Tag Archives: cellulose nanofibrils (CNFs)

A new recipe for lignin nanoparticles

A flexible film that does not absorb a drop of water. Photo: Aalto University / Sahar Babaeipour

A November 8, 2022 news item on phys.org announces a new material made of nanocellulose (Note: Links have been removed),

The Bioproduct Chemistry team at Aalto University [Finland] have designed a sustainable method to produce strong and flexible cellulosic films that incredibly maintain their strength even when wet.

The material is made through an innovative combination of wood-based and biodegradable polymers without any chemical modification, harnessing the maximum benefit of each component. For the co-authors in this study, sustainability is a significant motivator in understanding the chemistry of how these materials could work together and developing materials of tomorrow with the functionality we expect today.

A November 7, 2022 Aalto University press release, which originated the news item, explains the interest in cellulose and provides more detail about the research,

Cellulosic materials, which come from the cell walls of plants, have emerged as attractive, sustainable replacements for traditional plastics. However, the moisture sensitivity of cellulose and its incompatibility with many soft hydrophobic polymers are challenges to their widespread application.

From a materials design perspective, gaining the benefit of both hydrophilic cellulose and hydrophobic polymers at the same time without any chemical treatment of raw materials is mystifying. But what if we could engineer their interface with a third component, having favorable interactions with both cellulose and soft polymers such as polycaprolactone (PCL)? To achieve this goal, the team demonstrated that lignin nanoparticles with their well-defined morphology and active surface sites can interact with both cellulose, in this case cellulose nanofibrils, and PCL and act as a compatibilizer between hydrophilic cellulose and hydrophobic PCL. Although it looks complex, the solution is simple.

First, PCL dissolved in an organic solvent is mixed with the lignin nanoparticles in water. The lignin particles assembles at the oil water interface and stabilize the emulsion. Emulsions stabilizes with solid particles are called Pickering emulsions. This emulsion is then mixed with aqueous CNF suspension prior to film formation.  This Pickering emulsion strategy creates an even dispersion of a polymer within the cellulose network, increasing the wet strength and water resistance of the composite, meanwhile retaining all the positive characteristics of the cellulose fibers or fibrils. The outcomes are excellent:  the developed composite has a higher strength than pure CNF nanopaper or pure polymer in both dry and wet conditions, even after fully immersing it in water for a day. ‘When the film was taken out of the water, it looked exactly the same as when it was put into the water,’ says Kimiaei. The reason for this is that the hydrophobic polymer, with the aid of the lignin nanoparticles is now covering the cellulose surface protecting it from the water.

The composite revealed wet strength up to 87 MPa, the highest obtained wet strength for cellulosic composites developed without any direct covalent surface modifications or synthetic additives. Furthermore, this strategy added additional functionality, such as UV shielding and antioxidant properties to the developed composites, making them interesting for packaging applications.

The team at Aalto University in Finland, a country that arguably has the world’s leading experts in the forestry industry, is focused on making the most of these natural and industrial resources. ‘Building the future with forests requires a commitment to sustainable forest management and creating additional value beyond the typical biorefinery and pulp and paper industry,’ says co-author Erfan Kimiaei, a doctoral candidate at Aalto University, School of Chemical Engineering. ‘Understanding the interfacial chemistry of wood components can be the key to getting the most out of this valuable resource in building the sustainable future,’ professor Monika Österberg adds.

For experts in the field, this approach opens new possibilities to eliminate the need for cellulose chemical modification to impart new functionalities, promoting the sustainable use of natural resources from the forest. Furthermore, this research offers a generic foundation for combining hydrophilic cellulose with varied hydrophobic soft polymers to design multifunctional cellulose-based composites using only biodegradable polymers and lignocellulosic materials, taking a big step toward fully sustainable use of natural resources. As a follow up, the researchers are now exploring a broad framework to identify the sustainability of this early-stage technology in environmental and economic aspects by integrating techno-economic and life cycle assessments.

