Tag Archives: Jennifer Ouellette

‘Superconductivity: The Musical!’ wins the 2018 Dance Your Ph.D. competition

I can’t believe that October 24, 2011 was the last time the Dance Your Ph.D. competition was featured here. Time flies, eh? Here’s the 2018 contest winner’s submission, Superconductivity: The Musical!, (Note: This video is over 11 mins. long),

A February 17, 2019 CBC (Canadian Broadcasting Corporation) news item introduces the video’s writer, producer,s musician, and scientist,

Swing dancing. Songwriting. And theoretical condensed matter physics.

It’s a unique person who can master all three, but a University of Alberta PhD student has done all that and taken it one step further by making a rollicking music video about his academic pursuits — and winning an international competition for his efforts.

Pramodh Senarath Yapa is the winner of the 2018 Dance Your PhD contest, which challenges scientists around the world to explain their research through a jargon-free medium: dance.

The prize is $1,000 and “immortal geek fame.”

Yapa’s video features his friends twirling, swinging and touch-stepping their way through an explanation of his graduate research, called “Non-Local Electrodynamics of Superconducting Wires: Implications for Flux Noise and Inductance.”

Jennifer Ouelette’s February 17, 2019 posting for the ars Technica blog offers more detail (Note: A link has been removed),

Yapa’s research deals with how matter behaves when it’s cooled to very low temperatures, when quantum effects kick in—such as certain metals becoming superconductive, or capable of conducting electricity with zero resistance. That’s useful for any number of practical applications. D-Wave Systems [a company located in metro Vancouver {Canada}], for example, is building quantum computers using loops of superconducting wire. For his thesis, “I had to use the theory of superconductivity to figure out how to build a better quantum computer,” said Yapa.

Condensed matter theory (the precise description of Yapa’s field of research) is a notoriously tricky subfield to make palatable for a non-expert audience. “There isn’t one unifying theory or a single tool that we use,” he said. “Condensed matter theorists study a million different things using a million different techniques.”

His conceptual breakthrough came about when he realized electrons were a bit like “unsociable people” who find joy when they pair up with other electrons. “You can imagine electrons as a free gas, which means they don’t interact with each other,” he said. “The theory of superconductivity says they actually form pairs when cooled below a certain temperature. That was the ‘Eureka!’ moment, when I realized I could totally use swing dancing.”

John Bohannon’s Feb. 15, 2019 article for Science (magazine) offers an update on Yapa’s research interests (it seems that Yapa was dancing his Masters degree) and more information about the contest itself ,

..

“I remember hearing about Dance Your Ph.D. many years ago and being amazed at all the entries,” Yapa says. “This is definitely a longtime dream come true.” His research, meanwhile, has evolved from superconductivity—which he pursued at the University of Victoria in Canada, where he completed a master’s degree—to the physics of superfluids, the focus of his Ph.D. research at the University of Alberta.

This is the 11th year of Dance Your Ph.D. hosted by Science and AAAS. The contest challenges scientists around the world to explain their research through the most jargon-free medium available: interpretive dance.

“Most people would not normally think of interpretive dance as a tool for scientific communication,” says artist Alexa Meade, one of the judges of the contest. “However, the body can express conceptual thoughts through movement in ways that words and data tables cannot. The results are both artfully poetic and scientifically profound.”

Getting back to the February 17, 2019 CBC news item,

Yapa describes his video, filmed in Victoria where he earned his master’s degree, as a “three act, mini-musical.”

“I envisioned it as talking about the social lives of electrons,” he said. “The electrons starts out in a normal metal, at normal temperatures….We say these electrons are non-interacting. They don’t talk to each other. Electrons ignore each other and are very unsociable.”

The electrons — represented by dancers wearing saddle oxfords, poodle skirts, vests and suspenders — shuffle up the dance floor by themselves.

In the second act, the metal is cooled.

“The electrons become very unhappy about being alone. They want to find a partner, some companionship for the cold times,” he said

That’s when the electrons join up into something called Cooper pairs.

The dancers join together, moving to lyrics like, “If we peek/the Coopers are cheek-to-cheek.

In the final act, Yapa gets his dancers to demonstrate what happens when the Cooper pairs meet the impurities of the materials they’re moving in. All of a sudden, a group of black-leather-clad thugs move onto the dance floor.

“The Cooper pairs come dancing near these impurities and they’re like these crotchety old people yelling and shaking their fists at these young dancers,” Yapa explained.

