Tag Archives: University of Massachusetts

Combining silicon with metal oxide memristors to create powerful, low-energy intensive chips enabling AI in portable devices

In this one week, I’m publishing my first stories (see also June 13, 2023 posting “ChatGPT and a neuromorphic [brainlike] synapse“) where artificial intelligence (AI) software is combined with a memristor (hardware component) for brainlike (neuromorphic) computing.

Here’s more about some of the latest research from a March 30, 2023 news item on ScienceDaily,

Everyone is talking about the newest AI and the power of neural networks, forgetting that software is limited by the hardware on which it runs. But it is hardware, says USC [University of Southern California] Professor of Electrical and Computer Engineering Joshua Yang, that has become “the bottleneck.” Now, Yang’s new research with collaborators might change that. They believe that they have developed a new type of chip with the best memory of any chip thus far for edge AI (AI in portable devices).

A March 29, 2023 University of Southern California (USC) news release (also on EurekAlert), which originated the news item, contextualizes the research and delves further into the topic of neuromorphic hardware,

For approximately the past 30 years, while the size of the neural networks needed for AI and data science applications doubled every 3.5 months, the hardware capability needed to process them doubled only every 3.5 years. According to Yang, hardware presents a more and more severe problem for which few have patience. 

Governments, industry, and academia are trying to address this hardware challenge worldwide. Some continue to work on hardware solutions with silicon chips, while others are experimenting with new types of materials and devices.  Yang’s work falls into the middle—focusing on exploiting and combining the advantages of the new materials and traditional silicon technology that could support heavy AI and data science computation. 

Their new paper in Nature focuses on the understanding of fundamental physics that leads to a drastic increase in memory capacity needed for AI hardware. The team led by Yang, with researchers from USC (including Han Wang’s group), MIT [Massachusetts Institute of Technology], and the University of Massachusetts, developed a protocol for devices to reduce “noise” and demonstrated the practicality of using this protocol in integrated chips. This demonstration was made at TetraMem, a startup company co-founded by Yang and his co-authors  (Miao Hu, Qiangfei Xia, and Glenn Ge), to commercialize AI acceleration technology. According to Yang, this new memory chip has the highest information density per device (11 bits) among all types of known memory technologies thus far. Such small but powerful devices could play a critical role in bringing incredible power to the devices in our pockets. The chips are not just for memory but also for the processor. And millions of them in a small chip, working in parallel to rapidly run your AI tasks, could only require a small battery to power it. 

The chips that Yang and his colleagues are creating combine silicon with metal oxide memristors in order to create powerful but low-energy intensive chips. The technique focuses on using the positions of atoms to represent information rather than the number of electrons (which is the current technique involved in computations on chips). The positions of the atoms offer a compact and stable way to store more information in an analog, instead of digital fashion. Moreover, the information can be processed where it is stored instead of being sent to one of the few dedicated ‘processors,’ eliminating the so-called ‘von Neumann bottleneck’ existing in current computing systems.  In this way, says Yang, computing for AI is “more energy efficient with a higher throughput.”

How it works: 

Yang explains that electrons which are manipulated in traditional chips, are “light.” And this lightness, makes them prone to moving around and being more volatile.  Instead of storing memory through electrons, Yang and collaborators are storing memory in full atoms. Here is why this memory matters. Normally, says Yang, when one turns off a computer, the information memory is gone—but if you need that memory to run a new computation and your computer needs the information all over again, you have lost both time and energy.  This new method, focusing on activating atoms rather than electrons, does not require battery power to maintain stored information. Similar scenarios happen in AI computations, where a stable memory capable of high information density is crucial. Yang imagines this new tech that may enable powerful AI capability in edge devices, such as Google Glasses, which he says previously suffered from a frequent recharging issue.

Further, by converting chips to rely on atoms as opposed to electrons, chips become smaller.  Yang adds that with this new method, there is more computing capacity at a smaller scale. And this method, he says, could offer “many more levels of memory to help increase information density.” 

To put it in context, right now, ChatGPT is running on a cloud. The new innovation, followed by some further development, could put the power of a mini version of ChatGPT in everyone’s personal device. It could make such high-powered tech more affordable and accessible for all sorts of applications. 

Here’s a link to and a citation for the paper,

Thousands of conductance levels in memristors integrated on CMOS by Mingyi Rao, Hao Tang, Jiangbin Wu, Wenhao Song, Max Zhang, Wenbo Yin, Ye Zhuo, Fatemeh Kiani, Benjamin Chen, Xiangqi Jiang, Hefei Liu, Hung-Yu Chen, Rivu Midya, Fan Ye, Hao Jiang, Zhongrui Wang, Mingche Wu, Miao Hu, Han Wang, Qiangfei Xia, Ning Ge, Ju Li & J. Joshua Yang. Nature volume 615, pages 823–829 (2023) DOI: https://doi.org/10.1038/s41586-023-05759-5 Issue Date: 30 March 2023 Published: 29 March 2023

This paper is behind a paywall.

