Tag Archives: Crystal E. Owens

Detangling carbon nanotubes (CNTs)

An April 27, 2022 news item on ScienceDaily announces research into a solution to a vexing problem associated with the production of carbon nanotubes (CNTs),

Carbon nanotubes that are prone to tangle like spaghetti can use a little special sauce to realize their full potential.

Rice University scientists have come up with just the sauce, an acid-based solvent that simplifies carbon nanotube processing in a way that’s easier to scale up for industrial applications.

The Rice lab of Matteo Pasquali reported in Science Advances on its discovery of a unique combination of acids that helps separate nanotubes in a solution and turn them into films, fibers or other materials with excellent electrical and mechanical properties.

The study co-led by graduate alumnus Robert Headrick and graduate student Steven Williams reports the solvent is compatible with conventional manufacturing processes. That should help it find a place in the production of advanced materials for many applications.

An April 22, 2022 Rice University news release (received via email and also published on April 27, 2022 on EurekAlert), which originated the news item, delves further into how the research has environmental benefits and into its technical aspects (Note Links have been removed),

“There’s a growing realization that it’s probably not a good idea to increase the mining of copper and aluminum and nickel,” said Pasquali, Rice’s A.J. Hartsook Professor and a professor of chemical and biomolecular engineering, chemistry and materials science and nanoengineering. He is also director of the Rice-based Carbon Hub, which promotes the development of advanced carbon materials to benefit the environment.

“But there is this giant opportunity to use hydrocarbons as our ore,” he said. “In that light, we need to broaden as much as possible the range in which we can use carbon materials, especially where it can displace metals with a product that can be manufactured sustainably from a feedstock like hydrocarbons.” Pasquali noted these manufacturing processes produce clean hydrogen as well.

“Carbon is plentiful, we control the supply chains and we know how to get it out in an environmentally responsible way,” he said.

A better way to process carbon will help. The solvent is based on methanesulfonic (MSA), p-toluenesulfonic (pToS)and oleum acids that, when combined, are less corrosive than those currently used to process nanotubes in a solution. Separating nanotubes (which researchers refer to as dissolving) is a necessary step before they can be extruded through a needle or other device where shear forces help turn them into familiar fibers or sheets. 

Oleum and chlorosulfonic acids have long been used to dissolve nanotubes without modifying their structures, but both are highly corrosive. By combining oleum with two weaker acids, the team developed a broadly applicable process that enables new manufacturing for nanotubes products.

“The oleum surrounds each individual nanotube and gives it a very localized positive charge,” said Headrick, now a research scientist at Shell. “That charge makes them repel each other.”

After detangling, the milder acids further separate the nanotubes. They found MSA is best for fiber spinning and roll-to-roll film production, while pToS, a solid that melts at 40 degrees Celsius (104 degrees Fahrenheit), is particularly useful for 3D printing applications because it allows nanotube solutions to be processed at a moderate temperature and then solidified by cooling.

The researchers used these stable liquid crystalline solutions to make things in both modern and traditional ways, 3D printing carbon nanotube aerogels and silk screen printing patterns onto a variety of surfaces, including glass. 

The solutions also enabled roll-to-roll production of transparent films that can be used as electrodes. “Honestly, it was a little surprising how well that worked,” Headrick said. “It came out pretty flawless on the very first try.”

The researchers noted oleum still requires careful handling, but once diluted with the other acids, the solution is much less aggressive to other materials. 

“The acids we’re using are so much gentler that you can use them with common plastics,” Headrick said. “That opens the door to a lot of materials processing and printing techniques that are already in place in manufacturing facilities. 

“It’s also really important for integrating carbon nanotubes into other devices, depositing them as one step in a device-manufacturing process,” he said.

They reported the less-corrosive solutions did not give off harmful fumes and were easier to clean up after production. MSA and pToS can also be recycled after processing nanotubes, lowering their environmental impact and energy and processing costs.

Williams said the next step is to fine-tune the solvent for applications, and to determine how factors like chirality and size affect nanotube processing. “It’s really important that we have high-quality, clean, large diameter tubes,” he said.

Co-authors of the paper are alumna Lauren Taylor and graduate students Oliver Dewey and Cedric Ginestra of Rice; graduate student Crystal Owens and professors Gareth McKinley and A. John Hart at the Massachusetts Institute of Technology; alumna Lucy Liberman, graduate student Asia Matatyaho Ya’akobi and Yeshayahu Talmon, a professor emeritus of chemical engineering, at the Technion-Israel Institute of Technology, Haifa, Israel; and Benji Maruyama, autonomous materials lead in the Materials and Manufacturing Directorate, Air Force Research Laboratory.

Here’s a link to and a citation for the paper,

Versatile acid solvents for pristine carbon nanotube assembly by Robert J. Headrick, Steven M. Williams, Crystal E. Owens, Lauren W. Taylor, Oliver S. Dewey, Cedric J. Ginestra, Lucy Liberman, Asia Matatyaho Ya’akobi, Yeshayahu Talmon, Benji Maruyama, Gareth H. McKinley, A. John Hart, Matteo Pasquali. Science Advances • 27 Apr 2022 • Vol 8, Issue 17 • DOI: 10.1126/sciadv.abm3285

This paper is open access.

