Tag Archives: Naomi J. Halas

Probing the physical limits of plasmons in organic molecules with fewer than 50 atoms

A Sept. 5, 2018  news item on ScienceDaily introduces the work,

Rice University [Texas, US] researchers are probing the physical limits of excited electronic states called plasmons by studying them in organic molecules with fewer than 50 atoms.

A Sept. 4, 2018 Rice University news release (also on EurekAlert published on Sept. 5, 2018), which originated the news item, explains what plasmons are and why this research is being undertaken,

Plasmons are oscillations in the plasma of free electrons that constantly swirl across the surface of conductive materials like metals. In some nanomaterials, a specific color of light can resonate with the plasma and cause the electrons inside it to lose their individual identities and move as one, in rhythmic waves. Rice’s Laboratory for Nanophotonics (LANP) has pioneered a growing list of plasmonic technologies for applications as diverse as color-changing glass, molecular sensing, cancer diagnosis and treatment, optoelectronics, solar energy collection and photocatalysis.

Reporting online in the Proceedings of the National Academy of Sciences, LANP scientists detailed the results of a two-year experimental and theoretical study of plasmons in three different polycyclic aromatic hydrocarbons (PAHs). Unlike the plasmons in relatively large metal nanoparticles, which can typically be described with classical electromagnetic theory like Maxwell’s [James Clerk Maxwell] equations, the paucity of atoms in the PAHs produces plasmons that can only be understood in terms of quantum mechanics, said study co-author and co-designer Naomi Halas, the director of LANP and the lead researcher on the project.

“These PAHs are essentially scraps of graphene that contain five or six fused benzene rings surrounded by a perimeter of hydrogen atoms,” Halas said. “There are so few atoms in each that adding or removing even a single electron dramatically changes their electronic behavior.”

Halas’ team had experimentally verified the existence of molecular plasmons in several previous studies. But an investigation that combined side by side theoretical and experimental perspectives was needed, said study co-author Luca Bursi, a postdoctoral research associate and theoretical physicist in the research group of study co-designer and co-author Peter Nordlander.

“Molecular excitations are a ubiquity in nature and very well studied, especially for neutral PAHs, which have been considered as the standard of non-plasmonic excitations in the past,” Bursi said. “Given how much is already known about PAHs, they were an ideal choice for further investigation of the properties of plasmonic excitations in systems as small as actual molecules, which represent a frontier of plasmonics.”

Lead co-author Kyle Chapkin, a Ph.D. student in applied physics in the Halas research group, said, “Molecular plasmonics is a new area at the interface between plasmonics and molecular chemistry, which is rapidly evolving. When plasmonics reach the molecular scale, we lose any sharp distinction of what constitutes a plasmon and what doesn’t. We need to find a new rationale to explain this regime, which was one of the main motivations for this study.”

In their native state, the PAHs that were studied — anthanthrene, benzo[ghi]perylene and perylene — are charge-neutral and cannot be excited into a plasmonic state by the visible wavelengths of light used in Chapkin’s experiments. In their anionic form, the molecules contain an additional electron, which alters their “ground state” and makes them plasmonically active in the visible spectrum. By exciting both the native and anionic forms of the molecules and comparing precisely how they behaved as they relaxed back to their ground states, Chapkin and Bursi built a solid case that the anionic forms do support molecular plasmons in the visible spectrum.

The key, Chapkin said, was identifying a number of similarities between the behavior of known plasmonic particles and the anionic PAHs. By matching both the timescales and modes for relaxation behaviors, the LANP team built up a picture of a characteristic dynamics of low-energy plasmonic excitations in the anionic PAHs.

“In molecules, all excitations are molecular excitations, but select excited states show some characteristics that allow us to draw a parallel with the well-established plasmonic excitations in metal nanostructures,” Bursi said.