Humans with built-in night vision thanks to nanoparticles

In the world of video games such as the Deus Ex series eye augmentations are standard,now it seems that fantasy could become reality according to the latest American Chemical Society (ACS) meeting held in Fall 2019. From an August 27, 2019 news item on Nanowerk,

Movies featuring heroes with superpowers, such as flight, X-ray vision or extraordinary strength, are all the rage. But while these popular characters are mere flights of fancy, scientists have used nanoparticles to confer a real superpower on ordinary mice: the ability to see near-infrared light. Today, scientists report progress in making versions of these nanoparticles that could someday give built-in night vision to humans.

The researchers will present their results at the American Chemical Society (ACS) Fall 2019 National Meeting & Exposition.

“When we look at the universe, we see only visible light,” says Gang Han, Ph.D., the project’s principal investigator, who is presenting the work at the meeting. “But if we had near-infrared vision, we could see the universe in a whole new way. We might be able to do infrared astronomy with the naked eye, or have night vision without bulky equipment.”

An August 27, 2019 ACS news release, which originated the news item, explores the research about mammalian eyes (specifically mice) being presented in more depth,

The eyes of humans and other mammals can detect light between the wavelengths of 400 and 700 nanometers (nm). Near-infrared (NIR) light, on the other hand, has longer wavelengths — 750 nm to 1.4 micrometers. Thermal imaging cameras can help people see in the dark by detecting NIR radiation given off by organisms or objects, but these devices are typically bulky and inconvenient. Han and his colleagues wondered whether they could give mice NIR vision by injecting a special type of nanomaterial, called upconversion nanoparticles (UCNPs), into their eyes. These nanoparticles, which contain the rare-earth elements erbium and ytterbium, can convert low-energy photons from NIR light into higher-energy green light that mammalian eyes can see.

In work published earlier this year [2019], the researchers, who are at the University of Massachusetts Medical School, targeted UCNPs to photoreceptors in mouse eyes by attaching a protein that binds to a sugar molecule on the photoreceptor surface. Then, they injected the photoreceptor-binding UCNPs behind the retinas of the mice. To determine whether the injected mice could see and mentally process NIR light, the team conducted several physiological and behavioral tests. For example, in one test, the researchers placed the mice into a Y-shaped tank of water. One branch of the tank had a platform that the mice could climb on to escape the water. The researchers trained the mice to swim toward visible light in the shape of a triangle, which marked the escape route. A similarly lit circle marked the branch without a platform. Then, the researchers replaced the visible light with NIR light. “The mice with the particle injection could see the triangle clearly and swim to it each time, but the mice without the injection could not see or tell the difference between the two shapes,” says Han. A video of this work, posted by Han’s institution, can be viewed here.

Although the UCNPs persisted in the mice’s eyes for at least 10 weeks and did not cause any noticeable side effects, Han wants to improve the safety and sensitivity of the nanomaterials before he contemplates trying them out in humans. “The UCNPs in our published paper are inorganic, and there are some drawbacks there,” Han says. “The biocompatibility is not completely clear, and we need to improve the brightness of the nanoparticles for human use.” Now, the team is experimenting with UCNPs made up of two organic dyes, instead of rare-earth elements. “We’ve shown that we can make organic UCNPs with much improved brightness compared with the inorganic ones,” he says. These organic nanoparticles can emit either green or blue light. In addition to having improved properties, the organic dyes could also have fewer regulatory hurdles.

One of the next steps for the project might be translating the technology to man’s best friend. “If we had a super dog that could see NIR light, we could project a pattern onto a lawbreaker’s’ body from a distance, and the dog could catch them without disturbing other people,” Han says. Superhero powers aside, the technology could also have important medical applications, such as treating diseases of the eye. “We’re actually looking at how to use NIR light to release a drug from the UNCPs specifically at the photoreceptors,” Han says.

Here’s a link to and a citation for the paper mentioned in the ACS news release,

Mammalian Near-Infrared Image Vision through Injectable and Self-Powered Retinal Nanoantennae by Yuqian Ma, Jin Bao, Yuanwei Zhang, Zhanjun Li, Xiangyu Zhou. Changlin Wan, Ling Huang, Yang Zhao, Gang Han, Tian Xue. Cell Volume 177, ISSUE 2, P243-255.e15, April 04, 2019 DOI:https://doi.org/10.1016/j.cell.2019.01.038 First published online: February 28, 2019

This paper appears to be open access.

It’s going to be a while before this research makes it to human clinical trials, assuming it does. In the meantime, it seems that the plan is to continue research using dogs.