Massachusetts Institute of Technology (MIT) researchers achieve highest fraction of CNCs in a composite to date

Cellulose nanocrystals (CNCs), always of interest to me, are featured in research announced in a February 11, 2022 news item on Nanowerk,

The strongest part of a tree lies not in its trunk or its sprawling roots, but in the walls of its microscopic cells.

A single wood cell wall is constructed from fibers of cellulose — nature’s most abundant polymer, and the main structural component of all plants and algae. Within each fiber are reinforcing cellulose nanocrystals, or CNCs, which are chains of organic polymers arranged in nearly perfect crystal patterns. At the nanoscale, CNCs are stronger and stiffer than Kevlar. If the crystals could be worked into materials in significant fractions, CNCs could be a route to stronger, more sustainable, naturally derived plastics.

Now, an MIT team has engineered a composite made mostly from cellulose nanocrystals mixed with a bit of synthetic polymer. The organic crystals take up about 60 to 90 percent of the material — the highest fraction of CNCs achieved in a composite to date.

A February 10, 2022 MIT news release (also on EurekAlert), which originated the news item, delves further into the research (Note: A link has been removed),

The researchers found the cellulose-based composite is stronger and tougher than some types of bone, and harder than typical aluminum alloys. The material has a brick-and-mortar microstructure that resembles nacre, the hard inner shell lining of some molluscs.

The team hit on a recipe for the CNC-based composite that they could fabricate using both 3D printing and conventional casting. They printed and cast the composite into penny-sized pieces of film that they used to test the material’s strength and hardness. They also machined the composite into the shape of a tooth to show that the material might one day be used to make cellulose-based dental implants — and for that matter, any plastic products — that are stronger, tougher, and more sustainable.

“By creating composites with CNCs at high loading, we can give polymer-based materials mechanical properties they never had before,” says A. John Hart, professor of mechanical engineering. “If we can replace some petroleum-based plastic with naturally-derived cellulose, that’s arguably better for the planet as well.”

Hart and his team, including Abhinav Rao PhD ’18, Thibaut Divoux, and Crystal Owens SM ’17, have published their results today in the journal Cellulose.

Gel bonds

Each year, more than 10 billion tons of cellulose is synthesized from the bark, wood, or leaves of plants. Most of this cellulose is used to manufacture paper and textiles, while a portion of it is processed into powder for use in food thickeners and cosmetics.

In recent years, scientists have explored uses for cellulose nanocrystals, which can be extracted from cellulose fibers via acid hydrolysis. The exceptionally strong crystals could be used as natural reinforcements in polymer-based materials. But researchers have only been able to incorporate low fractions of CNCs, as the crystals have tended to clump and only weakly bond with polymer molecules.

Hart and his colleagues looked to develop a composite with a high fraction of CNCs, that they could shape into strong, durable forms. They started by mixing a solution of synthetic polymer with commercially available CNC powder. The team determined the ratio of CNC and polymer that would turn the solution into a gel, with a consistency that could either be fed through the nozzle of a 3-D printer or poured into a mold to be cast. They used an ultrasonic probe to break up any clumps of cellulose in the gel, making it more likely for the dispersed cellulose to form strong bonds with polymer molecules.

They fed some of the gel through a 3-D printer and poured the rest into a mold to be cast. They then let the printed samples dry. In the process, the material shrank, leaving behind a solid composite composed mainly of cellulose nanocrystals.

“We basically deconstructed wood, and reconstructed it,” Rao says. “We took the best components of wood, which is cellulose nanocrystals, and reconstructed them to achieve a new composite material.”

Tough cracks

Interestingly, when the team examined the composite’s structure under a microscope, they observed that grains of cellulose settled into a brick-and-mortar pattern, similar to the architecture of nacre. In nacre, this zig-zagging microstructure stops a crack from running straight through the material. The researchers found this to also be the case with their new cellulose composite.

They tested the material’s resistance to cracks, using tools to initiate first nano- and then micro-scale cracks. They found that, across multiple scales, the composite’s arrangement of cellulose grains prevented the cracks from splitting the material. This resistance to plastic deformation gives the composite a hardness and stiffness at the boundary between conventional plastics and metals.

Going forward, the team is looking for ways to minimize the shrinkage of gels as they dry. While shrinkage isn’t much of a problem when printing small objects, anything bigger could buckle or crack as the composite dries.

“If you could avoid shrinkage, you could keep scaling up, maybe to the meter scale,” Rao says. “Then, if we were to dream big, we could replace a significant fraction of plastics,with cellulose composites.”

This research was supported, in part, by the Proctor and Gamble Corporation, and by the National Defense Science and Engineering Graduate Fellowship.

Here’s a link to and a citation for the paper,

Printable, castable, nanocrystalline cellulose-epoxy composites exhibiting hierarchical nacre-like toughening by Abhinav Rao, Thibaut Divoux, Crystal E. Owens & A. John Hart. Cellulose (2022) DOI: https://doi.org/10.1007/s10570-021-04384-7 Published: 10 February 2022

This paper is behind a paywall.