“This study offers a window on the sometimes surprising behavior of collective excitations in few-atom quantum systems,” Halas said. “What we’ve learned here will aid our lab and others in developing quantum-plasmonic approaches for ultrafast color-changing glass, molecular-scale optoelectronics and nonlinear plasmon-mediated optics.”

Here’s a link to and a citation for the paper,

Lifetime dynamics of plasmons in the few-atom limit by Kyle D. Chapkin, Luca Bursi, Grant J. Stec, Adam Lauchner, Nathaniel J. Hogan, Yao Cui, Peter Nordlander, and Naomi J. Halas. PNAS September 11, 2018 115 (37) 9134-9139; published ahead of print August 27, 2018 DOI: https://doi.org/10.1073/pnas.1805357115

This paper is behind a paywall.

Using only sunlight to desalinate water

The researchers seem to believe that this new desalination technique could be a game changer. From a June 20, 2017 news item on Azonano,

An off-grid technology using only the energy from sunlight to transform salt water into fresh drinking water has been developed as an outcome of the effort from a federally funded research.

The desalination system uses a combination of light-harvesting nanophotonics and membrane distillation technology and is considered to be the first major innovation from the Center for Nanotechnology Enabled Water Treatment (NEWT), which is a multi-institutional engineering research center located at Rice University.

NEWT’s “nanophotonics-enabled solar membrane distillation” technology (NESMD) integrates tried-and-true water treatment methods with cutting-edge nanotechnology capable of transforming sunlight to heat. …

A June 19, 2017 Rice University news release, which originated the news item, expands on the theme,

More than 18,000 desalination plants operate in 150 countries, but NEWT’s desalination technology is unlike any other used today.

“Direct solar desalination could be a game changer for some of the estimated 1 billion people who lack access to clean drinking water,” said Rice scientist and water treatment expert Qilin Li, a corresponding author on the study. “This off-grid technology is capable of providing sufficient clean water for family use in a compact footprint, and it can be scaled up to provide water for larger communities.”

The oldest method for making freshwater from salt water is distillation. Salt water is boiled, and the steam is captured and run through a condensing coil. Distillation has been used for centuries, but it requires complex infrastructure and is energy inefficient due to the amount of heat required to boil water and produce steam. More than half the cost of operating a water distillation plant is for energy.

An emerging technology for desalination is membrane distillation, where hot salt water is flowed across one side of a porous membrane and cold freshwater is flowed across the other. Water vapor is naturally drawn through the membrane from the hot to the cold side, and because the seawater need not be boiled, the energy requirements are less than they would be for traditional distillation. However, the energy costs are still significant because heat is continuously lost from the hot side of the membrane to the cold.

“Unlike traditional membrane distillation, NESMD benefits from increasing efficiency with scale,” said Rice’s Naomi Halas, a corresponding author on the paper and the leader of NEWT’s nanophotonics research efforts. “It requires minimal pumping energy for optimal distillate conversion, and there are a number of ways we can further optimize the technology to make it more productive and efficient.”

NEWT’s new technology builds upon research in Halas’ lab to create engineered nanoparticles that harvest as much as 80 percent of sunlight to generate steam. By adding low-cost, commercially available nanoparticles to a porous membrane, NEWT has essentially turned the membrane itself into a one-sided heating element that alone heats the water to drive membrane distillation.

“The integration of photothermal heating capabilities within a water purification membrane for direct, solar-driven desalination opens new opportunities in water purification,” said Yale University ‘s Menachem “Meny” Elimelech, a co-author of the new study and NEWT’s lead researcher for membrane processes.

In the PNAS study, researchers offered proof-of-concept results based on tests with an NESMD chamber about the size of three postage stamps and just a few millimeters thick. The distillation membrane in the chamber contained a specially designed top layer of carbon black nanoparticles infused into a porous polymer. The light-capturing nanoparticles heated the entire surface of the membrane when exposed to sunlight. A thin half-millimeter-thick layer of salt water flowed atop the carbon-black layer, and a cool freshwater stream flowed below.