Here’s a link to and a citation for the paper,

Lignin Nanoparticles as an Interfacial Modulator in Tough and Multi-Resistant Cellulose–Polycaprolactone Nanocomposites Based on a Pickering Emulsions Strategy by Erfan Kimiaei, Muhammad Farooq, Rafael Grande, Kristoffer Meinander, Monika Österberg. Advanced Materials Interfaces Volume 9, Issue 27 September 22, 2022 2200988 DOI: https://doi.org/10.1002/admi.202200988 First published online: 25 August 2022

This paper is open access.

Plant fibers (nanocellulose) for more sustainable devices

Thank you to Junichiro Shiomi and the University of Tokyo for this image,

Caption: An artist’s interpretation of the way natural cellulose fibers are combined to form the CNF [cellulose nanofiber] yarn, and a magnified section showing the nanoscopic rod-shaped filaments within the yarn bundle. Credit: ©2022 Junichiro Shiomi

The research into cellulose nanofibers (CNFs) announced in this November 4, 2022 news item on ScienceDaily comes from the University of Tokyo,

Plant-derived materials such as cellulose often exhibit thermally insulating properties. A new material made from nanoscale cellulose fibers shows the reverse, high thermal conductivity. This makes it useful in areas previously dominated by synthetic polymer materials. Materials based on cellulose have environmental benefits over polymers, so research on this could lead to greener technological applications where thermal conductivity is needed.

Both cellulose nanofibers/nanofibres and cellulose nanofibrils are abbreviated to CNFs. This seems a bit confusing so I went looking for an explanation and found this September 22, 2020 posting (scroll down about 35% of the way) by professor Hatsuo Ishida, Department of Macromolecular Science and Engineering at Case Western Reserve University,

Both fiber and fibril indicate long thread-like materials and their meanings are essentially the same. However, the word,”fibril,” emphasizes a thin fiber. Therefore, the use of the word, “nano fibril,” is rather redundant. The word,”fibril” is often used for distinguishing high temperature water vapor treated cellulose fibers that are spread into very thin fibers from the whiskers prepared by the acid treatment of cellulosic materials. The word,” microfibril” is more often used than “nano fibril.” Some also use the word,”cellulose nanocrystal.” Cellulose whiskers are single crystals of materials and a typical length is less than a micrometer (one of the longest cellulose whiskers can be prepared from a sea creature called tunicate), whereas the cellulose nano fibril has much longer length. This material is much easier to scale up whereas cellulose whiskers are not as easily scale up as the nano fibrils. The word fiber has no implication and it is simply a thread like object. Thus, even if the diameter is more than hundred micrometers, as long as the length is much longer (high aspect ratio), you may call it a fiber, whereas such a thick fiber is seldom called a fibril.

Thank you professor Ishida!

A November 4, 2022 University of Tokyo press release (also on EurekAlert), which originated the news item, explains the interest in nanocellulose and its thermal properties,

Cellulose is a key structural component of plant cell walls and is the reason why trees can grow to such heights. But the secret of its material strength actually lies in its overlapping nanoscopic fibers. In recent years, many commercial products have used cellulose nanofiber (CNF) materials because their strength and durability make them a good replacement for polymer-based materials such as plastics that can be detrimental to the environment. But now and for the first time, a research team led by Professor Junichiro Shiomi from the University of Tokyo’s Graduate School of Engineering has investigated previously unknown thermal properties of CNF, and their findings show these materials could be even more useful still.

“If you see plant-derived materials such as cellulose or woody biomass used in applications, it’s typically mechanical or thermally insulating properties that are being employed,” said Shiomi. “When we explored the thermal properties of a yarn made from CNF, however, we found that they show a different kind of thermal behavior, thermal conduction, and it’s very significant, around 100 times higher than that of typical woody biomass or cellulose paper.”

The reason yarn made from CNF can conduct heat so well is due to the way it’s made. Cellulose fibers in nature are very disorganized, but a process called the flow-focusing method combines cellulose fibers, orientating them in the same way, to create CNF. It’s this tightly bound and aligned bundle of rod-shaped fibers that allows heat to transfer along the bundle, whereas in a more chaotic structure it would dissipate heat more readily.