As you wait to find out how the researchers progress, you can check out my most recent mention of the Deus Ex video game series in a Sept. 1, 2016 posting about the latest entry to the series: Deus Ex: Mankind Divided.

US Dept. of Agriculture announces its nanotechnology research grants

I don’t always stumble across the US Department of Agriculture’s nanotechnology research grant announcements but I’m always grateful when I do as it’s good to find out about  nanotechnology research taking place in the agricultural sector. From a July 21, 2017 news item on Nanowerk,,

The U.S. Department of Agriculture’s (USDA) National Institute of Food and Agriculture (NIFA) today announced 13 grants totaling $4.6 million for research on the next generation of agricultural technologies and systems to meet the growing demand for food, fuel, and fiber. The grants are funded through NIFA’s Agriculture and Food Research Initiative (AFRI), authorized by the 2014 Farm Bill.

“Nanotechnology is being rapidly implemented in medicine, electronics, energy, and biotechnology, and it has huge potential to enhance the agricultural sector,” said NIFA Director Sonny Ramaswamy. “NIFA research investments can help spur nanotechnology-based improvements to ensure global nutritional security and prosperity in rural communities.”

A July 20, 2017 USDA news release, which originated the news item, lists this year’s grants and provides a brief description of a few of the newly and previously funded projects,

Fiscal year 2016 grants being announced include:

Nanotechnology for Agricultural and Food Systems

  • Kansas State University, Manhattan, Kansas, $450,200
  • Wichita State University, Wichita, Kansas, $340,000
  • University of Massachusetts, Amherst, Massachusetts, $444,550
  • University of Nevada, Las Vegas, Nevada,$150,000
  • North Dakota State University, Fargo, North Dakota, $149,000
  • Cornell University, Ithaca, New York, $455,000
  • Cornell University, Ithaca, New York, $450,200
  • Oregon State University, Corvallis, Oregon, $402,550
  • University of Pennsylvania, Philadelphia, Pennsylvania, $405,055
  • Gordon Research Conferences, West Kingston, Rhode Island, $45,000
  • The University of Tennessee,  Knoxville, Tennessee, $450,200
  • Utah State University, Logan, Utah, $450,200
  • The George Washington University, Washington, D.C., $450,200

Project details can be found at the NIFA website (link is external).

Among the grants, a University of Pennsylvania project will engineer cellulose nanomaterials [emphasis mine] with high toughness for potential use in building materials, automotive components, and consumer products. A University of Nevada-Las Vegas project will develop a rapid, sensitive test to detect Salmonella typhimurium to enhance food supply safety.

Previously funded grants include an Iowa State University project in which a low-cost and disposable biosensor made out of nanoparticle graphene that can detect pesticides in soil was developed. The biosensor also has the potential for use in the biomedical, environmental, and food safety fields. University of Minnesota (link is external) researchers created a sponge that uses nanotechnology to quickly absorb mercury, as well as bacterial and fungal microbes from polluted water. The sponge can be used on tap water, industrial wastewater, and in lakes. It converts contaminants into nontoxic waste that can be disposed in a landfill.

NIFA invests in and advances agricultural research, education, and extension and promotes transformative discoveries that solve societal challenges. NIFA support for the best and brightest scientists and extension personnel has resulted in user-inspired, groundbreaking discoveries that combat childhood obesity, improve and sustain rural economic growth, address water availability issues, increase food production, find new sources of energy, mitigate climate variability and ensure food safety. To learn more about NIFA’s impact on agricultural science, visit www.nifa.usda.gov/impacts, sign up for email updates (link is external) or follow us on Twitter @USDA_NIFA (link is external), #NIFAImpacts (link is external).

Given my interest in nanocellulose materials (Canada was/is a leader in the production of cellulose nanocrystals [CNC] but there has been little news about Canadian research into CNC applications), I used the NIFA link to access the table listing the grants and clicked on ‘brief’ in the View column in the University of Pennsylania row to find this description of the project,

ENGINEERING CELLULOSE NANOMATERIALS WITH HIGH TOUGHNESS

NON-TECHNICAL SUMMARY: Cellulose nanofibrils (CNFs) are natural materials with exceptional mechanical properties that can be obtained from renewable plant-based resources. CNFs are stiff, strong, and lightweight, thus they are ideal for use in structural materials. In particular, there is a significant opportunity to use CNFs to realize polymer composites with improved toughness and resistance to fracture. The overall goal of this project is to establish an understanding of fracture toughness enhancement in polymer composites reinforced with CNFs. A key outcome of this work will be process – structure – fracture property relationships for CNF-reinforced composites. The knowledge developed in this project will enable a new class of tough CNF-reinforced composite materials with applications in areas such as building materials, automotive components, and consumer products.The composite materials that will be investigated are at the convergence of nanotechnology and bio-sourced material trends. Emerging nanocellulose technologies have the potential to move biomass materials into high value-added applications and entirely new markets.