Li, the leader of NEWT’s advanced treatment test beds at Rice, said the water production rate increased greatly by concentrating the sunlight. “The intensity got up 17.5 kilowatts per meter squared when a lens was used to concentrate sunlight by 25 times, and the water production increased to about 6 liters per meter squared per hour.”

Li said NEWT’s research team has already made a much larger system that contains a panel that is about 70 centimeters by 25 centimeters. Ultimately, she said, NEWT hopes to produce a modular system where users could order as many panels as they needed based on their daily water demands.

“You could assemble these together, just as you would the panels in a solar farm,” she said. “Depending on the water production rate you need, you could calculate how much membrane area you would need. For example, if you need 20 liters per hour, and the panels produce 6 liters per hour per square meter, you would order a little over 3 square meters of panels.”

Established by the National Science Foundation in 2015, NEWT aims to develop compact, mobile, off-grid water-treatment systems that can provide clean water to millions of people who lack it and make U.S. energy production more sustainable and cost-effective. NEWT, which is expected to leverage more than $40 million in federal and industrial support over the next decade, is the first NSF Engineering Research Center (ERC) in Houston and only the third in Texas since NSF began the ERC program in 1985. NEWT focuses on applications for humanitarian emergency response, rural water systems and wastewater treatment and reuse at remote sites, including both onshore and offshore drilling platforms for oil and gas exploration.

There is a video but it is focused on the NEWT center rather than any specific water technologies,

For anyone interested in the technology, here’s a link to and a citation for the researchers’ paper,

Nanophotonics-enabled solar membrane distillation for off-grid water purification by Pratiksha D. Dongare, Alessandro Alabastri, Seth Pedersen, Katherine R. Zodrow, Nathaniel J. Hogan, Oara Neumann, Jinjian Wu, Tianxiao Wang, Akshay Deshmukh,f, Menachem Elimelech, Qilin Li, Peter Nordlander, and Naomi J. Halas. PNAS {Proceedings of the National Academy of Sciences] doi: 10.1073/pnas.1701835114 June 19, 2017

This paper appears to be open access.

Multicolor, electrochromic glass

Electrochromic (changes color to block light and heat) glass could prove to be a significant market by 2020 according to a March 8, 2017 news item on phys.org,

Rice University’s latest nanophotonics research could expand the color palette for companies in the fast-growing market for glass windows that change color at the flick of an electric switch.

In a new paper in the American Chemical Society journal ACS Nano, researchers from the laboratory of Rice plasmonics pioneer Naomi Halas report using a readily available, inexpensive hydrocarbon molecule called perylene to create glass that can turn two different colors at low voltages.

“When we put charges on the molecules or remove charges from them, they go from clear to a vivid color,” said Halas, director of the Laboratory for Nanophotonics (LANP), lead scientist on the new study and the director of Rice’s Smalley-Curl Institute. “We sandwiched these molecules between glass, and we’re able to make something that looks like a window, but the window changes to different types of color depending on how we apply a very low voltage.”

Adam Lauchner, an applied physics graduate student at Rice and co-lead author of the study, said LANP’s color-changing glass has polarity-dependent colors, which means that a positive voltage produces one color and a negative voltage produces a different color.

“That’s pretty novel,” Lauchner said. “Most color-changing glass has just one color, and the multicolor varieties we’re aware of require significant voltage.”

Glass that changes color with an applied voltage is known as “electrochromic,” and there’s a growing demand for the light- and heat-blocking properties of such glass. The projected annual market for electrochromic glass in 2020 has been estimated at more $2.5 billion.

A March 8, 2017 Rice University news release (also on EurekAlert), which originated the news item, provides more detail about the research,

Lauchner said the glass project took almost two years to complete, and he credited co-lead author Grant Stec, a Rice undergraduate researcher, with designing the perylene-containing nonwater-based conductive gel that’s sandwiched between glass layers.