“Our main challenge was how to measure the thermal conductivity of such small physical samples and with great accuracy,” said Shiomi. “For this, we turned to a technique called T-type thermal conductivity measurement. It allowed us to measure the thermal conductivity of the rod-shaped CNF yarn samples which are only micrometers (a micrometer equaling one-thousandth of a millimeter) in diameter. But the next step for us is to perform accurate thermal tests on two-dimensional textilelike samples.”

Shiomi and his team hope that their investigation and future explorations into the use of CNF as a thermally conductive material could give engineers an alternative to some environmentally damaging polymers. In applications where heat transfer is important, such as certain electronic or computational components, it could greatly reduce the consequences of discarded electronic equipment, or e-waste, thanks to the biodegradable nature of CNF and other plant-based materials.

Here’s a link to and a citation for the paper,

Enhanced High Thermal Conductivity Cellulose Filaments via Hydrodynamic Focusing by Guantong Wang, Masaki Kudo, Kazuho Daicho, Sivasankaran Harish, Bin Xu, Cheng Shao, Yaerim Lee, Yuxuan Liao, Naoto Matsushima, Takashi Kodama, Fredrik Lundell, L. Daniel Söderberg, Tsuguyuki Saito, and Junichiro Shiomi. Nano Lett. 2022, 22, 21, 8406–8412 DOI: https://doi.org/10.1021/acs.nanolett.2c02057 Publication Date:October 25, 2022 Copyright © 2022 The Authors. Published by American Chemical Society

This paper is open access.

US Dept. of Agriculture announces its nanotechnology research grants

I don’t always stumble across the US Department of Agriculture’s nanotechnology research grant announcements but I’m always grateful when I do as it’s good to find out about  nanotechnology research taking place in the agricultural sector. From a July 21, 2017 news item on Nanowerk,,

The U.S. Department of Agriculture’s (USDA) National Institute of Food and Agriculture (NIFA) today announced 13 grants totaling $4.6 million for research on the next generation of agricultural technologies and systems to meet the growing demand for food, fuel, and fiber. The grants are funded through NIFA’s Agriculture and Food Research Initiative (AFRI), authorized by the 2014 Farm Bill.

“Nanotechnology is being rapidly implemented in medicine, electronics, energy, and biotechnology, and it has huge potential to enhance the agricultural sector,” said NIFA Director Sonny Ramaswamy. “NIFA research investments can help spur nanotechnology-based improvements to ensure global nutritional security and prosperity in rural communities.”

A July 20, 2017 USDA news release, which originated the news item, lists this year’s grants and provides a brief description of a few of the newly and previously funded projects,

Fiscal year 2016 grants being announced include:

Nanotechnology for Agricultural and Food Systems

  • Kansas State University, Manhattan, Kansas, $450,200
  • Wichita State University, Wichita, Kansas, $340,000
  • University of Massachusetts, Amherst, Massachusetts, $444,550
  • University of Nevada, Las Vegas, Nevada,$150,000
  • North Dakota State University, Fargo, North Dakota, $149,000
  • Cornell University, Ithaca, New York, $455,000
  • Cornell University, Ithaca, New York, $450,200
  • Oregon State University, Corvallis, Oregon, $402,550
  • University of Pennsylvania, Philadelphia, Pennsylvania, $405,055
  • Gordon Research Conferences, West Kingston, Rhode Island, $45,000
  • The University of Tennessee,  Knoxville, Tennessee, $450,200
  • Utah State University, Logan, Utah, $450,200
  • The George Washington University, Washington, D.C., $450,200

Project details can be found at the NIFA website (link is external).

Among the grants, a University of Pennsylvania project will engineer cellulose nanomaterials [emphasis mine] with high toughness for potential use in building materials, automotive components, and consumer products. A University of Nevada-Las Vegas project will develop a rapid, sensitive test to detect Salmonella typhimurium to enhance food supply safety.