It’s not the only nanocellulose material project being funded in this round, there’s this at North Dakota State University, from the NIFA ‘brief’ project description page,

NOVEL NANOCELLULOSE BASED FIRE RETARDANT FOR POLYMER COMPOSITES

NON-TECHNICAL SUMMARY: Synthetic polymers are quite vulnerable to fire.There are 2.4 million reported fires, resulting in 7.8 billion dollars of direct property loss, an estimated 30 billion dollars of indirect loss, 29,000 civilian injuries, 101,000 firefighter injuries and 6000 civilian fatalities annually in the U.S. There is an urgent need for a safe, potent, and reliable fire retardant (FR) system that can be used in commodity polymers to reduce their flammability and protect lives and properties. The goal of this project is to develop a novel, safe and biobased FR system using agricultural and woody biomass. The project is divided into three major tasks. The first is to manufacture zinc oxide (ZnO) coated cellulose nanoparticles and evaluate their morphological, chemical, structural and thermal characteristics. The second task will be to design and manufacture polymer composites containing nano sized zinc oxide and cellulose crystals. Finally the third task will be to test the fire retardancy and mechanical properties of the composites. Wbelieve that presence of zinc oxide and cellulose nanocrystals in polymers will limit the oxygen supply by charring, shielding the surface and cellulose nanocrystals will make composites strong. The outcome of this project will help in developing a safe, reliable and biobased fire retardant for consumer goods, automotive, building products and will help in saving human lives and property damage due to fire.

One day, I hope to hear about Canadian research into applications for nanocellulose materials. (fingers crossed for good luck)

Bionic pancreas tested at home

This news about a bionic pancreas must be exciting for diabetics as it would eliminate the need for constant blood sugar testing throughout the day. From a Dec. 19, 2016 Massachusetts General Hospital news release (also on EurekAlert), Note: Links have been removed,

The bionic pancreas system developed by Boston University (BU) investigators proved better than either conventional or sensor-augmented insulin pump therapy at managing blood sugar levels in patients with type 1 diabetes living at home, with no restrictions, over 11 days. The report of a clinical trial led by a Massachusetts General Hospital (MGH) physician is receiving advance online publication in The Lancet.

“For study participants living at home without limitations on their activity and diet, the bionic pancreas successfully reduced average blood glucose, while at the same time decreasing the risk of hypoglycemia,” says Steven Russell, MD, PhD, of the MGH Diabetes Unit. “This system requires no information other than the patient’s body weight to start, so it will require much less time and effort by health care providers to initiate treatment. And since no carbohydrate counting is required, it significantly reduces the burden on patients associated with diabetes management.”

Developed by Edward Damiano, PhD, and Firas El-Khatib, PhD, of the BU Department of Biomedical Engineering, the bionic pancreas controls patients’ blood sugar with both insulin and glucagon, a hormone that increases glucose levels. After a 2010 clinical trial confirmed that the original version of the device could maintain near-normal blood sugar levels for more than 24 hours in adult patients, two follow-up trials – reported in a 2014 New England Journal of Medicine paper – showed that an updated version of the system successfully controlled blood sugar levels in adults and adolescents for five days.  Another follow-up trial published in The Lancet Diabetes and Endocrinology in 2016  showed it could do the same for children as young as 6 years of age.

While minimal restrictions were placed on participants in the 2014 trials, participants in both spent nights in controlled settings and were accompanied at all times by either a nurse for the adult trial or remained in a diabetes camp for the adolescent and pre-adolescent trials. Participants in the current trial had no such restrictions placed upon them, as they were able to pursue normal activities at home or at work with no imposed limitations on diet or exercise. Patients needed to live within a 30-minute drive of one of the trial sites – MGH, the University of Massachusetts Medical School, Stanford University, and the University of North Carolina at Chapel Hill – and needed to designate a contact person who lived with them and could be contacted by study staff, if necessary.

The bionic pancreas system – the same as that used in the 2014 studies – consisted of a smartphone (iPhone 4S) that could wirelessly communicate with two pumps delivering either insulin or glucagon. Every five minutes the smartphone received a reading from an attached continuous glucose monitor, which was used to calculate and administer a dose of either insulin or glucagon. The algorighms controlling the system were updated for the current trial to better respond to blood sugar variations.

While the device allows participants to enter information about each upcoming meal into a smartphone app, allowing the system to deliver an anticipatory insulin dose, such entries were optional in the current trial. If participants’ blood sugar dropped to dangerous levels or if the monitor or one of the pumps was disconnected for more than 15 minutes, the system would alerted study staff, allowing them to check with the participants or their contact persons.