Yapa’s entry to the annual contest swept past 49 other contestants to earn him the win. The competition is sponsored by Science magazine and the American Association for the Advancement of Science.

Congratulations to Pramodh Senarath Yapa.

Science and scientists in the movies and on tv

I find it easy to miss how much science there is in the movies and on television even though I’m looking for it. Here are a few recent examples of science in popular culture.

Inside Science of Iron Man 2, an article by Emilie Lorditch on physorg.com explains some of the background work needed to create a giant particle accelerator with a new way to power the reactor pumping Iron Man’s heart. From the article,

“I went to Marvel Studios to meet with one of the film’s producers (Jeremy Latcham) and even brought a graduate student along,” said Mark Wise, a theoretical physicist at the California Institute of Technology in Pasadena who served as a technical consultant for the film. “There was a specific set of scenes that I was consulting on; the story had to get from this point to that point.”

Wise was surprised by Latcham’s and the film crew’s interest in the actual science, “I attempted to present the science in a way to the help the movie, but still get a little science in,” said Wise. “They wanted the scenes to look good, but they also wanted elements of truth in what they did, it was nice.”

The producers for the film found their scientist through The Science and Entertainment Exchange (which is a program of the US National Academy of Sciences). From Lorditch’s article,

“Scientists can offer more than just simple fact-checking of scripts,” said Jennifer Ouellette, director of the Science and Entertainment Exchange. “Get them involved early enough in the production process and their input can be invaluable in developing not just the fundamental scientific concepts underlying a scene, but also — since film and TV are a visual mediums — scientists can help filmmakers more fully realize their visions on screen.”

I have blogged before about Hollywood’s relationship with science here although my focus was largely on mathematics and the Canadian scene.

Dave Bruggeman at the Pasco Phronesis blog regularly highlights science items on television. Much of his focus is on late night tv and interviews with scientists. (The first time I saw one of his posts I was gobsmacked in the best way possible since I’d taken the science element of these talk show interviews for granted.) There’s another Pasco Phronesis posting today about the latest Colbert Report and a series Colbert calls, Science Cat Fight.

All of this is interesting fodder for thinking about how scientists (and by extension science) are perceived and Matthew C. Nisbet at the Framing Science blog has some interesting things to say about this in his posting ‘Reconsidering the Image of Scientists in Film & Television‘,

Contrary to conventional wisdom that entertainment media portray science and scientists in a negative light, research shows that across time, genre, and medium there is no single prevailing image and that both positive and negative images of scientists and science can be found. More recent research even suggests that in contemporary entertainment media, scientists are portrayed in an almost exclusively positive light and often as heroes.

Nisbet goes on to offer four ‘archetypes’ and ask for feedback, (Note: I have removed some of the text from these descriptions.)

Scientists as Dr. Frankenstein: …  Examples of this image include Gregory Peck as Dr. Mengele in Boys from Brazil, Marlon Brando as Dr. Moreau in The Island of Dr. Moreau, and Jeff Goldblum as the scientist in The Fly.Scientists as powerless pawns: … Examples include Robert Duvall as Dr. Griffin Weir in the 6th Day and several of the scientists in Jurassic Park who work for Richard Attenborough’s character John Hammond, CEO of InGen.

Scientists as eccentric and anti-social geeks: … Examples of this image include Christopher Loyd as Doc in Back to the Future, the nerdy boys in John Hughes 1985 film Weird Science who use science to create the perfect woman, and Val Kilmer and his fellow grad students in the 1985 film Real Genius who serve as graduate students to a professor who is determined to master a Star Wars-like satellite technology. [my addition: The characters in The Big Bang Theory.]

Scientists as Hero: …  Examples include Dr. Alan Grant as the main protagonist in Jurassic Park, Spock in the new version of Star Trek who takes on leading man and action hero qualities to rival Captain Kirk, Jody Foster’s character in Contact, Sigourney Weaver’s character in Avatar, Denis Quaid as the climate scientist hero in The Day After Tomorrow, Chiwetel Ejiofor as the geologist hero in 2012, Morgan Freeman in the Batman films as inventor Lucious Fox and CEO of Wayne Industries, and Robert Downey Jr. as Tony Stark in the Iron Man films.

Serendipitously, I’ve returned to where I started: Iron Man. As for all this science in the media, I think it’s a testament to its ubiquity in our lives.