“Perylene is part of a family of molecules known as polycyclic aromatic hydrocarbons,” Stec said. “They’re a fairly common byproduct of the petrochemical industry, and for the most part they are low-value byproducts, which means they’re inexpensive.”

Grant Stec and Adam Lauchner

Grant Stec and Adam Lauchner of Rice University’s Laboratory for Nanophotonics have used an inexpensive hydrocarbon molecule called perylene to create a low-voltage, multicolor, electrochromic glass. (Photo by Jeff Fitlow/Rice University)

There are dozens of polycyclic aromatic hydrocarbons (PAHs), but each contains rings of carbon atoms that are decorated with hydrogen atoms. In many PAHs, carbon rings have six sides, just like the rings in graphene, the much-celebrated subject of the 2010 Nobel Prize in physics.

“This is a really cool application of what started as fundamental science in plasmonics,” Lauchner said.

A plasmon is [a] wave of energy, a rhythmic sloshing in the sea of electrons that constantly flow across the surface of conductive nanoparticles. Depending upon the frequency of a plasmon’s sloshing, it can interact with and harvest the energy from passing light. In dozens of studies over the past two decades, Halas, Rice physicist Peter Nordlander and colleagues have explored both the basic physics of plasmons and potential applications as diverse as cancer treatment, solar-energy collection, electronic displays and optical computing.

The quintessential plasmonic nanoparticle is metallic, often made of gold or silver, and precisely shaped. For example, gold nanoshells, which Halas invented at Rice in the 1990s, consist of a nonconducting core that’s covered by a thin shell of gold.

Grant Stec, Naomi Halas and Adam Lauchner

Student researchers Grant Stec (left) and Adam Lauchner (right) with Rice plasmonics pioneer Naomi Halas, director of Rice University’s Laboratory for Nanophotonics. (Photo by Jeff Fitlow/Rice University)

“Our group studies many kinds of metallic nanoparticles, but graphene is also conductive, and we’ve explored its plasmonic properties for several years,” Halas said.

She noted that large sheets of atomically thin graphene have been found to support plasmons, but they emit infrared light that’s invisible to the human eye.

“Studies have shown that if you make graphene smaller and smaller, as you go down to nanoribbons, nanodots and these little things called nanoislands, you can actually get graphene’s plasmon closer and closer to the edge of the visible regime,” Lauchner said.

In 2013, then-Rice physicist Alejandro Manjavacas, a postdoctoral researcher in Nordlander’s lab, showed that the smallest versions of graphene — PAHs with just a few carbon rings — should produce visible plasmons. Moreover, Manjavacas calculated the exact colors that would be emitted by different types of PAHs.

“One of the most interesting things was that unlike plasmons in metals, the plasmons in these PAH molecules were very sensitive to charge, which suggested that a very small electrical charge would produce dramatic colors,” Halas said.

Electrochromic glass that glass that turns from clear to black

Rice University researchers demonstrated a new type of glass that turns from clear to black when a low voltage is applied. The glass uses a combination of molecules that block almost all visible light when they each gain a single electron. (Photo by Jeff Fitlow/Rice University)

Lauchner said the project really took off after Stec joined the research team in 2015 and created a perylene formulation that could be sandwiched between sheets of conductive glass.

In their experiments, the researchers found that applying just 4 volts was enough to turn the clear window greenish-yellow and applying negative 3.5 volts turned it blue. It took several minutes for the windows to fully change color, but Halas said the transition time could easily be improved with additional engineering.

Stec said the team’s other window, which turns from clear to black, was produced later in the project.

“Dr. Halas learned that one of the major hurdles in the electrochromic device industry was making a window that could be clear in one state and completely black in another,” Stec said. “We set out to do that and found a combination of PAHs that captured no visible light at zero volts and almost all visible light at low voltage.”