Study participants were adults who had been diagnosed with type 1 diabetes for a year or more and had used an insulin pump to manage their care for at least six months. Each of 39 participants that finished the study completed two 11-day study periods, one using the bionic pancreas and one using their usual insulin pump and any continous glucose monitor they had been using. In addition to the automated monitoring of glucose levels and administered doses of insulin or glucagon, participants completed daily surveys regarding any episodes of symptomatic hypoglycemia, carbohydrates consumed to treat those episodes, and any episodes of nausea.

On days when participants were on the bionic pancreas, their average blood glucose levels were significantly lower – 141 mg/dl versus 162 mg/dl – than when on their standard treatment. Blood sugar levels were at levels indicating hypoglycemia (less than 60 mg/dl) for 0.6 percent of the time when participants were on the bionic pancreas, versus 1.9 percent of the time on standard treatment. Participants reported fewer episodes of symptomatic hypoglycemia while on the bionic pancreas, and no episodes of severe hypoglycemia were associated with the system.

The system performed even better during the overnight period, when the risk of hypoglycemia is particularly concerning. “Patients with type 1 diabetes worry about developing hypoglycemia when they are sleeping and tend to let their blood sugar run high at night to reduce that risk,” explains Russell, an assistant professor of Medicine at Harvard Medical School. “Our study showed that the bionic pancreas reduced the risk of overnight hypoglycemia to almost nothing without raising the average glucose level. In fact the improvement in average overnight glucose was greater than the improvement in average glucose over the full 24-hour period.”

Damiano, whose work on this project is inspired by his own 17-year-old son’s type 1 diabetes, adds, “The availability of the bionic pancreas would dramatically change the life of people with diabetes by reducing average glucose levels – thereby reducing the risk of diabetes complications – reducing the risk of hypoglycemia, which is a constant fear of patients and their families, and reducing the emotional burden of managing type 1 diabetes.” A co-author of the Lancet report, Damiano is a professor of Biomedical Engineering at Boston University.

The BU patents covering the bionic pancreas have been licensed to Beta Bionics, a startup company co-founded by Damiano and El-Khatib. The company’s latest version of the bionic pancreas, called the iLet, integrates all components into a single unit, which will be tested in future clinical trials. People interested in participating in upcoming trials may contact Russell’s team at the MGH Diabetes Research Center in care of Llazar Cuko (LCUKO@mgh.harvard.edu ).

Here`s a link to and a citation for the paper,

Home use of a bihormonal bionic pancreas versus insulin pump therapy in adults with type 1 diabetes: a multicentre randomised crossover trial by Firas H El-Khatib, Courtney Balliro, Mallory A Hillard, Kendra L Magyar, Laya Ekhlaspour, Manasi Sinha, Debbie Mondesir, Aryan Esmaeili, Celia Hartigan, Michael J Thompson, Samir Malkani, J Paul Lock, David M Harlan, Paula Clinton, Eliana Frank, Darrell M Wilson, Daniel DeSalvo, Lisa Norlander, Trang Ly, Bruce A Buckingham, Jamie Diner, Milana Dezube, Laura A Young, April Goley, M Sue Kirkman, John B Buse, Hui Zheng, Rajendranath R Selagamsetty, Edward R Damiano, Steven J Russell. Lancet DOI: http://dx.doi.org/10.1016/S0140-6736(16)32567-3  Published: 19 December 2016

This paper is behind a paywall.

You can find out more about Beta Bionics and iLet here.

$5.2M in nanotechnology grants from the US Department of Agriculture (USDA)

A March 30, 2016 news item on Nanowerk announces the 2016 nanotechnology grants from the US Dept. of Agriculture (USDA),

Agriculture Secretary Tom Vilsack today [March 30, 2016] announced an investment of more than $5.2 million to support nanotechnology research at 11 universities. The universities will research ways nanotechnology can be used to improve food safety, enhance renewable fuels, increase crop yields, manage agricultural pests, and more. The awards were made through the Agriculture and Food Research Initiative (AFRI), the nation’s premier competitive, peer-reviewed grants program for fundamental and applied agricultural sciences.

A March 30, 2016 USDA news release provides more detail,

“In the seven years since the Agriculture and Food Research Initiative was established, the program has led to true innovations and ground-breaking discoveries in agriculture to combat childhood obesity, improve and sustain rural economic growth, address water availability issues, increase food production, find new sources of energy, mitigate the impacts of climate variability and enhance resiliency of our food systems, and ensure food safety. Nanoscale science, engineering, and technology are key pieces of our investment in innovation to ensure an adequate and safe food supply for a growing global population,” said Vilsack. “The President’s 2017 Budget calls for full funding of the Agriculture and Food Research Initiative so that USDA can continue to support important projects like these.”

