake decorated with a HiggsHunter event display. On the blackboard behind is the process people are looking for - Higgs-strahlung. (Image: Will Kalderon/CERN)

Today, July 4 2016, is the fourth birthday of the Higgs boson discovery. Here, a toy Higgs is sat on top of a birthday cake decorated with a HiggsHunter event display. On the blackboard behind is the process people are looking for – Higgs-strahlung. (Image: Will Kalderon/CERN)

You can find the Higgs Hunters website here. Should you be interested in other citizen science projects, you can find the Zooniverse website here.