Here’s a link to and a citation for the paper,

Multicolor Electrochromic Devices Based on Molecular Plasmonics by Grant J. Stec, Adam Lauchner, Yao Cui, Peter Nordlander, and Naomi J. Halas. ACS Nano, Article ASAP DOI: 10.1021/acsnano.7b00364 Publication Date (Web): February 22, 2017

Copyright © 2017 American Chemical Society

This paper is behind a paywall.

‘Stained glass nanotechnology’ for color displays

From a Dec. 4, 2015 news item on ScienceDaily,

A new method for building “drawbridges” between metal nanoparticles may allow electronics makers to build full-color displays using light-scattering nanoparticles that are similar to the gold materials that medieval artisans used to create red stained-glass.

“Wouldn’t it be interesting if we could create stained-glass windows that changed colors at the flip of a switch?” said Christy Landes, associate professor of chemistry at Rice and the lead researcher on a new study about the drawbridge method that appears this week in the open-access journal Science Advances.

The research by Landes and other experts at Rice University’s Smalley-Curl Institute could allow engineers to use standard electrical switching techniques to construct color displays from pairs of nanoparticles that scatter different colors of light.

For centuries, stained-glass makers have tapped the light-scattering properties of tiny gold nanoparticles to produce glass with rich red tones. Similar types of materials could increasingly find use in modern electronics as manufacturers work to make smaller, faster and more energy-efficient components that operate at optical frequencies.

A Dec. 4, 2015 Rice University news release (also on EurekAlert), which originated the news item, describes the research in more detail,

Though metal nanoparticles scatter bright light, researchers have found it difficult to coax them to produce dramatically different colors, Landes said.

Rice’s new drawbridge method for color switching incorporates metal nanoparticles that absorb light energy and convert it into plasmons, waves of electrons that flow like a fluid across a particle’s surface. Each plasmon scatters and absorbs a characteristic frequency of light, and even minor changes in the wave-like sloshing of a plasmon shift that frequency. The greater the change in plasmonic frequency, the greater the difference between the colors observed.

“Engineers hoping to make a display from optically active nanoparticles need to be able to switch the color,” Landes said. “That type of switching has proven very difficult to achieve with nanoparticles. People have achieved moderate success using various plasmon-coupling schemes in particle assemblies. What we’ve shown though is variation of the coupling mechanism itself, which can be used to produce huge color changes both rapidly and reversibly.”

To demonstrate the method, Landes and study lead author Chad Byers, a graduate student in her lab, anchored pairs of gold nanoparticles to a glass surface covered with indium tin oxide (ITO), the same conductor that’s used in many smartphone screens. By sealing the particles in a chamber filled with a saltwater electrolyte and a silver electrode, Byers and Landes were able form a device with a complete circuit. They then showed they could apply a small voltage to the ITO to electroplate silver onto the surface of the gold particles. In that process, the particles were first coated with a thin layer of silver chloride. By later applying a negative voltage, the researchers caused a conductive silver “drawbridge” to form. Reversing the voltage caused the bridge to withdraw.

“The great thing about these chemical bridges is that we can create and eliminate them simply by applying or reversing a voltage,” Landes said. “This is the first method yet demonstrated to produce dramatic, reversible color changes for devices built from light-activated nanoparticles.”

This research has its roots in previous work (from the news release),

Byers said his research into the plasmonic behavior of gold dimers began about two years ago.

“We were pursuing the idea that we could make significant changes in optical properties of individual particles simply by altering charge density,” he said. “Theory predicts that colors can be changed just by adding or removing electrons, and we wanted to see if we could do that reversibly, simply by turning a voltage on or off.”

The experiments worked. The color shift was observed and reversible, but the change in the color was minute.

“It wasn’t going to get anybody excited about any sort of switchable display applications,” Landes said.

But she and Byers also noticed that their results differed from the theoretical predictions.

Landes said that was because the predictions were based upon using an inert electrode made of a metal like palladium that isn’t subject to oxidation. But silver is not inert. It reacts easily with oxygen in air or water to form a coat of unsightly silver oxide. This oxidizing layer can also form from silver chloride, and Landes said that is what was occurring when the silver counter electrode was used in Byers’ first experiments.