Universities receiving funding include Auburn University in Auburn, Ala.; Connecticut Agricultural Experiment Station in New Haven, Conn.; University of Central Florida in Orlando, Fla; University of Georgia in Athens, Ga.; Iowa State University in Ames, Iowa; University of Massachusetts in Amherst, Mass.; Mississippi State University in Starkville, Miss.; Lincoln University in Jefferson City, Mo.; Clemson University in Clemson, S.C.; Virginia Polytechnic Institute and State University in Blacksburg, Va.; and University of Wisconsin in Madison, Wis.

With this funding, Auburn University proposes to improve pathogen monitoring throughout the food supply chain by creating a user-friendly system that can detect multiple foodborne pathogens simultaneously, accurately, cost effectively, and rapidly. Mississippi State University will research ways nanochitosan can be used as a combined fire-retardant and antifungal wood treatment that is also environmentally safe. Experts in nanotechnology, molecular biology, vaccines and poultry diseases at the University of Wisconsin will work to develop nanoparticle-based poultry vaccines to prevent emerging poultry infections. USDA has a full list of projects and longer descriptions available online.

Past projects include a University of Georgia project developing a bio-nanocomposites-based, disease-specific, electrochemical sensors for detecting fungal pathogen induced volatiles in selected crops; and a University of Massachusetts project creating a platform for pathogen detection in foods that is superior to the current detection method in terms of analytical time, sensitivity, and accuracy using a novel, label-free, surface-enhanced Raman scattering (SERS) mapping technique.

The purpose of AFRI is to support research, education, and extension work by awarding grants that address key problems of national, regional, and multi-state importance in sustaining all components of food and agriculture. AFRI is the flagship competitive grant program administered by USDA’s National Institute of Food and Agriculture [NIFA]. Established under the 2008 Farm Bill, AFRI supports work in six priority areas: plant health and production and plant products; animal health and production and animal products; food safety, nutrition and health; bioenergy, natural resources and environment; agriculture systems and technology; and agriculture economics and rural communities. Since AFRI’s creation, NIFA has awarded more than $89 million to solve challenges related to plant health and production; $22 million of this has been dedicated to nanotechnology research. The President’s 2017 budget request proposes to fully fund AFRI for $700 million; this amount is the full funding level authorized by Congress when it established AFRI in the 2008 Farm Bill.

Each day, the work of USDA scientists and researchers touches the lives of all Americans: from the farm field to the kitchen table and from the air we breathe to the energy that powers our country. USDA science is on the cutting edge, helping to protect, secure, and improve our food, agricultural and natural resources systems. USDA research develops and transfers solutions to agricultural problems, supporting America’s farmers and ranchers in their work to produce a safe and abundant food supply for more than 100 years. This work has helped feed the nation and sustain an agricultural trade surplus since the 1960s. Since 2009, USDA has invested $4.32 billion in research and development grants. Studies have shown that every dollar invested in agricultural research now returns over $20 to our economy.

Since 2009, NIFA has invested in and advanced innovative and transformative initiatives to solve societal challenges and ensure the long-term viability of agriculture. NIFA’s integrated research, education, and extension programs, supporting the best and brightest scientists and extension personnel, have resulted in user-inspired, groundbreaking discoveries that are combating childhood obesity, improving and sustaining rural economic growth, addressing water availability issues, increasing food production, finding new sources of energy, mitigating climate variability, and ensuring food safety.

US Dept. of Agriculture awards $3.8M for nanotechnology research grants

I wonder just how much funding the US Dept. of Agriculture (USDA) is devoting to nanotechnology this year (2015). I first came across an announcement of $23M in the body of a news item about Zinkicide (my April 7, 2015 posting),

Found in Florida orchards in 2005, a citrus canker, citrus greening, poses a serious threat to the US state’s fruit industry. An April 2, 2105 news item on phys.org describes a possible solution to the problem,

Since it was discovered in South Florida in 2005, the plague of citrus greening has spread to nearly every grove in the state, stoking fears among growers that the $10.7 billion-a-year industry may someday disappear.

Now the U.S. Department of Agriculture has awarded the University of Florida a $4.6 million grant aimed at testing a potential new weapon in the fight against citrus greening: Zinkicide, a bactericide invented by a nanoparticle researcher at the University of Central Florida.

An April 29, 2015 article by Diego Flammini for Farm.com describes the latest USDA nanotechnology funding announcement,

In an effort to increase America’s food security, nutrition, food safety and environmental protection, the United States Department of Agriculture’s (USDA) National Institute of Food and Agriculture (NIFA) announced $3.8 million in nanotechnology research grants.

Flammini lists three of the eight recipients,

University of Georgia
With $496,192, the research team will develop different sensors that are able to detect fungal pathogens in crops. The project will also develop a smartphone app for farmers to have so they can access their information whenever necessary.

