Tag Archives: Nanosphere

Nano and the NASDAQ

First, a caveat: I know very little about stock markets and investing so I’m not offering any comments about the quality of the investment advice offered in an April 23, 2014 article by StreetAuthority for the NASDAQ stock market website. The article is being featured here for informational purposes and because it focuses on nanotechnology (Note: A link has been removed),

A couple of months ago, the fund planners at Invesco PowerShares closed the book on one of the most unusual chapters in investing history, announcing a move to shut down the PowerShares Lux Nanotech Portfolio exchange-traded fund ( ETF ). A lack of interest was the main culprit in its demise.

… For many investors, the move signaled the end of the decade-long hype around nanotechnology stocks. Back in 2006, with nanotech mania in full bloom, Businessweek predicted that this emerging technology would represent a $2.6 trillion industry by 2014 .

That prediction overestimated the industry’s potential by at least $2.5 trillion.

StreetAuthority goes on to analyse some specific ‘nano’ stocks,

… A quick snapshot of where the remaining nanotech stocks trade in relation to their all-time highs paints a sobering picture. With the exception of FEI Co. (Nasdaq: FEIC ) , not one of these firms lived up to the hype.

[downloaded from http://www.nasdaq.com/article/is-the-nanotech-craze-over-not-for-these-2-stocks-cm346626]

[downloaded from http://www.nasdaq.com/article/is-the-nanotech-craze-over-not-for-these-2-stocks-cm346626]

Just when you think all is lost the author finds reason for optimism (Note: Links have been removed),

Yet just as most investors have written off the notion of nano-investing, the underlying technology is being seeded in a widening range of applications. Many industrial firms such as 3M (NYSE: MMM ) already derive solid recurring revenue streams from nanotechnology and are spending heavily on new products , which bodes well for the companies that make the tools to help further this technology’s development.

FEI, for example, is expected to reach the $1 billion revenue mark this year for the first time. FEI’s equipment helps other firms analyze and develop nanotechnology-based products and chemistries, mostly in the semiconductor industry. The company has delivered on the promise of nanotech, but shares appear fully valued, as top-line growth is around 10% and shares trade for more than 20 times next year’s earnings.

A more intriguingly valued stock is Flamel Technologies (Nasdaq: FLML ) , a biotech firm that has developed a range of drug delivery methods to deliver nano-sized particles into the bloodstream. Though this firm could never live up to the nanohype of a decade ago — and a decade of annual operating losses will wilt any investor’s confidence — shares are starting to rebound as key products start to reach the market.

It’s nice to be able to supplement the information one gets from government reports on commercializing nanotechnology with some ‘stock market’ analysis. As for whether or not this is good advice, caveat emptor (buyer beware). I can say that the author does not seem to have a solid grasp of the term ‘nanotechnology’, e.g. “… a new and much-hyped technology known as graphene holds the same promise , and in a few years we may see huge sums of money chase after graphene companies, just as we saw with nanotechs.” [emphasis mine] Generally speaking, graphene is considered to be part of the ‘nanotechnology enterprise’.

Chad Mirkin, spherical nucleic acids, and a new ‘periodic table’

There was a big splash in July 2012 with the announcement that Chad Mirkin’s team at Northwestern University (Chicago, Illinois) had devised a skin cream that penetrated the skin barrier to deliver medication (my July 4, 2012 posting),

A team led by a physician-scientist and a chemist — from the fields of dermatology and nanotechnology — is the first to demonstrate the use of commercial moisturizers to deliver gene regulation technology that has great potential for life-saving therapies for skin cancers.

The topical delivery of gene regulation technology to cells deep in the skin is extremely difficult because of the formidable defenses skin provides for the body. The Northwestern approach takes advantage of drugs consisting of novel spherical arrangements of nucleic acids. These structures, each about 1,000 times smaller than the diameter of a human hair, have the unique ability to recruit and bind to natural proteins that allow them to traverse the skin and enter cells.

Mirkin has just finished presenting (Feb. 15, 2013 and Feb. 17, 2013) more information about spherical nucleic acids and their implications at the AAAS  (American Association for the Advancement of Science) 2013 meeting in Boston, Massachusetts. From the Feb. 15, 2013 news release on EurekAlert,

Northwestern University’s Chad A. Mirkin, a world-renowned leader in nanotechnology research and its application, has invented and developed a powerful material that could revolutionize biomedicine: spherical nucleic acids (SNAs).