The scientists decided to embrace imperfection (from the news release),

“It was an imperfection that was throwing off our results, but rather than run away from it, we decided to use it to our advantage,” Landes said.

Rice plasmonics pioneer and study co-author Naomi Halas, director of the Smalley-Curl Institute, said the new research shows how plasmonic components could be used to produce electronically switchable color-displays.

“Gold nanoparticles are particularly attractive for display purposes,” said Halas, Rice’s Stanley C. Moore Professor of Electrical and Computer Engineering and professor of chemistry, bioengineering, physics and astronomy, and materials science and nanoengineering. “Depending upon their shape, they can produce a variety of specific colors. They are also extremely stable, and even though gold is expensive, very little is needed to produce an extremely bright color.”

In designing, testing and analyzing the follow-up experiments on dimers, Landes and Byers engaged with a brain trust of Rice plasmonics experts that included Halas, physicist and engineer Peter Nordlander, chemist Stephan Link, materials scientist Emilie Ringe and their students, as well as Paul Mulvaney of the University of Melbourne in Australia.

Together, the team confirmed the composition and spacing of the dimers and showed how metal drawbridges could be used to induce large color shifts based on voltage inputs.

Nordlander and Hui Zhang, the two theorists in the group, examined the device’s “plasmonic coupling,” the interacting dance that plasmons engage in when they are in close contact. For instance, plasmonic dimers are known to act as light-activated capacitors, and prior research has shown that connecting dimers with nanowire bridges brings about a new state of resonance known as a “charge-transfer plasmon,” which has its own distinct optical signature.

“The electrochemical bridging of the interparticle gap enables a fully reversible transition between two plasmonic coupling regimes, one capacitive and the other conductive,” Nordlander said. “The shift between these regimes is evident from the dynamic evolution of the charge transfer plasmon.”

Halas said the method provides plasmonic researchers with a valuable tool for precisely controlling the gaps between dimers and other multiparticle plasmonic configurations.

“In an applied sense, gap control is important for the development of active plasmonic devices like switches and modulators, but it is also an important tool for basic scientists who are conducting curiosity-driven research in the emerging field of quantum plasmonics.”

I’m glad the news release writer included the background work leading to this new research and to hint at the level of collaboration needed to achieve the scientists’ new understanding of color switching.

Here’s a link to and a citation for the paper,

From tunable core-shell nanoparticles to plasmonic drawbridges: Active control of nanoparticle optical properties by Chad P. Byers, Hui Zhang, Dayne F. Swearer, Mustafa Yorulmaz, Benjamin S. Hoener, Da Huang, Anneli Hoggard, Wei-Shun Chang, Paul Mulvaney, Emilie Ringe, Naomi J. Halas, Peter Nordlander, Stephan Link, and Christy F. Landes. Science Advances  04 Dec 2015: Vol. 1, no. 11, e1500988 DOI: 10.1126/sciadv.1500988

In case you missed it in the news release, this is an open access paper.

Changing the vibration of gold nanodisks (acoustic tuning) with light

A May 7, 2015 news item on phys.org describes research that could have a major impact on photonics applications,

In a study that could open doors for new applications of photonics from molecular sensing to wireless communications, Rice University [Texas, US] scientists have discovered a new method to tune the light-induced vibrations of nanoparticles through slight alterations to the surface to which the particles are attached.

n a study published online this week in Nature Communications, researchers at Rice’s Laboratory for Nanophotonics (LANP) used ultrafast laser pulses to induce the atoms in gold nanodisks to vibrate. These vibrational patterns, known as acoustic phonons, have a characteristic frequency that relates directly to the size of the nanoparticle. The researchers found they could fine-tune the acoustic response of the particle by varying the thickness of the material to which the nanodisks were attached.