Rutgers University
The school will use its $450,000 to conduct a nationwide survey about nanotechnology and gauge consumer beliefs about it and its relationship to health. Among the specifics it will touch on is the use of visuals to communicate nanotechnology.

University of Massachusetts
The researchers will concentrate their $444,200 on developing a platform to detect pathogens in food that is better than the current methods.

A full list of the recipients can be found in the April 27, 2015 USDA news release featuring the $3.8M in awards,

  • The University of Georgia, Athens, Ga., $496,192
  • University of Iowa, Iowa City, Iowa., $496,180
  • University of Kentucky Research Foundation, Lexington, Ky., $450,000
  • University of Massachusetts, Amherst, Mass., $444,200
  • North Dakota State University, Fargo, N.D., $149,714
  • Rutgers University, New Brunswick. N.J., $450,000
  • Pennsylvania State University, University Park, University Park, Pa., $447,788
  • West Virginia University, Morgantown, W. Va., $496,168
  • University of Wisconsin-Madison, Madison, Wis., $450,100

You can find more details about the awards in this leaflet featuring the USDA project descriptions for the eight recipients.

Using a culinary technique to change fluid drops into exotic shapes

I always enjoy a culinary reference (h/t Nanowerk) such as the one in Lynne Yarris’ Dec. 2, 2013 science short for the Lawrence Berkeley National Laboratory (California, US),

Oil and water don’t mix, as any chemist or cook knows. Tom Russell, a polymer scientist from the University of Massachusetts who now holds a Visiting Faculty appointment with Berkeley Lab’s Materials Sciences Division, is using that chemical and culinary truth to change the natural spherical shape of liquid drops into ellipsoids, tubes and even fibrous structures similar in appearance to glass wool. Through the combination of water, oil and nanoparticle surfactants plus an external field, Russell is able to stabilize water drops into non-equilibrium shapes that could find valuable uses as therapeutic delivery systems, biosensors, microfluidic lab-on-a-chip devices, or possibly as the basis for an all-liquid electrical battery.

More technical details follow,

n a study he carried out at UMass with Mengmeng Cui and Todd Emrick, a drop of water was suspended in silicone oil and carboxylated nanoparticles were added to the water. The nanoparticles self-assembled at the oil/water interface to form a sphere-shaped surfactant drop – like a soap bubble. Applying an electric field to the drop overcame the equilibrium energy that stabilizes its spherical shape and deformed the sphere into an ellipsoid.

Since an ellipsoid has a greater surface area than a sphere of the same volume, a great many more nanoparticles can attach themselves to it. When the electric field was removed, the nanoparticle drop tried to return to the spherical shape of its equilibrium energy. However, the swollen number of nanoparticles jammed together at the oil/water interface, essentially “gridlocking” the drop into a stable ellipsoid shape.

“You can think of it like traffic getting jammed at an exit ramp or particles of sand getting jammed in an hourglass,” Russell says. “We start out by deforming a drop shaped like a basketball into a drop shaped like a football. The jamming effect locks in the football shape. If we continue the deforming and jamming process, we can create a wide assortment of shapes that are stable even though far removed from equilibrium.”

Here’s a link to and a citation for the paper,

Stabilizing Liquid Drops in Nonequilibrium Shapes by the Interfacial Jamming of Nanoparticles by Mengmeng Cui, Todd Emrick, & Thomas P. Russell. Science 25 October 2013: Vol. 342 no. 6157 pp. 460-463 DOI: 10.1126/science.1242852

The paper is behind a paywall but there is a transcript of a recent (Oct. 25, 2013) Science podcast interview with Russell. Go here and scroll down for access to the transcript (he’s the 2nd interviewee).

Organ chips for DARPA (Defense Advanced Research Projects Agency)

The Wyss Institute will receive up to  $37M US for a project that integrates ten different organ-on-a-chip projects into one system. From the July 24, 2012 news release on EurekAlert,

With this new DARPA funding, Institute researchers and a multidisciplinary team of collaborators seek to build 10 different human organs-on-chips, to link them together to more closely mimic whole body physiology, and to engineer an automated instrument that will control fluid flow and cell viability while permitting real-time analysis of complex biochemical functions. As an accurate alternative to traditional animal testing models that often fail to predict human responses, this instrumented “human-on-a-chip” will be used to rapidly assess responses to new drug candidates, providing critical information on their safety and efficacy.

This unique platform could help ensure that safe and effective therapeutics are identified sooner, and ineffective or toxic ones are rejected early in the development process. As a result, the quality and quantity of new drugs moving successfully through the pipeline and into the clinic may be increased, regulatory decision-making could be better informed, and patient outcomes could be improved.

Jesse Goodman, FDA Chief Scientist and Deputy Commissioner for Science and Public Health, commented that the automated human-on-chip instrument being developed “has the potential to be a better model for determining human adverse responses. FDA looks forward to working with the Wyss Institute in its development of this model that may ultimately be used in therapeutic development.”