Potential applications include using SNAs to carry nucleic acid-based therapeutics to the brain for the treatment of glioblastoma, the most aggressive form of brain cancer, as well as other neurological disorders such as Alzheimer’s and Parkinson’s diseases. Mirkin is aggressively pursuing treatments for such diseases with Alexander H. Stegh, an assistant professor of neurology at Northwestern’s Feinberg School of Medicine.

“These structures are really quite spectacular and incredibly functional,” Mirkin said. “People don’t typically think about DNA in spherical form, but this novel arrangement of nucleic acids imparts interesting chemical and physical properties that are very different from conventional nucleic acids.”

Spherical nucleic acids consist of densely packed, highly oriented nucleic acids arranged on the surface of a nanoparticle, typically gold or silver.  [emphasis mine] The tiny non-toxic balls, each roughly 15 nanometers in diameter, can do things the familiar but more cumbersome double helix can’t do:

  • SNAs can naturally enter cells and effect gene knockdown, making SNAs a superior tool for treating genetic diseases using gene regulation technology.
  • SNAs can easily cross formidable barriers in the human body, including the blood-brain barrier and the layers that make up skin.
  • SNAs don’t elicit an immune response, and they resist degradation, resulting in longer lifetimes in the body.

“The field of medicine needs new constructs and strategies for treating disease,” Mirkin said. “Many of the ways we treat disease are based on old methods and materials. Nanotechnology offers the ability to rapidly create new structures with properties that are very different from conventional forms of matter.”

“We now can go after a whole new set of diseases,” Mirkin said. “Thanks to the Human Genome Project and all of the genomics research over the last two decades, we have an enormous number of known targets. And we can use the same tool for each, the spherical nucleic acid. We simply change the sequence to match the target gene. That’s the power of gene regulation technology.”

###

A member of President Obama’s Council of Advisors on Science and Technology, Mirkin is known for invention and development of biological and chemical diagnostic systems based upon nanomaterials. He is the inventor and chief developer of Dip-Pen Nanolithography, a groundbreaking nanoscale fabrication and analytical tool, and is the founder of four Chicago-based companies: AuraSense, AuraSense Therapeutics, Nanosphere and NanoInk.

Mirkin, in addition to his work with spherical nucleic acids, has been busy with other nanoparticles and possible dreams of a new ‘periodic table of elements’, from the Feb. 17, 2013 news release on EurekAlert,

Forging a new periodic table using nanostructures

Northwestern University’s Chad A. Mirkin, …, has developed a completely new set of building blocks that is based on nanoparticles and DNA. Using these tools, scientists will be able to build — from the bottom up, just as nature does — new and useful structures.

“We have a new set of building blocks,” Mirkin said. “Instead of taking what nature gives you, we can control every property of the new material we make. We’ve always had this vision of building matter and controlling architecture from the bottom up, and now we’ve shown it can be done.”

Using nanoparticles and DNA, Mirkin has built more than 200 different crystal structures with 17 different particle arrangements. Some of the lattice types can be found in nature, but he also has built new structures that have no naturally occurring mineral counterpart.

Mirkin can make new materials and arrangements of particles by controlling the size, shape, type and location of nanoparticles within a given particle lattice. He has developed a set of design rules that allow him to control almost every property of a material.

New materials developed using his method could help improve the efficiency of optics, electronics and energy storage technologies. “These same nanoparticle building blocks have already found wide-spread commercial utility in biology and medicine as diagnostic probes for markers of disease,” Mirkin added.

With this present advance, Mirkin uses nanoparticles as “atoms” and DNA as “bonds.” He starts with a nanoparticle, which could be gold, silver, platinum or a quantum dot, for example. The core material is selected depending on what physical properties the final structure should have.

He then attaches hundreds of strands of DNA (oligonucleotides) to the particle. The oligonucleotide’s DNA sequence and length determine how bonds form between nanoparticles and guide the formation of specific crystal lattices.

“This constitutes a completely new class of building blocks in materials science that gives you a type of programmability that is extraordinarily versatile and powerful,” Mirkin said. “It provides nanotechnologists for the first time the ability to tailor properties of materials in a highly programmable way from the bottom up.”

If I read these two news releases rightly, the process (nanoparticles as atoms and DNA as bonds), Mirkin uses to create new structures is the same process he has used to create spherical nucleic acids. Given Mirkin’s entrepreneurial inclinations, I am curious as to how many and what kind of patents might be ‘protecting’ this work.