A May 7, 2015 Rice University news release (also on EurekAlert), which originated the news item, expands on the theme (Note: A link has been removed),

Our results point toward a straightforward method for tuning the acoustic phonon frequency of a nanostructure in the gigahertz range by controlling the thickness of its adhesion layer,” said lead researcher Stephan Link, associate professor of chemistry and in electrical and computer engineering.

Light has no mass, but each photon that strikes an object imparts a miniscule amount of mechanical motion, thanks to a phenomenon known as radiation pressure. A branch of physics known as optomechanics has developed over the past decade to study and exploit radiation pressure for applications like gravity wave detection and low-temperature generation.

Link and colleagues at LANP specialize in another branch of science called plasmonics that is devoted to the study of light-activated nanostructures. Plasmons are waves of electrons that flow like a fluid across a metallic surface.

When a light pulse of a specific wavelength strikes a metal particle like the puck-shaped gold nanodisks in the LANP experiments, the light energy is converted into plasmons. These plasmons slosh across the surface of the particle with a characteristic frequency, in much the same way that each phonon has a characteristic vibrational frequency.

The study’s first author, Wei-Shun Chang, a postdoctoral researcher in Link’s lab, and graduate students Fangfang Wen and Man-Nung Su conducted a series of experiments that revealed a direct connection between the resonant frequencies of the plasmons and phonons in nanodisks that had been exposed to laser pulses.

“Heating nanostructures with a short light pulse launches acoustic phonons that depend sensitively on the structure’s dimensions,” Link said. “Thanks to advanced lithographic techniques, experimentalists can engineer plasmonic nanostructures with great precision. Based on our results, it appears that plasmonic nanostructures may present an interesting alternative to conventional optomechanical oscillators.”

Chang said plasmonics experts often rely on substrates when using electron-beam lithography to pattern plasmonic structures. For example, gold nanodisks like those used in the experiments will not stick to glass slides. But if a thin substrate of titanium or chromium is added to the glass, the disks will adhere and stay where they are placed.

“The substrate layer affects the mechanical properties of the nanostructure, but many questions remain as to how it does this,” Chang said. “Our experiments explored how the thickness of the substrate impacted properties like adhesion and phononic frequency.”

Link said the research was a collaborative effort involving research groups at Rice and the University of Melbourne in Victoria, Australia.

“Wei-Shun and Man-Nung from my lab did the ultrafast spectroscopy,” Link said. “Fangfang, who is in Naomi Halas’ group here at Rice, made the nanodisks. John Sader at the University of Melbourne, and his postdoc Debadi Chakraborty calculated the acoustic modes, and Yue Zhang, a Rice graduate student from Peter Nordlander’s group at Rice simulated the optical/plasmonic properties. Bo Shuang of the Landes’ research group at Rice contributed to the analysis of the experimental data.”

Here’s a link to and a citation for the paper,

Tuning the acoustic frequency of a gold nanodisk through its adhesion layer by Wei-Shun Chang, Fangfang Wen, Debadi Chakraborty, Man-Nung Su, Yue Zhang, Bo Shuang, Peter Nordlander, John E. Sader, Naomi J. Halas, & Stephan Link. Nature Communications 6, Article number: 7022 doi:10.1038/ncomms8022 Published 05 May 2015

This paper is behind a paywall but a free preview is available vie ReadCube Access.

Nanophotonics transforms Raman spectroscopy at Rice University (US)

This new technique for sensing molecules is intriguing. From a July 15, 2014 news item on Azonano,

Nanophotonics experts at Rice University [Texas, US] have created a unique sensor that amplifies the optical signature of molecules by about 100 billion times. Newly published tests found the device could accurately identify the composition and structure of individual molecules containing fewer than 20 atoms.

The new imaging method, which is described this week in the journal Nature Communications, uses a form of Raman spectroscopy in combination with an intricate but mass reproducible optical amplifier. Researchers at Rice’s Laboratory for Nanophotonics (LANP) said the single-molecule sensor is about 10 times more powerful that previously reported devices.