Previously funded grants include an Iowa State University project in which a low-cost and disposable biosensor made out of nanoparticle graphene that can detect pesticides in soil was developed. The biosensor also has the potential for use in the biomedical, environmental, and food safety fields. University of Minnesota (link is external) researchers created a sponge that uses nanotechnology to quickly absorb mercury, as well as bacterial and fungal microbes from polluted water. The sponge can be used on tap water, industrial wastewater, and in lakes. It converts contaminants into nontoxic waste that can be disposed in a landfill.

NIFA invests in and advances agricultural research, education, and extension and promotes transformative discoveries that solve societal challenges. NIFA support for the best and brightest scientists and extension personnel has resulted in user-inspired, groundbreaking discoveries that combat childhood obesity, improve and sustain rural economic growth, address water availability issues, increase food production, find new sources of energy, mitigate climate variability and ensure food safety. To learn more about NIFA’s impact on agricultural science, visit www.nifa.usda.gov/impacts, sign up for email updates (link is external) or follow us on Twitter @USDA_NIFA (link is external), #NIFAImpacts (link is external).

Given my interest in nanocellulose materials (Canada was/is a leader in the production of cellulose nanocrystals [CNC] but there has been little news about Canadian research into CNC applications), I used the NIFA link to access the table listing the grants and clicked on ‘brief’ in the View column in the University of Pennsylania row to find this description of the project,

ENGINEERING CELLULOSE NANOMATERIALS WITH HIGH TOUGHNESS

NON-TECHNICAL SUMMARY: Cellulose nanofibrils (CNFs) are natural materials with exceptional mechanical properties that can be obtained from renewable plant-based resources. CNFs are stiff, strong, and lightweight, thus they are ideal for use in structural materials. In particular, there is a significant opportunity to use CNFs to realize polymer composites with improved toughness and resistance to fracture. The overall goal of this project is to establish an understanding of fracture toughness enhancement in polymer composites reinforced with CNFs. A key outcome of this work will be process – structure – fracture property relationships for CNF-reinforced composites. The knowledge developed in this project will enable a new class of tough CNF-reinforced composite materials with applications in areas such as building materials, automotive components, and consumer products.The composite materials that will be investigated are at the convergence of nanotechnology and bio-sourced material trends. Emerging nanocellulose technologies have the potential to move biomass materials into high value-added applications and entirely new markets.

It’s not the only nanocellulose material project being funded in this round, there’s this at North Dakota State University, from the NIFA ‘brief’ project description page,

NOVEL NANOCELLULOSE BASED FIRE RETARDANT FOR POLYMER COMPOSITES

NON-TECHNICAL SUMMARY: Synthetic polymers are quite vulnerable to fire.There are 2.4 million reported fires, resulting in 7.8 billion dollars of direct property loss, an estimated 30 billion dollars of indirect loss, 29,000 civilian injuries, 101,000 firefighter injuries and 6000 civilian fatalities annually in the U.S. There is an urgent need for a safe, potent, and reliable fire retardant (FR) system that can be used in commodity polymers to reduce their flammability and protect lives and properties. The goal of this project is to develop a novel, safe and biobased FR system using agricultural and woody biomass. The project is divided into three major tasks. The first is to manufacture zinc oxide (ZnO) coated cellulose nanoparticles and evaluate their morphological, chemical, structural and thermal characteristics. The second task will be to design and manufacture polymer composites containing nano sized zinc oxide and cellulose crystals. Finally the third task will be to test the fire retardancy and mechanical properties of the composites. Wbelieve that presence of zinc oxide and cellulose nanocrystals in polymers will limit the oxygen supply by charring, shielding the surface and cellulose nanocrystals will make composites strong. The outcome of this project will help in developing a safe, reliable and biobased fire retardant for consumer goods, automotive, building products and will help in saving human lives and property damage due to fire.

One day, I hope to hear about Canadian research into applications for nanocellulose materials. (fingers crossed for good luck)