Wyss Founding Director, Donald Ingber, M.D., Ph.D., and Wyss Core Faculty member, Kevin Kit Parker, Ph.D., will co-lead this five-year project.

I note that Kevin Kit Parker was mentioned in an earlier posting today (July 26, 2012) titled, Medusa, jellyfish, and tissue engineering, and Donald Ingber in my Dec.1e, 2011 posting about Shrilk and insect skeletons.

As for the Wyss Institute, here’s a description from the news release,

The Wyss Institute for Biologically Inspired Engineering at Harvard University (http://wyss.harvard.edu) uses Nature’s design principles to develop bioinspired materials and devices that will transform medicine and create a more sustainable world. Working as an alliance among Harvard’s Schools of Medicine, Engineering, and Arts & Sciences, and in partnership with Beth Israel Deaconess Medical Center, Boston Children’s Hospital, Brigham and Women’s Hospital, , Dana Farber Cancer Institute, Massachusetts General Hospital, the University of Massachusetts Medical School, Spaulding Rehabilitation Hospital, Tufts University, and Boston University, the Institute crosses disciplinary and institutional barriers to engage in high-risk research that leads to transformative technological breakthroughs. By emulating Nature’s principles for self-organizing and self-regulating, Wyss researchers are developing innovative new engineering solutions for healthcare, energy, architecture, robotics, and manufacturing. These technologies are translated into commercial products and therapies through collaborations with clinical investigators, corporate alliances, and new start-ups.

I hadn’t thought of an organ-on-a-chip as particularly bioinspired so I’ll have to think about that one for a while.

A nanotechnology wrinkle

A cosmetics ad (more about that in a minute) came back to memory this morning as I read Michael Berger’s Nanowerk Spotlight article (Using nanotechnology to unlock a fountain of bull) about a Thomson Reuters report on nanotechnology and the cosmetics industry. From the article,

Two days ago we ran a press release from Thomson Reuters about a brief report they compiled on patent data relating to nanotechnology in the cosmetics industry. …

It already begins with the sensational title: Can Nanotech Unlock The Fountain of Youth? (pdf). That certainly catches the eye of the layperson. What exactly face creams, shampoos and sunscreens have to do with the “fountain of youth” remains unexplained. Oh, and they do make a reference to ‘remote concepts’ like nanorobotics. So let your imagination run wild! Little NanoStretchinators (trademark pending Nanowerk) that remove wrinkles from underneath the skin maybe? Or the fully automated Follicle-NanoSeeder that restores the shining body of the male scalp?

After poking a little more fun at the report, Berger hones in on distortions such as this,

Not a word about potential risks, or health and environmental concerns. But when you look at these three quoted studies you get a different message. The initiative by the EPA they are referring to actually “will determine whether these materials present a potential environmental hazard or exposure over their life cycles, and how these materials, when used in products, may be modified or managed to avoid or mitigate potential human health or ecological impacts.”

Berger goes on to provide more eye opening references and comments. As for the ad I’d seen, it’s been a few months since I first saw it in one of my local daily newspapers but I clipped it since it featured this copy:

Euoko’s Eye Contour Nanolift
Like millions of very tiny plastic surgeons

Seems like a nanobot reference, doesn’t it?

It caught me eye because these days, it’s not often (almost never) that you see a cosmetics company overtly touting a nanotechnology product.  L’Oréal doesn’t mention ‘nanosomes’ after years of using the term in its marketing campaigns for its Revitalift ads (no nanosomes on the company’s Canadian website when I checked it this morning, July 15, 2010). If you’re interested in “millions of tiny plastic surgeons”, you can pay $320 CAD for 15 ml online here. Sadly, the website makes no mention of the plastic surgeons but there is this,

The cocktail for the post-injection, post-laser, post-surgery, post-peel era. Millions of lifting nanoparticles work with South American native rose moss and Asiatic pennywort to sustain instant and long-term surface smoothness. Lupine lipopeptides from France maximize optical properties of the skin to accentuate radiance. [emphasis mine]

On other wrinkling nanotechnology news, a news item on Nanowerk features this,

As a sign of aging or in a suit, wrinkles are almost never welcome, but two papers in the current issue of Physical Review Letters (“Smooth Cascade of Wrinkles at the Edge of a Floating Elastic Film” and “Draping Films: A Wrinkle to Fold Transition”) offer some perspective on what determines their size and shape in soft materials.

The experiments offer complimentary insights into how defects, such as an edge or a fold, influence the presence of wrinkles and could prove helpful in understanding the formation of wrinkles in biological tissue.

I’m curious as to funding details for this work being done by two different teams of physicists at the University of Massachusetts but I haven’t been able to track details. I was not able to access the research articles themselves and that’s usually where you can find those details.