A July 15, 2014 Rice University news release (also on EurekAlert), which originated the news item, provides more detail about the research,

“Ours and other research groups have been designing single-molecule sensors for several years, but this new approach offers advantages over any previously reported method,” said LANP Director Naomi Halas, the lead scientist on the study. “The ideal single-molecule sensor would be able to identify an unknown molecule — even a very small one — without any prior information about that molecule’s structure or composition. That’s not possible with current technology, but this new technique has that potential.”

The optical sensor uses Raman spectroscopy, a technique pioneered in the 1930s that blossomed after the advent of lasers in the 1960s. When light strikes a molecule, most of its photons bounce off or pass directly through, but a tiny fraction — fewer than one in a trillion — are absorbed and re-emitted into another energy level that differs from their initial level. By measuring and analyzing these re-emitted photons through Raman spectroscopy, scientists can decipher the types of atoms in a molecule as well as their structural arrangement.

Scientists have created a number of techniques to boost Raman signals. In the new study, LANP graduate student Yu Zhang used one of these, a two-coherent-laser technique called “coherent anti-Stokes Raman spectroscopy,” or CARS. By using CARS in conjunction with a light amplifier made of four tiny gold nanodiscs, Halas and Zhang were able to measure single molecules in a powerful new way. LANP has dubbed the new technique “surface-enhanced CARS,” or SECARS.

“The two-coherent-laser setup in SECARS is important because the second laser provides further amplification,” Zhang said. “In a conventional single-laser setup, photons go through two steps of absorption and re-emission, and the optical signatures are usually amplified around 100 million to 10 billion times. By adding a second laser that is coherent with the first one, the SECARS technique employs a more complex multiphoton process.”

Zhang said the additional amplification gives SECARS the potential to address most unknown samples. That’s an added advantage over current techniques for single-molecule sensing, which generally require a prior knowledge about a molecule’s resonant frequency before it can be accurately measured.

Another key component of the SECARS process is the device’s optical amplifier, which contains four tiny gold discs in a precise diamond-shaped arrangement. The gap in the center of the four discs is about 15 nanometers wide. Owing to an optical effect called a “Fano resonance,” the optical signatures of molecules caught in that gap are dramatically amplified because of the efficient light harvesting and signal scattering properties of the four-disc structure.

Fano resonance requires a special geometric arrangement of the discs, and one of LANP’s specialties is the design, production and analysis of Fano-resonant plasmonic structures like the four-disc “quadrumer.” In previous LANP research, other geometric disc structures were used to create powerful optical processors.

Zhang said the quadrumer amplifiers are a key to SECARS, in part because they are created with standard e-beam lithographic techniques, which means they can be easily mass-produced.

“A 15-nanometer gap may sound small, but the gap in most competing devices is on the order of 1 nanometer,” Zhang said. “Our design is much more robust because even the smallest defect in a one-nanometer device can have significant effects. Moreover, the larger gap also results in a larger target area, the area where measurements take place. The target area in our device is hundreds of times larger than the target area in a one-nanometer device, and we can measure molecules anywhere in that target area, not just in the exact center.”

Halas, the Stanley C. Moore Professor in Electrical and Computer Engineering and a professor of biomedical engineering, chemistry, physics and astronomy at Rice, said the potential applications for SECARS include chemical and biological sensing as well as metamaterials research. She said scientific labs are likely be the first beneficiaries of the technology.

“Amplification is important for sensing small molecules because the smaller the molecule, the weaker the optical signature,” Halas said. “This amplification method is the most powerful yet demonstrated, and it could prove useful in experiments where existing techniques can’t provide reliable data.”

Here’s a link to and a citation for the paper,

Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance by Yu Zhang, Yu-Rong Zhen, Oara Neumann, Jared K. Day, Peter Nordlander & Naomi J. Halas. Nature Communications 5, Article number: 4424 doi:10.1038/ncomms5424 Published 14 July 2014

This paper is behind a paywall.